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Abstract: Prediction of residual strength and residual life of corrosion pipelines is the key to ensuring
pipeline safety. Accurate assessment and prediction make it possible to prevent unnecessary accidents
and casualties, and avoid the waste of resources caused by the large-scale replacement of pipelines.
However, due to many factors affecting pipeline corrosion, it is difficult to achieve accurate predictions.
This paper reviews the research on residual strength and residual life of pipelines in the past decade.
Through careful reading, this paper compared several traditional evaluation methods horizontally,
extracted 71 intelligent models, discussed the publishing time, the evaluation accuracy of traditional
models, and the prediction accuracy of intelligent models, input variables, and output value. This
paper’s main contributions and findings are as follows: (1) Comparing several traditional evaluation
methods, PCORRC and DNV-RP-F101 perform well in evaluating low-strength pipelines, and DNV-
RP-F101 has a better performance in evaluating medium–high strength pipelines. (2) In intelligent
models, the most frequently used error indicators are mean square error, goodness of fit, mean
absolute percentage error, root mean square error, and mean absolute error. Among them, mean
absolute percentage error was in the range of 0.0123–0.1499. Goodness of fit was in the range of
0.619–0.999. (3) The size of the data set of different models and the data division ratio was counted.
The proportion of the test data set was between 0.015 and 0.4. (4) The input variables and output
value of predictions were summarized.

Keywords: residual strength; residual life; evaluation criterion; intelligent model

1. Introduction

The pipeline is the primary transportation mode of oil and gas, which also accounts
for a considerable proportion of the national economy, and the safe operation of pipelines
is also closely related to people’s lives. Due to the vast area, complex geology, different
soil properties, and significant differences in a corrosive environment, pipelines are very
vulnerable to external corrosion, which reduces their safety and service life. Pipeline
leakage is one of the most critical potential safety hazards of long-distance oil and gas
pipeline transportation.

According to the 11th EGIG report [1], incidents caused by corrosion accounted for
26% during the period 2009–2013 and 24% during the period 2004–2013, and the incidents
caused by corrosion accounted for 26.63% during the period 2010–2019.The incidents with
leak size pinhole/crack caused by corrosion accounted for 38% (Figure 1).

With the frequent accidents caused by corroded pipelines, it is still necessary to do
more research on pipeline residual strength evaluation and residual life prediction. The
significance of residual strength evaluation and residual life prediction has two aspects:
(a) accurate assessment and prediction makes it possible to prevent unnecessary accidents
and casualties; (b) accurate assessment and prediction can avoid the waste of resources
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caused by the large-scale replacement of pipelines through repairing it in advance. There-
fore, residual strength assessment and residual life prediction have attracted a large number
of scholars, and due to the popularity of artificial intelligence and machine learning in
recent years; a large number of scholars use intelligent models as their research methods.
For example, we search the literature in the ScienceDirect database with the following
requirements: (1) Search target: ”residual strength assessment” or “residual life prediction”;
(2) Period: 2009–2021; (3) Article type: “Review articles” and “Research articles”. A total
168 papers were retrieved.
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These papers can be roughly divided into the evaluation of traditional methods and
the prediction of intelligent models. Most of the research based on traditional methods
has been performed well, but in the research using intelligent models, researchers can only
compare the basic models with the improved models, due to their limited energy, and there
is no more comprehensive review to compare a large number of intelligent models. The
purposes of this paper are to:

1. Provide selection reference for researchers;
2. Compare the advantages and disadvantages of the methods to help researchers

understand each method;
3. Provide a reference for future research.

The rest of this paper is organized as follows: Section 2 introduces the literature
review methodology. Section 3 reviews the prediction models and methods, and classifies
them according to traditional methods and intelligence methods. Section 4 discusses the
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applicable conditions of traditional methods, compares the prediction accuracy under
different pipe steel grades, and reviews the model, data size, input variable, output value,
publishing time, performance of intelligent methods, and the future research directions.
Section 5 summarizes the primary conclusions of this paper.

2. Methodology

The methodology of this review is summarized as follows, mainly including four steps:

• Step 1: Multiple database searches.

According to our preliminary search results, there is not enough quantity in a single
database. In order to summarize more comprehensively and have more reference value,
we have combined the search results of multiple databases. The critical information of the
search is as follows:

Object: residual life/strength prediction of corroded pipeline.
Database: Google Scholar, Web of Science, ASCE, SPE, ScienceDirect, CNKI.
Keywords: residual strength, residual life, evaluation method, intelligent model.
Language: English.
Period: 2009–2021

• Step 2: Review and screening.

In the collected literature, many are related to the residual strength evaluation and
residual life prediction, but the experimental object is not the corroded pipeline. In order to
achieve better results and determine that the content is directly related to the residual life
prediction and residual strength evaluation of the corroded pipeline, we read each paper
carefully.

• Step 3: Extracting information from papers.

Read the paper in-depth and extract meaningful information, such as the utilized
model, prediction accuracy, data size, proportion of test data set, input variables, and
output value.

• Step 4: Discussion and conclusion.

Discuss the information extracted in step 3, make a comprehensive review, summarize
the existing research, and put forward possible research directions in the future.

3. Literature Review
3.1. Traditional Evaluation Methods
3.1.1. ASME B31G-1984

In the late 1960s, Texas Eastern transportation company and American Natural Gas
Association (AGA) conducted relevant research on corroded pipelines and proposed NG-18
formula [2]. All subsequent formulas of this series evolved from it, and the expression is
shown in Equation (1).

Pf = σf low

(
1− A

A0

1− A
A0

1
M

)
(1)

In 1984, ASME B31G-1984, as the earliest residual strength evaluation criterion of
corroded pipelines [3], was proposed by American Society of Mechanical Engineers based
on NG-18. The specific parameters in NG-18 formula were given. l2

Dt ≤ 20 is defined as a
short defect and l2

Dt ≥ 20 is defined as a long defect. According to different defect length,
there are two formulas for calculating failure pressure of pipeline (Equation (2)).

Pf = σf low

(
1− A

A0

1− A
A0

1
M

)
(2)



Energies 2022, 15, 726 4 of 30

3.1.2. ASME B31G-1991

In 1991, American Society of Mechanical Engineers had made some modifications to
B31G-1984, and proposed ASME B31G-1991 [4]. The new criterion retained the original
flow stress, and modified the Folias bulging coefficient and the calculation formula of long
defect failure pressure, the expression is shown in Equation (3).

Pf =
σf low2t

D

(
1− d

t

)
(3)

Compare to B31G-1984, the results of B31G-1991 evaluation criterion is less conservative.

3.1.3. Modified B31G

Kiefner and others of the American Natural Gas Association (AGA) [5] found that
improper definition of flow stress, inaccurate expression of the Folias bulging coefficient,
and inaccurate calculation of metal loss area caused B31G-1984 to be too conservative.
In view of the above problems, Kiefner and his colleagues proposed the modified B31G
criterion. The modified evaluation criterion does not distinguish the size of defects when
simplifying the projected area of defect profile, but takes A = 0.85 dL. Therefore, this
evaluation method is also called “RSTRENG 0.85 dL evaluation method”. The expression
of failure pressure is shown in Equation (4).

Pf =
σf low2t

D

(
1− 0.85 d

t

1− 0.85 d
t

1
M

)
(4)

3.1.4. ASME B31G-2009

Based on the previous two editions of ASME B31G, the criterion was revised again in
2009 and ASME B31G-2009 was obtained [6]. This version adopts the concept of hierarchical
evaluation for the first time (Figure 2). The higher the evaluation level, the more accurate
the evaluation result. However, the difficulty of evaluation also increases [7]. Therefore,
different levels of the evaluation methods should be selected according to the actual
situation in the application.

1. Zero-level evaluation

According to the collected corrosion defect parameters and pipeline parameters, query
the table to obtain the maximum allowable length of this defect. If the actual corrosion
length is less than the maximum longitudinal length, it is safe; otherwise, it fails to pass the
evaluation. At this time, maintenance measures shall be taken, or a higher-level evaluation
method shall be selected. The zero-level evaluation is simple to use, but the results are
conservative.

2. First-level evaluation

First, calculate the failure pressure of the corroded pipeline by the Modified B31G
method, and then compare it with the product of the pipeline safety factor and the operating
pressure for evaluation. The first-level evaluation needs to be completed by professionals
such as corrosion technicians or coating inspectors.

3. Second-level evaluation

The criterion recommends that the second-level evaluation use the RSTRENG effective
area method to evaluate the residual strength of corroded pipelines. The effective area
method has a wide range of applications, and it is also applicable to independent defects
and interacting defect groups. However, it also has certain limitations. The effective area
calculation requires a detailed measurement of the defect size, and software is also required,
so it is rarely used in actual working conditions.

4. Third-level evaluation
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It is recommended to use the finite element analysis method for stress analysis of
the corroded pipeline. The finite element analysis method is a mathematical simulation
method, which calculates the bearing capacity of the pipeline by considering many factors
such as the real stress–strain curve of material, actual load, boundary conditions, and so on.
The evaluation process is more cumbersome, but the results are more accurate.
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3.1.5. DNV-RP-F101

In 1999, British Gas Company (BG) and DET NORSKE VERITAS (DNV) jointly de-
veloped the specification for the evaluation of pipelines with corrosion defects, namely,
DNV-RP-F101 [8]. The DNV-RP-F101 criterion provides two evaluation criteria: partial
safety factor and allowable stress [9]. The main difference between the two evaluation
methods lies in the different safety criteria.

1. Partial safety factor method

The partial safety factor method is a set of safety guidelines based on the DNV offshore
criterion OS-F101 and the submarine pipeline system, which fully considers uncertain
factors such as the depth of corrosion defects and material properties. The calculation
formula of failure pressure is shown in Equation (5).

Pf = γm
2tσu

D− t

1− γd

(
d
t

)∗
1− γd( d

t )
∗

M

(5)

2. Allowable stress method

The allowable stress method is a safety criterion design based on allowable stress. It
does not consider many complicated factors. The calculation is simple but not as objective
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and accurate as the partial safety factor method. The calculation formula of failure pressure
is shown in Equation (6).

Pf =
σu2t

D− t

(
1− d

t

1− d
t

1
M

)
(6)

3.1.6. PCORRC

PCORRC (Pipeline Corrosion Criterion) [10] is a recent evaluation method mainly
used to evaluate the residual strength of the medium and high strength steel pipes with
blunt corrosion defects due to plastic instability. This method is obtained by Stephens
using shell elements to simulate corrosion defects. In this method, the failure pressure of
pipelines is determined by tensile strength, not yield strength or flow stress. The calculation
formula of failure pressure is shown in Equation (7).

Pf =
σu2t

D− t

1− d
t

1− exp

 −0.157l√
Dt−Dd

2

 (7)

The failure pressure calculation formula is obtained by fitting the finite element
calculation results, mainly considering defects’ length and depth.

3.1.7. RSTRENG

On the basis of ASME B31G-1991, Kiefner and Vieth developed the RSTRENG calcula-
tion program, called RSTRENG [11] method, by redefining the Folias factor and material
flow stress, and describing the shape of corrosion defects in more detail. RSTRENG is
mainly used to evaluate the residual strength of externally corroded pipelines, including
RSTRENG 0.85-area method and RSTRENG effective area method [12].

1. RSTRENG 0.85-area method

RSTRENG only requires two parameters: defect depth and length, but adds the flow
stress value defined in ASME B31G. In contrast, ASME B31G is more conservative than
RSTRENG 0.85-area method, and is the same as the modified B31G in the definitions of
flow stress, Folias factor, and defect projection area. The calculation formula is shown in
Equation (8).

Pf =
σf low2t

D

(
1− 0.85 d

t

1− 0.85 d
t

1
M

)
(8)

2. RSTRENG effective area method

The RSTRENG effective area evaluation method requires defect depth, defect length,
data along the axial and circumferential directions of defects, and detailed corrosion profile.
The calculation of the effective area is closer to the actual results. The effective area method
has higher accuracy, but the calculation is more complex. The calculation formula is shown
in Equation (9).

Pf =
σf low2t

D

(
1− A

A0

1− A
A0

1
M

)
(9)

3.1.8. Others

In addition to the above evaluation methods, there are still some other evaluation
methods, such as SY/T 6151-2009 [13] and BS 7910-2005 [14]. SY/T 6151-2009 “evaluation
method for corrosion damage of steel pipeline” is the latest oil and gas industry criterion of
China issued in December 2009.Compared with ASME B31G criterion, SY/T 6151 criterion
considers the influence of circumferential corrosion length, applies fracture mechanics
theory to determine the maximum safe working pressure, and classifies and evaluates
according to the degree of pipeline corrosion damage. The BS7910-2005 method divides
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corrosion defects into single defects and combined defects, and uses tensile strength instead
of flow stress in the calculation formula.

3.1.9. Comparison

Several existing main residual strength evaluation criteria for corroded pipelines
are introduced above, including ASME B31G, modified B31G, DNV-RP-F101, RSTRENG,
etc. The above methods have different formula definitions, bulging coefficient and defect
area, and their application scope, applicable defect type, and load type are different. The
comparison of main criteria and methods is shown in Tables 1 and 2.

Table 1. Comparison of parameters in residual strength evaluation methods.

Evaluation
Method

Flow
Stress Folias Bulging Coefficient Corrosion Projection

Area

ASME B31G 1.1SMYS M =
√

1 + 0.8L2

Dt

2
3 dl (parabolic);
dl (rectangle).

Modified B31G SMYS +
68.95 M =


√

1 + 0.6275
(

l√
Dt

)2
− 0.003375

(
l

Dt

)4 (
l2

Dt ≤ 50)

0.032 l2

Dt + 3.3
(

l2

Dt ≥ 50
) 0.85dl (between

parabolic and rectangle)

SY/T 6151-2009 SMTS +
68.95 M =


√

1 + 0.6275
(

l√
Dt

)2
− 0.003375

(
l

Dt

)4 (
l2

Dt ≤ 50
)

0.032 l2

Dt + 3.3
(

l2

Dt ≥ 50
) 0.85dl (between

parabolic and rectangle)

DNV-RP-F101 SMTS M =

√
1 + 0.31

[
L√
Dt

]2 dl

PCORRC SMTS — —
RSTRENG

0.85-area method
SMTS +

68.95 M =


√

1 + 0.6275
(

l√
Dt

)2
− 0.003375

(
l

Dt

)4 (
l2

Dt ≤ 50
)

0.032 l2

Dt + 3.3
(

l2

Dt ≥ 50
) 0.85dl (between

parabolic and rectangle)

RSTRENG Effect
area method

SMTS +
68.95 M =


√

1 + 0.6275
(

l√
Dt

)2
− 0.003375

(
l

Dt

)4 (
l2

Dt ≤ 50
)

0.032 l2

Dt + 3.3
(

l2

Dt ≥ 50
) —

Table 2. Comparison of residual strength evaluation methods for pipes with different corrosion defect.

Evaluation Method Best Scope of Application Defect Type Load Type

ASME B31G Medium and low strength steel Isolated defect Internal pressure

Modified B31G Medium and low strength steel
Isolated defect or treat the

interaction defect as an
isolated defect

Internal pressure

SY/T 6151-2009
Carbon steel and low alloy steel
pipes with blunt and low stress
concentration corrosion damage

Isolated defect or treat the
interaction defect as an

isolated defect
Internal pressure

DNV-RP-F101 Medium and high strength steel Single defect/interaction
defect, complex shape defect

Internal pressure/axial
compressive stress

PCORRC Medium and high strength steel
Isolated defect or treat the

interaction defect as an
isolated defect

Internal pressure

RSTRENG Effect area Medium and low strength steel Complex shape defect Internal pressure

3.2. Intelligent Methods

In the actual pipeline transportation system, many influencing factors do not have
a clear functional relationship, and the practical application effect of traditional methods
is often not ideal. Therefore, some intelligent methods are gradually used in the field of
pipeline corrosion prediction, such as fuzzy mathematics theory method, artificial neural
network method, chaos theory method, support vector machine, and so on.
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3.2.1. ANN

Deep learning is a branch of machine learning, and ANN is a neural network in deep
learning. ANN builds mathematical models by abstracting, simplifying, and simulating
biological neural networks’ structure and operating mechanism to process information [15].
A large number of biological neurons connects biological neural networks. Similarly, ANN
is also composed of multiple neurons connected according to certain rules. Figure 3 below
shows an artificial neural network [16].
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In Figure 3, the neural network includes input layer, hidden layer, and output layer.
Suppose a training sample is x = (x1, x2, x3, . . . , xm) ∈ Rm, the corresponding output vector
is y= (y1, . . . , yn), and n is the number of categories. Each neuron has a weight. The input
weight of the nth node of the hidden layer is ω1h, ω2h, . . . , ωmh, and the corresponding
offset is γh. The input weight of the jth output layer node is ω1j, ω2j, . . . , ωkj, and the
corresponding offset is θj. k is the number of hidden layer nodes. In addition, the hidden
layer can be multiple layers.

According to Figure 3, the input of the jth output neuron is shown in Equation (10).

β j =
k

∑
h=1

ωhjbh (10)

The output of the jth output neuron is shown in Equation (11).

yj = f
(

β j + θj
)

(11)

The input of the hth hidden layer neuron is shown in Equation (12).

αh =
m

∑
i=1

ωihxi (12)

The output of the hth hidden layer neuron is shown in Equation (13).

bh = f (αh + γh) (13)

In recent years, a growing number of researchers has been using ANN in the oil
and gas industry [17], including predicting the remaining strength and remaining life of
corroded pipelines. The basic idea of its application is to collect and sort out the pipeline
data and then use the built model to train the data set. ANN can better perceive the
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nonlinear relationship between corrosion factors and corrosion rate to accurately predict
the corrosion trend (Figure 4).
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Figure 4. Nine ANN-based models for residual strength or residual life prediction.

Artificial neural networks have many advantages. For example, they can learn any
nonlinear function, and artificial neural networks can learn the weights that map any input
to output. It also faces some challenges, such as slow training when there is a lot of data,
many parameters, and weak interpretability.

3.2.2. Fuzzy Mathematics

Aiming at the randomness and fuzziness of the system, it judges and extracts the un-
certainty of the system according to the theory and method of fuzzy mathematics to achieve
the purpose of analyzing the system. In short, it is an evaluation method that uses the
membership theory of fuzzy mathematics to transform the qualitative evaluation of objects
affected by many factors into quantitative evaluation to clarify the fuzzy phenomenon.

1. Triangular fuzzy mathematics theory.

In Figure 5, m is the kernel of A*; u + l is the blindness of A*; u is the membership
function of the triangular fuzzy number; A* is the triangular fuzzy number, denoted as
A∗ =

(
lij, mij, uij

)
.

µA ∗ (x) =


(x−m + l)/l, l ≤ x ≤ m
(m + u− x)/u, m ≤ x ≤ u

0, others
(14)

The triangular fuzzy number A∗ =
(
lij, mij, uij

)
is used to represent the judgment

result of the importance of evaluation factor µi to evaluation factor µj. Among them, mij is
the possible value of measuring the result, which is generally determined by the 1–9 scale
method shown in Table 3. l and u represent fuzzy degree. The larger the u-l, the stronger
the fuzzy degree. The importance of µj to µi is shown in Equation (15).

A∗ji = A ∗ij
′ =

(
1/lij, 1/mij, 1/uij

)
(15)
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Table 3. Scale method [19].

Scale Relative Comparison

1 Two factors are equally important
3 One factor is slightly more important than the other
5 One factor is obviously more important than another
7 One factor is obviously much more important than another
9 One factor is absolutely more important than another

2,4,6,8 The importance is between 1.3.5.7.9

Assuming that the fuzzy numbers q1 and q2 are represented by parameters (l1, m1, u1)
and (l2, m2, u2), respectively, the algebraic operation law of triangular fuzzy numbers q1
and q2 can be expressed as Equation (16).

q1 ⊕ q2 = (l1, m1, u1)⊕ (l2, m2, u2) = (l1 + l2, m1 + m2, u1 + u2)
q1 − q2 = (l1, m1, u1)− (l2, m2, u2) = (l1 − l2, m1 −m2, u1 − u2)
q1 ⊗ q2 = (l1, m1, u1)⊗ (l2, m2, u2) = (l1l2, m1m2, u1u2)
C⊗ q1 = (Cl1, Cm1, Cu1)

(16)

• Establish unit fuzzy judgment matrix.

Suppose there are t objects, and the kth (k = 1, 2, . . . , t) object is compared in pairs for n
factors in turn (as long as n(n − 1)/2 times), the unit fuzzy judgment matrix is obtained
(Equation (17)).

A(k) = (A∗)n×n (17)

where (A∗) =
(

l(k)ij , m(k)
ij , u(k)

ij

)
.

• Aggregate unit fuzzy judgment matrix.

According to the specific conditions of the t factors, the weight rk is given respectively,
and then their respective unit fuzzy judgment matrix seasons can be changed to the fuzzy
judgment matrix A* by the operation rules of triangular fuzzy numbers, and its elements
(Equation (18))

A∗ =
(
lij, mij, uij

)
=

1

∑t
K=1 rk

[
t

∑
k=1

(
l(k)ij , m(k)

ij , u(k)
ij

)
· rk

]
(18)

2. General steps of fuzzy comprehensive evaluation method [20].
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• Establish factor set X = (X1, X2, . . . , Xi), which is composed of evaluation indexes;
Construct weight vector A = (a1, a2, . . . , ai). Define the comment set as W = (w1, w2,
. . . , wi), and obtain the corresponding weight set Y of the factor set Y = (Y1, Y2, . . . , Yi).

• Construct weight vector A = (a1, a2, . . . , ai).

• Construct evaluation matrix (Equation (19)).

R =


r11 r12 . . . r1j
r21 r22 . . . r2j
. . . . . . . . . . . .
ri1 ri2 . . . rij

 (19)

where rxy(x = 1, 2, . . . , i; y = 1, 2, . . . , j) represents the degree of membership of the
factor level index Xx to the yth comment set wy.

• Calculate fuzzy matrix.

Obtain the membership vector B of the factor layer index to the comment set
(Equation (20)):

B = YR = (Y1, Y2, . . . , Yi)


r11 r12 . . . r1j
r21 r22 . . . r2j
. . . . . . . . . . . .
ri1 ri2 . . . rij

 =
(
b1, b2, . . . , bj

)
(20)

when ∑
j
x=1 bx 6= 1, let b∗x = bx/ ∑

j
x=1 bx to obtain (Equation (21)):

B∗ =
(

b∗1 , b∗2 , . . . , b∗j
)

(21)

where B* is the membership vector of target layer index x to comment set W. According to
the specific content of B*, the corresponding evaluation can be obtained.

3.2.3. Chaos Theory and Method

In 1905, H. Poincare discovered chaos for the first time in his research and put forward
the H. Poincare conjecture: a small error in the initial conditions produces a great error
in the final phenomenon, so the prediction becomes impossible. In 1963, the American
meteorologist Lorenz discovered in numerical experiments that deterministic systems
sometimes exhibit random behavior phenomena, and then he called it “deterministic
nonperiodic flow” in the literature [21]. In 1975, Li TY and Yorke gave a specific definition
of chaos for the first time [22]: chaos is a kind of random and random phenomenon that
occurs in a deterministic system and is sensitive to initial conditions. It is a phenomenon
that exists widely in nature.

The mathematics model of Chaos:

• Collect a digital sequence (x0, x1, x2, . . . , xi, . . . , xs) of a certain characteristic quantity
of the observed system.

• Using difference can generate new first-order difference sequence, second-order differ-
ence sequence. . . (Equations (22) and (23)).

∆xn = xn+1 − xn (22)

∆(∆x) = ∆2x (23)

• Take the number of observations as the horizontal axis and the characteristic quantity
as the vertical axis to make a graph, which can intuitively and qualitatively grasp the
time structure and trend of the phenomenon change.

• Based on the prediction sequence, calculate any item with one or more items in front
of the sequence by assuming the changing structure (Equation (24)):
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xn+1 = f (xn) = f ( f (xn−1)) = f 2(xn−1) = f n(x0) (24)

Chaos theory is the analysis of irregular and unpredictable phenomena and processes.
In essence, a chaotic process is a deterministic process, but it is disorderly, fuzzy, and
random on the surface. This is similar to the corrosion development process of pipeline
system, but the required sample size must be sufficient.

3.2.4. SVM

Support vector machine, which Cortes and Vapnik first proposed in 1995 [23], is
a practical algorithm for nonlinear classification and regression problems in the case of
small samples. When dealing with the regression problem, the basic idea is to map the
low-dimensional nonlinear regression problem to the high-dimensional feature space, and
establish a model in the high-dimensional feature space to learn the data set for regression
fitting [24].

Using the basic idea of support vector machine, the data set (x1, x2, . . . , xn) is mapped
to a high-dimensional feature space, and then the data set X is used to establish a model in
this space for linear regression. The regression form is as Equation (25).

f (xi) = ω · ϕ(xi) + b (25)

where ω, b is regression factor, φ is the coefficient to be determined in the model.
In order to obtain the regression function, the above problem is transformed into the

following planning problem (Equation (25)).

min
1
2

ωTω + C
n

∑
i=1

ξi + C
n

∑
i=1

ξi
∗ (26)

Constraints are:

s.t.


yi −ω · ϕ(xi)− b ≤ ε + ξ∗i
ω · ϕ(xi) + b− yi ≤ ε + ξi

ξi, ξ∗i ≥ 0

where C is the penalty term constant, ε is the insensitive loss function, and ζi, ζ∗i are the
slack variables.

By introducing Lagrange function, the above optimization problem can be transformed
into Lagrange dual problem, and the solution is as follows:

f (x) =
l

∑
i=1

(αi − α∗i )K(Xd, X) + b (27)

where ai, a∗i is the Lagrange multiplier, when
(
ai − a∗i

)
is not 0, the corresponding sample

is support vector; K(Xd, X) is the kernel function, the selection of kernel function should
make it a point product of high-dimensional feature space.

SVM as a typical machine learning method, is widely used in classification and
regression. It can avoid the neural network falling into local optimization, and it is usually
used in the case of small amount of data such as pipeline corrosion failure.

3.2.5. Comparison

Choosing appropriate methods can effectively improve the evaluation effect and
prediction accuracy. The advantages and disadvantages of each method are listed in Table 4
to facilitate researchers choosing and using a suitable method.
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Table 4. Merits and limitations of various methods.

Methods Merit Limitation

ANN

It has strong robustness and fault tolerance to
noise neural network, can fully approach complex

nonlinear relations, and has the function of
associative memory.

Neural network needs a large number of
parameters and its interpretability is not strong.

Fuzzy mathematics

It is able to make a more scientific, reasonable, and
realistic quantitative evaluation of the data with

the hidden information presenting fuzziness. The
evaluation result is a vector, not a point value. It
contains rich information that can describe the

evaluated object more accurately and be further
processed to obtain reference information.

The calculation is complicated, and the
determination of the index weight vector is
subjective. When the index set is large, it is

difficult to compare the membership degrees, and
even causes the evaluation to fail.

Chaos theory
It can effectively explain or solve nonlinear

complex problems, and has obvious effect in
short-term prediction.

Chaos behavior is very sensitive to initial
conditions, so sufficient and accurate data are

required. The effect of long-term prediction is poor.

SVM
It can achieve good performance under less data,

and has good generalization performance, which is
not easy to over fit.

The speed of large-scale training samples is slow.
The traditional SVM is not suitable for multi
classification and is sensitive to missing data,

parameters, and kernel function.

3.2.6. Intelligent Prediction Models Review

By reading a large number of literature, and extracting and sorting out the information
in the literature, 71 intelligent prediction models in Table 5 were finally obtained. Some
of these models are basic models, but more of them are hybrid models improving their
algorithms, data cleaning methods, and optimizers. The hybrid model often achieves
higher accuracy and better performance. These models are sorted as follows according to
data size, input variables, output variables, performance, publishing time, etc.

Table 5. 71 intelligent prediction models.

Reference Model(s) Data
Size (s)

Proportion of
Training Set,

Validation Set,
and Test Set

Input Variable(s) Output Performance Year

[25] GA-BP 30 2:0:1 OC, pH, TM, P, UL,
SC, WC, l, w, d

Burst
pressure

MSE = 0.00024659;
R2 = 0.99988; 2014

[26] GBDT 25 4:0:1 SC, pH, TM, UL, P Corrosion
rate

MSE = 0.0000326;
MAPE = 0.0225;

R2 = 0.9834;
2020

[27] IABC-EGM
(1,1) 18 2:0:1 Elbow wall

thickness value
Remaining
thickness MRE = 0.0228; 2021

[28] RS-PSO-
GRNN 20 3:1:1 SR, ORP, pH,

SEC, SC
Corrosion

rate
RSE = 0.0058;

MAPE = 0.0561 2019

[29] ANN 15 4:0:1 D, WT, UTS, YS,
l, d

Remaining
thickness RE; 2016

[30] PCA-CPSO-
SVR 60 0.85:0:0.15

TM, HOL, P, PCO2,
UL, TAUWWT,
TAUWG, pH

Corrosion
rate

MAE = 0.083;
RMSE: 0.027;

MAPE = 0.166;
2021

[30] SVR 60 0.85:0:0.15
TM, HOL, P, PCO2,

UL, TAUWWT,
TAUWG, pH

Corrosion
rate

MAE = 0.102;
RMSE: 5.9%;

MAPE = 0.079;
2021
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Table 5. Cont.

Reference Model(s) Data
Size (s)

Proportion of
Training Set,

Validation Set,
and Test Set

Input Variable(s) Output Performance Year

[30] PCA-SVR 60 0.85:0:0.15
TM, HOL, P, PCO2,

UL, TAUWWT,
TAUWG, pH

Corrosion
rate

MAE = 0.194;
RMSE: 8.1%;

MAPE = 0.067;
2021

[30] PCA-GA-
SVR 60 0.85:0:0.15

TM, HOL, P, PCO2,
UL, TAUWWT,
TAUWG, pH

Corrosion
rate

MAE = 0.098;
RMSE: 3.1%;

MAPE = 0.061;
2021

[30] PCA-PSO-
SVR 60 0.85:0:0.15

TM, HOL, P, PCO2,
UL, TAUWWT,
TAUWG, pH

Corrosion
rate

MAE = 0.083;
RMSE: 2.7%;

MAPE = 0.053;
2021

[31] ANN 259 194:0:65
T, DC, PP, WC, pH,

BC, RP, SC, BD,
SR, CC

Remaining
thickness

RMSE = 1.44117;
MAE = 1.05954;

RMSRE = 1.59692;
U95 = 3.67005;
NSE = 0.64576;

2021

[31] MARS 259 194:0:65
T, DC, PP, WC, pH,

BC, RP, SC, BD,
SR, CC

Remaining
thickness

RMSE = 1.31190;
MAE = 0.94897;

RMSRE = 1.43685;
U95 = 3.34730;
NSE = 0.70646;

2021

[31] M5Tree 259 194:0:65
T, DC, PP, WC, pH,

BC, RP, SC, BD,
SR, CC

Remaining
thickness

RMSE = 1.39073;
MAE = 0.92780;

RMSRE = 1.00858
U95 = 3.52255;
NSE = 0.67012;

2021

[31] LWP 259 194:0:65
T, DC, PP, WC, pH,

BC, RP, SC, BD,
SR, CC

Remaining
thickness

RMSE = 1.60183;
MAE = 1.15470;

RMSRE = 1.88149;
U95 = 3.90985;
NSE = 0.56237;

2021

[31] KR 259 194:0:65
T, DC, PP, WC, pH,

BC, RP, SC, BD,
SR, CC

Remaining
thickness

RMSE = 1.15683;
MAE = 0.90728;

RMSRE = 0.98986;
U95 = 3.09315;
NSE = 0.77175;

2021

[31] ELM 259 194:0:65
T, DC, PP, WC, pH,

BC, RP, SC, BD,
SR, CC

Remaining
thickness

RMSE = 1.50760;
MAE = 1.12518;

RMSRE = 1.51676;
U95 = 3.82753;
NSE = 0.61235;

2021

[32] SSCN 3250 9:0:1
CR, TM, OP, GPR,
OPR, WPR, BSW,

PCO2, GSG

Corrosion
defect depth

MSE = 0.0238; 2020

[32] DNN 3250 9:0:1
CR, TM, OP, GPR,
OPR, WPR, BSW,

PCO2, GSG

Corrosion
defect depth MSE = 0.0459 2020

[32] GBM 3250 9:0:1
CR, TM, OP, GPR,
OPR, WPR, BSW,

PCO2, GSG

Corrosion
defect depth MSE = 0.0557 2020
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Table 5. Cont.

Reference Model(s) Data
Size (s)

Proportion of
Training Set,

Validation Set,
and Test Set

Input Variable(s) Output Performance Year

[32] RF 3250 9:0:1
CR, TM, OP, GPR,
OPR, WPR, BSW,

PCO2, GSG

Corrosion
defect depth MSE = 0.0678 2020

[33] BWNN-IPSA 30 22:0:8
The six first

evaluation indexes
I1~I6

The pipeline
integrity

management
level

MSE = 3.16 2021

[33] FSNN-TDA 30 22:0:8
The six first

evaluation indexes
I1~I6

The pipeline
integrity

management
level

MSE = 1.38 2021

[33] FSNN-IDA 30 22:0:8
The six first

evaluation indexes
I1~I6

The pipeline
integrity

management
level

MSE = 0.79 2021

[34] ANN - - CR Corrosion
rate

SSE = 0.000010
MSE = 0.000257
MAE = 0.000754
MAPE = 0.12921
MSPE = 6.064%

2012

[34]
Grey

forecasting
model

- - CR Corrosion
rate

SSE = 0.000073
MSE = 0.000710
MAE = 0.001569
MAPE = 0.08772
MSPE = 2.935%

2012

[34]

Stepwise
regression
forecasting

model

- - CR Corrosion
rate

SSE = 0.000010
MSE = 0.000261
MAE = 0.000674
MAPE = 0.09612
MSPE = 4.432%

2012

[34]
Combining
forecasting

model
- - CR Corrosion

rate

SSE = 0.000002
MSE = 0.000122
MAE = 0.000191
MAPE = 0.01585
MSPE = 0.637%

2012

[35] 12-inch gas
pipelines 1540 8:0:2

T, AW, CC, CP, CG,
D, FS, JC, ML,

OP, SUP

pipeline
condition

R2 = 0.9880
AVP = 0.979
AIP = 0.021

RMSE = 0.008
MAE = 0.098

2014

[35] 20-inch oil
pipelines 900 8:0:2

T, AW, CC, CP, CG,
D, FS, JC, ML,

OP, SUP

pipeline
condition

R2 = 0.9940
AVP = 0.962
AIP = 0.038

RMSE = 0.015
MAE = 0.152

2014

[35] 24-inch gas
pipelines 2550 8:0:2

T, AW, CC, CP, CG,
D, FS, JC, ML,

OP, SUP

pipeline
condition

R2 = 0.9920
AVP = 0.983
AIP = 0.017

RMSE = 0.005
MAE = 0.079

2014
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Table 5. Cont.

Reference Model(s) Data
Size (s)

Proportion of
Training Set,

Validation Set,
and Test Set

Input Variable(s) Output Performance Year

[35] Gas pipelines 4990 8:0:2
T, AW, CC, CP, CG,

D, FS, JC, ML,
OP, SUP

pipeline
condition

R2 = 0.9910
AVP = 0.978
AIP = 0.022

RMSE = 0.005
MAE = 0.099

2014

[35] Oil pipelines 4990 8:0:2
T, AW, CC, CP, CG,

D, FS, JC, ML,
OP, SUP

pipeline
condition

R2 = 0.9900
AVP = 0.979
AIP = 0.021

RMSE = 0.004
MAE = 0.094

2014

[36] SVM 5 -
HOL, HTK, PSID,
USG, TAUWHL,

ANGLE, TAUWG

Corrosion
rate 11.16% < RE < 25% 2013

[36] BPNN 5 -
HOL, HTK, PSID,
USG, TAUWHL,

ANGLE, TAUWG

Corrosion
rate

19.54% < RE <
33.33% 2013

[36] Multiple
regression 5 -

HOL, HTK, PSID,
USG, TAUWHL,

ANGLE, TAUWG

Corrosion
rate

25.32% < RE <
44.44% 2013

[37] MOGWO-
SVM 453 9:0:1 D, WT, UTS, YS,

EM, BP, l, w, d
Burst

pressure

MAE = 0.237;
MAPE = 0.01353;

RMSE = 0.315;
R2 = 0.999;

a20-index = 1.000;
STDE = 0.276;

µ = 0.999

2021

[37] NSGA-II-
SVM 453 9:0:1 D, WT, UTS, YS,

EM, BP, l, w, d
Burst

pressure

MAE = 0.437;
MAPE = 0.03220;

RMSE = 0.760;
R2 = 0.997;

a20-index = 0.978;
STDE = 0.731;

µ = 1.009

2021

[37] SVM 453 9:0:1 D, WT, UTS, YS,
EM, BP, l, w, d

Burst
pressure

MAE = 1.726;
MAPE = 0.14987;

RMSE = 4.231;
R2 = 0.735;

a20-index = 0.867;
STDE = 4.229;

µ = 1.109

2021

[37] PSO-SVM 453 9:0:1 D, WT, UTS, YS,
EM, BP, l, w, d

Burst
pressure

MAE = 1.437;
MAPE = 0.09772;

RMSE = 1.984;
R2 = 0.986;

a20-index = 0.956;
STDE = 1.843;

µ = 1.018

2021

[38] WNN-GA 30 22:0:8 TM, pH, PCO2,
CC, BC, SC, CMC

Corrosion
rate RE < 0.032585 2011
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Table 5. Cont.

Reference Model(s) Data
Size (s)

Proportion of
Training Set,

Validation Set,
and Test Set

Input Variable(s) Output Performance Year

[39]
Momentum

and adaptive
learning rate

294 4:0:1

Pipe size
parameters,

Material
parameters,

Defect parameters

Burst
pressure

MSE = 9.8437 ×
10−4 2011

[39] Elasticity BP 294 4:0:1

Pipe size
parameters,

Material
parameters,

Defect parameters

Burst
pressure

MSE = 7.5571 ×
10−6 2011

[39] Levenberg-
Marquardt 294 4:0:1

Pipe size
parameters,

Material
parameters,

Defect parameters

Burst
pressure

MSE = 1.7521 ×
10−10 2011

[40] SGD
Regressor Thousands 3:0:1 WT, T Remaining

thickness

R2 = 0.801814
R2-5fold cross
validation =

0.79844

2015

[40] SVM Linear
Kernel Thousands 3:0:1 WT, T Remaining

thickness

R2 = 0.785331
R2-5fold cross
validation =

0.782201

2015

[40] SVM Linear
Poly Kernel Thousands 3:0:1 WT, T Remaining

thickness

R2 = 0.61937
R2-5fold cross
validation =

0.60278

2015

[40] SVM Linear
RBF Kernel Thousands 3:0:1 WT, T Remaining

thickness

R2 = 0.80267
R2-5fold cross
validation =

0.79202

2015

[40] Random
Forest Thousands 3:0:1 WT, T Remaining

thickness

R2 = 0.99872
R2-5fold cross
validation =

0.96418

2015

[41] Linear model 15 3:0:2 l, w, d Burst
pressure

R2 = 0.8626,
F value = 3.55

DOF = 9
AE = 1.762

2017

[41] 2FI model 15 3:0:2 l, w, d Burst
pressure

R2 = 0.9212,
F value = 3.12

DOF = 6
AE = 1.402

2017

[41] Quadratic
model 15 3:0:2 l, w, d Burst

pressure

R2 = 0.9577,
F value = 1.53

DOF = 3
AE = 0.095

2017

[42] GA-BP(L-M) - 4:0:1 D, WT, YS, CR, d, l Burst
pressure

MSE = 3.40 ×
10−10 2013
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Table 5. Cont.

Reference Model(s) Data
Size (s)

Proportion of
Training Set,

Validation Set,
and Test Set

Input Variable(s) Output Performance Year

[43] PCA-SVR 148 128:0:20 D, WT, YS, CR, d, l Burst
pressure

RMSE = 0.34
MAE = 0.0191 2019

[43] PCA-GRNN 148 128:0:20 D, WT, YS, CR, d, l Burst
pressure

RMSE = 1.50
MAE = 0.0869 2019

[43] PCA-WNN 148 128:0:20 D, WT, YS, CR, d, l Burst
pressure

RMSE = 1.25
MAE = 0.0553 2019

[43] PCA-SVM 148 128:0:20 D, WT, YS, CR, d, l Burst
pressure

RMSE = 1.07
MAE = 0.0671 2019

[44] PSO-GRNN 60 3:0:1 WC, STC, SR, ORP,
SEC, pH, SC, DC;

Corrosion
defect depth

RE < 0.1377;
MRE = 0.0663; 2019

[45] RS-PSO-
SVM 79 69:0:10 Pipe steel grade, D,

WT, d, l
Burst

pressure
MAPE = 0.0123;

RMSE = 0.17 MPa; 2020

[45] BPNN 79 69:0:10 Pipe steel grade, D,
WT, d, l

Burst
pressure

MAPE = 0.0797;
RMSE = 1.58 MPa; 2020

[45] PSO-WNN 79 69:0:10 Pipe steel grade, D,
WT, d, l

Burst
pressure

MAPE = 0.0596;
RMSE = 0.84 MPa; 2020

[46] DNN 163 114:0:49 l, w, d, Pipeline
internal pressure

Maximum
equivalent

stress

RE = 0.0039;
MSE = 0.00054;

R2 = 0.99607
2021

[47] GM-RBF 15 4:0:1 CR Corrosion
rate

MRE = 0.0637;
R2 = 0.9 2018

[48] PSO-SVM 129 109:0:20 Pipe steel grade, D,
WT, d, l, YS, UTS

Burst
pressure MRE = 0.01336 2020

[48] CS-SVM 129 109:0:20 Pipe steel grade, D,
WT, d, l, YS, UTS

Burst
pressure MRE = 0.02971 2020

[48] GA-SVM 129 109:0:20 Pipe steel grade, D,
WT, d, l, YS, UTS

Burst
pressure MRE = 0.03344 2020

[48] CV-SVM 129 109:0:20 Pipe steel grade, D,
WT, d, l, YS, UTS

Burst
pressure MRE = 0.03942 2020

[49] Rlife 105 15:0:6
Transport medium,
impurities, oxygen
content and others

Remaining
thickness - 2016

[50] GA-BP 46 4:0:1 d, l, D, WT, YS, CR; Burst
pressure MSE = 0.00612 2015

[51] PSO-BP 120 105:0:15

l, w, d, axial and
circumferential

spacing of
corrosion defect

Burst
pressure

AE = 3.9%
RE < 6.4% 2020

[52] FOA-GRNN 35 30:0:5 D, WT, UTS, w, d, l Burst
pressure MRE = 7.81% 2020

[53] GA-BPNNs 39 27:6:6
D, WT, Pipe steel
grade, UTS, YS, w,

d, l

Burst
pressure

−7.78% < RE <
6.06% 2020
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4. Discussions
4.1. Publishing Time

Figure 6 shows the number of publications from 2011 to November 2021, for 71 models.
Although this is not all the literature, the search results are sorted by relevance, and the
data in the figure are still representative and reliable. The figure shows that from 2011 to
2015, the research progress of using intelligent models to predict remaining strength and
remaining life was relatively stable. Although there was a sharp decline in 2016–2018, the
overall trend was stable. After 2019, related research showed a spurt of growth. It can
be inferred that the prediction of remaining strength and remaining life is still a research
hot spot.
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4.2. Result Analysis of Traditional Evaluation Methods

Due to the differences in various evaluation methods in many aspects [54], the calcula-
tion results also be affected. In all, 64 groups of data were collected from the literature [12],
including 40 groups of low-strength steel grade corrosion pipes (X42, X46-1, X46-2, X46-3,
X46-4, X52-1, X52-2, and X56) and 24 groups of medium and high-strength steel grade
corrosion pipes (X60, X65, and X80), including defect size parameters, pipe size parameters,
material parameters, and burst test pressure. The result analysis of various evaluation
methods is shown in Figures 7–10. As the figures show, ASME B31G has large errors in
evaluating whether it is a medium-to-high strength pipeline or a low-strength pipeline.
The Modified B31G has improved significantly. When evaluating low-strength steel pipes,
the DNV-RP-F101 allowable stress method and PCORRC have similar errors. However,
when evaluating high-strength steel-grade pipelines, the accuracy of the DNV-RP-F101
allowable stress method is much higher than that of PCORRC.
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pipelines calculated by different methods: (a) ASME B31G; (b) Modified B31G; (c) Allowable stress;
(d) PCORRC.
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Figure 10. Different methods to calculate relative error of failure pressure of: (a) low-strength steel
grade corroded pipeline; (b) high-strength steel grade corroded pipelines.

4.3. Prediction Accuracy

Error indicator can be used to evaluate the performance of prediction model [55–59]. By
counting the indicators used in the discussed models, this paper summarizes 18 indicators
used to evaluate the prediction accuracy. Their expressions are shown in Equations (28)–(43),
Figure 11 indicates that the most frequently used error indicators are MSE, R2, MAPE,
RMSE, and MAE. Among these indicators, MSE, RMSE, and MAE have no benchmark
because the data dimension because the data sets dimensions are different. MAPE and R2

can be compared in different usage scenarios because they reflect relative errors. The closer
R2 is to one, the higher the prediction accuracy. The smaller the MAPE, the higher the
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prediction accuracy. MAPE and R2 in residual strength and residual life prediction models
are counted in the Table 6. Among the 71 models, the range of MAPE is between 0.0123
and 0.1499, the range of R2 is between 0.619 and 0.999. Lewis once gave a reference, when
the MAPE is less than 0.1, the model performance is excellent; when the MAPE is greater
than 0.1 and less than 0.2, the model performance is good; when the MAPE is greater than
0.2 and less than 0.5, the model performance is reasonable; and when the MAPE is greater
than 0.5, the model is not suitable.

Table 6. MAPE and R2 statistics of residual strength and residual life forecasting results.

Error Indicator Min. Max. Average

MAPE 0.0123 0.1499 0.0708
R2 0.619 0.999 0.833
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NSE = 1− ∑n
i=1(Ri − Pi)

2

∑n
i=1
(

Ri − Ri
)2 (35)

MAE =
1
n ∑n

i=1|Ri − Pi| (36)

SSE = ∑n
i=1(Ri − Pi)

2 (37)

AIP =
100%

n

n

∑
i=1

∣∣∣∣1− Pi
Ri

∣∣∣∣ (38)

AVP = 1− AIP (39)

STDE = std(Ri − Pi) (40)

AE = |Ri − Pi| (41)

a20− index =
er20

n
(42)

µ =
1
n ∑n

i=1
Pi
Ri

(43)

4.4. Data Size and Data Division

Data size is one of the main factors affecting forecasting performance. Too much data
will lead to too much calculation, while too little data may lead to the insufficient model
accuracy. Table 7 provides statistical information on the data size of 71 smart models, which
can provide a basis for selecting data sizes in subsequent studies. The original data are
usually divided into three data sets in machine learning, including training set, validation
set, and test set. The training set is used to train the model; the validation set data are used
to adjust the parameters of the training model; and the test set data are used to measure the
performance of the training model. However, only 2 of the 71 models divide the original
data into three data sets, and the remaining 69 models only divide it into the training and
test sets (Figure 12). The proportion of test set is in the range of 0.015–0.4.
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Table 7. The data size of prediction models.

Burst Pressure Remaining Thickness Corrosion Rate Corrosion Defect
Depth Others

Max. Min. Mean Max. Min. Mean Max. Min. Mean Max. Min. Mean Max. Min. Mean

453 15 167 259 15 188 60 15 43 3250 60 2612 4990 30 2171

4.5. Input Variable and Output Value

In the intelligent model, how to determine the input variables is a very critical
issue [60,61]. Therefore, in the remaining strength and remaining life prediction model, it is
necessary to consider which factors are used as input variables fully. According to the input
variables, it can be divided into two categories. One is to simply use certain historical data
as input variables to predict the future trend of the variable, such as using the historical
wall thickness of the pipeline to predict the remaining wall thickness or using the historical
corrosion rate to predict the future corrosion rate. The other is the prediction that considers
multiple factors, such as predicting the burst pressure of the pipeline through pipeline
size parameters, defect parameters, environmental parameters, and material parameters
(Table 8). The former is simple to calculate, and convenient to obtain data, but the predic-
tion accuracy is not necessarily high, because this type of prediction assumes that external
factors are stable. The latter is difficult to obtain data, and needs to consider the nonlinear
relationship of multiple variables, but the prediction results are often more comprehen-
sive and accurate. According to the statics of the models compiled in this paper, 10 of
the 71 models are simple time-series predictions, and the rest are forecasting considering
multiple factors.

Table 8. The input variables of prediction models.

Input Variables Type Parameters

Environmental factor

P, UL, TM, SR, ORP, PCO2, TAUWWT,
TAUWG, PP, RP, BD, CC, OP, BSW, GSG, GPR,
OPR, WPR, AW, CP, CG, JC, FS, ML, SUP, HTK,

USG, BP, EM, STC, OC, pH, SC, WC, SEC,
HOL, DC, BC, CMC, SEC

Corrosion Defect data l, w, d

Pipe data D, WT

Material UTS, YS, TS, EM, BP, Pipe steel grade

Others T, CR

The prediction targets of these models can be roughly divided into the following four
categories: burst pressure, remaining thickness, corrosion rate, and others. Among them,
burst pressure accounts for 36%, remaining thickness accounts for 18.7%, corrosion rate
accounts for 21.3%, corrosion defect depth accounts for 6.7%, and the others accounts for
17.3%. The proportion of each item is shown in Figure 13. It can be seen from Figure 13
that the model with burst pressure as the output value is still the most, the rest are similar.



Energies 2022, 15, 726 25 of 30

Energies 2022, 14, x FOR PEER REVIEW 26 of 32 
 

 

The prediction targets of these models can be roughly divided into the following four 
categories: burst pressure, remaining thickness, corrosion rate, and others. Among them, 
burst pressure accounts for 36%, remaining thickness accounts for 18.7%, corrosion rate 
accounts for 21.3%, corrosion defect depth accounts for 6.7%, and the others accounts for 
17.3%. The proportion of each item is shown in Figure 13. It can be seen from Figure 13 
that the model with burst pressure as the output value is still the most, the rest are similar. 

 
Figure 13. Output value of 71 models. 

4.6. Future Research Directions 
Based on the literature review, the future development direction of the residual 

strength and residual life prediction models is summarized as follows: 
1. Most models ignore setting the validation set. In fact, in machine learning, adjusting 

parameters can effectively improve the prediction performance of the model. 
2. Many of the existing models have achieved good accuracy, but few papers mention 

the stability of these models. If these models are needed to be used in actual working 
conditions, stability is also important. 

3. Existing models usually have small amounts of data collected, leading to limitations 
in their predictions. More efforts can be made in data collection to improve their 
generality. 

4. At present, most studies are mainly based on uniform corrosion under normal 
conditions, but do not consider the degradation of pipeline materials, in fact, the 
change in mechanical characteristics can be very large, while the kinetics of 
degradation of mechanical properties differs in different climatic zones [62,63]. More 
specific conditions can be considered for further research in the future. 

5. Conclusions 
This paper reviews the assessment of pipeline residual strength and residual life 

prediction works from 2009 to November 2021. After screening, a total of 71 models are 
carefully reviewed. The parameters, application scope, defect type, load type, and 
accuracy of the traditional evaluation methods are compared, but publishing time, 
prediction accuracy, data size, data division, input variable, and output value are further 

Figure 13. Output value of 71 models.

4.6. Future Research Directions

Based on the literature review, the future development direction of the residual
strength and residual life prediction models is summarized as follows:

1. Most models ignore setting the validation set. In fact, in machine learning, adjusting
parameters can effectively improve the prediction performance of the model.

2. Many of the existing models have achieved good accuracy, but few papers mention
the stability of these models. If these models are needed to be used in actual working
conditions, stability is also important.

3. Existing models usually have small amounts of data collected, leading to limitations
in their predictions. More efforts can be made in data collection to improve their
generality.

4. At present, most studies are mainly based on uniform corrosion under normal condi-
tions, but do not consider the degradation of pipeline materials, in fact, the change in
mechanical characteristics can be very large, while the kinetics of degradation of me-
chanical properties differs in different climatic zones [62,63]. More specific conditions
can be considered for further research in the future.

5. Conclusions

This paper reviews the assessment of pipeline residual strength and residual life
prediction works from 2009 to November 2021. After screening, a total of 71 models are
carefully reviewed. The parameters, application scope, defect type, load type, and accuracy
of the traditional evaluation methods are compared, but publishing time, prediction accu-
racy, data size, data division, input variable, and output value are further discussed. Based
on the analysis and discussion results, the following primary conclusions can be drawn:

1. In the past ten years, from 2011 to 2018, the research progress of remaining strength
and remaining life has been relatively stable and the number increased significantly
after 2018. The improved hybrid model based on the basic model is a research
hotspot. Furthermore, predicting with improved intelligent models will be the trend
in the future.

2. The accuracy of Modified B31G is higher than ASME B31G, but it is not suitable
to evaluate medium–high strength steel grades pipelines. PCORRC and DNV-RP-
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F101 are similar in evaluating low strength pipelines, and DNV-RP-F101 has a better
performance in evaluating medium–high strength pipelines.

3. The most frequently used error indicators are MSE, R2, MAPE, RMSE, and MAE.
Among them, MAPE is in the range of 0.0123–0.1499; R2 is in the range of 0.619–0.999.

4. The proportion of test data set is between 0.015 and 0.4, and only 2 of 71 models are
using the validation set. In fact, correctly setting the proportion of data can further
improve the prediction accuracy and achieve better results. Researchers also need to
pay more attention to this aspect.

5. Models are divided into considering a single variable in the time series, and consider-
ing multiple factors based on input variables. There are 61 of 71 models in this paper
considering multiple factors. These models can be divided into four main categories
based on output value. Among them, burst pressure accounts for 36%, remaining
thickness accounts for 18.7%, corrosion rate accounts for 21.3%, corrosion defect depth
accounts for 6.7%, and the others accounts for 17.3%.
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Nomenclature

A Projected area of defect on axial through wall plane
A* The triangular fuzzy number
A0 Cross sectional area of original pipe wall at defect
a20-index er20/n
er20 Number of samples whose absolute error is less than 20%
M Folias Bulging Coefficient
n Sample size
fu Tensile strength (considering temperature reduction effect)
Pf The residual strength of the pipe
Pi Prediction value at time k
R2 Goodness of Fit
Ri Real value at time i
std Population standard deviation
U95 The confidence level of the expanded uncertainty is 95%
σflow The flow stress
σu The tensile strength of the pipe
εd Quantile coefficient of defect depth
γm Partial safety factor
γd Defect depth safety factor
(d/t) * (d/t) meas + εd·std (d/t)
(d/t) meas Measured value of defect depth ratio
Abbreviations
AE Average Error
AGA American National Gas Association
AIP Average Invalidity Percent
ANN Artificial Neural Network
ANP Analytic Network Process
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ASME American Society of Mechanical Engineers
AVP Average Validity Percent
AW Anode Wastage
BC Bicarbonate
BD Bulk Density
BG British Gas Company
BP Burst Pressure
BPNN Back Propagation Neural Network
BSW Basic Sediments and Water
BWNN B-spline Wavelet Neural Network
CC Coating Condition
CDD Corrosion Defect Depth
CG Crossings
CMC Calcium/Magnesium ion Content
CP Cathodic Protection
CR Corrosion Rate
CS Cuckoo Search
CV Cross Validation
d The depth of corrosion defect
D Pipe Diameter
DC Dissolved Chloride
DNN Deep Neural Networks
DNV DET NORSKE VERITAS
EGIG European Gas Pipeline Incident Data Group
ELM Extreme Learning Machines
EM Elastic Modulus
FS Free Spans
FSM Field Signature Method
FSNN Fuzzy Surfacelet Neural Network
GA Genetic Algorithm
GBDT Gradient Boosting Decision Tree
GBM Gradient Boosting Machine
GM(1,1) First Order Univariate Gray System Model
GPR Gas Production Rate
GRNN General Regression Neural Network
GSG Gas Specific Gravity
HOL Liquid Holdup
HTK Heat Transfer Coefficient of Inner wall
IDA Improved Dragonfly Algorithm
IPSA Improved Particle Swarm Algorithm
JC Joint Condition
KR Kriging
l the length of corrosion defect
LWP Locally Weighted Polynomials
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MARS Multivariate Adaptive Regression Splines
ML Metal Loss
MOGWO Multiobjective Grey Wolf Optimization
MRE Mean Relative Error
MSE Mean Square Error
NSE Nash-Sutcliffe Efficiency
NSGA Nondominated Sorting Genetic Algorithm
OC Oxygen Content
OP Operating Pressure
OPR Oil Production Rate
ORP Oxidation-reduction potential
P Pressure



Energies 2022, 15, 726 28 of 30

PCA Principal Component Analysis
PCO2 Partial Pressure of CO2
PCORRC Pipeline Corrosion Criterion
PP Pipe-to-soil Potential
PSID Deposition Rate
PSO Particle Swarm Optimization
PSO Particle Swarm Optimizer
RBF Radial Basis Function
RE Relative Error
RF Random Forest
RMSE Root Mean Square Error
RMSRE Root Mean Squared Relative Error
RP Redox Potential
RS Rough Set
SC Sulfate ion Concentrations
SEC Stray Electric Current
SGD Stochastic Gradient Descent
SR Soil resistivity
SSCN Subspace Clustered Neural Network
SSE Error Sum of Squares
SMTS The material tensile limit
SMYS The minimum yield stress
STC Salt Content
STDE Population standard deviation of error
SUP Support Condition
SVM Support Vector Machine
SVR Support Vector Regression
T Time(years)
TAUWG Wall shear stress (gas phase)
TAUWHL Liquid-maximum wall shear stress
TAUWWT Wall shear stress (liquid phase)
TDA Traditional Dragonfly Algorithm
TM Temperature
UL Liquid flow rate
USG Superficial Velocity Gas
UTS Ultimate Tensile Strength
w The width of corrosion defect
WC Water Content
WNN Weighted nearest neighbor
WPR Water Production Rate
WT Wall Thickness
YS Yield Strength
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