
RESIDUAL VIBRATION IN MODAL BALANCING 
By A. G. Parkinson* and R. E. D. Bishopt 

Details are given of a practical technique that has been developed for the balancing of 
large flexible rotors. The special conditions that arise when such a rotor is borne in 
bearings from which vibration readings are taken are described. A modal balancing 
technique may be used for all modes through whose critical speeds the shaft runs, and 

then an averaging technique can account for the remaining modes. 

INTRODUCTION 
THOSE FORCED VIBRATIONS of shafts which are caused by 
small defects of mass unbalance and initial bend have been 
discussed in a number of papers. A resumC is given in 
reference (I)$. In addition a theoretical balancing tech- 
nique has been proposed (2). In this technique, a shaft is 
balanced ‘for the first mode’ by observing the vibration of 
the shaft at some speed near its first critical speed, It can 
then be run smoothly up to the vicinity of its second 
critical speed, at which stage vibration measurements 
permit rhe second modal component of unbalance to be 
removed without upsetting the previously acquired balance 
in the first mode. Then the shaft may be run smoothly 
through the first and second critical speeds and up to the 
neighbourhood of the third, and so on. 

In  the balancing technique, the shaft is run near a 
critical speed in order to magnify the vibration in the 
corresponding principal mode. When its effects have 
been magnified in this way, the component of defect 
which corresponds to that mode can be nullified by a 
systematic process of adding balancing weights. (It is 
essential to recognize that one must distinguish between 
modal components of unbalance, or of ‘defect’, and of 
vibration.) If the shaft can be run through r critical speeds, 
then r components of unbalance may be removed in this 
way. 

A t  this stage the vibration of the shaft may be sufficiently 
slight for the shaft to be regarded as balanced. It is possible, 
however, that the vibration in one or more of the higher 
modes (the (r+l)th, (r+2)th, . . ~ .> may exceed the per- 
mitted level in the range of operating speed. If this 
‘residual’ vibration is confined effectively to the (Y+ 1)th 
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mode, then the corresponding component of unbalance 
can be removed in the usual way; but the helpful process 
of magnifying the vibration in this mode is not now avail- 
able, unless the (r+ 1)th critical speed can be approached 
closely. 

Difficulty arises, however, when the residual vibration 
is caused by components of unbalance in two or more of 
the modes corresponding to higher critical speeds than the 
rth. This situation has been found to occur in practice. 
One technique for dealing with the problem of mixed 
modes has been proposed previously (3). This method, 
however, is only applicable when the shaft can be run 
through at least some of the critical speeds of the mixed 
modes and thus it cannot be used to solve the present 
problem. The nullification of the remaining vibration with 
components in two or more modes is the subject of the 
present paper and it will be shown that the residual vibra- 
tion may be removed in an average way. The actual results 
that will be quoted in support of the text have been 
published elsewhere by Moore and Dodd (4), to whom we 
gladly make acknowledgement, and this paper gives our 
interpretation of these results. It is considered that the 
repetition of the results is easily justified by the technical 
importance of the problem concerned. 

It is common to measure the vibration of large rotors by 
means of transducers carried on the bearing pedestals. It 
will be shown that the points at which the readings are 
taken determine the nature of the average way in which the 
vibration is removed. It will be shown, too, how the removal 
of vibration is accurate only for a single running speed, 
although the accuracy may not depend sensitively on the 
speed. 

A special case is of particular interest and it arises when 
a flexible rotor does not reach its first critical speed under 
normal running conditions. (If the shaft approaches this 
critical closely enough for vibration in the first mode to 
become perceptible, then the shaft is correctly referred to 
as a ‘flexible’ one.) In these circumstances the averaging 
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process that will be discussed covers all modes of the shaft. 
In a sense, conventional low-speed balancing in a balanc- 
ing machine is of this type. 

It is worth mentioning that, in theory, a residual vibra- 
tion due to mixed components of unbalance can be handled 
by a straightforward development of standard modal 
balancing. The components may be separated out and 
balanced individnally. The difficulty is a practical one, in 
that this approach requires some knowledge of modal 
shapes corresponding to higher speeds than the maximum 
obtainable, and it is difficult to calculate these with 
suficient accuracy. 

PEDESTAL-MOUNTED TRANSDUCERS 
In order to isolate flexure of the rotor from that of the 
driving motor, it has become standard practice to couple 
the two rotating bodies by means of a double Hooke’s 
joint. If the rotor is run near its first critical speed, it there- 
fore deflects in the form of its first principal mode. This is 
indicated in Fig. l a ,  where A and B arc the centres of the 
two bearing pedestals. The principal modes shown in 
Fig. 1 are illustrations and do not relate to an actual rotor. 
It will be seen that the deflections at A and B are not zero, 
since the pedestals themselves deflect. (Indeed, it is from 
the pedestal deflection that vibration is detected.) More- 
over, the deflections at A and B are not equal. 

Fig. Ib shows the second principal mode of a shaft and 
Fig. l c  shows the third. In  all cases the deflection of the 
shaft at a pedestal is not zero and there is no reason why it 
should be equal at the two ends of the shaft. 

It has been found that the deflections of the pedestals 
at A and B may be taken as proportional to the deflections 
of the shaft, independent of speed. Of course, strictly, the 

e First principal mode. 

h Second principal mode. 

B E A R I N G  A 

20 40 60 

c Third principal mode. 
Fig. 1. Possible principal modes of a flexible rotor supported 

in J-lexible bearings 
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modal theory is only valid for flexible pedestals if they are 
massless. This condition is approximately realized if the 
maximum rotor speed corresponds to a frequency well 
below the lowest natural frequencies of the pedestals. 

Suppose that horizontal vibration is measured at each 
of the two bearing pedestals*. Now the vibration of the 
bearing pedestals A and B is the only information available 
on the motion of the shaft. If there is no vibration of A 
and B then, to all intents and purposes, the shaft is running 
perfectly straight. 

Since readings are only taken at the pedestals, it is 
natural to refer all vibration measurements to A and B. 
Consider, therefore, the vibration at these points. If the 
distortion of the shaft occurs in the first principal mode- 
i.e. if the shaft bends as shown in Fig. 1u and rotates bent 
-then, since the bend occurs in a single plane, the 
vibrations at A and B will be in phase as indicated by OA, 
OB in Fig. 2a. If the distortion was in the second mode, 
then the vectors would be of the general form shown in 
Fig. 2b. And so one can go on for the higher principal 
modes. 

In the vector figures of Fig. 2, the relative lengths of the 
vectors OA, OB are determined by the ordinates at A and 
B of the curves in Fig. 1. The absolute lengths of the vec- 
tors are determined by the intensity of the corresponding 
modal components of unbalance while their orientation 
relative to the rotor is fixed by the orientation of the corre- 
sponding modal components of unbalance. The magni- 
tudes and directions of the vectors also depend upon the 
shaft speed. This is discussed in reference (I). 

In  practice, measurements are made of speed, the dis- 
placement of the pedestal in primary (i.e. once-per- 
revolution) vibration and the phase difference between the 
vibration and the position of the rotor. In  effect, this means 
that the deflection of the shaft is measured at A and B 

* I t  is tacitly assumed in all work in this field that the vibration in the 
vertical direction is of equal magnitude since the system is assumed 
to possess axial symmetry. The fact that this i s  not strictly borne our 
in practice has not been found to detract from the usefulness of the 
technique under discussion. 

+ 
+ 

-3 + 

J A 

R 

a b 

a Vibration in first principal mode. 
b Vibration in second principal mode. 

Fig. 2.  Deflection of bearing pedestals 
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35 RESIDUAL VIBRATION IN MODAL BALANCING 

together with the angles between these deflections and 
some datum radius which rotates with thehaft. 

So much for the vibration vectors OA, OB for the shaft’s 
initial unbalance. Consider now a simple experiment. 
Suppose that a mass m is attached to the shaft at a radius 
K. Let this mass be attached at a section x, along the shaft. 
In general the mass will augment all the modal compo- 
nents of unbalance. The supplementation of the r th com- 
ponent of unbalance will occur in the plane of attachment 
of m and will be proportional to mR+,(x,), where $,(x) is 
the rth characteristic function, i.e. the rth curve of the type 
shown in Fig. 1. 

As mentioned already, each component of unbalance 
causes the shaft to bend in the form of the corresponding 
principal mode. The shaft rotates with this bent form, 
thereby setting up the vibrations at A and B. For any 
given running speed, the augmentation of the length of the 
vibration vector OA-i.e. that component of the vibration 
of A which is due to the rth mode-is proportional to 

It follows that influence curves of vibration amplitude 
at A due to the attachment of the mass may be drawn for 
each mode. For a given mR, the influence curves are 
proportional to the appropriate characteristic functions, 
and the vertical scales of each are proportional to the rela- 
tive magnitudes of deflection at A and B in the appropriate 
modes. 

To  illustrate this point, Fig. 3 shows what might be 
obtained from a shaft whose characteristic functions are 
shown in Fig. 1. The full-line curve represents the vibra- 
tion at A in the first mode caused by a given mR and the 
dotted curve represents the same thing for B. It will be 
seen from Fig. l a  that the relative deflection at A is 
greater than that at B. Accordingly the full-line curve in 
Fig. 3 has larger ordinates than the dotted one. 

SO far, we have dealt merely with the matter of inter- 
pretation. These various features all follow immediately 
from the original theoretical balancing technique. 

---f 

-+ 

mRdr(xrn) ‘ MJCJ. 

‘B 

Deflection of bearing pedestal A. 
- - -_ Deflection of bearing pedestal B. 

Both curves are geometrically similar to the curve of Fig. l a ,  such 
that the ratio of the ordinates of the full-line curve to the broken- 
line curve equals + , ( x ~ ) / ~ ~ ( x ~ ) .  
Fig. 3. Variation in the response of the bearing pedestals 

wiih the location of an unbalance mass along the shaft 
J O U R N A I .  M E C H A N I C A L  E N G I N E E R I N G  S C I E N C E  

As already explained, the use of this technique with 
alternators has involved the taking of certain measure- 
ments. These are-to recapitulate-speed, the amplitudes 
of the vibrations at the pedestals and the phase of the 
vibrations relative to the position of some fixed radial line 
in the rotating body. It is perhaps more helpful to think of 
these measurements as giving essentially two things : 

(1) speed, and 
(2) radial amplitude and angular orientation of the 

distortion of the shaft relative to axes rotating at the 
driving speed. 

In  other words, if some arbitrary radial line is taken as a 
datum for angular measurement, the vectors OA, OB can 
be drawn. 

In  order to make clear how this information may be used 
to balance a shaft in its first mode, Appendix 1 contains a 
worked example taken from an actual rotor. 

- + - +  

RESIDUAL VIBRATION 
For the sake of explanation, suppose-as is sometimes the 
case with alternators-that a rotor can be balanced in its 
first mode by nullification of the first component of the 
rotor’s defects. Suppose, too, that the rotor’s second criti- 
cal speed lies just above the maximum running speed of 
the rotor. The vibration at A and B is quite perceptible 
and cannot be permitted to remain at the running speed 
of 3000 rev/min. A technique will now be described by 
which this residual vibration at bearings A and B may be 
removed in an average sense. 

By following the procedure described in Appendix 1, 
the component of the rotor’s defects corresponding to the 
first principal mode may be balanced out. What remains 
is an aggregate of contributions from all the remaining 
modes, each lying in some diametral plane. 

If a set of masses is now attached to the shaft such that 
all members of the set lie in a single diametral plane, then 
a fresh radial contribution of defect will be added to the 
original defect (which is now minus its first modal com- 
ponent). Let this fresh component of defect be referred to 
as the p-component. A second similar distribution of 
masses, all lying in a single diametral plane, can be made 
up to provide a q-component. 

Since the rotor has passed through its first critical speed, 
sufficient information has been obtained to permit a curve 
like Fig. 3 to be drawn. It follows therefore that p and 4 can 
both be made orthogonal to the first principal mode. In 
other words the masses can be chosen so that neither the 
p nor the q distribution will reintroduce any defect in the 
first principal mode. This is explained in numerical terms 
in Appendix 2. 

Consider first the p distribution. It is obtained by the 
attachment of masses to the surface of the shaft. It must 
now be agreed that the ratio between the p-masses will 
always be held constant and that the cross-sections at 
which they are applied will always be kept the same. These 
two properties identify the p-distribution. For reasons that 
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will become apparent, the p-component can most con- 
veniently be chosen in such a way as to produce a bend in 
the shaft that resembles the second principal mode of the 
rotor or, more accurately, to give displacements at A and 
B which are substantially in antiphase. 

The p-component will give a distortion of the rotating 
shaft which depends upon the rotation speed Q. The dis- 
tortion caused by the p distribution is a mixture of distor- 
tions in all principal modes except the first and it contains 
a dominant contribution from the second. The deflection 
is not necessarily in the diametral plane of the p-masses 
since the shaft speed may be approaching the critical speed 
of one of the principal modal components of this p dis- 
tribution (the second). The distortion of the shaft in 
the second principal mode is then out of phase with the 
corresponding component of the p distribution. For the 
same reason, the variation of the p-component deflection 
as a function of distance along the shaft will also be speed- 
dependent since the relative weighting of the principal 
modes varies with speed. 

If, however, some running speed Q* is selected, it can 
be said that the p distribution of masses will produce a 
distortion and that if all the masses in the distribution 
were multiplied by some factor, then the distortion would 
also be multiplied by that same factor without any other 
change. 

Exactly the same reasoning may be applied to the 4- 
component of distortion which is caused by the q 
distribution of masses. But now the latter should be chosen 
to produce a distortion that is such that the ends of the 
shaft at A and B are both deflected in substantially 
the same radial direction. For the sake of explanation, the 
system concerned in this discussion would be given a q- 
distortion largely in the third principal mode of the shaft. 

The p-response at A and B at a speed Q* can be found 
by vector subtraction (Fig. 4a). Thus let the vectors OA 
and OB represent the initial vibration at A and B before 
any additional mass distribution is attached to the shaft. 
Further let the vectors OAl and OB, represent the deflec- 
tions at A and By when the p distribution is attached. Then 
the p-response at A and B may be written in the form 

--f 

-+ 

3 4 

+ - + 3 +  

OPA = OAI-OA = AA, 

OP, = OBI-OB = BB1 
- 9  + + - +  

The form of the p-response is shokn in Fig. 5a. It will be 
noted that the two vectors are roughly in antiphase, as has 
been agreed should be the case. 

If the p distribution is removed and the q distribution is 
attached, then the q-response can be obtained at the speed 
Q* (Fig. 4b). If the vibration at A and B, when the q 
distribution is attached, is described by the vectors OA, 
and OB,, then the q-response at A and B has the form 

-> 

-> 

4 + + +  

OQj. =: OAZ- OA = AA, 

OQB = OBZ-OB = BBS 
4 - + - - j . +  

b 
a p-response at A and B. 
b q-response at A and B. 

Fig. 4. Calculation of the response of the bearing pedestals to 
an additional mass distribution 

1 O U R N A L  M E C H A N I C A L  E X G I N E E R I N G  S C I E N C E  

pa 
a b 

a Response to the p distribution. 
b Response to the 4 distribution. 

Fig. 5. Response of the bearing pedestals to a distribution of 
additional masses 
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The form of this response is indicated in Fig. 5b, where it 
can be seen that the two vectors are approximately in 
phase. It will be shown that the total residual vibration, 
described by the vectors OA and OB can be removed by 
suitable contributions of the types shown in Fig. 5a and b. 

We must first contemplate the following problem: 

Can the vectors OA, OB be broken down into pairs 
of components which are such that 

(1) one pair of components have the relative lengths 
and relative orientations of the p-vectors shown in 
Fig. ia ,  and 

(2) the other pair have the relative orientations and 
lengths of the y-vectors shown in Fig. 5b ? 

This resolution of vectors is in fact easy to make. A 
graphical technique is described in Fig. 8 of reference (4), 
while an analytical one will be presented here. 

Now the relative lengths and orientations of the p -  
vectors can be simply expressed by the complex number 
j such that 

----f + 

* -> 

OPB 
where the angle 8 is defined in Fig. 5a and is also the 

obtuse angle between the vectors AA, and BB, in Fig. 4a. 
For the multiplication implicit in this and the following 

equations not only the quantities j5 and 4, but also the dis- 
placement vectors OA, OA, etc., must be treated as com- 
plex numbers. Thus, this equation means, in words, that 
the vector OP, giving the effect at A of the p distribution's 
attachment may be obtained from that at B (i.e. from OrB) 
by multiplying its length by p and rotating it counter- 
clockwise through an angle 0 (Fig. 5a). 

4 4 

-+-+  

-> 

+ 

In the same way we have 

q = ellil - ~ OQA 

OQB 
That is, the vector OQA in Fig. 5b is obtained by multi- 
plying OQB by q and rotating it counterclockwise though 
an angle #. 

We now wish to separate the vectors OA and OB into 
components (Fig. 6) such that 

-+ 

+ 
3 

+ + 

+ --+ ----f 

OA = OA+A'A 

OB = OB'+B'B 
3 3 4  

where 
---t -+ 
OA' = j5 OB' 

A'A = p B'B 
+ __ 

-+ 3 

The required components OB' and B'B can now be 
calculated from the relations 
J OURNAI.  M E C H A Y I C A L  E N G I N E E R I N G  S C I E N C E  

- OA--BOB OB' = B--P 
4 4  - OA-jOB 

B'B= - - 
4--P 

Strictly, only one of these components need be calculated 
through the above expressions. For if one component is 
known, the other is directly obtainable by subtraction of 
the known vector from OB. 

3 

-+ 
Once OB has been resolved in this way, the components 

OA', A'A of OA may readily be found by use of the 
complex numbers 3, p. 

Let the components be renamed A,, A,, B, and B,, as 
in Fig. 6. It is now possible to nullify the contributions A, 
and B, by increasing the p-masses at all points propor- 
tionally, and re-orientating them in a fresh diametral plane. 
Equally the second pair of vectors A,, B, may be nullified 
by increasing or decreasing the q-masses and re-orienting 
them. 

To illustrate the annulment of a residual vibration 
consider the results given by the full lines in Fig. 7. (They 
are taken from reference (4) where they form the basis of 
a graphical solution of a balancing problem.) Figs 4, 5 
and 6 have in fact been constructed on the basis of this 
example. By measurement of the given vectors, it is found 
that 

----f-  -+ 

3 -+ -+ -+ 

-+ 

-+ 

-!P -+ 

# = 1.5 eZ160' 

4 = 0.5 er330" 

whence 3-g = -1.9+0.7i 
If a real axis is taken as indicated by the line OR, it is 

found that + - 
OA = 7-4 ei58' OB = 4.7 e-131' 

Fig. 6 .  Separation of the vibration of the bearing pedestals 
into pairs of components 
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0 

Fig. 7. Example on the balancing of residual vibration 

whence OB' = 4.6 e-lY2" 

$o that 
--> OA' = 1.5 eE160" x 4.6 e-$92" = 6.9 el68 

Having now located A' and B', we have only to interpret 
the results. Instead of producing the vectors AA,, BB, the 
p distribution is required to produce the vectors -0A' 
and - OB'. This requires the masses of the p distribution 
to be increased by a factor OA'IAA, and to be swung 
clockwise through the acute angle, cc say, between OA' 
and AA1. In  the same way, the masses of the 4 distribution 
must be multiplied by A'A/AA2 and be swung clockwise 
through the obtuse angle A'AA2 or /3 say. 

This process is illustrated in Fig. 8 which shows a cross- 
section of the shaft perpendicular to the axis of the bearings. 
The shaft axis intersects this cross-section at the point 
0 and OR represents the radial datum line taken as the 
real axis in Fig. 7. Suppose that the p distribution was 
attached along the surface of the shaft in the diametral 
plane POP. This distribution may, of course, have been 
added on both sides of the shaft. Similarly suppose that 
the q distribution was attached to the shaft in the QOQ 

+ +  
-> 

+ 

--+ 
+ 

Fig. 8. Location of the balancingplanes relative to the initial 
planes qf attachment of the p and 4 distributions 

J Q I1 R N  AI. M E  C H  A h' I C A L  E N  G I N E E  R I N  G S C I E N C E  

plane. Then, in order to balance the residual vibration in 
the above manner, the plane of location of the p distribu- 
tion must be rotated clockwise through the angle a to the 
position P'OP' (Fig. 8). Similarly the plane of attachment 
of the q distribution must be rotated through the angle /3 
to Q'OQ. 

CONCLUSIONS 
If in the above example 9" is close to the second critical 
speed, then it is likely that the balancing process described 
will be rather sensitively dependent on speed for its 
accuracy. If, on the other hand, 8" is remote from the 
next higher critical speed, it is unlikely that the nullifica- 
tion will be very speed-sensitive. In  fact, in the latter 
circumstances, the p -  and q-components will take on rela- 
tively simple forms. The p and q distortion shapes, ampli- 
tudes and orientations will not vary perceptibly with speed 
and the distortions will take place in the diametral planes 
containing the p -  and q-mass distributions, that is in the 
planes POP and QOQ in Fig. 8. 

If the rotor concerned is not to be operated at a constant 
speed, it may be necessary to improve upon a single-speed 
average balancing of this sort. In  that event it will be 
necessary to balance for the next higher critical speed and 
only then to have recourse to the average technique de- 
scribed here. (The next higher mode can be identified by 
the fact that it is the only one with a perceptible phase 
change with speed.) As we have seen this is only likely to 
be the case when the next higher critical speed is fairly 
close to the operating speed range. 

When the maximum running speed Q* of a shaft lies 
just below the lowest critical speed and average balancing 
of the present type is to be practised, the foregoing dis- 
cussion still holds good in principle. But one would then, 
naturally, take a p-distortion to give a distortion largely in 
the first principal mode and a p to give one largely in the 
second. The essential features of the two distributions is 
that they produce vectors of the general form shown in 
Fig. 4. 

APPENDIX 1 
T H E  C H O I C E  O F  A B A L A N C I N G  MASS FOR T H E  FIRST MODAL 

C O M P O N E N T  

The following example relates to the measurement of vibration at 
one pedestal-ay A - o f  a boiler feed pump rotor. The first critical 
speed of this rotor is in the region of 1180 revlmin, and the 
pedestal vibration, OA, was measured at a shaft speed of 850 
rev/min. This speed is appreciably lower than the first critical 
speed, but the unbalance in the first mode was too large to permit 
a closer approach to the critical value. In  fact, after achieving a 
major reduction in the vibration by attaching the balancing mass 
determined below, a final minor adjustment was made by balancing 
the shaft at a higher speed of 1000 rev/min. A trial balancing mass 
of 12 oz was then attached to the surface of the rotor at a particular 
cross-section and the response, s', of the pedestal again observed 
at a speed of 850 rev/min. The amplitude, in terms of arbitrary 
electrical units, and the phase, relative to an arbitrary radial line in 
the rotor, of each of these vectors are given in Table 1. 
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Table 1 

17.2 41.5" 

n 

ARBITRARY DATUM L INE 

Fig. 9. Vector calculation of the mass required t o  d a n c e  the 
jiw mode 

+ 
'The response, AA', of the pedestal to the additional mass alone 

may be calculated by the simple vector subtraction of Fig. 9. From 
this it can be seen that the actual mass requircd to balance the first 
mode is of magnitude 

OA 
AA' 12X- = 12x9 = 1 0 8 0 ~  

Further this mass, although still attached to the rotor at the same 
cross-section, must be rotated around the rotor through an angle 
of 66" clockwise relative to the datum line. 

APPENDIX 2 
O R T H O G O N A L I T Y  O F  T H E  p -  A N D  q - M A S S  D I S T R I B U T I O N  T O  

THE F I R S T  C O M P O N E N T  O F  U N B A L A N C E  

The supplementation of the first component of unbalance by a 
mass m attached at radius R occurs in the plane of attachment and 
is proportional to rnR41(x,), where x,  is the position of the section 
at which the attachment is made. Fig. l a  shows the curve of 

drawn to some arbitrary scale. Suppose that direct measurements 
from the curve give: 

x,, inches from A 10 44 70 90 

Cdx,), units 3.4 5.4 5.9 3.9 1.6 

To form the p distribution in the required manner, we may 
decide to attach masses to the shaft at points 25 and 70 inches from 
bearing A. The masses are both to be attached in the same diametral 
plane and it will be seen that they will not augment the first com- 
ponent of unbalance if they: 

(1) are attached on opposite sides of the rotor, and 
(2) satisfy the condition 

wherc the subscripts 25 and 70 have the obvious significance. 
These two requirements serve to define a suitable p distribution. 

The q distribution may be formed in a similar way. It will be 
orthogonal to the first component of unbalance, for instance, if 
masses are added at distances 1 0 , s  and 90 in from bearing A such 
that 

(1) (mR)l" = (mR)90 

(2) the masses at 10 and 90 in from A are on one side of the 
rotor while that  placed 44 in from A is on the other, and 

These three requirements represent one way of defining a suitable 
q distribution. It will be noted that they are not unique, however, 
since the relation (1) is used only for convenience. 
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