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Abstract: Residual stress has a three-dimensional scale effect (length, depth, and width) in the
process of repair welding, which has a detrimental impact on the service of the aluminum alloy
welded structures in high-speed trains. This paper aims to systematically analyze the effects of
the repair welding dimension on the residual stress redistribution and obtain the optimal repair
welding principles. A combination of blind-hole drilling method and stress linearization in BS7910
was adopted to investigate residual stress redistribution under various repair welding dimensions.
The results indicate that repair welding dimension was in accordance with the principle of “SNL
(shallow, narrow and long)” and the optimal repair length, depth, and width of butt joints in this
study were 15t, 0.25t, and t, respectively (t is the plate thickness of butt joints).

Keywords: three-dimensional scale effect; repair welding; residual stress redistribution; optimal
repair principles; BS7910

1. Introduction

AA6082-T6 aluminum alloy is a crucial part of the lightweight design used in high-
speed train bodies [1]. Since high-speed strains are in operation at a speed of more than
300 km/h, aluminum alloy welded structures endure various complex loads. Meanwhile,
with the increase in the service time, various defects in the welded structure gradually begin
to be exposed. Therefore, scientific repair welding of structural defects in the aluminum
alloy car body need to be solved urgently.

Repair welding not only prolongs the service life of welded structures but also saves
costs, which has been widely used in many aspects of actual production. However, repair
welding is a process of localized reheating and cooling of welded structures, which affects
the microstructure of the repair welding area [2–4]. Li [5] found that crystals refinement
and a preferred orientation appeared in the nugget zone when friction plug repair welding
was conducted. Meanwhile, repair welding will reduce the mechanical properties of the
joint to varying degrees, such as: fatigue properties [6], microhardness [7–9], fracture
toughness [10], and susceptibility to stress corrosion cracking [11]. Kang [12] found that
stress rupture life sharply reduced after repair welding, local residual stress and crystal
orientation would lead to the repair welding cracking. Zhang [13] investigated the me-
chanical property of the friction stir lap repair welding and found that the hardness in the
nugget zone and fracture strength was significantly improved. Marenych [14] discovered
that the hardness of both deposition and component increased after annealing + ageing
by 65% than that of the as-welded condition when wire arc additive manufacturing was
conducted to repair welding.

In addition, repair welding causes redistribution of the as-welded welding residual
stress, and localized repair welding has a more serious impact on welded structures,
especially in the weld metal and heat affected zone (HAZ) [15], which can be measured
and analyzed based on multiple-cut contour method [16], neutron diffraction [17,18], x-ray
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diffraction method [19], blind-hole drilling method [20], and the finite element method
(FEM) [21]; among these methods, blind-hole drilling method and the FEM are the most
common methods. The residual stress causes weld zone of structures to enter the yield stage
prematurely with the superposition of external load. How to reduce the repair residual
stress, researchers have carried out research from the aspects of repair process [22], repair
method [23,24], repair sequence [25], environment, and treatment before and after repair
welding [26–28]. Zhang [29] found that the residual stress generated by the high-energy
spark deposition method for weld repair was low and only concentrated in the repair weld.
Chu [30] applied compressive stress to the defect location of the pressure piping using
overlay welding. Hasheemzadeh [31] considered the steel aging and corrosion environment
in the repair process. Charkhi [32] found that increasing the preheating temperature of
repaired welded pipe reduced the longitudinal residual stress on the inner and outer
surfaces of the steel pipe by approximately 35–50%, respectively. Aung [33] discovered that
post-defect repair heat treatment (PWHT) would release the residual stress and improve
fatigue performance of repaired joint.

Although considerable research has been devoted to studying the repair welding
length [34] (or depth [35], or width [36]) from different perspectives for different joint
forms, rather less attention has been paid to systematically analyzing the effect of repair
welding dimension on residual stress redistribution. In this paper, the combination of
experimental tests and FEA was used to fully validate the accuracy of FE models of butt
joints and the heat source models, and based on the principle of stress linearization in
BS7910, the residual stress variation at the weld centerline (WCL), weld toe (WT), and
longitudinal centerline on upper surface for butt plates before and after repair welding was
systematically analyzed; finally, the optimal repair welding principle was given.

2. Materials and Methods
2.1. Preparation of Test Specimens

In this study, AA6082-T6 and ER5356 aluminum alloy were used as base metal and
welding wire, respectively, and their chemical compositions and mechanical properties are
shown in Tables 1 and 2.

Table 1. Chemical compositions of the base metal and weld wire (wt.%).

Materials Si Fe Cu Mn Mg Cr Zn Ti Al

AA6082-T6 1.30 0.50 0.10 1.20 1.20 0.15 0.20 0.20 Bal.
ER5356 0.25 - 0.27 0.05 4.50 - - - Bal.

Table 2. Mechanical properties of AA6082 and ER5356 aluminum alloy.

Properties Yield Strength
Rel/MPa

Tensile Strength
Rm/MPa

Elongation
e/%

AA6082-T6 275 280 9
ER5356 120–190 250–300 15–25

Melt inert-gas (MIG) welding equipment was used for aluminum alloy butt welding
with the advantages of fast welding speed, low energy input, and high efficiency. As shown
in Figure 1, as-welded butt plates (350 mm × 300 mm × 8 mm (length × width × thickness))
were obtained by multi-layer multi-pass welding of two aluminum alloy plates with the
same size (350 mm × 150 mm × 8 mm). In the repair welding process, the weld mate-
rial with the approximate size of 200 mm × 8 mm × 4 mm (length × width × depth) in
Figure 1b was first excavated and then the repair welding specimens in Figure 1c were
obtained by manual welding.
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Figure 1. AA6082-T6 aluminum alloy butt plates: (a) As-welded; (b) Excavation of weld material;
(c) After repair welding.

2.2. Stress Linearization According to BS7910

The effect of residual stress with high nonlinearity on welded structural integrity
cannot be characterized intuitively and accurately. Therefore, we can conduct research by
means of the treatment measure of secondary stress Q in integrity assessment, which is also an
important parameter to evaluate the repair welding effect. As shown in Figure 2, according to
the linear decomposition principle of residual stress in the BS7910 standard [37,38], the residual
stress distribution along the crack propagation path is decomposed into membrane stress σm,
bending stress σb and self-equilibrium stress σsb based on Equations (1)–(4).
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Figure 2. Schematic diagram of stress linearization at the weld toe [39].
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σsb = σR − σm − σb (4)

where σR, σm, σb, σsb, σY are residual stress, membrane stress, bending stress, self-balancing
stress component, and yield strength, respectively; a, a1, a2, a3, a4, a5, a6, a7 are the fitting
parameters of residual stress, membrane stress, and bending stress, respectively, the value
of which can refer to BS7910. B and z are section thickness in plane of flaw and measure of
position through the thickness, respectively.

Membrane stress σm and bending stress σb are the main parameters that lead to fatigue
failure of welded components. According to the BS7910 standard, it is necessary to consider
the variation in membrane stress and bending stress caused by repair welding, when
performing defect safety evaluation.

3. Results and Discussion
3.1. Repair Welding Schemes

For the research on repair welding schemes of butt joints, the residual stress distribu-
tion under different repair lengths, depths, and widths was considered, with a particular
emphasis on the variation in membrane and bending stress. The specific repair schemes
are as follows:

(1) Repair welding length schemes

Three group schemes were designed with the parameter of plate thickness t when the
length repair was studied (the plate thickness t of butt joints is 8 mm). The repair width was
set as t, the repair depth was t/2, and the repair lengths were 4t, 10t, and 15t, respectively
(see Table 3).

Table 3. Repair welding length schemes.

Plate Thickness
t Repair Width Repair Depth Repair Length L1 Repair Length L2 Repair Length L3

8 mm t t/2 4t 10t 15t

(2) Repair welding depth schemes
Three group schemes were also determined when studying the repair depth (see

Table 4); the repair length was set as 15t, the repair width was t, and the repair depth were
0.25 t, 0.5t, and 0.75t, respectively.

Table 4. Repair welding depth schemes.

Plate Thickness
t Repair Width Repair Length Repair Depth

D1
Repair Depth

D2
Repair Depth

D3

8 mm t 15t 0.25t 0.5t 0.75t

(3) Repair welding width schemes

As shown in Table 5, on the premise that the repair length and depth were 15t and t/2,
respectively, three group schemes with a repair width of t, 1.5t, and 2t were designed.
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Table 5. Repair welding width schemes.

Plate Thickness
t Repair Depth Repair Length Repair Width W1 Repair Width W2 Repair Width W3

8 mm t/2 15t t 1.5t 2t

According to the above repair welding schemes, the analysis methods were formulated
as follows:

(1) Analysis of the longitudinal residual stress (LRS) and transverse residual stress (LRS)
nephograms under different repair length, depth and width, as shown in Figure 3;

(2) Analysis of the temperature variation at different positions of butt joints during the
welding process; Analyze the temperature variation of three points at the longitudinal
centerline on the upper surface of butt joints with time, as shown in Figure 3 (Point1:
at WCL; Point2: at WT; Point3: at HAZ), and validate the accuracy of heat source
models in FEA;

(3) Analysis of longitudinal and transverse residual stress distribution at WCL and
WT. According to the principle of stress linearization, the LRS and TRS distribution
at WCL and WT under different repair lengths, depths, and widths was extracted
and analyzed;

(4) Analysis of membrane and bending stress distribution in the longitudinal and trans-
verse directions at WCL and WT;

(5) Analysis of the LRS and TRS distribution at the longitudinal centerline on the upper
surface of butt plates (i.e., path 1);

(6) According to the comprehensive analysis of simulation results, the optimal repair
length, depth, and width were determined.
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Figure 3. Schematic diagram of residual stress extraction locations.

3.2. Finite Element Modeling for Repair Welding

In this study, the finite element (FE) software ABAQUS was used to investigate the
effects of repair length, depth and width on the residual stress distribution. The specific
simulation procedure is as follows:

(1) As-welded FE modeling

The dimension of butt joints is 300 × 200 × 8 (length × width × thickness), which was
welded by two layers and three passes welding. The instantaneous heat source models were
adopted during the thermal-mechanical sequential coupling process, DC3D8 and C3D8
elements were used in thermal analysis and force analysis, respectively. Three dimensional
(3D) solid models of butt joints are shown in Figure 4. In order to simulate the welding
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process more accurately and to improve calculation efficiency, non-uniform meshes were
arranged; the mesh size of the weld seam and base metal at the distal end was set as 0.6 mm
and 4 mm, respectively. there was a total of 297,955 meshes and 327,874 nodes in the FE
models. The physical properties of materials used in this study can refer to the work of
Yu [40]. The boundary conditions of FE models are shown in Figure 4c. The movement of
four nodes at the left end and the transverse centerline at the bottom of the FE model was
restricted in the Z and X directions, respectively, and the freedom degree in the Y direction
of two columns nodes symmetrical to the transverse centerline at the bottom of the FE
model was constrained.
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(2) Analysis steps

The analysis steps were set in ABAQUS, and in order to ensure the accuracy of FEA,
the specific welding parameters of butt joints in the heating and cooling process were
determined in Table 6, the instantaneous heat source model was selected in this study.
During the welding process, each weld bead was heated to the melting temperature of the
aluminum alloy (660 ◦C) within 3 s.

Table 6. The specific welding parameters of butt joints.

Melting Temperature T1/◦C Heating Time t1/s Room Temperature T2/◦C

660 3 20

Surface thermal radiation coefficient Heat transfer coefficient Weld metal cooling time
t2/s

0.85 0.025 1500
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(3) Repair welding modeling

In the process of repair welding, the mesh size and number of the repair welding
model and the as-welded model were consistent, the repair welding area was determined
by redefining the birth-death elements, so that stress and strain distribution of as-welded
butt joints can be imported into repair welding models using the keyword editing function
in ABAQUS with the following codes:

* Initial Conditions, type = Stress, Input = Residual Stress.csv
* Initial Conditions, type = Hardening, Input = PEEQ.csv
Among them, “Residual stress” and “PEEQ” are user-defined file names, and the data

in the csv file includes S11, S22, S33, S12, S13, S23 and PEEQ.
The geometry of the parts, physical properties and boundary conditions in the finite

element simulation of repair welding were the same as that of as-welded butt joints, and the
instantaneous heat source was also adopted in repair welding models. In order to ensure
the consistency of the input heat for each repair welding model, when studying the effect of
repair welding depths D1 (0.25t), D2 (0.5t), and D3 (0.75t) on the residual stress, single-pass
welding, two-pass welding, and three-pass welding were used, respectively, the analysis
procedure of the repair welding width was consistent with that of repair welding depth.

In this study, the residual stress of the original welding state was firstly imported and
then the repair weld beads were killed. It can be seen from Figure 5 that residual stress
of FE models after killing weld beads was released to a certain extent, which is consistent
with the actual situation.
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Figure 5. Repair welding simulation: (a) The import of welding residual stress; (b) Residual
stress redistribution.

Blind-hole drilling tests were used to validate the accuracy of FEA, as shown in
Figure 1b, strain gauges arranged near the weld metal were relatively dense when the
residual stress was measured due to drastic change of residual stress. Comparing the results
of the LRS and TRS distribution in FE models after repair welding with experimental tests
(see Figure 6), it can be seen from Figure 6 that the peak value of the LRS after repair
welding reached 225 MPa, the variation trend of residual stress obtained by the blind
hole-drilling tests and the simulation was consistent, and the value at high residual stress
area was very close; the difference in values was mainly reflected in the low stress area
due to the fluctuations in data, the FEA data was in good agreement with the test data.
Therefore, the accuracy of repair welding models was validated.
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Figure 6. Residual stress comparison obtained by FEA and experimental tests: (a) The LRS distribu-
tion; (b) The TRS distribution.

3.3. Effects of Repair Welding Length

According to the LRS distribution of FE models under different repair lengths in
Figure 7, the entire weld was in a high longitudinal tensile stress state, and with the in-
crease of repair welding length, the yield area after repair welding gradually expanded.
Meanwhile, the high-pressure stress area on the left and right sides of butt plates also gradu-
ally became greater. The residual tensile stress in the weld area was very significant with the
value of approximately 300 MPa, which then in the HAZ decreased rapidly to 50–100 MPa with
the increase of the distance to the weld area; immediately afterwards, the LRS gradually
changed from tensile stress to compressive stress, and finally the compressive stress at both
ends reached approximately 200 MPa.

From Figure 8, as repair welding length grew, high tensile stress area at the arc starting
and ending of the repaired weld gradually declined, and the compressive stress at both
ends of original weld gradually went down with the appearance of compressive stress.
When the repair welding length was 4 t, the entire repair weld area of butt joints exhibited
high concentrated transverse tensile stress.
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Figure 8. The TRS distribution of FE models under different repair lengths.

To observe the temperature variation at three points in Figure 2 more intuitively, only
the first 15 s were taken for each welding due to the drastic changes in temperature (see
Figure 9). It can be seen that the temperature variation corresponding to the three points
were basically the same. First, the temperature at WCL was the highest, followed by the
WT, and the temperature at HAZ was the lowest, which was consistent with the actual
welding situation.

The LRS and TRS distribution at WCL and WT in the FE models under different repair
lengths are shown in Figures 10 and 11, respectively. The residual stress at WCL first slowly
increased, then steeply fell and after that rose. On the whole, the residual stress with the
repair length 4t was the greatest, followed by the repair length of 10t, and the repaired
length of 15t was the minimum.

The membrane and bending stress at WCL and WT were linearized to obtain Figure 12;
with the increasement of the repair length, the transverse membrane stress was greatly
reduced, and transverse membrane stress for repair welding length L3 (15t) was only 23.4%
of that for repair welding length L1 (4t). The transverse bending stress maintained at a high
value. However, the longitudinal membrane and bending stress were both small. Since
the transverse membrane stress would accelerate the failure of welded structure, the repair
length should be as long as possible.
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Figure 9. Temperature changes at three positions for: (a) Repair length L1; (b) Repair length L2;
(c) Repair length L3.
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Figure 10. Residual stress distribution at WCL with different lengths: (a) The LRS distribution;
(b) The TRS distribution.
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Figure 11. Residual stress distribution at WT with different repair lengths: (a) The LRS distribution;
(b) The TRS distribution.

Materials 2022, 15, x FOR PEER REVIEW 11 of 20 
 

 

The membrane and bending stress at WCL and WT were linearized to obtain Figure 

12; with the increasement of the repair length, the transverse membrane stress was 

greatly reduced, and transverse membrane stress for repair welding length L3 (15t) was 

only 23.4% of that for repair welding length L1 (4t). The transverse bending stress main-

tained at a high value. However, the longitudinal membrane and bending stress were 

both small. Since the transverse membrane stress would accelerate the failure of welded 

structure, the repair length should be as long as possible. 

  
(a) (b) 

Figure 12. Membrane and bending stress variation for different repair lengths: (a) At WCL; (b) At 

WT. 

As can be seen from Figure 13a, repair welding length had little effect on the LRS 

distribution. However, the TRS at the weld zone and HAZ fell off with the growth of re-

pair welding length (see Figure 13b). 

  

(a) (b) 

Figure 13. Residual stress distribution at path 1: (a) The LRS; (b) The TRS. 

It can be basically seen from the simulation results that the length corresponding to 

the best repair effect was 15t among the repair welding lengths of 4t, 10t, and 15t. In the 

process of actual repair welding, the repair length should be as long as possible. 

3.4. Effect of Repair Depth 

The LRS and TRS distribution of FE models under different repair depths are 

shown in Figures 14 and 15. Longitudinal tensile stress gradually grew from 339 MPa to 

364 MPa, while transverse tensile stress did not exceed the yield strength. 

Repair L1 Repair L2 Repair L3
0

90

180

270

360

S
tr

es
s/

M
P

a

Repair Length

 Transverse membrane stress

 Transverse bending stress

 Longitudinal membrane stress

 Longitudinal bending stress

At WCL

Repair L1 Repair L2 Repair L3 

0

90

180

270

360

S
tr

es
s/

M
P

a

Repair Length

 Transverse membrane stress

 Transverse bending stress

 Longitudinal membrane stress

 Longitudinal bending stress

At WT

-100 -50 0 50 100

-200

-100

0

100

200

300

WCL

S
tr

es
s/

M
P

a

Distance to the WCL along Path1/mm

 Without repair

 repair L1

 repair L2

 repair L3

-100 -50 0 50 100

0

50

100

150

200

250

WCL

S
tr

es
s/

M
P

a

Distance to the WCL along Path1/mm

 Without repair

 repair L1

 repair L2

 repair L3

Figure 12. Membrane and bending stress variation for different repair lengths: (a) At WCL; (b) At WT.
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As can be seen from Figure 13a, repair welding length had little effect on the LRS
distribution. However, the TRS at the weld zone and HAZ fell off with the growth of repair
welding length (see Figure 13b).
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Figure 13. Residual stress distribution at path 1: (a) The LRS; (b) The TRS.

It can be basically seen from the simulation results that the length corresponding to
the best repair effect was 15t among the repair welding lengths of 4t, 10t, and 15t. In the
process of actual repair welding, the repair length should be as long as possible.

3.4. Effect of Repair Depth

The LRS and TRS distribution of FE models under different repair depths are shown
in Figures 14 and 15. Longitudinal tensile stress gradually grew from 339 MPa to 364 MPa,
while transverse tensile stress did not exceed the yield strength.
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Figure 14. The LRS distribution of FE models with different repair depths.
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Figure 15. The TRS distribution of FE models with different repair depths.

The temperature variation at WCL, WT, and HAZ under different repair depths are
shown in Figure 16. It can be seen that the temperature changes corresponding to three
positions were basically the same. The temperature at WCL was the highest, followed by
the WT and the temperature at HAZ was the lowest, which was consistent with the actual
welding situation.
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Figure 16. Temperature changes at three positions for: (a) Repair length D1; (b) Repair length D2;
(c) Repair length D3.

The LRS and TRS distribution at WCL, WT of FE models under different repair depths
were obtained in Figures 17 and 18. The residual stress at WCL increased slowly, then
dropped rapidly and next grew slowly. However, the residual stress at WT had a slow
upward trend first and then fell off. The residual stress at WCL, WT for different repair
depth were basically the same.

The membrane and bending stress were obtained based on the linearization of the
longitudinal and transverse residual stress at WCL and WT, respectively, as shown in
Figure 19. It can be seen from the histograms that no matter at WCL or WT, the LRS
maintained a high tensile stress state (approximately 290 MPa). As the deepening of the
repair depth, the transverse membrane stress at WCL and WT gradually increased from
194 MPa to 217 MPa and from 191 MPa to 216 MPa, respectively. In addition, transverse
membrane stress for repair welding depth D3 (0.75t) became greater by 13.5% than that for
repair welding depth D1 (0.25t). However, both the transverse and longitudinal bending
stress stayed at a low stress level. Therefore, the optimal repair welding depth was 0.25t
based on the analysis of membrane and bending stress.
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Figure 17. Residual stress distribution at the WCL for different repair depths: (a) The LRS distribution;
(b) The TRS distribution.
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Figure 18. Residual stress distribution at the WT for different repair depths: (a) The LRS distribution;
(b) The TRS distribution.
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Figure 19. Membrane and bending stress for different repair depths: (a) At WCL; (b) At WT.



Materials 2022, 15, 6399 14 of 19

Next, the LRS and TRS distribution at path 1 is shown in Figure 20. The LRS remained
basically remained unchanged with the growth of repair welding depths. The TRS at HAZ
of butt plates increased remarkably after repair welding but was basically the same under
different repair welding depths.
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Figure 20. Residual stress distribution at Path 1: (a) The LRS distribution; (b) The TRS distribution.

According to FEA, among 0.25t, 0.5t, and 0.75t, the best repair depth was 0.25t. In the
actual repair welding process, the repair depth should be as shallow as possible.

3.5. Effect of Repair Width

When the effect of repair welding width on the residual stress distribution was in-
vestigated in this study, the longitudinal and transverse stress nephograms are shown in
Figures 21 and 22.

According to Figure 21, as the widening of the repair width, the yield stress area
gradually widened, and the compressive stress area at both ends in the transverse direction
of the butt plates progressively expanded.
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Figure 22. The TRS distribution under different repair widths.

Figure 22 shows that with the growth of repair welding width, the high tensile stress
area at both ends of repair welding seam both gradually enlarged.

Figure 23 shows the temperature variation at three positions under different repair
widths. It can be seen from the line chart that as the widening of repair welding width,
since the original weld toe became the repair welding zone, the temperature variation for
the repair welding width of 1.5t (W2) and 2t (W3) were the same, which was consistent
with the actual welding situation.
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Figure 23. Temperature variation at three positions for (a) Repair width W1; (b) Repair width W2;
(c) Repair width W3.

The LRS and TRS distribution at WCL, WT under different repair welding widths is
shown in Figures 24 and 25, in terms of the overall stress distribution, the repair width of
2t was the most significance, followed by the repair width of 1.5t, and the repair width of
1t was the minimum.
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Figure 24. Residual stress distribution at WCL under different repair depths: (a) The LRS distribution;
(b) The TRS distribution.
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Figure 25. Residual stress distribution on WT with different repair widths: (a) The LRS distribution;
(b) The TRS distribution.

The membrane and bending stress were obtained by the stress linearization decom-
position of the transverse and longitudinal residual stress at WCL and WT, as shown in
Figure 26. The longitudinal membrane stress was at a high tensile stress level (approxi-
mately 290 MPa). With the increasement of the repair width, the transverse membrane stress
progressively heightened; transverse membrane stress for repair welding width W3 (2t)
were remarkably increase by 40.5%, compared with that for repair welding width W1 (1t).
While the longitudinal and transverse bending stress were both small less distinguished.

According to Figure 27a, it can be seen that the repair welding width hardly affected the
LRS distribution. From Figure 27b, whether before or after repair welding, the maximum
residual stress always appeared at WT of the butt plates, and with the growth of the repair
width, the residual stress continuously heightened.
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Figure 26. Membrane and bending stress under different repair widths: (a) At WCL; (b) At WT.
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Figure 27. Residual stress distribution at path1 under different repair widths: (a) The LRS distribution;
(b) The TRS distribution.

From the simulation results, the repairing effect of 1t was the best among the repairing
widths of 1t, 1.5t, and 2t. In the actual repair welding process, the repair width should
be narrower.

4. Conclusions

In this study, the dimensional effect of repair welding on residual stress redistribution
was investigated with the combination of FEA and experimental tests. Some research
conclusions are as follows:

• The residual stress results of FEA were in good agreement with the blind-hole drilling
test, which validated the accuracy of the FE simulation;

• According to the stress linearization in BS7910, transverse membrane stress for repair
welding length L1 (15t), depth D3 (0.75t), and width W3 (2t) became greater by 76.6%,
13.5%, and 40.5%, respectively, compared with that for repair welding length L3 (4t)
depth D1 (0.25t) and width W1 (1t);

• The optimal repair welding length, depth, and width in this paper are 15t, 0.25t, and
t, respectively, which conforms with the repair welding principle of “SNL (shallow,
narrow, and long)” and which provides a significant guiding role for the repair welding
of welded structures in actual production.
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