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Abstract: The performance of a semantic segmentation model for remote sensing (RS) images
pre-trained on an annotated dataset greatly decreases when testing on another unannotated dataset
because of the domain gap. Adversarial generative methods, e.g., DualGAN, are utilized for unpaired
image-to-image translation to minimize the pixel-level domain gap, which is one of the common
approaches for unsupervised domain adaptation (UDA). However, the existing image translation
methods face two problems when performing RS image translation: (1) ignoring the scale discrepancy
between two RS datasets, which greatly affects the accuracy performance of scale-invariant objects;
(2) ignoring the characteristic of real-to-real translation of RS images, which brings an unstable factor
for the training of the models. In this paper, ResiDualGAN is proposed for RS image translation,
where an in-network resizer module is used for addressing the scale discrepancy of RS datasets
and a residual connection is used for strengthening the stability of real-to-real images translation
and improving the performance in cross-domain semantic segmentation tasks. Combined with an
output space adaptation method, the proposed method greatly improves the accuracy performance
on common benchmarks, which demonstrates the superiority and reliability of ResiDualGAN. At
the end of the paper, a thorough discussion is conducted to provide a reasonable explanation for the
improvement of ResiDualGAN. Our source code is also available.
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1. Introduction

With the development of unmanned aerial vehicle (UAV) photography and remote
sensing (RS) technology, the number of very-high-resolution (VHR) RS images has increased
explosively [1]. Semantic segmentation is a vital application area for VHR RS images, which
gives a pixel-level ground class classification for every image. Followed by AlexNet [2],
convolutional neural network (CNN)-based methods—learning from part annotated data
and part predicting data in the same dataset—show great advantages compared with
traditional methods when performing semantic segmentation tasks [3–8], which also bring
a giant promotion of semantic segmentation for VHR RS images [9].

Nevertheless, though great success has been made, the disadvantages of CNN-based
methods are also obvious, such as laborious annotation, poor generalization, and so on [10].
Worse still, the characteristic of laborious annotation and poor generalization may be
magnified in the RS field [11]. With more and more RS satellites being launched and UAVs
being widely used, RS images are produced using various sensor types with different
heights, angles, geographical regions, and at different dates or times in one day [12]. As a
result, RS images always show a mutual domain discrepancy. When a well-trained CNN
module is applied to a different domain, the performance is most likely to decline due to the
gap between the two domains [13]. However, annotation is a laborious and time-wasting
job that is not likely to be obsessed by every RS dataset [11]. Hence, how to minimize this
kind of discrepancy between domains and fully utilize these non-annotated data is now a
hotspot issue in the RS field.
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To this end, unsupervised domain adaptation (UDA) has been proposed in the com-
puter vision (CV) field to align the discrepancy between the source and the target domain.
Approaches of UDA can be roughly divided into four categories: adversarial generative
methods [14–16], adversarial discriminative methods [17–19], semi-supervised and self-
learning methods [20,21], and others [22]. In this paper, we mainly focus on the former two
categories. The adversarial generative method minimizes the discrepancy between two
domains at the pixel level, which makes the images of two domains resemble each other at
a low level. Inspired by generative adversarial networks (GANs) [23], CyCADA [14] uses
CycleGAN [24] to diminish the pixel-level discrepancy, outperforming other methods at
that time. The adversarial discriminative method is another common approach for UDA.
The adversarial discriminative method minimizes the domain gap at the feature and output
levels. Ganin’s [17] work tries to align feature space distribution via a domain classifier.
AdaptSegNet [18] significantly improves the performance by output space discrimination.
FADA [19] proposes a fine-grained adversarial learning strategy for feature-level alignment.
Recently, self-learning and Transformer-based methods have shown superiority in the CV
field. CBST [20] proposes an iterative self-training procedure that alternatively generates
pseudo labels on target data and re-trains the model with these labels. DAformer [22]
introduces the Transformer [25] to the UDA problem.

In the field of RS, some attempts have been made [11–13,26–32]. Benjdira’s [26] work
first introduces CycleGAN into the cross-domain semantic segmentation of RS images,
validating the feasibility of using image translation to minimize the domain gap between
two RS datasets. FSDAN [27] and MUCSS [12] follow the routine of Benjdira’s work. FS-
DAN extends the pixel-level adaptation to both the feature level and output level. MUCSS
utilizes the self-training strategy to further improve performance. Except for generative
methods, Bo’s [11] work explores curriculum learning to accomplish the feature alignment
process from locally semantic to globally structural feature discrepancies. Lubin’s [31] work
incorporates comparative learning with the framework of UDA and achieves better accu-
racy. For most of the recent work, the generative methods have been gradually abandoned
because of their instability and deficiency. However, in this paper, we reconsider the merits
of the generative models. By simply modifying the structure of the existing generative
model, the proposed generative method surpasses all the other methods.

Utilizing the GANs-based UDA methods and self-training strategies, the performance
of cross-domain semantic segmentation of VHR RS images has greatly improved. However,
compared with the CV field, RS images have some unique features that should be pro-
cessed specifically, while most of the architectures of networks used for RS image-to-image
translation are directly carried from the CV field, such as CycleGAN and DualGAN [33],
which may bring about the following problems:

First, ignoring the scale discrepancy of RS images datasets. RS images in a single
domain are taken at a fixed height using a fixed camera focal length, and the object distance
for any objects in RS images is a constant number, leading to a scale discrepancy between
two RS images datasets. As a comparison, images in the CV field are mostly taken from a
portable camera or an in-car camera, where objects may be close to the camera; however,
objects may also be away from the camera, which provides a varied scale for all kinds of
objects. Consequently, traditional image translation methods carried from the CV field are
not suitable for the translation of RS images, which may cause the accuracy decrease for
some specific classes. Some previous works attempt to utilize the image resizing process
as pre-processing before feeding them forward into networks [27,32]. However, this pre-
processing may lead to information loss of images, resulting in a performance decline of
the semantic segmentation model.

Second, underutilizing the feature of real-to-real translation of RS images (Figure 1).
CycleGAN or DualGAN and many other image-to-image translation networks were initially
designed to carry out not only real-to-real translation but also synthetic-to-real translation—
such as photos to paints or game to the real world—while RS images translation is always
real-to-real, where both sides are real-world images that are geographically significant.
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Synthetic-to-real translation is likely to bring a structure information change to a certain
object because of the architecture of generators, which disturbs the task of segmentation.
In addition, the gap of the marginal distribution between synthetic and real is larger
than that between real and real, such as generating a Cityscapes [34] stylized image from
GTA5 [35] where the generator is too overloaded to generate a new image, which could be
largely avoided in RS images translation because both sides are from the real world.

Synthetic to Real Real to Real

(a) (b) (c) (d)

Figure 1. Synthetic-to-real and real-to-real translation. (a) GTA5. (b) Cityscapes. (c) PotsdamRGB.
(d) Vaihingen. GTA5 is a commonly used computer-synthesized dataset; the typical task of UDA in
the computer vision field is to train a model on GTA5 and deploy it on a natural world scene such as
Cityscapes. As a comparison, the mission of UDA of RS images is always the real-world scene (e.g.,
Potsdam) to another real-world scene (e.g., Vaihingen).

Aimed at the two aforementioned problems, this paper proposes a new architecture
of GANs based on DualGAN, named ResiDualGAN, for RS images domain translation
and cross-domain semantic segmentation. ResiDualGAN resolves the first problem by
using an in-network resizer module to fully utilize the scale information of RS images.
Further, a residual connection that transfers the function of the generator from generating
new images to generating residual items is used, which addresses the second problem.
By simply combining with other methods, our proposed method reaches state-of-the-art
accuracy performance in a common dataset. The main contributions of the paper can be
summarized as follows:

1. A new architecture of GANs, ResiDualGAN, is implemented based on DualGAN to
carry out unpaired RS images cross-domain translation and cross-domain semantic
segmentation tasks, in which an in-network resizer module and a residual architec-
ture are used to fully utilize unique features of RS images compared with images
used in the CV field. The experiment results show the superiority and stability of
the ResiDualGAN. Our source code is available at https://github.com/miemieyanga/
ResiDualGAN-DRDG (accessed on 12 January 2023).

2. To the best of our knowledge, the proposed method reaches state-of-the-art perfor-
mance when carrying out a cross-domain semantic segmentation task between two
open-source datasets: Potsdam and Vaihingen [36]. The mIoU and F1-score are 55.83%
and 68.04%, respectively, when carrying out a segmentation task from PotsdamIRRG
to Vaihingen, showing increases of 11.71% and 11.09% compared with state-of-the-
art methodologies.

3. On the foundation of thorough experiments and analyses, this paper attempts to
explain the reason why such great improvement could be achieved by implementing
this kind of simple modification, which should be specially noted when a method
from the CV field is applied to RS images processing.

2. Method

To describe the proposed methodology more specifically, some notions used in this
paper should be defined first. Let XS ∈ RHS×WS×B be images from the source domain S
with a resolution of rS, where B is the number of channels. Let XT ∈ RHT×WT×B be images
from the target domain T, with resolution rT . YS ∈ ZHS×WS×C are the labels of XS, where C
is the number of classes, while there are no labels for XT . For simplifying the problem, we

https://github.com/miemieyanga/ResiDualGAN-DRDG
https://github.com/miemieyanga/ResiDualGAN-DRDG
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propose the following formulation. The size and resolution of images should conform to
this formulation to diminish the effect of the scale factor:

HS
HT

=
WS
WT

=
rT
rS

(1)

The objective of the proposed methodology is, for any given images XT in the target
domain, we want to find a semantic segmentation model fT : XT → YT ∈ ZHT×WT×C,
which is expected to generate prediction labels YT for XT . The overview of the proposed
method is shown in Figure 2, where two separated stages are implemented. Stage A is used
to carry out an unpaired images style transfer from S to T with ResiDualGAN, which is
proposed in this paper. Stage B trains a semantic segmentation model fT by utilizing the
style-transferred images obtained from stage A with their respective labels YS. Additionally,
an output space adaptation (OSA), proposed by [18], is applied during stage B, which is a
more effective way to improve the performance of cross-domain semantic segmentation
models compared with the feature-level adaptation used in many RS studies [27].

𝐷𝑜𝑢𝑡

𝐿𝑠𝑒𝑔
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Segmentation model 𝑓𝑇

𝑅𝑒𝑠𝑖𝐺𝑆→𝑇

𝑅𝑒𝑠𝑖𝐺𝑇→𝑆

𝐿𝑐𝑦𝑐

𝐷𝑆 𝐿𝑐𝑦𝑐

𝐷𝑇

Domain S Domain T

True

Fake

True

Fake
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𝑅𝑒𝑠𝑖𝐺𝑆→𝑇(𝑅𝑒𝑠𝑖𝐺𝑇→𝑆(𝑋𝑇))

𝑅𝑒𝑠𝑖𝐺𝑇→𝑆(𝑅𝑒𝑠𝑖𝐺𝑆→𝑇(𝑋𝑆))

𝑅𝑒𝑠𝑖𝐺𝑆→𝑇(𝑋𝑆)

𝑋𝑇

𝑅𝑒𝑠𝑖𝐺𝑇→𝑆(𝑋𝑇)

Stage A: Image translation using ResiDualGAN

Stage B: Segmentation model training and output space adaptation

Shared 

weights
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interpolation
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𝑅𝑒𝑠𝑖𝐺𝑺→𝑻

Segmentation model 𝑓𝑇

Figure 2. Overview of the proposed method.

2.1. Stage A: Image Translation Using ResiDualGAN
2.1.1. Overall

The objective of Stage A is to translate XS to the style of XT . Inspired by DualGAN [33],
which is proven to be the optimal choice for VHR RS images translation [12], ResiDualGAN
is proposed for VHR RS images translation, which consists of two major components: Resi-
Generators and discriminators. ResiGenerator is exploited to generate a style-transferred
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image while the discriminator is designed to discern whether an image is generated by Re-
siGenerator or not. ResiDualGAN consists of two ResiGenerators, ResiGS→T and ResiGT→S,
and two discriminators, DS and DT . ResiGS→T is used for translating images from S to T,
while ResiGT→S is for T to S. DS performs the task of discerning whether an image is from
S or being generated by ResiGT→S, while DT discerns whether an image is from T or being
generated by ResiGS→T .

2.1.2. ResiGenerator

The architecture of ResiGS→T : RHS×WS×B → RHT×WT×B is illustrated in Figure 2,
containing a generator GS→T based on U-Net [4] and a resizer module ResizeS→T . GS→T :
RHS×WS×B→RHS×WS×B generates a residual item for its input. ResizeS→T : RHS×WS×B→
RHT×WT×B is a resizing function that resizes images of the source domain to the size of the
target domain, implemented as a network or an interpolation function. Based on ablation
experiments discussed later in the paper, a bilinear interpolation function is used as the
resizing function eventually. For the source domain images XS, we want to obtain their
corresponding target-stylized images XS→T using ResiGS→T , which can be written as the
following formulation:

XS→T = ResiGS→T(XS) = ResizeS→T(GS→T(XS) + k× XS) (2)

where k is the hyperparameter. All of the random noises are simplified for facilitating expres-
sion. According to the hypothesis in Equation (1), after the resizing operation, the resolution
of XS→T should be the same as XT . The architecture of ResiGT→S resembles ResiGS→T , where
the only remaining difference is the resizer module ResizeT→S :RHT×WT×B→RHS×WS×B.
ResizeT→S is a reverse procedure of ResizeS→T , which resizes an image with the size
of HT×WT×B to the size of HS×WS×B. Consequently, the size and resolution of
ResiGT→S(XS→T) should be the same as XS.

Our method is distinct from the super-resolution method. The super-resolution
method only changes the resolution of images, while the aim of our paper is to mini-
mize the domain gap between the source domain and the target domain. In fact, we can
simply resize images to the same resolution and obtain a perfect super-resolution result.
However, as shown in Section 4.3, the in-network resizer module performs better compared
with the pre-resizing operation.

ResiGenerator is the main innovation of the proposed method. In general, we simply
add an in-network resizer module and a residual connection into the original generator of
DualGAN. However, in Section 3.4, we will evaluate that this simple modification leads
to a significant improvement in performance. Further, in Section 4.3, we will demonstrate
that only the combination of the in-network resizer module and the residual connection
will bring such an improvement. If only the in-network resizer module or only the residual
connection is used, the improvement will be quite limited.

2.1.3. Adversarial Loss

The ResiGenerator attempts to generate images to deceive the discriminator, while the
discriminator attempts to distinguish whether images are generated by ResiGenerator or
not, resulting in an adversarial loss Ladv. Analogous with DualGAN, a Wasserstein-GAN
(WGAN) loss proposed by [37] is used to measure the adversarial loss. WGAN resolves
the problem that the distance may be equal to 0 when there is no intersection of two
data distributions by utilizing the Earth-Mover (EM) distance as a measure for two data
distributions, which avoids the vanishing gradients problem of networks. Differentiate
with traditional GANs [23], using a sigmoid output as a final output for the discriminator;
discriminators of DualGAN remove the sigmoid as a final layer, which is also used by this
paper. Moreover, the gradient penalty proposed by [38] is used to stabilize the training
procedure and avoid the weights clipping operation in WGAN, which is in order to enforce
the Lipschitz constraint in WGAN. The gradient penalty is not written in the formulations
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for the purpose of simplification. Above all, the adversarial loss Ladv of source domain S to
target domain T can be written as follows:

LS→T
adv = ExT∼XT (DT(xT))−ExS∼XS(DT(ResiGS→T(xS))) (3)

2.1.4. Reconstruction Loss

ResiGT→S reconstructs XS→T to the style of the source domain. Ideally, ResiGT→S(XS→T)
should be entirely the same as XS. However, loss always exists. Considering both sides of
ResiDualGAN, the reconstruction loss Lcyc can be measured by an L1 penalty as follows:

Lcyc = ExS∼XS(‖ResiGT→S(ResiGS→T(xS))− xS‖1)

+ExT∼XT(‖ResiGS→T(ResiGT→S(xT))− xT‖1)
(4)

2.1.5. Total Loss

Considering adversarial loss and reconstruction loss together, the total loss for ResiD-
ualGAN can be written:

LResiG = λcycLcyc + λadv(LS→T
adv + LT→S

adv ) (5)

where λcyc and λadv are hyperparameters corresponding to the reconstruction loss and the
adversarial loss, respectively. During the training of ResiDualGAN, the discriminators
attempts to maximize LResiG while the ResiGenerator attempts to minimize, which can be
written as the following min–max criterion:

max
DS
DT

min
ResiGS→T
ResiGT→S

LResiG (6)

After the training of Stage A, a ResiGenerator ResiGS→T can be obtained to perform
the style translation task in Equation (2) and XS→T is generated for the next training in
Stage B, which is uncoupled with the training of Stage A.

2.2. Stage B: Segmentation Model Training
2.2.1. Overall

The objective of Stage B is to find the optimal model fT for semantic segmentation in
the target domain (Figure 2, Stage B). In Stage B, an OSA is performed where we can regard
fT as a generator in traditional GANs, which generates softmax prediction outputs for
both XS→T and XT . Meanwhile, the function of discriminator Dout in Stage B is to discern
whether the output of fT is generated by XS→T or XT . OSA assumes that while images may
be very different in appearance, their outputs are structured and share many similarities,
such as spatial layout and local context. In this task, OSA minimizes the output space gap
between fT(XS→T) and fT(XT), and significantly improves the segmentation accuracy on
XT . As well as the traditional GANs, at the beginning, we will train Dout firstly, followed
by fT .

2.2.2. Discriminator Training

Generally, because the semantic segmentation model is trained on the annotated
source domain, the segmentation results of the source domain are more regular than those
of target domain images. For example, the periphery of the building is clear for source
domain images but zigzags for target domain images. OSA uses a discriminator Dout
to distinguish whether the segmentation result is from the source domain or the target
domain, which encourages the model to generate regular results for target domain images.
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As a result, the segmentation results of the target domain are better both qualitatively and
quantitatively after OSA. A binary cross-entropy loss Lout is used for training Dout.

Lout = −ExT∼XT (log(1− Dout( fT(xT))))−ExS→T∼XS→T (log(Dout( fT(xS→T)))) (7)

2.2.3. Semantic Segmentation Training

At first, a cross-entropy loss is used to train fT . Because the shape of XS→T is
HT × WT × B, while the shape of the label YS is HS × WS ×C, a nearest interpolation
method is performed to resize YS as YS→T ∈ ZHT×WT×B. Then, the segmentation loss is

Lseg = −E(xS→T ,yS→T)∼(XS→T ,YS→T)
(

c=1

∑
C

yS→T log( fT(xS→T))) (8)

where yS→T ∈ YS→T is the nearest interpolation resizing of yS, which is the label for xS → T.
Next, we forward XT to fT and obtain an output fT(XT), which attempts to fool the
discriminator Dout, resulting in an adversarial loss Ladvo :

Ladvo = ExT∼XT (log(1− Dout( fT(xT)))) (9)

2.2.4. Total Loss

Considering all items in Stage B, the total loss for the semantic segmentation task can
be written as

Ltotal = λsegLseg + λadvo Ladvo (10)

where λseg and Ladvo are hyperparameters corresponding to the segmentation loss and the
the OSA loss. During the training of Stage B, we optimize the following min–max criterion:

max
Dout

min
fT

Ltotal (11)

After the training of Stage B, a semantic segmentation model fT for target images XT
can be finally obtained.

2.3. Networks Settings
2.3.1. ResiGenerators

A ResiGenerator consists of a generator and an in-network resizer module. The gen-
erator is implemented as a U-Net [4], which is a fully convolutional network with skip
connections between the down-sampling and up-sampling layers. For the down-sampling
layers, we set the size of the convolving kernel as 4, padding as 1, and strides as 2. The chan-
nels of layers are {64, 128, 256, 512, 512, 512, 512}, where, except for the first layer and the
final layer, all layers are followed by an instance normalization [39] and a Leaky ReLU [40]
with a negative slope of 0.2. For up-sampling layers, the same convolving kernel size,
stride, and padding values from the down-sampling layers are utilized. All layers are
composed of a transposed convolutional layer followed by an instance normalization and
a ReLU [41]. Dropout layers with a probability of 0.5 are exploited in all up-sampling
and down-sampling layers with more than 256 channels. The resizer module could be
implemented in many approaches. Based on the experimental results in Section 4.3.2,
we eventually exploit the bilinear interpolation as the optimal implementation of the
resizer module.

2.3.2. Discriminators

Discriminators of ResiDualGAN are implemented as fully convolutional networks as
well. The channels of layers are {64, 128, 256, 512, 512, 1}, where, except for the last layer,
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all the layers are followed by a batch normalization [42] layer and a Leaky ReLU with a
negative slope of 0.2. The output of the last layer does not pass through any activation
functions due to the constraints of WGAN [37].

2.3.3. Output Space Discriminator

The implementation is totally the same as that in [18], which is a fully convolutional
network with a kernel of 4 × 4; stride of 2; and channels of 64, 128, 256, 512, 1. Except for
the last layer, every layer is followed by Leaky ReLU with a negative slope of 0.2. The
output of the last layer is resized to the size of the input.

2.3.4. Segmentation Baseline

DeeplabV3 [43] is adopted as the baseline network for the semantic segmentation task
of the proposed method. To accelerate the coverage procedure, the encoder of the baseline
is replaced with ResNet-34 [44], which is pre-trained on ImageNet [45].

2.4. Training Settings

All the models are implemented on PyTorch 1.8.1 and trained on an NVIDIA A30 with
24 GB RAM running Ubuntu 18.04. The total time consumption is about 23 h, where 80% of
the time is used for training ResiDualGAN and the remaining 20% is for the segmentation
model and output space adaptation. The total time consumption is approximate to that
of DualGAN [33] and CycleGAN [24], and is more efficient than MUCSS [12] (about 30 h),
which needs to generate pseudo labels and perform self-training.

2.4.1. Stage A

We set k = 1, λadv = 1, and λcycle = 10 for training of the ResiDualGAN. Adam [46]
with β = (0.5, 0.999) is adopted as the optimizer for ResiGenerators, while RMSProp [47]
with α = 0.99 is adopted for the discriminators. The learning rates for all ResiGenerators
and discriminators are set as 0.0005. The batch size is set as 1, where we randomly select
images from the source domain and the target domain for training. For every 5 iterations of
training for discriminators, 1 iteration of training for ResiGenerators is performed. Finally,
a total of 100 epochs are trained.

2.4.2. Stage B

We set λseg = 1 and Ladvo = 0.02 for the training of Stage B. Adam with β = (0.9, 0.999)
is adopted as the optimizer for semantic segmentation model fT and output space dis-
criminator Dout. The initial learning rates are both set as 0.0002. We dynamically adjust
the learning rate of fT by multiplying by 0.5 when the metrics have stopped ascending.
The batch size is set as 16.

3. Experimental Results
3.1. Datasets

To fully verify the effectiveness of the proposed UDA method, three VHR RS datasets
are introduced in the experiment, namely, the Potsdam dataset, Vaihingen dataset, and
BC403 dataset.

The first two datasets belong to the ISPRS 2D open-source RS semantic segmentation
benchmark dataset [36]; all images are processed into true orthophotos (TOPs), with annota-
tions of 6 ground classes: clutter/background, impervious surface, car, tree, low vegetation,
and building. The Potsdam dataset contains three different band modes: IR-R-G (three
channels), R-G-B (three channels), and IR-R-G-B (four channels). IR-R-G and R-G-B are
exploited in the following experiments and are abbreviated as PotsdamIRRG and Potsdam-
RGB. Both datasets consist of 38 VHR TOPs with a fixed size of 6000 × 6000 pixels and
spatial resolution of 5 cm. The Vaihingen dataset contains only one band mode, IR-R-G
(three channels), and consists of 33 TOPs, in which every TOP contains 2000 × 2000 pixels
with a resolution of 9 cm. To conform to the constraints of Equation (1), we clip images of
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Potsdam into the size of 896 × 896 and images of Vaihingen into the size of 512 × 512, where
the numbers 896 and 512 are specifically set for facilitating the down-sampling operation
in the CNN. Eventually, 1296 images for PotsdamIRRG and PotsdanRGB, and 1696 images
for Vaihingen—in which 440 images of Vaihingen are validation datasets—are obtained.

The third dataset (BC403) is manually annotated by us. This dataset is constructed
using VHR drone imagery obtained from Beichuan County area with a spatial resolution
of 7 cm. Beichuan County is located in southwestern China, under the jurisdiction of
Mianyang City, Sichuan Province. This dataset was collected in April 2018 and is part of the
Wenchuan Earthquake 10th Anniversary UAV dataset. Beichuan County has a subtropical
monsoonal humid climate and has architectural features typical of Chinese counties, which
is totally different from the above two datasets in terms of image feature characteristics.
The original image size of the dataset is 27,953 × 43,147 (Figure 3a). The down-sampled RS
images are cropped into 1584 tiles of 768 × 768 pixels with 30% overlapping (Figure 3b).
Images in this dataset are provided with their semantic labels (Figure 3c), including six
classes of ground objects—clutter/background, impervious surface, car, tree, low vegeta-
tion, and building—as in the Potsdam and Vaihingen dataset. We select 20% of the images
as the validation dataset and the remaining images for the test dataset. The test dataset
does not overlap with the validation dataset.

 

 

 

 

 

Fig. X: Area covered by the BC403 dataset (a). true orthophotos with size of 768 × 768 (b) and their 

semantic labels (c).  

 

 

 

 

 

  

(a) (b) 

(c) 

Figure 3. Overview of the BC403 dataset (a). True orthophoto with a size of 768 × 768 (b) and its
semantic labels (c).

3.2. Experimental Settings

We design three cross-domain tasks to simulate situations that might be encountered
in practical applications using the above datasets:

1. IR-R-G to IR-R-G: PotsdamIRRG to Vaihingen. A commonly used benchmark for
evaluating models.

2. R-G-B to IR-R-G: PotsdamRGB to Vaihingen. Another commonly used benchmark for
evaluating models.

3. IR-R-G to RGB: PotsdamIRRG to BC403. Instead of using PotsdamRGB as the target
dataset, where channels of R and G are identical with PotsdamIRRG, we use our
annotated BC403 dataset to perform this cross-domain task.

3.3. Evaluation Metrics

To facilitate comparison with different methods, IoU and F1-score are employed as
metrics in this paper. For every class in six different ground classes, the formulation of IoU
can be written as

IoU =
|A∩ B|
|A∪ B| (12)
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where A is the ground truth and B denotes the predictions. After calculations of IoU for six
classes, mIoU can be obtained, which is the mean IoU for every class. The F1-score can be
written as

F1-score =
2× Precision× Recall

Precision + Recall
(13)

3.4. Compared with the State-of-the-Art Methods

For a comprehensive comparative analysis, we keep all of the settings of networks
consistent with ours and hyperparameters in other methods as optimal as possible. Four
state-of-the-art methods are used for comparison, i.e., Benjdira’s [26], DualGAN [33],
AdaptSegNet [18], and MUCSS [12], where the former two are image-to-image translation
methods, AdaptSegNet is an adversarial discriminative method, and MUCSS combines
DualGAN with self-training strategies for cross-domain semantic segmentation tasks.

Both the quantitative and qualitative results show the superiority of the proposed
methods. Table 1 and Figure 4 show the quantitative and qualitative segmentation results
of PotsdamIRRG to Vaihingen, respectively; Table 2 and Figure 5 are PotsdamRGB to
Vaihingen; and Table 3 and Figure 6 are PotsdamIRRG to BC403. After the OSA, we
finally obtain the mIoU and F1-score of segmentation results of 55.83% and 68.04% from
PotsdamIRRG to Vaihingen, an increase of 11.71% and 11.09%, respectively, compared with
other methods; for PotsdamRGB to Vaihingen, we obtain 46.62% and 59.84%, an increase of
7.90% and 7.95%; for PotsdamIRRG to BC403, we obtain 53.19% and 65.60%, an increase
of 11.04% and 11.39%. It can be observed that the improvement in car class is significant
while the improvement in low vegetation is deficient. In Section 4.3.1, we will discuss the
principal reason for these imbalanced improvements.

Table 1. The quantitative results of the cross-domain semantic segmentation from PotsdamIRRG
to Vaihingen.

Methods Background/
Clutter

Impervious
Surface Car Tree Low

Vegetation Building Overall

IoU F1Score IoU F1Score IoU F1Score IoU F1Score IoU F1Score IoU F1Score IoU F1Score

Baseline
(DeeplabV3 [43]) 2.12 4.01 47.68 64.47 20.39 33.62 51.37 67.81 30.25 46.38 65.74 79.28 36.26 49.26

Benjdira’s [26] 6.93 9.95 57.41 72.67 20.74 33.46 44.31 61.08 35.60 52.17 65.71 79.12 38.45 51.41
DualGAN [33] 7.70 11.12 57.98 73.04 25.20 39.43 46.12 62.79 33.77 50.00 64.24 78.02 39.17 52.40

AdaptSegNet [18] 5.84 9.01 62.81 76.88 29.43 44.83 55.84 71.45 40.16 56.87 70.64 82.66 44.12 56.95
MUCSS [12] 10.82 14.35 65.81 79.03 26.19 40.67 50.60 66.88 39.73 56.39 69.16 81.58 43.72 56.48

ResiDualGAN 8.20 13.71 68.15 81.03 49.50 66.06 61.37 76.03 40.82 57.86 75.50 86.02 50.59 63.45
ResiDualGAN + OSA 11.64 18.42 72.29 83.89 57.01 72.51 63.81 77.88 49.69 66.29 80.57 89.23 55.83 68.04

The bold number is the best result of every column.

Table 2. The quantitative results of the cross-domain semantic segmentation from PotsdamRGB
to Vaihingen.

Methods Background/
Clutter

Impervious
Surface Car Tree Low

Vegetation Building Overall

IoU F1Score IoU F1Score IoU F1Score IoU F1Score IoU F1Score IoU F1Score IoU F1Score

Baseline
((DeeplabV3 [43]) 1.81 3.43 46.29 63.17 13.53 23.70 40.23 57.27 14.57 25.39 60.78 75.56 29.53 41.42

Benjdira’s [26] 2.03 3.14 48.48 64.99 25.99 40.57 41.97 58.87 23.33 37.50 64.53 78.26 34.39 47.22
DualGAN [33] 3.97 6.67 49.94 66.23 20.61 33.18 42.08 58.87 27.98 43.40 62.03 76.35 34.44 47.45

AdaptSegNet [18] 6.49 9.82 55.70 71.24 33.85 50.05 47.72 64.31 22.86 36.75 65.70 79.15 38.72 51.89
MUCSS [12] 8.78 12.78 57.85 73.04 16.11 26.65 38.20 54.87 34.43 50.89 71.91 83.56 37.88 50.30

ResiDualGAN 8.80 13.90 52.01 68.35 42.58 59.58 59.88 74.87 31.42 47.69 69.61 82.04 44.05 57.74
ResiDualGAN +OSA 9.76 16.08 55.54 71.36 48.49 65.19 57.79 73.21 29.15 44.97 78.97 88.23 46.62 59.84

The bold number is the best result of every column.
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Table 3. The quantitative results of the cross-domain semantic segmentation from PotsdamIRRG
to BC403.

Methods Background/
Clutter

Impervious
Surface Car Tree Low

Vegetation Building Overall

IoU F1Score IoU F1Score IoU F1Score IoU F1Score IoU F1Score IoU F1Score IoU F1Score

Baseline
(DeeplabV3 [43]) 2.74 5.26 27.35 42.44 35.68 52.22 43.18 60.02 11.43 19.99 60.51 75.20 30.15 42.52

Benjdira’s [26] 4.79 6.54 68.37 79.65 47.99 54.76 22.69 45.76 22.68 42.05 72.57 80.85 39.85 51.60
DualGAN [33] 3.52 8.78 66.48 80.97 39.26 64.35 30.58 36.68 28.03 35.73 68.53 83.63 39.40 51.69

AdaptSegNet [18] 4.57 8.17 56.37 72.03 50.90 66.95 52.01 67.87 14.70 25.06 74.38 85.17 42.15 54.21
MUCSS [12] 3.13 5.86 71.83 83.35 27.72 41.62 32.53 48.17 27.95 42.08 78.82 87.82 40.33 51.48

ResiDualGAN 13.79 23.72 72.26 83.64 61.06 75.69 46.56 62.76 33.73 49.67 76.08 86.15 50.58 63.61
ResiDualGAN + OSA 13.25 23.03 75.51 85.95 61.32 75.87 51.22 67.18 35.35 51.33 82.51 90.24 53.19 65.60

The bold number is the best result of every column.

BuildingLow VegetationTreeCarImpervious SurfacesClutter/Background

(a) (b) (d) (e) (f) (g) (h)(c)

Figure 4. The qualitative results of the cross-domain semantic segmentation from PotsdamIRRG
to Vaihingen. (a) Target images. (b) Labels. (c) Baseline (DeeplabV3 [43]). (d) Benjdira’s [26].
(e) DualGAN [33]. (f) AdaptSegNet [18]. (g) MUCSS [12]. (h) ResiDualGAN + OSA (ours).

BuildingLow VegetationTreeCarImpervious SurfacesClutter/Background

(a) (b) (c) (d) (e) (f) (h)(g)

Figure 5. The qualitative results of the cross-domain semantic segmentation from PotsdamRGB
to Vaihingen. (a) Target images. (b) Labels. (c) Baseline (DeeplabV3 [43]). (d) Benjdira’s [26].
(e) DualGAN [33]. (f) AdaptSegNet [18]. (g) MUCSS [12]. (h) ResiDualGAN + OSA (ours).
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Clutter/Background Impervious Surfaces Car Tree Low Vegetation Building

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 6. The qualitative results of the cross-domain semantic segmentation from PotsdamIRRG to
BC403. (a) Target images. (b) Labels. (c) Baseline (DeeplabV3 [43]). (d) Benjdira’s [26]. (e) Dual-
GAN [33]. (f) AdaptSegNet [18]. (g) MUCSS [12]. (h) ResiDualGAN + OSA (ours).

4. Discussion
4.1. Hyperparameters Settings

To boost the performance of our model, we evaluate the proposed method (ResiDu-
alGAN+OSA) on the evaluation datasets of Vaihingen under the task of transferring the
segmentation model from PotsdamIRRG to Vaihingen. The grid search method is used to
find the optimal hyperparameters combination. Table 4 shows the results of the grid search.
Firstly, for a given Ladv, Lcyc = (1, 10), we evaluate the model’s performance under different
k settings. When k = 1, the best result is reached with mIoU = 56.80% and and overall F1-
score = 68.46%. Secondly, with k = 1 fixed, we evaluate how the settings of Ladv, Lcyc affect
the model’s performance. We split the grid of the search space into {1, 5, 10} × {1, 5, 10},
where × is the Cartesian product. The best result is obtained when Ladv, Lcyc = (1, 10).
Eventually, we set the hyperparameters of ResiDualGAN as k, Ladv, Lcyc = (1, 1, 10).

Table 4. Evaluation results of ResiDualGAN under different hyperparameter settings. The results
are obtained from the task of cross-domain semantic segmentation from PotsdamIRRG to Vaihingen
and evaluated on the validation part of Vaihingen. The mIoU and F1 are overall IoU and overall
F1-score, respectively.

Hyperparameters Settings mIoU F1

Ladv, Lcyc = (1, 10)
k = 0.5 53.29 66.09
k = 1 56.80 68.46
k = 2 55.10 67.39

k = 1

Ladv, Lcyc = (1, 1) 56.00 68.24
Ladv, Lcyc = (1, 5) 56.71 69.10
Ladv, Lcyc = (1, 10) 56.80 68.46
Ladv, Lcyc = (1, 20) 54.79 67.34
Ladv, Lcyc = (5, 1) 54.43 67.33
Ladv, Lcyc = (5, 5) 52.69 65.02

Ladv, Lcyc = (5, 10) 55.73 68.26
Ladv, Lcyc = (10, 1) 53.39 65.51
Ladv, Lcyc = (10, 5) 55.12 67.10
Ladv, Lcyc = (10, 10) 54.98 67.56

The bold number is the best result of every column.
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In addition, we can observe that the results do not fluctuate too much under different
hyperparameter settings (max of mIou −min of mIou = 56.80% − 52.69% = 4.11%), which
demonstrates the stability of our model under different hyperparameter settings.

4.2. Image Translation

Figure 7 shows the image translation results of ResiDualGAN. The translation of the
tan roof in Figure 7(i-a) is a tough problem for the existing GANs, where the tan roof is likely
to be translated as low vegetation, e.g., Figure 7(i-b) and Figure 7(i-c). The ResiDualGAN
avoids this problem, as shown in Figure 7(i-d), where the tan roof is translated into yellow,
which corresponds to Vaihingen in Figure 7(i-e). Although great improvement has been
made, the translated results of ResiDualGAN are still visually unfriendly; where the color
of the imperious surface is translated into yellow, the shadow is too thick to recognize the
objects below the shadow, and so on. Fortunately, although visually unfriendly, the trans-
lated results of ResiDualGAN are suitable for the training in Stage B. The state-of-the-art
segmentation performance fully proves the superiority of ResiDualGAN in RS images’
cross-domain semantic segmentation tasks.

Figure 8 shows the t-SNE [48] visualized result of image translation. t-SNE stands for t-
distributed stochastic neighbor embedding, which is a method for dimensionality reduction.
t-SNE is a commonly used visualizing method to show the data distribution of different
domains. In our paper, what we want to do is to show the data distribution of the source do-
main (e.g., PotsdamIRRG), target domain (e.g., Vaihingen), and ResiDualGAN-transferred
images (e.g., transferred images from PotsdamIRRG to Vaihingen). To achieve this, we
need to extract the semantic features of every image first. We train a classification network
based on ResNet-18 [44]. The classification network is designed to distinguish whether
an image is from the source domain (PotsdamIRRG) or the target domain (Vaihingen).
After training the network roughly, we pass the source domain images (PotsdamIRRG),
target domain images (Vaihingen), and ResiDualGAN-transferred images (transferred
images from PotsdamIRRG to Vaihingen) through the encoder of the network and obtain
the semantic features. Then, we use t-SNE to reduce the dimension of the semantic features
to two. We draw every two-dimensional point in Figure 8. The visualization result shows
that ResiDualGAN matches the data distribution of the source domain data with the target
domain data well. The feature distribution of most of the translated images is similar to
those of the target domain.

4.3. Ablation Study
4.3.1. Resizer Module

In RS images, some scale-invariant classes (e.g., cars) have a relatively fixed size
because of the fixed resolution of RS images. Therefore, if two datasets have different
resolutions, the size of cars may be distinct. Figure 9 shows that kind of tendency; the sizes
of cars in PotsdamIRRG are close to each other but are always much larger than cars
in Vaihingen.

CNN is a scale-sensitive network [49]. CNN learns to recognize features from the
training data and predicts testing data using the knowledge learned from the training data.
Consequently, for scale-invariant objects, e.g., cars, scale is a feature that can be learned
for CNN. Scale-sensitivity of CNN brings a great challenge for some CV tasks, such as the
detection of cars from street scene images [49,50], where cars in such images present a large
variance in scale (as shown in Figure 1, cars in street scene images). However, the variance
in scale benefits the UDA tasks. By learning different scale information of a category, CNN
possesses the ability to recognize objects with different scales, which benefits the UDA
semantic segmentation tasks of car, person, and other scale-invariant classes from GTA5 to
Cityscapes. Nevertheless, as mentioned above, the sizes of scale-invariant classes in an RS
dataset are close to each other, which greatly challenges the UDA tasks of RS images.
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(a) (b) (c) (d) (e)

(i) PotsdamIRRG
to Vaihingen

(ii) PotsdamRGB
to Vaihingen

(iii) PotsdamIRRG
to BC403

Figure 7. Results of image translation from (i) PotsdamIRRG to Vaihingen, (ii) PotsdamRGB to
Vaihingen, and (iii) PotsdamIRRG to BC403. (a) Input images. (b) CycleGAN [24]. (c) DualGAN [33].
(d) ResiDualGAN. (e) Target images. The area within the orange rectangle in (a,d) is used for image
translation in (b,c), where in (i) and (ii) the size of (a) is 896× 896 and the orange rectangle of (a) is
512× 512, as are the sizes of (b–e) to conform the Equation (1). In (iii), the size of (a) is 896× 896 and
the orange rectangle of (a) is 768× 768, as are the sizes of (b–e).

(a) (b) (c)

Figure 8. Visualization of the t-SNE [48] results of ResiDualGAN. Every point in the figure refers to
the t-SNE dimension reduction result of the feature of an image. The feature is obtained from the
encoder of the ResNet-18 [44] network. The orange dots refer to features of images generated by
ResiDualGAN under the image translation tasks from (a) PotsdamIRRG to Vaihingen, (b) Potsdam-
RGB to Vaihingen, and (c) PotsdamIRRG to BC403. The other points refer to features of images from
PotsdamIRRG/PotsdamRGB/Vaihingen/BC403.

The resizer module in ResiDualGAN addresses the scale discrepancy problem of two
domains. Complying with Equation (1), ResiDualGAN unifies the resolution of target
domain images XT and ResiGS→T(XS) to rT , and the resolution of source domain images
XS and ResiGT→S(XT) to rS, addressing the problem of both discriminators DS and DT
receiving two images with different resolutions, which may avoid the vanishing gradient
problem of discriminators and accelerate the convergence of generators.

The resizer module greatly improves the accuracy performance of ResiDualGAN in
cross-domain RS image semantic segmentation tasks. If we remove the resizer module,
the mIoU drops to 44.97% and the F1-score drops to 58.51% (Table 5). Figure 10 shows
the improvements provided by the resizer module of ResiDualGAN under two pairs of
comparisons: (1) DualGAN vs. ResiDualGAN (No Residual) and (2) ResiDualGAN (No
Resizer) vs. ResiDualGAN. ResiDualGAN (No Residual) is just an extension of DualGAN
that adds a resizer module after the generator, and ResiDualGAN (No Resizer) only re-
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moves the resizer module in ResiGenerator. We perform the experiments using the same
hyperparameter settings. The results show that, for scale-invariant classes (e.g., cars),
the improvements are much higher than the average, while for scale-invariant classes (e.g.,
low vegetation), the improvements are under the average.

76
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47
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47

46 48

(a) (b)

Figure 9. The length of cars in Potsdam (a) and Vaihingen (b) measured by pixel. The number in the
figure represents the pixel length of the adjacent car.
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Figure 10. The improvement provided by the resizer module. (a) The difference in mIoU between Du-
alGAN and ResiDualGAN, which removes the residual connection and DualGAN. (b) The difference
in mIoU between ResiDualGAN and ResiDualGAN, which removes the resizer module.

Table 5. Ablation study for ResiDualGAN. The results are obtained from the task of cross-domain
semantic segmentation (from PotsdamIRRG to Vaihingen) and evaluated on the test part of Vaihingen.
The mIoU and F1 are overall IoU and overall F1-score, respectively.

Experiment Method mIoU F1

Resize
No Resize 44.97 58.51
Pre-resize 53.46 66.10

In-network Resize 55.83 68.04

Resizing Function
Nearest 53.86 66.30
Bilinear 55.83 68.04

Resizer model 52.97 65.88

Backbone
ResNet [44] 52.51 65.33
LinkNet [51] 52.22 64.84

U-Net [4] 55.83 68.04

Residual Connection No Residual 38.67 52.37
Residual (fixed k) 55.83 68.04

k Learnable 54.05 67.02
Fixed 55.83 68.04

The bold number is the best result of every column.
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Additionally, in-network resizing also affects the performance. Previous works [27,32]
use the resizing function as a pre-processing step for input data, which leads to information
loss. An in-network resizer module adapts itself while resizing images, bringing better
performance. Table 5 shows the experimental results, in which a pre-processing resizing
operation reduces the mIoU from 55.83% to 53.46% and the F1-score from 68.04% to 66.10%,
which demonstrates the superiority of our method.

4.3.2. Resizing Function

Different image resizer methods may affect the on-task performance of networks [52].
Consequently, the implementation of the resizer module will have a significant effect on the
semantic segmentation results. In this paper, we compare three types of resizing methods:
nearest interpolation; bilinear interpolation; and a resizer model, which is proposed by [52].
The former two methods are linear methods that contain no parameters to be learned,
and the last method is a lightweight network that has shown its superiority compared
with linear methods on some CV tasks. Table 5 shows the experimental results for the
optimal resizer module, where the bilinear interpolation obtains the highest mIoU and
F1-score. The nearest interpolation obtains worse results compared with the bilinear
interpolation, resulting from the information loss of images. The resizer model shows the
worst results and should be further optimized to adapt the VHR RS images translation
tasks better in future works. As a result, the bilinear interpolation method is selected as the
implementation of the resizer module of ResiDualGAN.

4.3.3. Backbone

The setting of the backbone of the generator will affect the segmentation model’s
accuracy. We quantitatively compare three CNN-based backbones: U-Net [4], LinkNet [51],
and ResNet [44]. The structures of the three networks are shown in Figure 11. U-Net
(Figure 11a) is a commonly used backbone in the generation tasks, which connects encoder
and decoder layers with feature concatenation. LinkNet (Figure 11b) resembles U-Net
but replaces the concat operation as a plus operation between layers. ResNet (Figure 11c)
utilizes residual connections on a feature level that contribute to building a deeper network.
In particular, it is worth noting that the residual connection of ResiDualGAN is totally
distinct from it in ResNet. As Figure 11d shows, ResiDualGAN merely adds the input
with the output of the backbone. In ResNet, the skip connection is used to add the input
feature to the output feature, where the feature is firstly passed through the encoder and
added to the feature with the same channels. The procedure of encoding an image to
a feature map produces unnecessary information loss. The optimal way is to add the
input image to the output image of the backbone, where the function of the backbone
becomes generating a residual item but encoding an image and then decoding to obtain
a new image. The experimental results are shown in Table 5. For a fair comparison, we
control the parameters of the three backbones to be generally equivalent. The quantitative
results illustrate that U-Net is the better choice as a backbone for our generative model.
The experimental results also show that our residual connection design is much better.

forwardconcat addconv layer

(a) UNet (b) LinkNet (c) ResNet (d) Ours

Figure 11. Diagram of the network structure of (a) UNet [4], (b) LinkNet [51], (c) ResNet [44],
and (d) ResiDualGAN (ours).
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4.3.4. Residual Connection

Combining with the resizer module, the residual connection plays a pivotal role in
achieving the state-of-the-art accuracy performance of ResiDualGAN. If we remove the
residual connection in our model, the mIoU drops from 55.83% to 38.67% and the overall
F1-score drops from 68.04% to 52.37%, as shown in Table 5. The residual connection retains
the original data and avoids the modification of the structure information. Translation
between RS datasets is real-to-real, where all the pixels are geographically significant.
Image-to-image translation GANs such as DualGAN are widely utilized in UDA, which
not only perform real-to-real translation but also synthetic-to-real translation, e.g., GTA5 to
Cityscapes. However, real-to-real translation is distinct from synthetic-to-real translation.
Intuitively, during the procedure of image-to-image translation, the networks should
modify the real images less than the synthetic images, where the margin distribution
between real and real is more closed than between synthetic and real [53]. Meanwhile, it
is not expected to modify the structure information of real images, which may affect the
segmentation performance. Nevertheless, the U-shape network generator of DualGAN
is likely to modify the structure information. The residual connection of ResiDualGAN
retains the original structure information as much as possible and focuses on the translation
of other information, e.g., color, shadow, and so on. As a result, the residual connection
improves the segmentation performance and is more suitable for RS images translation.

4.3.5. Fixed k

k is a vital parameter for ResiDualGAN, which decides how much of the residual item
will affect the generated image. Rather than giving a fixed number, we can also set the k as
a learnable parameter and update k in every iteration. The experimental results in Table 5
show that the fixed k = 1 reaches a better result.

4.4. Output Space Adaptation

An output space adaptation is adopted to further improve the performance of ResiDu-
alGAN. Theoretically, different from image classification based on features that describe
the global visual information of the image, high-dimensional features learned for semantic
segmentation encode complex representations. As a result, adaptation in the feature space
may not be the best choice for semantic segmentation [18]. The OSA has been proven to be
more effective than feature space adaptation when facing the semantic segmentation task
of RS images [27]. In this paper, the OSA improves the mIoU by 5.24% from PotsdamIRRG
to Vaihingen, 2.57% from PotsdamRGB to Vaihingen, and 1.61% from PotsdamIRRG to
BC403. The OSA can also be replaced with other methods, such as self-training, to reach
higher accuracy performance in future works. A more thorough discussion of Stage B is
beyond the scope of this paper.

5. Conclusions

With the aim to learn a semantic segmentation model for RS images from an annotated
dataset to an unannotated dataset, ResiDualGAN has been proposed in this paper to mini-
mize the domain gap at the pixel level. Considering the scale discrepancy of scale-invariant
objects, an in-network resizer module is used, which greatly increases the segmentation
accuracy of scale-invariant classes. Considering the feature of real-to-real translation of
RS images, a simple but effective residual connection is utilized, which not only stabilizes
the training procedure of the GANs model but also improves the accuracy of results when
combined with the resizer module. Combined with an output space adaptation, we reach
state-of-the-art accuracy performance on the benchmarks, which highlights the superiority
and reliability of the proposed method.

ResiDualGAN is a simple, stable, and effective method to train an adversarial genera-
tive model for RS images cross-domain semantic segmentation tasks. However, ResiDual-
GAN only minimizes the pixel-level domain gap. How to combine ResiDualGAN with
adversarial discriminative methods that minimize the feature-level and output-level do-
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main gap and self-training strategies that are better for higher performance in cross-domain
semantic segmentation of RS images is a potential topic for future works. In addition,
the input image size of ResiDualGAN is strictly limited because of the constraints of the
down-sampling process of CNN. Utilizing the Transformer [25] to replace all or part of the
CNN components will be a further step of ResiDualGAN.
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