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Abstract In production engineering, current research focuses on the induction of targeted residual stress states
in components in order to improve their properties. Therein, the combination of experiment and simulation
plays an important role. In this contribution, a focus is laid on the investigation of hot forming processes
with subsequent cooling. A numerical approach is presented to analyze the distribution of residual stresses
resulting from cooling of a cylinder with an eccentric hole made of chromium-alloyed steel. The occurring
phase transformation, which is evoked by cooling, is considered in order to compute residual stress distributions
inside the material.

Keywords Residual stresses · Multiscale computation · Austenite–martensite phase transformation ·
Cr-alloyed steel · Hot bulk forming · Cooling

1 Introduction

In the last decades, the experimental and numerical analysis of residual stresses has gained importance in the
field of material science. In course of that, compressive residual stresses in regions close to the surface seem
to lead to superior behavior compared to tensile residual stresses. The idea of generating a specific residual
stress state to improve the final component’s properties, e.g., geometry, strength or durability, has become a
focus today. Therefore, in McMeeking and Lee [23], Tekkaya et al. [45], Bonn [6], Mungi et al. [30], Fei and
Hodgson [7], Moen et al. [27], and Ma et al. [20] the relation of forming conditions and final residual stress
distributions is examined. In particular, hot forming processes offer the opportunity to adjust certain process
parameters, such as deformation state or temperature profile by manipulating parameters such as cooling or
deformation rate in order to induce targeted residual stress states.

Following Macherauch et al. [21], residual stresses are characterized by the scale they act on. A distinction is
made between residual stresses of first type which are the average over residual stresses in a certain macroscopic
section of the component (averaged over several grains) and residual stresses of second and third type which
refer to the average over a grain, as deviation of the residual stress amplitudes of the first type, and within
a grain, respectively. Thus, residual stresses of first type are also called macroscopic residual stresses and
strongly influence the final macroscopic component’s properties. Residual stresses of second and third type
are often called microscopic which of course influence residual stresses of first type.

Residual stresses can be caused by various phenomena, e.g., thermal, mechanical or chemical effects. This
work focuses on residual stresses mainly influenced by microscopic phase transformation which is evoked
by subsequent cooling after a hot forming process. For the description of considered austenite-to-martensite
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phase transformation, Bain groups can be applied, see, e.g., Bhattacharya [5]. The fundamental work in the
field of Bain groups has been done in Bain and Dunkirk [1], Bain and Griffiths [2]. They take into account
three different variants of martensite, resulting from lattice shearing of austenitic face-centered cubic unit cells
to martensitic body-centered tetragonal transformed unit cells. Such three martensitic variants are related to a
volume expansion compared to the austenitic unit cell, see Moyer and Ansell [28].

The research on solid–solid phase transformation has been an active field of research for several decades,
where the phase transformation kinetics in terms of volume fractions have been discussed in, for example,
Levitas et al. [18], Stringfellow et al. [44] and Simonsson [42], among others. The first approaches using a
thermomechanical description have been done by, e.g., Ganghoffer et al. [9] and Levitas [11–14]. The theory
of general phase transformation is explained for example in Levitas [15,16], Levitas et al. [19] and extended
to martensite in particular in Levitas [17]. Experimental work in this field can be found, e.g., in Park [34]. In
course of that, an overview on the derivation of the continuum mechanical formulation is given in Fischer et
al. [8], while Roters et al. [35] addresses a crystal plasticity finite element model for the computation of phase
transformation. More recent works regarding solid–solid phase transformation and its numerical description
are, for example, Mahnken et al. [22] where a phenomenological approach has been proposed based on an
additive strain decomposition in the regime of small strains. In Behrens et al. [3], the authors focus on the
verification of numerical simulation using experiments. In recent decades, the phase-field modeling has become
an alternative computational approach to model transformation processes, see, e.g., Schneider et al. [36,37],
Schoff et al. [38]. In the work of Müller [29], the austenite-to-martensite phase transformation is illustrated
based on Olson and Cohen [32,33], in which the fundamental characteristics of the atomic lattice and its
transition are explained.

In this contribution, an approach for the numerical analysis of the residual stress state of a cooled cylinder
with an eccentric hole is presented wherein the occurring phase transformation is handled using a phenomeno-
logical approach. The experimental procedure is described in detail in Simsir and Gür [43]. Motivated by the
definition of residual stresses on multiple scales, a multiscale approach is proposed which enables the analysis
of different physical phenomena. Here, the focus lies on the effects due to the austenite-to-martensite phase
transformation. Section 2 gives a short overview of the process and most important material and process data.
In Sect. 3, a two-scale finite element simulation and a model to consider the phase transformation are described.
Additionally, temperature dependent material parameters used to simulate the cooling process are calibrated.
The calibration is done by relating the simulated curves to material data, which is provided from the Institute
of Forming Technology and Machines, Leibniz University Hannover, e.g., Behrens et al. [4]. For the proposed
model, studies regarding the finite element discretization as well as the time step size are presented in Sect. 4.
The final discretization and time step size are used to explore the residual stress evolution during the total
cooling process. A conclusion of the paper is given in Sect. 5.

2 Experimental setup

The considered specimen is a cylinder with an eccentric hole made of chromium-alloyed steel 1.3505 (100Cr6),
see Fig. 1. The eccentricity e, cf. Fig. 1b, of the hole is chosen in order to evoke inhomogeneous stress
distributions, see Simsir and Gür [43].

In the beginning of the hot forming process, the material is heated to over 1000 ◦C, such that it is fully
austenized. Together with a suitable soaking time, an initial state is achieved with a relaxed inner stress state.
From an atomistic point of view, austenite is characterized by face-centered cubic (fcc) unit cells. After the
upsetting, which reduces the height by approximately 50%, the specimen is cooled in water. This rapid cooling
below the martensitic start temperature θMs triggers a diffusionless phase transformation to martensite, which
is defined by a lattice transformation to body-centered tetragonal (bct). The rearrangement of the atomic lattice
results in a volume expansion when comparing the fcc and bct lattice, see Moyer and Ansell [28]. Here, a
volume expansion of 2% is taken into account based on Olle [31]. Figure 2 illustrates the cooling route and
phase transformation.

The cooling process covers a time range of 80 s. Data regarding the time–temperature relation on the
lateral surface and the temperature–volume fraction relation are provided by simulations of the Institute of
Forming Technology and Machines (IFUM), Leibniz University Hannover. In Fig. 3a, both evolutions are
illustrated for one point on the outer lateral surface of the cylinder. In the first 10 seconds, the temperature
decreases rapidly, until the process reaches a final state around t = 60 s. When the temperature falls below
θMs = 196.96 ◦C, martensite starts to evolve. In the end, a stationary martensitic volume fraction cM = 0.87 is
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(a) (b) (c)

Fig. 1 a Cylindrical specimen with eccentric hole and its dimensions b in horizontal cut A-A and c in vertical cut B-B

Fig. 2 Schematic representation of the hot forming process and the subsequent cooling period of the cylindrical specimen with the
occurring phase transformation of the considered chromium-alloyed steel 1.3505 (100Cr6). The simulated period of the complete
hot forming process lasts from 0 to 80 s

reached. For the use in computations, the martensitic volume fraction is fitted to a quadratic function dependent
on the actual temperature θ based on the simulative data given by IFUM. Thus, the decrease in the austenitic
volume fraction cA after reaching the martensitic start temperature θMs can be described by Eq. (1), which is
additionally depicted in Fig. 3b. The martensitic volume fraction is obtained from cM = 1 − cA.

cA =

{

1 for θ > θMs,

1 − (85.7602 + 0.0471337 θ − 0.00244999 θ2)/100 for θ ≤ θMs.
(1)

It has to be noticed that Eq. (1) as function of the temperature cannot be used for the description of altered
cooling routes. Thereto, an incorporation of kinetic effects of phase transformation has to be considered.
Furthermore, the interested reader is kindly referred to Behrens et al. [4] for details on the experimental and
numerical background.

3 Multiscale finite element simulation

The occurring microscopic phase transformation in conjunction with the characterization of residual stresses
on different scales motivates an analysis using a multiscale simulation environment. In this section, an approach
for the numerical simulation of the process described in Sect. 2 is given.
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(a) (b)

Fig. 3 a Temperature decrease on the outer lateral surface of the cylinder and related increase in martensitic volume fraction cM

in consequence of the cooling over a time range of 80 s with zoom in on the region, in which the phase transformation starts. b

Temperature-dependent evolution of austenitic and martensitic volume fractions, cA and cM, respectively

Generally, different cooling procedures from a full austenitic state can result in multiple phases in the
cooled part, e.g., pearlite, martensite, austenite, ferrite or bainite. In the following, austenite and martensite are
considered since these are the occurring material phases in the examined cooling process, described in Sect. 2.
Both phases on the microscale are modeled using an elasto-plastic material model at small strains based on
the free energy function ψ following Miehe [24], Simo and Miehe [41], Simo and Hughes [40]

ψ(εe, e; θ) =
1

2
κ (tr ε

e)2 + μ ‖ dev ε
e‖2

︸ ︷︷ ︸

elastic

+
1

2
h e2

︸ ︷︷ ︸

plastic

− cρ

(

θ ln
θ

θ0
− θ + θ0

)

︸ ︷︷ ︸

thermal

− 3 αT κ (θ − θ0) tr ε
e

︸ ︷︷ ︸

coupling

(2)

and the von Mises yield criterion �

� = ‖dev σ‖ −

√

2

3
y ≤ 0 with y = y0 + β. (3)

Therein, ε
e is the elastic strain tensor, θ and θ0 are the actual and initial temperature, respectively, and e is a

strain-like internal variable. The present material parameters are the bulk modulus κ , shear modulus μ, heat
expansion coefficient αT and linear hardening parameter h. For the product of specific heat capacity c and
density ρ, the abbreviation cρ is introduced. Later on, h is approximated by piecewise linear interpolation of a
nonlinear yield curve, depending on θ and e, see Sect. 3.3. There, a linear interpolation scheme for the material
parameters within the actual time step is given based on the constant temperature θn from the previous time
step, since it ensures numerical stability, see also Sect. 3.2. Therein, this strain-like variable e can be interpreted
as accumulated plastic strains which are defined following Simo and Hughes [40]

e =

t∫

0

√

2

3
‖ε̇ p(t̂)‖ dt̂ (4)

with t as actual time and ε̇
p as plastic strain rate. Moreover, the initial and actual yield stresses, y0 and y,

are related by the stress-like work conjugate to e defined as β. By the evaluation of the entropy inequality the
stresses σ are related to the elastic strains ε

e via the free energy function, i.e., σ = ∂ε
eψ , and β = ∂eψ .

For the numerical modeling, a two-scale finite element simulation is used, see Miehe et al. [26], Schröder
[39]. In the following, the occurring macroscopic quantities are indicated by •̄ and microscopic ones by •. On
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the macroscale, a 2D boundary value problem (BVP) is considered with a one-way coupled thermo-elasto-
plastic material behavior, neglecting the effects of latent heat. The differential equations balance of momentum
and balance of energy in the absence of outer forces and heat sources, i.e.,

div σ̄ = 0 and ρ̄ ˙̄ǫ − σ̄ : ˙̄ε + divq̄ = 0 , (5)

have to be solved. The occurring macroscopic quantities are the density ρ̄, the rate of the specific internal
energy ǭ, the stresses σ̄ , the strain rate ˙̄ε and the heat flux vector q̄, which is computed by q̄ = −k̄ grad θ̄ with
the heat conduction coefficient k̄.

Furthermore, the macroscopic boundary conditions are described by

ū = ū0 on ∂Bū , t̄ = σ̄ · n̄ on ∂B t̄ , (6)

θ̄ = θ̄0 on ∂Bθ̄ , q̄0 = q̄ · n̄ on ∂Bq̄ .

with displacement vector ū, traction vector t̄ normal vector n̄ and heat flux q̄0 on the boundary. For the
boundaries, it must hold that

∂Bū ∪ ∂B t̄ = ∂B , ∂Bū ∩ ∂B t̄ = ∅ , (7)

∂Bθ̄ ∪ ∂Bq̄ = ∂B, ∂Bθ̄ ∩ ∂Bq̄ = ∅ .

On the microscale, a 2D isothermal elasto-plastic BVP is considered under the assumption that a vanishing
temperature gradient inside each microscopic BVP can be used. A representative volume element (RVE) is
used to represent the microstructure of the material. On the microscale, the balance of momentum div σ = 0
is solved using periodic boundary conditions.

Based on the solution of the microscopic BVP, the macroscopic moduli C̄ and macroscopic stresses σ̄

are computed by a numerical homogenization scheme based on the microscopic moduli C and stresses σ , cf.
Miehe et al. [25]

σ̄ =
1

V

∫

RVE

σ dv , C̄ := ∂ε̄ σ̄ =
1

V

∫

RVE

∂ε̄ σ (ε) dv . (8)

Furthermore, the macroscopic quantities P̄ necessary for the solution of the energy balance equation are
computed by volume averaging, i.e., the microscopic material parameters P have to be weighted with the
current volume fractions of austenite cA and martensite cM

P̄ = cA
P

A + cM
P

M for P ∈ {κ, k, cρ, αT}. (9)

For further information regarding the direct micro–macro-transition scheme, the interested reader is kindly
referred to Miehe et al. [26], Schröder [39] among others.

3.1 Setup of the boundary value problem

For the numerical analysis, a cross section of the cylindrical specimen applying plane strain conditions is
considered. Its dimensions are given in Fig. 4. As simplification, only two parts of the axial section are
modeled, which represent the thin and thick side and are defined with an opening angle 2 α = 10 ◦. Due to the
eccentricity of the hole, the inner lateral surface and the outer one are not coaxial.

Dirichlet boundary conditions are used to apply the cooling, as shown in Fig. 3, on ∂Bθ̄ of the macroscale
BVPs representing thin and thick side of the cylinder. By cooling over the lateral surface, it is assumed that
the heat flux in circumferential direction only has minor impact, and thus, q̄0 = 0 on boundary Bq̄ is applied.
For simplification, rotational symmetry is considered, although it is not given, so that all nodal displacements
on ∂Bū are fixed orthogonal to the radial cuts, see Fig. 5.

The symmetry of both boundary value problems is not further exploited to obtain more precise results
regarding the stress analysis, which will be done along the x-axis for y = 0. Using the given configuration,
integration points, for which the stresses are assessed, are positioned along this axis. Exploitation of the
symmetry would change that insofar, that not integration points but nodes would lie on the x-axis with y = 0.
Thus, an additional extrapolation would be required to compute the stresses at the nodes, which would result
in an additional interpolation.
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Fig. 4 Geometry to analyze the cooling of the lateral surface of a cylinder inducing phase transformation and therewith resulting
in residual stresses

Fig. 5 Two macroscopic boundary value problems are analyzed, depicting thick and thin cylindrical section with shown Dirichlet
boundary ∂Bū, ∂Bθ̄ and Neumann boundary ∂B t̄ , ∂Bq̄ . Cooling over the lateral surface ∂Bθ̄ (blue), the microscopic mesh with
final phase distribution, martensite in red and austenite in white, are shown

3.2 Modeling of the austenite-to-martensite phase transformation

The phase transformation from austenite to martensite is considered through a temperature-dependent evolution
of the volume fractions cA and cM. In order to avoid fluctuations in this measure, the macroscopic temperature θ̄n

from the previous time step tn is directly transferred to the microscopic level as state variable θn = θ̄n ∀x ∈ RVE
in the current time step n + 1. Based thereon, the volume fractions of austenite cA(θn) and martensite cM(θn)

as well as the material parameters are determined. Initially, there is 100% austenite, i.e., cA = 1. After cooling
below the martensitic start temperature θMs, martensite starts to form and the phase fraction of austenite
decreases. To represent this process, an element-wise switch of the related material is carried out. Based
on the martensitic volume fraction cM = 1 − cA, a section of the finite elements is randomly identified to
be martensite. In the final state, there is 87% martensite and 13% austenite, which results in the exemplary
distribution shown in red and white, respectively, in Fig. 5. It has to be noticed that there is no difference in
the final volume fractions, whether a material point at the bulk material or near the surface is considered. The
applied cooling route results in an almost uniform phase distribution as obtained in simulation at the IFUM.
When switching from austenite to martensite, a volume expansion of 2% of the martensitic phase is applied
to represent the change from fcc to bct lattice, as described in Sect. 2. It is incorporated as ε∗

vol = 0.02 as
shown in Table 1. Afterwards, a classical radial return algorithm for the von Mises yield criterion is applied to
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Table 1 Solution of microscopic BVP

(I) Get macroscopic temperature θn = θ̄n ∀x ∈ RVE, initialize ε∗
vol = 0

Get material parameters for austenite/martensite by interpolation based on θn , see Sect. 3.3:

κ , μ, k, cρ , αT, y, h

(II) Compute austenitic volume fraction cA(θn) using Eq. (1)

(III) Add random elements to martensitic domain BM

such that cM ≈ 1
V

∫

BM dV with total volume V of RVE

Set ε∗
vol = 0.02 for BM

(IV) Compute total strains ∀x ∈ RVE

ε = ∇s u − ε∗
vol1 with ∇s u := 1

2
(∇u + ∇Tu)

(V) Solve div σ = 0 while satisfying � = ‖dev σ‖ −

√

2
3

y ≤ 0

(VI) Compute macroscopic moduli C̄ and stresses σ̄ , see Eq. (8)

calculate the microscopic material response, see Simo and Hughes [40]. The solution steps of the microscopic
BVP are summarized in Table 1.

3.3 Interpolation of microscopic material parameters

The numerical modeling of the cooling process includes the setup of an appropriate material model and the
calibration of material parameters. Therefore, the Institute of Forming Technology and Machines, Leibniz
University Hannover, (IFUM) provides data, which is obtained using the thermodynamic simulation software
JMatPro [10]. Therewith, mechanical and thermal material parameters are calculated based on the chemical
composition of the considered Cr-alloyed steel 1.3505 (100Cr6), which is given in Table 2. As stated in
Sect. 3.2, the macroscopic temperature θn is passed onto the microscale as state variable, what matches the
assumption of an isothermal mechanical problem on the minor scale. The provided data are evaluated with
respect to that state variable as describes in the following.

The data are generated in a temperature range from 50 to 950 ◦C with step size 50 ◦C for each material
phase. The Young’s modulus E , the Poisson’s ratio ν, the heat conduction coefficient k, the product of specific
heat capacity and density cρ and the heat expansion coefficient αT are provided as function of the temperature θ .
Furthermore, the yield stress y is given depending on the accumulated plastic strains e for specific temperatures.

A first dataset provides information of the mechanical material parameters, namely E and ν, used to
derive bulk modulus κ and shear modulus μ, and thermal material parameters k, cρ and αT. These parameters
determine the material behavior for the elastic regime. The data are piecewise linear interpolated for the thermal
and mechanical material parameters between the sampling points. The results are plotted in Fig. 6.

For the plastic regime, a second dataset provides the yield stress y dependent on the accumulated plastic
strains e ∈ [0, 4] for certain temperatures θ ∈ [50 ◦C, 1050 ◦C]. It is obtained in dilatometer tests using a strain
rate of ε̇ = 0.001 s−1. The data for θ are given in equidistant steps of 50 ◦C but for e non-equidistant, i.e., the
step sizes are

0.02 for e ∈ [0, 0.3], 0.5 for e ∈ [1, 2], (10)

0.1 for e ∈ [0.3, 1], 1 for e ∈ [2, 4].

Note that, JMatPro provides in general data for the accumulated plastic strains in a range of [0, 4] but for the
considered cooling process of a thick-walled steel part, only small strains are expected. In order to obtain the
model parameters y and h with respect to the current temperature θn , a piecewise two step linear interpolation

Table 2 Chemical composition in volume percent of the investigated steel alloy 1.3505 (100Cr6) used for material data generation
with JMatPro

C Si Mn P S Cr Mo Fe

100Cr6 0.99 0.25 0.35 0.025 0.015 1.475 0.1 Balance
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(a) (b)

Fig. 6 Sampling points and piecewise linear interpolation a for austenite and b martensite: bulk modulus κ in MPa, shear

modulus μ in MPa, heat conduction coefficient k in J/(mm s K), product of specific heat capacity and density cρ in N/(K mm)2

and heat expansion coefficient αT in 1/K

Table 3 Provided data for the interpolation of yield stress y and linear hardening parameter h based on temperature θ and
accumulated plastic strains e
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is used within the numerical simulation. Therefore, the material parameters depend on current temperature θn

and accumulated plastic strains en at one microscopic material point. Both quantities are used to determine
the rows and columns in Table 3 of the provided data that has to be interpolated, i.e., θi−1 ≤ θn < θi and
e j−1 ≤ en < e j .

The first interpolation step is done row-wise along the temperature. Based on (θi−1, y j−1,i−1) and
(θi , y j−1,i ) an interpolated value y(e j−1, θn) is computed using Eq. (11)1. Analogously, y(e j , θn) is com-
puted between (θi−1, y j,i−1) and (θi , y j,i ), cf. Eq. (11)2. Afterwards, the results y(e j−1, θn) and y(e j , θn)

are used to interpolate the sought value y(en, θn) in a second step, cf. Eq. (11)3. Here, the linear hardening
parameter h is obtained as the slope of the linear relation in Eq. (11)3.

y(e j−1, θn) = y j−1,i−1 +
y j−1,i − y j−1,i−1

θi − θi−1
(θn − θi−1) ,

y(e j , θn) = y j,i−1 +
y j,i − y j,i−1

θi − θi−1
(θn − θi−1) , (11)

y(en, θn) = y(e j−1, θn) +
y(e j , θn) − y(e j−1, θn)

e j − e j−1
︸ ︷︷ ︸

= h

(en − e j−1) .

This interpolation scheme is applied for the yield stress of austenite and martensite. Since martensite starts
to form below a temperature of 200 ◦C, a temperature range from 20 to 200 ◦C is considered here. In contrast,
austenite is present at all temperatures of the cooling process, such that the full temperature range is evaluated.
Values for y and h for different temperatures and accumulated plastic strains are exemplary given in Fig. 7.
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(a) (b)

(c) (d)

Fig. 7 Results of interpolation of material data for austenite and martensite: a, c yield stress y(θ, e) in MPa compared to the
given data points and b, d linear hardening parameter h(θ, e) in MPa in logarithmic scale

4 Numerical examples

In the previous sections, a model to incorporate the austenite-to-martensite phase transformation in a two-scale
finite element simulation has been introduced. All necessary data have been provided based on experimental
and simulative information to compute the cooling detached from the forming of a two-dimensional cylindrical
section, which has been defined in Sect. 3.1. On the macroscale, 9-noded quadrilateral finite elements are chosen
for discretization, while the microscopic BVP is discretized using 4-noded quadrilateral finite elements in a
structured mesh. Besides the cooling on the boundary ∂Bθ̄ , no outer forces are applied. Hence, this two-scale
finite element simulation enables the computation of stresses that can be interpreted as residual stresses.

In the following, the influence of the macroscopic and microscopic mesh density on the stress distribution
is examined. Moreover, the time step size as well as the cooling rate are varied. The focus of the analysis is
directed toward the tangential stress distribution, since these stresses are most relevant with respect to strength
and durability of the final component. The evaluation of the stresses σyy along the x-axis for y = 0 provides
the tangential residual stresses. In Table 4, an overview of the different meshes in the analysis of mesh density
is given and the abbreviation is explained. Therein, the mesh is refined only in radial direction according to
the cooling direction applied on the lateral surface. A refinement in circumferential direction with respect to
the height does not show a great or even no influence.
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Table 4 Overview of the analyzed combination of macroscopic and microscopic discretization (width and height) and explanation
of the used abbreviation

Macroscopic mesh Microscopic mesh Notation
Elements Abbreviation Elements Abbreviation
Width Height Width Height

10 5 coarse C 10 10 coarse C CC

20 20 medium M CM

30 30 fine F CF

20 5 medium M 10 10 coarse C MC

20 20 medium M MM

30 30 fine F MF

30 5 fine F 10 10 coarse C FC

20 20 medium M FM

30 30 fine F FF

40 5 FF 30 30 fine F FFF

50 5 IF 30 30 Fine F IFF

Fig. 8 Tangential stresses σ̄yy for the x-axis at y = 0 and t = 20 s for macroscopically coarse discretization C and different
microscopic meshes using time step size �t = 0.1 s

4.1 Study on macroscopic and microscopic mesh size

First, a constant time step size of �t = 0.1 s is chosen for the complete cooling time of 80 s, in order to
determine a reasonable macroscopic discretization. In Fig. 8, the stresses σ̄yy for the x-axis at y = 0 and

computational time t = 20 s are depicted for the coarsest macroscopic mesh size C and all three microscopic
discretizations. Due to microstructural phenomena related to the ongoing phase transformation an unreasonable
stress distribution can be observed independent of the microscopic mesh size. Hence, a refinement on the
macroscale to a medium M or fine F mesh size needs to be analyzed. Figure 9 illustrates the stress distribution
for those macroscopic meshes at time t = 20 s. Obviously, a coarse microscopic discretization C does not
show a reasonable stress distribution as it is indicated by the yellow MC and green FC curve.

Stresses computed by the other four combination of medium and fine macroscopic and microscopic dis-
cretization seem to be more suitable. Computations with a microscopically medium discretization MM or FM
do not provide sufficiently smooth stress results, especially regarding the thin side BVP. Thus, the microscopic
mesh should be further refined to mesh F. In order to decide between the two combination, i.e., MF and FF, it is
inevitable to balance numerical costs with numerical accuracy. While the combination of both fine meshes FF
show best results, a greater number of BVPs have to be solved in every time step. At the same time, the stress
plots for MF do not show a strong deviation from FF. Thus, in the following sections, these discretizations
are considered on macroscale and microscale, respectively. As given in Fig. 10, a further refinement on the
macroscale to discretizations FF or IF confirm the results of mesh size F.
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Fig. 9 Tangential stresses σ̄yy for the x-axis at y = 0 and t = 20 s for the discretization M and F of the macroscopic BVP and
different microscopic meshes using time step size �t = 0.1 s

Fig. 10 Tangential stresses σ̄yy for the x-axis at y = 0 and t = 20 s for refined macroscopic meshes F, FF or IF using time step
size �t = 0.1 s

4.2 Study on time step size

Mesh discretization MF is considered in the following analysis regarding the time step size. Therefore, the
time step size is set to either �t = 0.5 s or �t = 1 s for the complete cooling time of 80 s. Additionally, the
influence of the time stepping scheme especially during phase transformation is examined. Thus, a refinement
of the time step size to �t = 0.05 s or �t = 0.01 s is applied between 8 and 40 s of computational time and
remains �t = 0.1 s before and after this range.

One notices that larger time steps do not show convergence on the macroscale. A finer time stepping scheme
does not significantly alter the results, cf. Fig. 11.

Note that for a discretization MM a refinement of the time step size can improve the results. In the previous
Sect. 4.1 it has been discussed that a discretization does not show sufficiently smooth results, especially with
respect to the thin side BVP. Choosing a time step size of �t = 0.05 s improves the smoothness of the stress
distribution, whereas �t = 0.01 s does not lead do significant further improvement, see Fig. 12.

4.3 Evolution of tangential stresses

Using a suitable discretization as well as an appropriate time step size as determined in Sects. 4.1 and 4.2,
the evolution of tangential stresses during the cooling process is investigated. Thus, in Figs. 13, 14 and 15,
the tangential stresses σ̄yy along the x-axis at y = 0 are given for meaningful points in time. It becomes
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Fig. 11 Tangential stresses σ̄yy for the x-axis at y = 0 and t = 20 s for the discretization MF and different time step sizes of
�t ∈ {0.1 s, 0.05 s, 0.01 s}

Fig. 12 Tangential stresses σ̄yy for the x-axis at y = 0 and t = 20 s for the discretization MM and different time step sizes of
�t ∈ {0.1 s, 0.05 s, 0.01 s}

possible to relate the stress development to the phenomena occurring in phase transformation such as the
volume expansion of the unit cells. Based on this knowledge, the numerical environment enables a prediction
of residual stress distributions for altered process parameters, e.g., cooling rate or cooling time.

Initially, the material 1.3505 (100Cr6) is a purely austenitic due to heating over 1000 ◦C. The cooling of
the lateral surface of both—thick and thin—parts of the cylindrical specimen progresses slowly to the inner
part of both geometries. It evokes small tensile stresses in the outer regions of the bodies. Naturally, the inner
part of the thin side cool faster compared to the thick side. The stress distribution for x ≥ 15 mm after 5 s of
computation time show compressive stresses, see Fig. 13b.

After t = 10 s, cf. Fig. 13c, the outer lateral surfaces are cooled below θMs = 196.96 ◦C and the phase
transformation is initiated. It influences the tangential stresses clearly, as high compressive stresses occur due
to the martensitic volume expansion. Once the temperature at inner and outer lateral surface of the thick side
falls below the martensitic start temperature, compressive stresses evolve in those regions, see Fig. 13e, while
the inner part shows tensile stresses. With ongoing phase transformation, the compressive stresses increase
further, see Figs. 13f and 14c.

On the thin side, a different stress evolution can be observed. The outer lateral surface of the BVP is
cooled faster than the inner lateral surface. The related temperature progress into the inner parts of the body
evokes the phase transformation. Thus, compressive stresses are found at the outer lateral surface and in the
inner parts, while tensile stresses occur at the inner lateral surface, see Fig. 13d. With initiation of the phase
transformation on the inner lateral surface, a superposition of the previously introduced tensile stresses takes
place and compressive stresses are observed, cf. Fig. 13e.
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(a) (b)

(c) (d)

(e) (f)

Fig. 13 Tangential stresses σ̄yy , temperature θ and austenitic volume fraction cA for a macroscopic medium mesh M and
microscopic discretization F depicted at a t = 1 s, b t = 5 s, c t = 10 s, d t = 11 s, e t = 12 s and f t = 13 s, step size �t = 0.1 s

Qualitatively, this stress distribution remains, until a computation time of 17 s is reached, cf. Fig. 14d. At
that time, the inner part of the thick side is subjected to phase transformation. Thereby, compressive stresses
are evoked which affect the outer parts of the geometry, where at first the compressive stresses are reduced and
later on turn over to tensile stresses, cf. Figs. 14e and 15c. For the thin side, the stresses distribution changes
its sign as well, such that compressive stresses occur on the inner lateral surface, while tensile stresses can be
found at the outer lateral surface, see Fig. 15d.
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(a) (b)

(c) (d)

(e) (f)

Fig. 14 Tangential stresses σ̄yy , temperature θ and austenitic volume fraction cA for a macroscopic medium mesh M and
microscopic discretization F depicted at a t = 14 s, b t = 15 s, c t = 16 s, d t = 17 s, e t = 18 s and f t = 19 s, step size
�t = 0.1 s

4.4 Principle study on the residual stress state for different cooling rates

For the use of targeted residual stress states to improve the components properties, compressive stresses in
regions close to the surface seem reasonable. In the process simulation in Sect. 4.3, these only occur for the outer
surface of the thin side boundary value problem. Thus, the cooling process has to be adapted, prospectively,
such that the desired characteristics can be established. As a first attempt the total cooling time is altered in
the following to analyze the influence of the final tangential stress distributions.
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(a) (b)

(c) (d)

Fig. 15 Tangential stresses σ̄yy , temperature θ and austenitic volume fraction cA for a macroscopic medium mesh M and
microscopic discretization F depicted at a t = 20 s, b t = 25 s, c t = 30 s and d t = 80 s, step size �t = 0.1 s

Note that with assuming a simple scaling to shorten or lengthen the cooling time, no modification of the
material parameters and microscopic constituents depending on the cooling rate is considered. Hence, neither
additional phases such as pearlite, ferrite or bainite nor a varied function for the phase fraction, cf. Eq. (1), are
taken into account in the following study. Thereby, the results presented in the following show the principle
usability of the proposed numerical model; however, the above-mentioned modifications are inevitable to
consider the changed parameter setup.

By changing the cooling time from 80 s to 40 s or 160 s by scaling the evolution of the temperature applied
to the lateral surfaces, the cooling is fastened or slowed down, respectively, see Fig. 16a. The austenite-
to-martensite phase transformation, which is directly related to temperature θ , is influenced and thereby,
different stress distributions can be found. Shortening or extending the cooling time leads qualitatively to
similar tangential stress curves. Quantitatively, a faster cooling during 40 s shows higher stresses than previous
computation, while a slower cooling during 160 s results in lower stress values at the end of computation time,
see Fig. 16b.

5 Conclusion

In this contribution, a numerical approach to analyze the cooling process of a cylindrical specimen has been
presented. To incorporate microscopic phenomena, such as austenite-to-martensite phase transformation, which
is associated with the cooling process, an application of a two-scale finite element simulation is proposed. It
enables the computation of tangential stresses as consequence of the phase transformation. For the material
model, a suitable calibration for the material parameters dependent on the temperature has been carried out.
Studies regarding the mesh density as well the time stepping scheme have been presented, of which the results
are summarized in Table 5. Here, only a qualitative but not quantitative analysis is performed, because the
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(a)

(b)

Fig. 16 a Scaling of the temperature evolution applied to to the lateral surface and b final distribution of tangential stresses σ̄yy ,

temperature θ and austenitic volume fraction cA for a macroscopic medium mesh M and microscopic discretization F are depicted
for cooling time of 40 s, 80 s and 160 s, step size �t = 0.1 s

Table 5 Differentiation into appropriate +© or ineligible results -© for macroscopic and microscopic discretizations, regarding
notation, see Table 4, and time step sizes for an angle of 2 α = 10◦

Notation Time step size �t

1 s 0.5 s 0.1 s 0.1 s with refinement
between 8 s and 40 s to
0.05 s 0.01 s

CC -© -© -© -© -©

CM -© -© -© -© -©

CF -© -© -© -© -©

MC -© -© -© -© -©

MM -© -© -© +© +©

MF -© -© +© +© +©

FC -© -© -© -© -©

FM -© -© -© +© +©

FF -© -© +© +© +©
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incorporation of effects such as latent heat requires an extension of the here presented numerical treatment.
Furthermore, note that the residual stresses may change in long-term evolution due to stress relaxation in the
material. This is not accounted for so far and will be analyzed in future steps. The results should be considered
as residual stress at the end of the production process.

As a next step, a 2D model of the full half of the two-dimensional cylindrical slice has to be considered.
Thereby, the mutual influence of thick and thin side boundary value problem can be connected and its influence
on the final stress distribution can be studied. Based thereon, an extension to a 3D model should be taken into
account. In the future, the numerical simulation environment can be used to analyze the influence of process
parameters and aim for targeted residual stress states which improve the final properties of the specimen, e.g.,
compressive stress at the surface. Therefore, the material parameters and microscopic constituents for changed
processing as well as additional phases have to be provided, for which a full exploitation of time–temperature
transformation diagrams based on the prevalent cooling rate is inevitable. The discussed simulations and
experiments can be used for validation and calibration for the here presented numerical model.
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