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Abstract 

For a reinforced concrete (RC) beam structure subject to a mid-span point load, 

failure in tension is deemed to occur when steel reinforcement on the tension side has 

yielded. When unloaded from this post-serviceability cracking stage, the residual stiffness 

of the failed structure is difficult to estimate. This paper presents a new method for the 

residual stiffness assessment of a failed RC member such as a beam or one way narrow 

slab at the post-serviceability cracking stage based on dynamic testing and finite element 

(FE) model updating. The failed zones are simulated using damaged beam elements in an 

FE model of the structure and the measured modal properties i.e. frequencies and mode 

shapes are used as the reference data for model updating. Through a procedure of 

sensitivity-based updating, the stiffness distribution along the member can be obtained, 

leading to identification of location and extent of the damaged (failed) region. 

Key words: stiffness assessment, reinforced concrete, beam structure, post-serviceability, 

finite element model updating 
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Nomenclature 

A  area of cross-section 

)( ωiAq  Fourier transform of acceleration response )(ta
q

 

cb  depth of neutral axis of reinforced concrete beam 

Di  damage index 

E  Young’s modulus 

EI  stiffness 

f  frequency in Hz 

)( ωiFp  Fourier transform of force input )(tf p  

)( ωiH pq
 frequency response function (FRF) between position p and q 

i  complex number 

I  moment of inertia of cross-section 

MAC  modal assurance criterion 

n  Young’s modulus ratio of steel and concrete 

p   position of force 

q  position of acceleration measurement 

Δf  frequency difference between updated and measured 

ε  strain 

φ   mode shape vector 

σ  stress 

ω circular natural frequency 
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Superscript 

f  failed 

T  transpose of vector 

u  updated 

*  conjugation of complex number 

′  quantity of top steels in beam 

Subscript 

c  concrete 

s  steel and slab 

b  beam 

a  analysis 

e  experiment 

t  transformed quantity 

cr  cracked 

m  midspan and measured 

u  updated 

 

1. Introduction 

The deflection, as a measure of stiffness, of a reinforced concrete (RC) member 

determines an operating range for serviceability and post-serviceability before rupture. 

The load-deflection relationship of a RC beam, shown in Fig. 1 (Nawy, 1990), is 

essentially composed of three regions prior to rupture:  
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(1) a very limited or even non-existent pre-cracking stage where a structural member is 

crack-free;  

(2) post-cracking stage where the structural member develops acceptable controlled 

cracking both in distribution and width (most beams lie in this region at service 

loads); and  

(3) post-serviceability cracking stage where the stress in tension reinforcement reaches 

the limit state of yielding, the beam is considered at this stage to have structurally 

failed by initial yielding of tension steel. 

Methods for estimating the stiffness of a RC beam and one way slab at the stage I 

and II are available (Nawy, 1990) and can give adequate basic background on the effect 

of cracking on the stiffness of the member. At the stage III or post-serviceability cracking 

stage, it is difficult to estimate the residual stiffness due to the yielding of the tension 

steel in the RC beam (assuming it to be an under-reinforced member). However, it is 

important to recognize the reserve deflection capacity as a measure of ductility in 

structures in earthquake zones and in other applications where the probability of overload 

is high. 

Recently, the finite element (FE) model updating method (Mottershead and 

Friswell, 1993) for damage identification (Doebling, et. al 1998) based on dynamically 

measured data such as measured frequencies and mode shapes has received some 

attention. This method combines experimental modal analysis and finite element analysis, 

rather than purely relying on numerical analysis and is designed for correcting the 

uncertainties in modeling, geometry, material and analysis to improve the analytical 

estimates of performance by systematic comparison with experimental results. In two 
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different applications (Brownjohn and Xia, 1999, 2000) the method was used to identify 

damage in a model bridge and to characterize the structural properties of a prototype 

bridge. In the present application, because the method can correct any parametric 

uncertainty in a model, it provides a possibility to accurately assess the residual stiffness 

of the RC structures at post-serviceability cracking stage. 

This investigation described in this paper focused on the application of the 

method to residual stiffness assessment of a simulated pedestrian RC beam bridge model 

which was loaded to the post-serviceability cracking stage. The testing was conducted 

during a student practical exercise to study the serviceability and ultimate performance of 

the beam structures. Extensively instrumented beam structures were studied at various 

stages of mid-span loading through serviceability load (to achieve a specified deflection), 

load for failure (yield of tension steel) and rupture. Vibration testing was done on one 

simply supported 5m span beam bridge model in the original unloaded state so that a 

reliable FE model could be set up based on the measured data. After failure but before 

rupture the structure was retested to provide reference data to estimate the residual 

stiffness of the failed structure. Based on the stiffness distribution along the beam span 

identified by FE model updating, the location and extent of damage in the RC beam were 

determined. 

 

2. Stiffness Estimation at Cracking Stage I and II 

The detailed geometry of investigated RC bridge structure is shown in Fig. 2. It 

comprised a shallow lightly reinforced slab component with two deep reinforced edge 

beams. The edge beams were nominally 250mm deep by 150mm wide. The bridge deck 



 6 

had overall 1m width and 5m length and was simply supported at the ends on two 

concrete blocks as shown in Fig. 2. 

At the first stage in region I shown in Fig. 1, the flexural stiffness of the bridge 

deck EI can be estimated using Young’s modulus of concrete 
c
E  multiplied by the 

moment of inertia of the uncracked RC cross section which is transformed to the same 

material. The value of 
c
E  for normal-weight concrete can be estimated using the ACI 

empirical expression (Nawy, 1990), 
cc

E σ4730=  (N/mm
2
) where 

c
σ  is compressive 

strength of concrete measured at 28 days after casting. Based on sample cube tests, 

)/(1099.2 24
mmNE

c
×= . The area of steel reinforcement 

s
A  is replaced by an 

equivalent concrete area 
scs
AEE )/(  in which Es is the modulus of the reinforcing steel. 

The transformed moment of inertia of one edge beam 
bt
I  and of slab component 

st
I  with 

rectangular cross-section shown in Fig. 2 and their center of gravity of the transformed 

section 
bty  and 

st
y  are given as follows, 
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where, 
cs
EEn /=  is the modulus ratio. 

s
A  and '

s
A  are the areas of top and bottom steels 

in one edge beam respectively. 
1s

A  is the total areas of steels in the slab. The values of 

dimensions and areas are given in Fig. 2. After substitution of relevant values into 
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equations (1), (2), (3) and (4), the transformed moments of inertia were calculated as 

48
1068.2 mmI

bt
×= , 48

1071.1 mmI
st

×=  and the overall transformed moment of inertia 

of the deck 48
1007.72 mmIII

stbtt
×=+= . 

At the second stage of load-deflection relationship (region II shown in Fig. 1), the 

edge beams underwent varying degrees of cracking along the span, corresponding to the 

stress and deflection levels at each section. Hence cracks were wider and deeper at 

midspan. When flexural cracking developed, the flexural rigidity of the section was 

reduced as the contribution of the concrete along the beams in the tension zone reduced 

substantially and the depth of the compression zone reduced. As the cracked zone 

expanded, stiffness continued to decrease, reaching a lower-bound value corresponding to 

the reduced moment of inertia of the completely cracked section. At this state the 

contribution of tension-zone concrete to the stiffness was neglected. The strain and stress 

distributions through the depth of the cracked rectangular concrete beam section at this 

stage are shown in Fig.3. Based on extensive testing verification (Spiegel and 

Limbrunner, 1998), the following assumptions were made:  

(1) the strain distribution across the depth of a typical cracked concrete section is 

assumed to be linear;  

(2) concrete does not resist any tension; and  

(3) both concrete and steel are within the elastic limit.  

In terms of the assumptions and the horizontal force equilibrium in cross section, 

the moment of inertia of the cracked beam section 
bcr
I  can be determined as follows, 

2''23

3
1 )()1()( dcAncdnAbcI

bsbsbbcr
−−+−+=                              (5) 

where the value of neutral axis depth 
b
c  can be obtained from 
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In equation (5), the first term denotes the moment of inertia of the compressive 

area 
b

bc  about the neutral axis, namely, the base of the compression rectangle, neglecting 

the section area in tension below the neutral axis. The reinforcing area was scaled by n to 

transform to an equivalent concrete area for contribution to the section stiffness. The 

moment of inertia of the steel about its own axis was disregarded as negligible.  

From equations (5) and (6), the moment of inertia for one edge beam was 

calculated as 47
1028.5 mmI

bcr
×= , then the overall moment of inertia of the cracked 

cross section of the deck was given as 48
1077.22 mmIII

stbcrcr
×=+=  which was 

approximately 0.2Ibt and 0.39It respectively. Of course only part of the beam cross 

section was cracked and (from Fig. 3a) the uncracked area below the neutral axis along 

the beam span contributed to the overall beam rigidity. The actual overall stiffness of the 

cracked bridge deck lies between 
tc
IE  and 

crc
IE , approaching 

crc
IE  as steel approaches 

yield point. When the beam enters the post-serviceability stage, the overall stiffness value 

drops below 
crc
IE . 

 

3. Static and Dynamic Testing 

In the static load testing, midspan loads were applied in increments of 2~5kN by a 

hydraulic jack as shown in Fig. 7 until the maximum load of 47.3 kN was sustained, 

(compared to the design value of 40 kN). Beam deflections obtained by LVDTs and steel 

reinforcement strains from electrical resistance strain gauges were recorded. Fig. 4 shows 
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the measured load-deflection relationship showing regions I, II and III. The cracking 

developed at midspan is shown highlighted by marker pen in Fig. 5. 

Vibration testing on the bridge model was conducted first before any loading and 

then after failure. Techniques of modal analysis (Ewins, 1984) were used to identify the 

dynamic properties such as frequencies, mode shapes and damping ratios of a structure 

through input (excitation) and output (response) signals using the test set up shown in 

Fig. 6. There were 22 measurement points totally and one excitation point which was 

kept in the same location on the bridge deck surface during the testing. Excitation by both 

instrumented hammer (5.5kg) and electrodynamic long stroke inertial shaker were used to 

guarantee the quality of test data. Both techniques apply a broadband excitation, the 

shaker via a continuous chirp or fast sine swept signal (Godfrey, 1993) and the hammer 

by impulsive load (Fig. 7). Response signals obtained from ICP accelerometers stuck at 

the measurement points were recorded through analog to digital converter via a sixteen 

channel data acquisition, control and analysis system also used to generate the shaker 

excitation control signal. Data acquired in time domain were used to determine the 

frequency response function (FRF) )( ωiH pq
 as follows, 

)()(
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*
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qp

qq

pq
                                               (7) 

An example acceleration response time history from an accelerometer at a 

measurement point by shaker excitation and an FRF curve are shown in Fig. 8 and Fig.9 

respectively. From the FRFs, the measured frequencies and corresponding mode shapes 

of the structure were obtained by using modal analysis technique (Ewins, 1984). The 

measured frequencies 
mf  are listed in the second column in Table 1. The measured mode 
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shapes are shown in the first column in Fig. 10 which shows obvious responses at the 

elastic supports (concrete blocks). 

The failed bridge deck was tested again using the same method as for preload 

testing. The measured frequencies 
mf  are listed in the sixth column in Table 1. The 

measured mode shapes are shown in the second column in Fig. 10. After compared the 

measured data, it can be seen that the frequencies of the damaged bridge structure were 

slightly reduced and the slightly sharper curvature of the first and third mode shapes at 

midspan of the failed structure, comparing with its undamaged structure, was produced 

due to the large stiffness reduction in the failure zone. The measured frequencies and 

mode shapes were used as reference data for FE model updating of the damaged 

structures. 

 

4. Stiffness Assessment at Cracking Stage III 

It is difficult to estimate the residual stiffness of RC beam structure at the post-

serviceability cracking stage III due to the yielding of the tension steel in the RC beam as 

described previously. However, it is possible to estimate the stiffness by using the FE 

model updating method due to its ability to identify uncertainties in the structure. The 

detailed procedure of the sensitivity analysis based FE model updating can be seen in the 

reference (Brownjohn and Xia, 2000). 

‘Damaged’ FE model 

Model updating necessitates an appropriate FE model of the structure. In the 

preparation of FE model for updating, it is important that modeling uncertainties can be 

assessed quantitatively as far as possible. For a damaged structure, the damaged zones 
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will not be generally contained in a FE model unless some special considerations are 

incorporated. In this case, a kind of ‘damaged’ or ‘weakened’ beam model (Brownjohn 

and Xia, 1999) was used to simulate the cracked zone at midspan of the edge beam 

components. A ‘damaged’ beam model is shown in Fig. 11. The physical and geometrical 

parameters of the ‘damaged’ element depend on the damage extent. 

To represent the large responses at the supports of the structure (Fig. 10), the 

boundary conditions were taken as elastic supports in the form of eight linear springs in 

the FE model. Two side edge beam components were modeled using 3D beam elements 

and four ‘weak’ beam elements were located around midspan. The top slab component of 

the deck was modeled using shell elements. The resulting FE model is shown in Fig. 12. 

It should be pointed out that if the parameters of ‘weak’ beam elements take the real 

values for the damage zones, then the FE model is taken to represent the damaged 

structure, but if the parameters match those for the rest of the beam the FE model 

represents the undamaged structure. 

Model Updating of Undamaged Structure 

In order to accurately estimate residual stiffness of the failed RC bridge structure, 

it is fatal to have a reliable FE model with correct parameters and boundary conditions 

which necessitates model updating for the undamaged structure. Generally, a model 

updating procedure includes three aspects (Brownjohn and Xia, 1999, 2000):  

(1) selection of responses such as measured frequencies and mode shapes as reference 

data for updating;  

(2) selection of uncertain physical and geometrical parameters to which changes in the 

selected responses must be sensitive; and  
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(3) model tuning which is an iterative process to estimate the selected parameters based 

on the reference data. 

In this exercise, stiffness of springs at the boundary supports, Young’s modulus of 

concrete 
c
E , mass density of concrete and moment of inertia of the edge beam 

bt
I , were 

selected as uncertain parameters to update. The model tuning is a semi-automatic process 

using the FEMtools software (FEMtools, 1998). During the updating, it is necessary to 

make some manual adjustments e.g. support spring stiffness to provide a starting point. 

Without a reasonable starting point, the iterative updating procedure may not converge to 

a solution (Brownjohn and Xia, 1999, 2000). 

After model updating based on the measured frequencies and mode shapes for the 

undamaged structure, the updated value of Young’s modulus of concrete was equal to 

24
/1079.2 mmNE

u

c
×= , a reduction by 6.69% compared to its original estimate. The 

updated value of moment of inertia of the edge beam was 48
1023.3 mmI

u

b
×=  compared 

to original estimate 48
1068.2 mmI

bt
×= .  

The success of model updating can be judged by correlation indicators such 

frequency difference 
fΔ  between FE model and measurement and by the modal 

assurance criterion or MAC (Allemang and Brown, 1982) defined by, 

))((
),(

2

e

T

ea

T

a

e

T

a

ea
MAC

φφφφ

φφ
=φφ                                            (8) 

Given a set of experimental modes and a set of predicted modes, a matrix of MAC values 

can be computed. The matrix could indicate clearly which experimental mode relates to 

which predicted mode. The mode shapes with a MAC value equal to 100% represent a 
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perfect correlation, modes which are completely orthogonal have 0% MAC. Generally, it 

is found that a value in excess of 90% should be attained for correlated modes. 

The updated frequencies uf  and the differences 
fΔ  are listed in the first and third 

column in Table 1, respectively. The MAC values are listed in the fourth column in Table 

1. The low 
fΔ  and high MAC values show an excellent correspondence between updated 

FE model and test model. The visualization of mode shapes shown in the first column in 

Fig. 13 also indicated the correspondence between the updated FE model and measured 

model. These correspondences gave a confidence that the updated model can be taken as 

a reliable initial FE model for updating the failed structure so as to obtain an accurate 

estimation of the residual stiffness. 

Stiffness Assessment of Failed Structure 

After loading to the ultimate limit state, the cracks were wider and deeper at 

midspan, whereas narrower and shallower minor cracks developed towards the supports. 

The varying cracks along the beam span produced a varying reduction of the moment of 

inertia resulted in a varying reduction of the stiffness along the beam. Hence the moment 

of inertia of the beam was selected as uncertain parameter to update in the damaged FE 

model. The distribution of the moment of inertia along the beam span after updating 

determined the stiffness distribution of the beam. The starting value of the moment of 

inertia of the beam element was taken as the value of u

b
I  except for the ‘weak’ beam at 

the midspan. The wide and deep cracks at the mispan should lead to serious reduction of 

moment of inertia at midspan whose starting value was taken as Ibcr which was the 

estimated value of moment of inertia at the midspan at the post-cracking stage II and 

would become the value at the midspan at the post-serviceability stage III after updating 
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based on the measured data from the failed RC structure. The length of a ‘weak’ beam at 

midspan was taken as 0.12m. The length of two ‘weak’ beams was approximately equal 

to the length of the damaged zone at midspan. Besides the moment of inertia, Young’s 

modulus was also selected as an updating parameter at the midspan. The starting value of 

Young’s modulus was taken as u

c
E . 

After the tuning procedure, the updated frequencies uf  and the differences 
fΔ  

are listed in the fifth and seventh column in Table 1, respectively. The MAC values are 

listed in the eighth column in Table 1.  The 
fΔ  values were very small and the MAC 

values were very high. The pairing of mode shapes of the failed structure with those from 

the updated ‘damaged’ FE model is shown in the second column in Fig. 13 in which the 

consistency of the updated model with the measured model can be seen. 

At midspan, the updated value of Young’s modulus and moment of inertia were 

3 2
2.15 10 /

f

bmE N mm= ×  and 7 4
3.14 10

f

bmI mm= ×  respectively (all values of moment of 

inertia at midspan beam are listed in Table 2 for convenient look). Thus, The residual 

stiffness of the failed bridge deck at midspan at the post-serviceability cracking stage III 

was estimated as 12 2
2 4.91 10

f f u

bm bm c ptE I E I Nmm+ = × , smaller than the estimated value 

212
1072.7 NmmIE

cr

u

c
×=  at the post-cracking stage II. According to the updated values 

of moment of inertia along the beam, the distribution of stiffness EI along the failed deck 

at the post-serviceability cracking stage III can be obtained and is shown in Fig. 14. It is 

obvious that the smallest stiffness was at midspan of the failed deck and the stiffness 

increased gradually towards the supports. 
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It should be pointed out that the moment of inertia of RC beam depends on the 

square of depth of neutral axis through equation (5), so the distribution of stiffness along 

a beam will be similar to the distribution of depth of neutral axis along the beam. Fig. 15 

shows the measured distribution of depth of neutral axis of the beam under the ultimate 

limit state during the static testing. The neutral axis depth for the beam was obtained by 

linear interpolation of strain values from the top and bottom steels in the edge beam and 

is defined as 
b
c  in Fig. 3. The negative neutral axis depth at the midspan means that the 

up and down steels in the edge beam were all in tension at the ultimate limit state. Values 

above the beam are possible due to the contribution of the slab element with uneven 

surface. The distributions in Fig. 14 and Fig. 15 are remarkably similar. 

In terms of the stiffness distribution of the failed deck, the location and extent of 

damage along the deck also can be obtained. The cross-section with reduction of stiffness 

located the damage along the deck. A damage index 
i
D  which can determine the extent 

of damage is defined as, 

%100
)(

)(
×

Δ
=

o

i

EI

EI
D                                                   (9) 

where )(EIΔ  denotes the change in stiffness between undamaged and damaged cross-

section of the deck and 
o

EI )( denotes the original stiffness of the undamaged cross 

section of the deck. Fig. 16 shows the damage index 
i
D  along the deck. Obviously, the 

extent of damage at midspan of the failed deck was most serious, at 71.4%. 
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5. Discussion 

In order to be successful in model updating, some manual tuning of values for 

selected parameters is necessary prior to tuning procedure, especially in the case of a 

large difference between initial estimates and true values of selected parameters. This 

occurs when parameters are significantly changed by serious damage or structural failure, 

or when there is no reasonable estimate available, such as for boundary condition 

stiffness. The manual tuning to date has been done based on experience but there are 

some systematic procedures available. 

Meanwhile, for a simple RC structure like this bridge deck, it would also 

normally be necessary to analyze the structure at the pre-cracking stage I and post-

cracking stage II. These analyses can supply reliable initial information for successful 

model updating of the failed structure at the post-serviceability cracking stage III for 

correct damage assessment. If the model updating goes straight to the damaged case, it is 

unlikely to be successful due to numerous and large uncertainties in the FE model. For 

example, in this exercise, boundary condition parameters obtained from stage I 

measurements and estimated midspan beam inertia at the stage II were taken as the 

reasonable initial value for the failed deck updating. Without doing this, the updating 

cannot converge to a solution for accurate estimation of parameters. It may be possible to 

go straight to model updating for the damaged case when the original structural 

conditions are well known, i.e. there is a ‘baseline’ model, but this is not the normal case. 

The investigation described in this paper was a laboratory exercise which can be 

extended to be applicable to real bridges e.g. highway bridges. Such kind of bridges may 

be tested for dynamic properties by using hammer excitation and is not necessary to close 
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the bridge during the measurement. It is suggested that the existing bridges should be 

conducted the dynamic testing for establishment of bridge management data (Hearn, 

1998) which can be used for structural condition assessment (Aktan et al, 1996) in case 

the bridge is damaged accidentally. 

 

Conclusions 

The model updating method based on the dynamic measurements can identify the 

residual stiffness of the failed reinforced concrete beam structure that is at the post-

serviceability cracking stage III. The identified stiffness distribution along the beam can 

locate the damage in the structure and determine the extent of the damage. 

Using a “damaged” beam element to simulate the damaged area in the structure is 

a practical and convenient way to model the failed structure in FE analysis. The estimated 

values of geometrical parameters of the beam at the post-cracking stage II can be taken as 

the initial values of the “damaged” beam elements for failed model updating.  
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Symbol Value (mm
4
) Physical Meaning 

Ibt 2.68×10
8 Transformed value at pre-cracking stage I 

u

b
I  3.23×10

8 Updated (‘true’)value at pre-cracking stage I 

Ibcr 5.28×10
7
 Estimated value at post-cracking stage II 

f

bmI  3.14×10
7 Updated (‘true’) value at post-serviceability stage III 

 

Table 2 Moment of Inertia of Cross-section at Midspan Beam 

Undamaged Structure Damaged Structure 

uf  

(Hz) 

(1) 

mf  

(Hz) 

(2) 

fΔ  

(%) 

(3) 

MAC 

(%) 

(4) 

uf  

(Hz) 

(5) 

mf  

(Hz) 

(6) 

fΔ  

(%) 

(7) 

MAC  

(%) 

(8) 

13.3 12.9 3.20 98.8 10.0 10.0 -0.40 99.7 

31.3 33.0 -5.12 97.6 32.0 32.2 -0.76 99.0 

44.5 42.6 4.40 97.3 41.1 40.8 0.69 97.7 

74.1 70.6 4.99 96.6 70.2 68.8 1.98 93.2 

78.2 81.4 -3.95 98.2 78.6 78.5 0.13 97.6 

 

Table 1 Correlation between FE Updating and Measurement 

( ) / 100%f u m mf f fΔ = − ×
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Fig. 1 Load-Deflection Relationship of Beam 

          Region Ι, Pre-cracking Stage; 

          Region ΙΙ, Post-cracking Stage; 

          Region ΙΙΙ, Post-serviceability Stage 
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Fig. 2 Schematic of Reinforced Concrete Bridge Deck 
(a) Span Unit with Simple Supports; 
(b) Cross-section, Unit: Length(mm), Area(mm
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Fig. 3 Stress and Strain Distribution of Cracked Reinforced 
          Concrete Beam: (a) Geometry; (b) Strain; (c) Stress 
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Fig. 4 Measured Load-Deflection Relationship of Deck 
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Fig. 5 Cracks at Midspan of Beam 
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Fig.6 Vibration Testing Set-up for RC Bridge Deck 

(a) Measurement Points    and Excitation Point ∗ 
(b) Diagram: (1) Shaker; (2) Hammer;  
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Fig. 7 Vibration Testing Using Instrumented Hammer  

          and Experimental Set-up 
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Fig. 8 Time History of Acceleration Response due to Chirp Excitation 

-0.04

-0.02

0

0.02

0.04

46.5 47.0 47.5 48.0 48.5 49.0

Time (s)

Acceleration (g) 

Fig.9 Measured FRF Magnitude at One Point 
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Mode Shapes of Undamaged Deck Mode Shapes of Damaged Deck 
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Fig.10 Measured Frequencies and Mode Shape of Deck 
                 Undeformed;        Deformed;    Test Point 
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Weak beam 

Original beam Original beam 

Fig. 11 A ‘Damaged” Beam Model 
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Fig. 12 FE Model of Bridge Structure 
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Mode Shapes of Undamaged Deck Mode Shapes of Damaged Deck 
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Fig. 13 Pair of Mode Shapes between FE Updated and Measured 
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 32 

Fig. 15 Measured Neutral Axis of Beam under Ultimate Limit State 
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Fig. 14 Distribution of Stiffness of Failed Beam 
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Fig. 16 Distribution of Damage Index along Beam 
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