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Preface

Residuals are used in many procedures designed to detect various types
of disagreement between data and an assumed model. Many of the
common methods of residual analysis are founded on work in the early
1960s by F. Anscombe, J. W. Tukey, G. E. P. Box, D. R. Cox,
C. Daniel and K. S. Srikantan. The methodology grew steadily
through the early 1970s and by 1975 residual analysis was widely
regarded as an integral part of any regression problem, and many
methods using residuals had been incorporated into generally dis-
tributed computer packages. An implicit presumption at that time
seems to be that most deficiencies are correctable through proper
choice of scales, weights, model and method of fitting, and that
residual analysis was used only to produce stronger, compelling
conclusions. During the late 1970s interest in residual analysis was
renewed by the development and rapid acceptance of methods for
assessing the influence of individual observations. These developments
allow a more complete understanding of an analysis, and have
stimulated an awareness that some deficiencies may not be removable
and thus inherent weaknesses in conclusions may necessarily remain.

In the first part of this monograph, we present a detailed account of
the residual based methods that we have found to be most useful, and
brief summaries of other selected methods. Where possible, we present
a unified treatment to allow standard options to be viewed in a larger
context. Qur emphasis is on graphical methods rather than on formal
testing. In the remainder, we give a comprehensive account of a variety
of methods for the study of influence.

In writing this book, we have assumed that the reader is familiar
with, or concurrently studying, linear models and regression methods
at the level of Seber (1977), or, with some supplementation. Draper
and Smith (1981) or Weisberg (1980a). An early version of this
monograph was used as the basis of a course in Winter 1981 at the
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University of Minnesota, and many of the comments of the particip-
ants have resulted in substantial improvements. Norton Holschuh
read the final version and corrected many errors that might otherwise
remain. Typing and other organizational matters were ably handled by
Carol Lieb and Linda D. Anderson-Courtney. Almost all of the figures
in this work were computer drawn at the University of Minnesota.

St. Paul, Minnesota R. Dennis Cook
January 1982 Sanford Weisberg




CHAPTER |

Introduction

‘Complicated phenomena. in which several causes concurring, opposing. or
quite independent of each other. operate at once. so as to produce a compound
effect, may be simplified by subducting the effect of all the known causes. as
well as the nature of the case permits, either by deductive reasoning or by appeal
to experience, and thus leaving. as it were, a residual phenomenon to be
explained. It is by this process, in fact, that science, in its present advanced state.
is chiefly promoted.’
JOHN F. W. HERSCHEL (1830). A Preliminary Discourse
on the Study of Natural Philosophy

The collection of statistical methods that has come to be associated
with the term ‘regression’ is certainly valued and widely used. And yet,
an annoying and often sizeable gap remains between the necessarily
idealized theoretical basis for these methods and their routine appli-
cation in practice. It is well known, for example, that inferences based
on ordinary least squares regression can be strongly influenced by only
a few cases in thedata, and the fitted model may reflect unusual features
of those cases rather than the overall relationship between the
variables. Here, case refers to a particular observation on the response
variable in combination with the associated values for the explanatory
variables.

There appear to be two major ways in which the gap between theory
and practice is being narrowed. One is by the continued development of
robust or resistant methods of estimation and testing that require
progressively fewer untenable assumptions. Robust regression
methods, for example, are a step ahead of least squares regression in
this regard. The other line of inquiry is through the development of
diagnostic tools that identify aspects of a problem that do not conform
to the hypothesized modeling process. For example, the scatterplot of
residuals versus fitted values that accompanies a linear least square fit is
a standard tool used to diagnose nonconstant variance, curvature, and
outliers. Diagnostic tools such as this plot have two important uses.
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First, they may result in the recognition of important phenomena that
might otherwise have gone unnoticed. Outlier detection is an example
of this, where an outlying case may indicate conditions under which a
process works differently, possibly worse or better. It can happen that
studies of the outlying cases have greater scientific importance than the
study of the bulk of the data. Second, the diagnostic methods can be
used to suggest appropriate remedial action to the analysis of the
model.

These lines of development, robust methods and diagnostics, are not
mutually exclusive. When robust regression is viewed as iteratively re-
weighted least squares, for example, the weights associated with the
individual cases may be useful indicators of outliers (Hogg, 1979).
While it seems true that these approaches are in some ways competitive,
one is not likely to replace the other in the foreseeable future. As long as
least squares methods are in widespread use, the need for correspond-
ing diagnostics will exist. Indeed, the use of robust methods do¢s not
abrogate the usefulness of diagnostics in general, although it may
render certain of them unnecessary.

This book is about diagnostics. The major emphasis is on diagnostic
tools for data analyses based on linear models in combination with
least squares methods of estimation. This material is given in Chapters
2-4. In Chapter 5 we discuss corresponding tools for other selected
problems.

In the remainder of this chapter we introduce a data set that will be
used for illustration throughout the rest of this book and suggest a
basic paradigm for regression analysis. While many other data sets will
be introduced in later chapters, a complete and detailed discussion of
each of these is not possible. We hope that the following discussion can
serve as a model for a useful, but perhaps not universally applicable,
perspective on the use of diagnostics in data analyses.

1.1 Cloud seeding

Judging the success of cloud seeding experiments intended to increase
rainfall is an important statistical problem (cf. Braham, 1979). Results
from past experiments are mixed. It is generally recognized that,
depending on various contributing environmental factors, seeding will
produce an increase or decrease in rainfall, or have no effect. Moreover,
the critical factors controlling the response are, for the most part,
unknown. This fundamental treatment-unit nonadditivity makes judg-
ments about the effects of seeding difficult.
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In 1975 the Florida Area Cumulus Experiment (FACE) was
conducted to determine the merits of using silver iodide to increase
rainfall and to isolate some of the factors contributing to the treatment-
unit nonadditivity (Woodley, Simpson, Biondini and Berkeley, 1977).
The target consisted of an area of about 3000 square miles to the north
and east of Coral Gables, Florida. In this experiment, 24 days in the
summer of 1975 were judged suitable for seeding based on a daily
suitability criterion of S—Ne =.1.5, where S (seedability) is the
predicted difference between the maximum height of a cloud if seeded
and the same cloud if not seeded, and Ne is a factor which increases
with conditions leading to naturally rainy days. Generally, suitable
days are those on which the seedability is large, and the natural
rainfall early in the day is small. On each suitable day, the decision to
seed was based on unrestricted randomization; as it happened, 12 days
were seeded and 12 were unseeded.

The response variable Y is the amount of rain (in cubic meters x 107)
that fell in the target area for a 6 hour period on each suitable day. To
provide for the possibilities of reducing the variability and discovering
some factors that may be contributing to the nonadditivity,
the following explanatory variables were recorded on each suitable
day:

Echo coverage (C) = per cent cloud cover in the experimental
area, measured using radar in Coral
Gables, Florida,
Prewetness ( P) = total rainfall in the target area | hour before
seeding (in cubic meters x 107),
Echo motion (E) = a classification indicating a moving radar
echo (1) or a stationary radar echo (2),
Action (A4) = a classification indicating seeding (1) or
no seéding (0).

The data as presented by Woodley et al. (1977) are reproduced in,

Table 1.1.1.

In addition to selectmg days based on suitability (S— Ne), the
investigators attempted to use only days with C < 13%,. A disturbed
day -was defined as C > 139, From Table 1.1.1, the first two
experimental days are disturbed with the second day being highly
disturbed (C = 37.9%).

As a first step in the analysis of the results of this experiment, we
suppose that there exists a vector-valued function G such that the true
or ‘best’ relationship between the response and the explanatory
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Table 1.1.1 Cloud seeding data. Source: Woodley et al. (1977)

Case A T S—Ne C P E Y
1 0 0 1.75 1340 0274 2 1285
2 1 1 2.70 37.90 1.267 i 5.52
3 | 3 4.10 390 0198 2 6.29
4 0 4 2.35 530 0526 1 6.11
5 1 6 425 710 0250 1 245
6 0 9 1.60 690 0018 2 3.61
7 0 18 1.30 460 0.307 1 047
8 0 25 3.35 490 0.194 1 4.56
9 0 27 2.85 1210 0.751 1 6.35

10 1 28 2.20 520 0.084 1 5.06
11 1 29 440 410 0236 1 2.76
12 1 32 310 280 0214 1 4.05
13 0 33 395 680 079 1 5.74
14 1 35 2.90 300 0124 1 4.84
15 1 38 2.05 700 0144 1 1186
16 0 39 4.00 11.30 0.398 1 445
17 0 53 335 420 0237 2 3.66
18 1 55 370 330 0960 1 4.22
19 0 56 3.80 220 0.230 l 1.16
20 1 59 3.40 650 0142 2 545
21 1 65 3.15 310 0073 1 2.02
22 0 68 3.15 260 0.136 1 0.82
23 i 82 401 830 0.123 1 1.09
24 0 83 4.65 740 0.168 1 0.28

variables is of the form
Y =G(A,C, E, P,S—Ne; B;¢) (1.L.1)

where Y is the 24-vector of responses, B is the vector of unknown
parameters whose dimension p’ depends on G, & is a 24-vector of
unobservable random errors, and the remaining arguments indicate
that G may depend on the values of the explanatory variables 4,C, E, P
and S — Ne. For further progress the form of G must be specified. Since
theoretical considerations that might suggest a form are lacking, we
proceed by imposing tentative assumptions that seem reasonable and
are not contradicted by available information.
Initially, we suppose that G is of the form

G=Xp+e (1.12)
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where X is an 24 x p’ full rank matrix whose columns correspond to
explanatory variables, including but not limited to those given in (1.1.1),
The choice of this form is based on convenience and the general notion
that linear models with additive errors often serve as reasonable local
approximations to more complex models; we have no firm information
to support or deny this supposition.

We next choose the complete set of explanatory variables {that is. the
columns of X). First, since regression through the origin does not seem
sensible here, we include a constant column of ones. Second, to allow
for the possibility of nonadditivity, we include all cross-product terms
between action A and the other explanatory variables listed in (1.1.1).
Finally, we include the number of days T after the first day of the
experiment (June 1, 1975 = O)as an explanatory variable. This variable,
which is also listed in Table 1.1.1, is potentially relevant because there
may have been a trend in natural rainfall or modification in the
experimental technique,

With the five explanatory variables given in (1.1.1), X now contains
p’ = l1columns. In general, we set p’ = p + 1 if X contains a column of
ones and set p’ = p otherwise, so p is always the number of explanatory
variables excluding the constant.

In scalar form, the model may be written as

+B13(AX(S—Ne))+ 14 (AxC)+ fis(A X P)
+,816(A XE)+E

Now that the form of the model has been specified the goals of our
analysis can be made more specific. The main goal is to describe the
difference A Y between the rainfall for seeded and unseeded days,

AY=YA=1)-Y(A=0) (1.1.4)
=B+ B13(S—=Ne)+,,C+ B s P+ B E

Thus, the additive effect and the four possible interaction terms are of
primary interest. The prediction of rainfall by itself is of secondary
interest.

Inferences concerning f will be conditional on X and our analysis
will be based, at least initially, on least squares methods since these are
by far the most convenient and straightforward. For this to be sensible,
however, a number of additional assumptions are needed: for each
i=1,2,...,24,
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(1) Eg; = 0 (appropriate model);

(2) var (&) = ¢? (constant variance);

(3) cov (g;,€;) =0, i #+ j (uncorrelated errors);

{(4) any measurement errors in the elements of X are small relative to o;
and

(5) the errors ¢; are (approximately) normally distributed.

If all of the structure that we have imposed so far is appropriate then
the usual normal theory inferences based on the fitted model given in
Table 1.1.2 will be accurate. But much of this structure lacks substant-
ive support and if we are to have faith in the conclusions we must be
convinced that our assumptions are not seriously violated and that
reasonable alternative structures will not produce severely different
conclusions. Answers to the following questions will surely help:

(1) Case 2 is considered to be a disturbed day and thus the process
under study may differ under the conditions of case 2. Is case 2
outside the local region of applicability of the assumed model?
More generally, are there outliers in the data?

(2) Is there evidence to suggest that the variances are not constant or
that the distribution of the errors deviates from normality in
important ways?

(3) Is there evidence to suggest that the form of the model (EY = X )
is not appropriate?

Table 1.1.2  Fitted model, cloud seeding data

Variable Estimate s.e. t-value
Intercept —3.4991 4.0632 -0.86
A 16.2452 5.5216 2,94
T —-0.0450 0.0251 -1.80
S—~Ne 0.4198 0.8445 0.50
C 0.3879 0.2179 1.78
P 4.1083 3.6010 1.14
E 3.1528 1.9325 1.63
A x (S—Ne) -3.1972 1.2671 —-2.352
AxC —0.4863 0.2411 -2.02
AxP —-2.5571 4.4809 -0.57
AxE —0.5622 26430  -0.21

df = 13; 6% = 48607, R? = 0.72
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in the left-hand square. More frequently, the method of fitting is as
much determined by available software as by assumptions. In the vast
majority of regression analyses, least squares is used to carry out fitting,
Whatever method of fitting is used, the right-hand square corresponds
to the fitted model, including estimates, tests, and so forth. The
treatment of the cloud seeding data in Section 1.1 is essentially an
estimation step.

The bottom arrow in Fig. 1.2.1 is labeled criticism. It is meant to
describe the act of critical assessment of the assumptions and the
assumed model, given the fit in the right square and the actual data
values. Criticism of a model may lead to modification of assumptions
and thus further iteration through the system. The questions at the end
of Section 1.1 may help guide this process.

Most of the work on model building, both for the statistician
developing methods and for the scientist applying them, has con-
centrated on the upper estimation path. In precomputer days, the
reason for this was clearly evident: fitting was laborious and time
consuming. One of the earliest books on regression by Ezekiel (1930,
1941) rarely strays far from the computational problems of regression,
and barely ventures beyond models with two predictors. Even
more recent books (Ezekiel and Fox, 1958; Ostle and Mensing, 1975)
still discuss time-consuming methods of inverting matrices via
calculator. Since the fitting of models was inherently so difficult, it is not
unreasonable that methods of criticism would be slow to develop and
rarely used.

The availability of computers and the appearance of Draper and
Smith (1966, 1981) changed this trend. The problems of the estimation
step, at least via least squares, are now easily and quickly solved, and the
analyst can consider inherently more complicated problems of criti-
cism. Most of the methods for criticism (diagnostics) require compu-
tation of statistics that have values for each case in a data set, such as
residuals and related statistics. As a class we call these case statistics,
and call an analysis using these statistics case analysis.

For the unwary, there is an inherent danger that is caused by the
recent explosion of available methods for criticism. If every recom-
mended diagnostic is calculated for a single problem the resulting
‘*hodgepodge’ of numbers and graphs may be more of 2 hindrance than
a help and will undoubtedly take much time to comprehend. Life is
short and we cannot spend an entire career on the analysis of a single set
of data. The cautious analyst will select a few diagnostics for
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application in every problem and will make an additional parsimonious
selection from the remaining diagnostics that correspond to the most
probable or important potential failings in the problem at hand.

It is always possible, of course, that this procedure will overlook
some problems that otherwise could be detected and that the urge to
always apply ‘just one more’ diagnostic will be overwhelming. The
truth is: If everything that can go wrong does go wrong, the situation is
surely hopeless. '




CHAPTER 2

Diagnostic methods using residuals

‘Most of the phenomena which nature presents are very complicated; and
when the effects of all known causes are estimated with exactness, and
subducted, the residual facts are constantly appearing in the form of
phenomena altogether new, and leading to the most important conclusions.’

HERSCHEL, op. cil.

The residuals carry important information concerning the appropriate-
ness of assumptions. Analyses may include informal graphics to display
general features of the residuals as well as formal tests to detect specific
departures from underlying assumptions. Such formal and informal
procedures are complementary, and both have a place in residual
analysis.

Most residual based tests for specific alternatives for the errors are
sensitive to several alternatives. These tests should be treated skepti-
cally, or perhaps avoided entirely, until other alternatives that may
account for an observed characteristic of the residuals have been
eliminated. For example, outliers will affect all formal procedures that
use residuals. Outlier detection procedures should usually be consid-
ered before any formal testing is done. On the other hand, informal
graphical procedures can give a general impression of the acceptability
of assumptions, even in the presence of outliers.

Anscombe (1961, Section 4.2) demonstrates that the whole of the
data may contain relevant information about the errors beyond that
available from the residuals alone. However, in the absence of specific
alternative models or special design considerations, the residuals, or
transformations thereof, provide the most useful single construction.

2.1 The ordinary residuals
The usual model for linear regression is summarized by

Y=Xpf+e 2.1.1)
E@E) =0, Var(e) = 021
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where X is an nx p’ full rank matrix of known constants, Y is an
n-vector of observable responses, f is a p'-vector of unknown
parameters, and & is an n-vector of unobservable errors with the
indicated distributional properties. To assess the appropriateness of
this model for a given problem, it is necessary to determine if the
assumptions about the errors are reasonable. Since the errors € are
unobservable, this must be done indirectly using residuals.

For linear least squares, the vector of ordinary residuals e is given by

e=()=Y-Y
=(1-V)Y ‘ 2.1.2)

where V = (v;;) = X(X"X)"'X" and Y = (p,) is the vector of fitted
values. The relationship between e and & is found by substituting
Xp+efory,

e=(I-V)(Xf+e)

=(I—V)e (2.1.3)
or, in scalar form, fori=1,2,...,n,
e,‘ - 8!'_ Z v,'jaj (214)
j=1

This identity demonstrates clearly that the relationship between eand e
depends only on V. If the v;;s are sufficiently small, e will serve as a
reasonable substitute for &, otherwise the usefulness of e may be
limited. For a sound understanding of the relationship between eand ¢,
and most diagnostics in general, an understanding of the behavior of V
is important,

2.1.1 THE HAT MATRIX

The matrix V is symmetric (VT = V) and idempotent (V? = V), and it
is the linear transformation that orthogonally projects any n-vector
onto the space spanned by the columns of X. John W. Tukey has
dubbed V the ‘hat’ matrix since it maps Yinto Y, ¥ = VY (Hoaglinand
Welsch, 1978). Since V is idempotent and symmetric it follows that

trace(V) =rank(V) =p', Y v} =1y
j

and that V is invariant under nonsingular linear reparameterizations.
This latter property implies that, aside from computational concerns,
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collinearity between the columns of X is irrelevant to an understanding
of how V behaves.

The projection onto the column space of X can be divided into the
sum of two or more projections as follows: Partition X = (X, X,),
where X, is nxgq rank g, and let U= X,(XTX,)"!X] be the
projection matrix for the column space of X,. Next, let X% be the
component of X, orthogonal to X,;, X% = (I— U)X,. Then,

T* = Xf (X£7X5) 7 X5
= (I1-U)X,(XI(I-U)X,) ' XJ(I-U) (2.1.5)

is the operator which projects onto the subspace of the column space of
X orthogonal to the column space of X, and

V=U+T* (2.1.6)

This representation shows that the diagonal elements v; are non-
decreasing in the number of explanatory variables p’. It can also be
shown that, for fixed p’, the v; are nonincreasing in n.
Let X, =1, an n-vector of ones. Then from (2.1.6) it follows
immediately that

V=11"/n+ X(XT ) A" (2.1.7)
and

v,-,-'=%+x,-T(3('T£')—1xi (2.1.8)

where & is the n x p matrix of centered explanatory variables and xT is
the i-th row of & For simple regression, y; = o+ B1x; +¢&;, v; = 1/n
+(x; ~I‘)2/Z(.\'j—i')2. For p>1, contours of constant v; in
p-dimensional space are ellipsoids, centered at the vector of sample
averages.

The magnitudes of the diagonal elements of V play an important role
in case analysis. From (2.1.8), v; = 1/n, i = 1,2, ..., n, provided the
model contains a constant. Upper bounds for v; depend on ¢, the
number of times that the i-th row of X, x/, is replicated. If x; = x;, then
v;; = v; and, using the symmetry and idempotency of V,

n
Vi = Q. ViU =
j=1

which implies that v; < 1/c. Thus,
i/n<v;<1/c 2.19)
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For models without a constant, the lower bound in (2.1.9) must be
replaced by zero. The value of v; can attain its absolute maximum of 1
only if x; occurs only once, and only if v;; = 0, j # i. In this situation
yi=y; and the i-th case will be fitted exactly. In effect. a single
parameter is then devoted to a single case. This situation is pathological
and will rarely occur in practice except when a variable is added to
model an outlier as in Section 2.2.2. It can, however, occur with some
frequency in multiple case generalizations.

The magnitude of v; depends on the relationship between x; and the
remaining rows of &. Characteristics of x; which cause v; to be
relatively large or small can be seen as follows (Cook and Weisberg,
1980): Assuming that the intercept is included in the model, let u, = p,
> ... 2 p,denote theeigenvaluesof T Z,andletp,,....p,denote
the corresponding eigenvectors. Then, by the spectral decomposition of
the corrected cross product matrix,

1 S (Psz.‘)z
Vi =—+ N
n |=Zn H

Further, letting 0,; denote the angle between p, and x; we obtain

plx;
COS(GU):W
and g C 2(p
ou= L 4xlx, 3 O (2.1.10)

n 1=1 H

Thus, v;; is largeif: (1) xT x, is large, that s, x; is well removed from the
bulk of the cases; and (2) x; is substantially in a direction of an
eigenvector corresponding to a small eigenvalue of &7 Z. On the other
hand, if x[x; is small, v;; will be small regardless of its direction.

The elements of V are conveniently computed from any orthonormal
basis for the column space of X, such as that obtained from the singular
value decomposition of X, or the first p’ columns of the matrix Q
from the QR decomposition (see, for example, Stewart, 1973). If
q; and q] are the i-th and j-th rows of the first p’ columns of Q, then
v; = q/q;.

Alternatively, the Choleski factor R (where R is upper triangular and
RTR = X"X)can be used to compute the v;; without inverting a matrix,
since
=x7(XTX) 'x;
=x{(RTR)™ 'x;

= aa;

U,-j
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where a, = R™Tx; is a p’-vector. Now a; can be computed without
inversion by the method of back substitution since R is upper
triangular (see Dongarra, Bunch, Moler and Stewart, 1979, pp. 9.10).

2.1.2 THE ROLE OF V IN DATA ANALYSES

The distribution of e, the vector of ordinary residuals, follows
immediately from (2.1.3): If e ~ N(0, 621) then e follows a singular
normal distribution with E(e) = 0 and Var(e) = ¢2(I1 - V), and the
variation in e is controlled by V.

The discussion of the previous section shows that cases remote in the
factor space will have relatively large values of vy. Since var(J;) = v;0?
and var(e;) = (1 —v;)o?, fitted values at remote points will have
relatively large variances and the corresponding residuals will have
relatively small variances. Because of the analogy between var( y;) and
the variance of the sample average based on a simple random sample
(a%/n), Huber (1977) calls 1/v; the effective number of cases
determining y;. Indeed, we have seen that when v, = 1, y, = y,.

Many authors have hinted that the v; may play an important role in
understanding an analysis based on (2.1.1). Behnken and Draper (1972)
study the pattern of variation in the v; and note that wide variation
reflects nonhomogeneous spacing of the rows of X. Huber (1975) and
Davies and Hutton (1975) point out that if max(v;) is not considerably
smaller than 1, it is probable that an outlier will go undetected when the
residuals are examined. The average of the v;; is p’/n and thus max(v;)
2 p'/n. Accordingly, it may be difficult to identify outlying cases unless
nis considerably larger than p’. Box and Draper (1975) suggest that for
a designed experiment to be insensitive to outliers, the v; should be
small, and approximately equal.

The importance of the v; is not limited to least squares analyses.
Huber (1977) cautions that robust regression may not be effective, or
work at all, if max{v;) is close to 1. Huber’s rationale is that it will be
difficult for outliers to be identified and thus downweighted in robust
regression if max{v;;) is large.

The max(v;) is also important in determining the asymptotic
character of least squares estimates: Let z denote a p’-vector with finite
elements. Then a necessary and sufficient condition for all least squares
estimates of the form 27§ to be asymptotically normal is max (v;) — Oas
n — o (Huber, 1973). If max(v;;) is not small a normal approximation
of the distribution of 27 may be suspect, at least for some z (see W,
1980, for further discussion).
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Hoaglin and Welsch (1978) suggest a direct use of the t;; as a
diagnostic to identify ‘high-leverage points’. The motivation behind
this suggestion is based on the representation

}'}‘,=D‘,‘.y‘.+ z p‘.jyj (21‘1)
jti
The fitted value y; will be dominated by v;; y; if v;; is large relative to
the remaining terms. They interpret v; as the amount of leverage or
influence exerted on y; by y;. It is clear, however, that for any v;; > 0, §;
will be dominated by v, y; if y; is sufficiently different from the other
elements of Y (that is, an outlier).

2.1.3 USE OF THE ORDINARY RESIDUALS

When the fitted model is incorrect, the distribution of the unobservable
errors & and hence of the residual e will change. The goal in the study of
the residuals is to infer any incorrect assumptions concerning & froman
examination of e. Unfortunately, the correspondence between eand ¢ is
less than perfect. In some problems, model failures will not be usefully
transmitted to e. In others, observed symptoms may be attributable to
more than one incorrect assumption.
Consider as an alternative to (2.1.1) the model

Y=Xp+B+e (2.1.12)

where the n-vector B = (b;) represents the bias in fitting (2.1.1) to a
particular set of n cases. Often, the bias may be viewed, at least
approximately, as B = Z¢, where ¢ is an unobservable parameter
vector. The columns of Z may represent important variables not
included in X, or nonlinear transformations of the columns of X,
perhaps polynomials or cross products. If (2.1.1) is fitted but (2.1.12) is
the correct model, then

E(e) = (1 —v;)b;— 3 v;;b; (2.1.13)
j#i

Bias would be diagnosed by a systematic feature in a plot of residuals
against a column of Z, if Z were known. However, the use of residuals
for cases with large v;; in this or other diagnostic procedures is likely to
be limited, unless the bias at that case is extreme, since both terms on
the right of (2.1.13) approach zero as v; — 1. If v; is small, ¢; may
behave more like an average of the elements of B than like b;. Most
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procedures that use e to detect model bias will tend to emphasize the fit
of a model in the neighborhood of x (v; small) while ignoring the
relatively remote points (v; large).

EXAMPLE 2.1.1. ILLUSTRATION OF BIAS. Suppose that X is.given
by the first two columns of Table 2.1.1 and Z is given by the third
column. If the correct model is Y = X f+ Z ¢ + ¢, but the fitted model
is Y=Xf+¢, the v;, b;, and E(e;) are as given in the next three
columns of the table. Even in this small example, the differences
between b; and E(e;) are clear. Cases with small v; will have b;
accurately reflected (on the average) by the e;, but cases with large v;; do
not share this property. If the bias in the model was largest at extreme
cases {cases with larger values of v;;), we would not expect the residuals
to diagnose this problem accuratety, O

Table 2.1.1  Data set illustrating bias when some v, are large

X v/ Uy b; E(e)
1 -1 —4 0.217 —4¢ -32¢
! -1 -3 0.217 -3¢ -22¢
1 -1 -1 0.217 ~1¢ —-0.2¢
1 -1 0 0217 0 0.8¢
1 0 6 0.167 6¢ 6.0¢
1 4 2 0.967 2¢ -1.2¢

Now suppose that (2.1.1)is correct except that Var (¢) = ¢2W ~ ! for
some unknown positive definite symmetric matrix W. If (2.1.1) is fitted
assuming that Var(e)=¢?l, then E{e)=0, but Var(e)=o?
(I~ Y)W~ (I V). Depending on W™, the actual variances of the
residuals may be quite different from a% (1 ~ 1), and from the variances
for the residuals that would be obtained if the correct weighted least
squares model were used (see Appendix A.1). For example, suppose

that
w, 0
W =
(o)
so only case | has variance potentially different from o2, Let
pf = of [t =) (1 —=r;;)], the squared correlation between the i-th
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and j-th residuals (Appendix A.3). Then an easy calculation shows that

var (e,) = a*(1 _”n)<1 + (1 —vn)<l ;wl ))
|

and

[ —w
var(ej>=az(l—vj,-)<1+pf,-(1—m)< “‘)>, j# 1 (2L14)

{

The effect of w, # 1 depends on the values of w,, vy,.and p?;. If p2,is
small, var {¢;) will be the only term seriously affected by the noncons-
tant variance. However, if p{;is large, then the change in var (e; ) will be
comparable to the change in var (e, ). If w, is large, so ¢, is less variable
than the other errors, the true variances of the residuals will be smaller
than their nominal values (in addition, the residual mean square will
underestimate ¢2). If w, is small, then all the variances can become
large. Analogous results for general W are more complicated, but it is
clear that the residuals need not reflect nonconstant variances in the ¢ if
some of the p are large.

When both bias and nonconstant variance are present, the residuals
will have both nonzero means and variances other than those given by
the usual formulae. However, examination of the residuals will not
generally allow the analyst to distinguish between these two problems,
since both can lead to the same symptoms in the residuals.

2.2 Other types of residuals

For use in diagnostic procedures, several transformations of the
ordinary residuals have been suggested to overcome partially some
of their shortcomings. We first consider in Section 2.2.1 the
Studentization of residuals to obtain a set of residuals that have null
distributions that are independent of the scale parameters. These
residuals are shown to be closely related to a mean shift model for
outliers (Section 2.2.2) and to the residuals obtained when each case in
turn is left out of the data (Section 2.2.3). Alternatively. the residuals
can be transformed to have a selected covariance structure: The usual
suggestion is to obtain a vector of length n—p’ of residuals with
uncorrelated elements. The methodology and usefulness of these
residuals is briefly outlined in Section 2.2.4.
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2.2.1 STUDENTIZED RESIDUALS

The ordinary residuals have a distribution that is scale dependent since
the variance of each ¢; is a function of both ¢ and v;. For many
diagnostic procedures, it is useful to define a Studentized version of the
residuals that does not depend on either of these quantities. Following
Margolin (1977), we use the term Studentization to describe the division
of a scale dependent statistic, say U, by a scale estimate 7" so that the
resulting ratio S = U/T has a distribution that is free of the nuisance
scale parameters. David (1981) makes a further distinction between
internal Studentization, in which U and T are generally derived from the
same data and are dependent, and external Studentization, where U
and 7 are independent.

Internal Studentization

In least squares regression, the internally Studentized residuals are
defined by

€;

.= i=1,2,,.., 22.1
ri m, ! n ( )

where 62 = X e?/(n—p’) is the residual mean square. We reserve the
term Studentized residual to refer 1o (2.2.1). This transformation of
residuals has been studied by Srikantan (1961), Anscombe and Tukey
{1963), Ellenberg (1973, 1976), Beckman and Trussell (1974), Prescott
(1975), and many others. Many of these studies were motivated by a
concern about outliers.

Ellenberg (1973) provides the joint distribution of a subset of
m < n—p' Studentized residuals, assuming that (2.1.1) holds
and & ~ N (0, 621). The derivation of the joint distribution uses some
interesting properties of the residuals and proceeds as follows. Suppose
that an m-vector 1= (iy,i,,...,i,)" indexes the m Studentized
residuals of interest, and define R, and e, to be m-vectors whose j-th
elements are r; and e;, respectively. Also, define V; to be the mxm
minor of V given by the intersection of the rows and columns indexed
by 1. The rank of V, is no greater than p’, and its eigenvalues are
bounded between 0 and 1. The m x m matrix I -V, is positive definite
whenever the maximum eigenvalue of V, is less than 1.

The random vector e, follows a N (0, (I — V,)) distribution. If we
can find a quadratic form in e that is independent of e,, then the joint
distribution of e, and that quadratic form can be easily written. The
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joint distribution of R, is then found by a change of variables and
integration.

Provided that the inverse exists, the required quadratic form is given
by :
Shy=eTe—el(I-V)) e (22.2)
where S% ~ o?x*(n—p'—m) and S, and e, are independent. These
facts can be proved using Appendix A.2 to show that §7,, is the residual
sum of squares for (2.1.1) with the cases indexed by 1 removed from the
data.

The joint density of ¢, and S§, is then
1= Vi| = (20%)~ v+ mi2

2T (v)

1
exp{—F[eﬂl—vl)“eﬁs(ﬂ)]} (2.23)

S (e, S(zl)) = (qun)v‘l

where v = (n—p’'—m)/2. Next, let D =diag(1 —v;;,... ,1—r)

and make the transformations
R,=d¢"'D" (2.2.4)

and
¢ = [(Sﬁ)+e?(l - Vl)hlel)/(n -p')] e

Computing the Jacobian, substituting (2.2.4) into (2.2.3), and integrat-
ing over & will give the density of R,. If C; = D™ '2(I - V,)D ™ /2 the
correlation matrix of the residulas indexed by 1, then the density of R, is
_T+m/2) 1-Vv,|7'7
ry)  ((n—-p)m)m?
[1=(n-p) C e ! (2.2.5)

fn (1 —v,)t?

over the region r"C;”"'r < n—p’, and zero elsewhere. Form (2.2.5) can
be recognized as an inverted Student function. Contours of constant
density of (2.2.5) are ellipsoids of the form rTC;” 'r = ¢. For the special
case of m = 1, (2.2.5) reduces to

T(v+} 2\
fin= r(v)r(_zlf)v(n z_)p')lﬂ(l ~n:p') ;i< (n—-p)t2(2.2.6)

Hénce, r?/(n—p’)follows a Beta distribution, with parameters 1/2 and
(n—p'—1)/2, and it follows that E(r;) =0, var(r;) = 1 and, from
(2.2.5), cov (ry, ry) = —vy/L(L = o) (1 ~v;)] 12,0 ).
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The Studentized residuals are used as replacements for the ordinary
residuals in graphical procedures, such as the plot against fitted values
(Andrews and Pregibon, 1978; Anscombe and Tukey, 1963). They are
also basic building blocks for most of the case statistics to be discussed
in this and later chapters.

External Studentization

For externally Studentized residuals, an estimator of &2 that is
independent of ¢; is required. Under normality of the errors,
Equation (2.2.2) provides such an estimate. Defining 63, to be the
residual mean square computed without the i-th case, it follows from
Equation (2.2.2) that

a2 _ (n—p)d?—ef /(1 -v;)
@ n—p—1

—p —y2
=&2<':—1—_!;_,_—’1‘> | - @29

2.2.7)

Under normality, 67, and e; are independent, and the externally
Studentized residuals are defined by

t; = &

C G (- v
The distribution of t; is Student’s ¢ with n — p’ — 1 degrees of freedom.
The relationship between ¢; and r; is found by substituting (2.2.8) into

(2.2.9), ey 1 \112 .
Li=r <_____p’ 2> (2.2.10)
n—p =—r;

(2.2.9)

which shows that t? is a monotonic transformation of r?.

222 MEAN SHIFT OUTLIER MODEL

Suppose that the i-th case is suspected as being an outlier. A useful
framework used to study outliers is the mean shift outlier model,
Y=Xp+dg+s
E(€)=0, Var(e)=0’l (2.2.11)
where d; is an n-vector with i-th element equal to one, and all other

elements equal to zero. Nonzero values of ¢ imply the i-th case is an
outlier.
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Under this model an outlier may occur in y;, x;, or both. Suppose, for
example, that y; is not an outlier while the i-th row of X isin error by an
unknown amount §;; that is, observed (x;) = x; —8,. Then,

0
Y= X+<5]> f+e (2.2.12)
0

which is in the form of (2.2.11) with ¢ = 6] . ‘
It is instructive to rewrite (2.2.11) by making the added variable
orthogonal to the columns of X (as described near (2.1.5)),

Y=Xg+(I-V)dd+e (2.2.13)

where f* is not the same as g in (2.2.11), but ¢ is the same in
both formulations. Because of the orthogonality, (2.2.13) can be fitted
in two steps. First, fit the usual regression of Y on X, ignoring the
additional variable. Next, estimate ¢ from the regression of the
residuals e = (I— V)Y computed in the first step on the added
variable (I — V)d,

L AIA=V)I-V)Y ¢
¢—diT(I——V)(I—V)d,-—1-—v

(2.2.14)
The sum of squares for regression on X is Y'VY, while the additional
sum of squares for regression on (I—V)d; is ¢2(df(I—V)2d,)
=e?/(1 —v;). Hence, the residual sum squares for (2.2.13) is
YT(I-V)Y—e?/(1 —v;). Assuming normality, the t-statistic for a
testof ¢ =0 1is

_ e/(1—v;)'"?
{IYO=-V)Y~ef /(1 ~0))/[n—p ~ 1]}

which follows a t(n —~p’— 1) distribution under the null hypothesis.
However, comparison of (2.2.15) with (2.2.7) and (2.2.9) shows that this
test statistic for the shift model is identical to the externally Studentized
residual,

Under the mean shift outlier model, the nonnul! distribution of
t? when ¢ #0 is noncentral F with noncentrality parameter
@*(1 —v;)/0?. Since the noncentrality parameter is relatively small for
v; near 1, finding outliers at remote points will be more difficult than
finding outliers at cases with v;; small. Yet it is precisely the former cases
where interest in outliers is greatest. Also, since v;; is increasing in p’,
outliers become more difficult to detect as the model is-enlarged.

L

(2.2.15)
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When the candidate case for an outlier is unknown, the test is usually
based on the maximum of the 7 over all i. A multiple testing procedure,
such as one based on the first Bonferroni inequality (Miller, 1966),
must be used to find significance levels. A nominal level «, two-tailed
test for a single outlier will reject if max,|t;| > t(a/n;n—p'—1).
Cook and Weisberg (1980) suggest the alternative rule max; |¢;| = |t
> t(v;o/p’; n— p’ —1). This rule maintains the overall significance level
but provides an increase in power at cases with large v;,. Special tables
for the outlier test are provided by Lund (1975), Bailey (1977) and
Weisberg (1980a). Moses (1979) provides useful charts. Tietjen, Moore
and Beckman (1973) give critical values for simple linear regression.

EXAMPLE 22.1. ADAPTIVE SCORE DATA No. 1. The simple re-
gression data shown in Table 2.2.1 are from a study carried out at the
University of Calfornia at Los Angeles on cyanotic heart disease in
children. Here, x is the age of a child in months at first word and yis the
Gesell adaptive score for each of n = 21 children. The data are given by
Mickey, Dunn and Clark (1967) and have since been analyzed
extensively in the statistical literature.

Table 2.2.1 Gesell adaptive score (y) and age at first word
(x), in months, for 21 children. Source: Mickey et al. (1967)

Case x y Case x y
1 15 95 11 7 113
2 26 T 12 9 96
3 10 83 13 10 83
4 9 9 14 11 84
5 15 102 15 11 102
6 20 87 16 10 100
7 18 93 17 12 105
8 11 100 18 42 57
9 8 104 19 17 121

10 20 %4 20 11 86
21 10 100

The lower triangular part of the symmetric matrix V is given in
Table 2.2.2. Since even for simple regression V is n x n, it is rarely
computed in full, but we present it here for completeness. Examination
of this matrix indicates that most of the v;; are small (19 of the 21 are in




Table 2.2.2 Projection matrix, V, for adaptive score data
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the range 0.05-0.09), the only exceptions being v,,, = 0.15 and v,4, 4
= 0.65. Since Zv; = 2, the diagonal for case 18 is relatively large. (The
role of case 18 in this data set will be discussed at some length in
succeeding sections.) Also, the v;, i # j,are generally small and positive,
the exceptions again being associated with cases 2 and 18.

Next consider the linear regression model, y; = B, + B, x; +¢; for the
data in Table 2.2.1. A scatter plot of the data is given in Fig. 2.2.1; the
numbers on the graph give the case number of the closest points. From
this graph, a straight line model appears plausible although cases 19, 18,
and possibly 2 appear to dominate our perception of this plot. If the
points for these three cases were removed, the perceived linearity would
be less pronounced. Cases 18 and 2 fall near the perceived (and the
fitted) regression line, while case 19 is quite distant,

142
y I
128 - x 18
X
100 —xx§x x
S
X
80 |- <%
L X 2
,*..
60 |- «
i 18
40 lilll[llllllliLLlllJllll‘LllllllllllI[lll
s 19 15 20 25 30 35 40 4s

X

Figure 2.2.1 Scatter plot of the adaptive score data

Figure 2.2.2,an index plot {plot against case number) of the ¢, reflects
the comments of the last paragraph, with the residual for case 19 clearly
larger than the others. Figure 2.2.3 provides a plot of r; versus y,, a
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Figure 2.2.2 Index plot of residuals, adaptive scores data

standard plot used to find various problems that might be a function of
the fitted values. Cases 18 and 19 stand apart in this data since v,4 4
= 0.65 and r;4 = 2.823. The statistic t,, = 3.607 computed from r; can
be used to test case 19 as an outlier; the Bonferroni upper bound for the
p-value for this test is 0.0425,

The importance of case 19 in fitting the model can best be judged by
deleting it and refitting the line, as summarized in Table 2.2.3. Deletion
of the case has little effect on the estimated slope and intercept but it
. does clearly reduce the estimated variance. The role or influence of this
case, as contrasted with cases 2 and 18, will be pursued in Chapter 3. O

EXAMPLE 2.2.2, CLOUD SEEDING NoO. 2. As pointed out in
Chapter 1, case 2 is an extremely disturbed day, and we may have prior
interest in testing case 2 as an outlier. Because of the prior interest, the
outlier statistic for case 2, t, = 1.60, can be compared to t(n~p' —1)
to obtain significance levels. However, since v, , = 0.9766, the power of
the test for this case is relatively small, and we cannot expect to detect
anything but extreme deviations from mode! (1.1.3). J



26 . RESIDUALS AND INFLUENCE IN REGRESSION

3
y X119

r.or

/ -

2 .
-

1 - X
t_ < X
I X
. X
- X X Xx X

%] F ——————————————————— b Sl il
- X
[ X8 X

-1 }. X x
- X
I X

-2 il TR TN N SO0 N W N N OO N A O Y
60 78 88 90 108 {10

Fitted values

Figure 2.23 r; versus fitted values, adaptive score data

Table 223 Regression summaries with and without case 19, adaptive score
data

Full data Case 19 deleted

Estimate s.e. Estimate s.e.

Intercept 109.87 5.06 109.30 397
Slope —1.13 0.31 -1.19 0.24

df = 19; % = 121.50; R? = 0.41 df = 18; 62 = 74.45; R* = 0.57

Accuracy of the Bonferroni bound for the outlier test

Under the outlier test that uses the rejection rule max (t?) > F (a/n; 1,n
—p’ — 1), the first Bonferroni upper bound for the true p-value is p-
value < n Pr(F > t2) where F follows an F(1, n—p’— 1) distribution
and t} is the observed value of max (t?). Cook and Prescott (1981)
provide a relatively simple method for assessing the accuracy of this
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upper bound. The advantage of this method is that numerical inte-
gration is not required.
Let p;; denote the correlation between ¢; and e; (i # j),

pij= —vy/l(1—vy) (1= l’jj)]l/29 (2.2.16)

let r,, denote the observed value of the Studentized residual cor-
responding to max (t?) and define

c(£)={()i<jri<itn—=p)(1+p,)}
Then
oa—fp* - B~ < p-value < « (2.2.17)

where

a=nPr{F 212}

t= Z Pr{F > r;%.(”"Pl_l)/(%(n“P’)(l+pij)_r3|)]

c(+)

and

= Y Pr[F>ri(n—p = 1)/3(n—p) (1~ py) = r7)]

c(~)
It follows immediately from (2.2.17) that the upper bound is exact when
¢(+) and ¢(—) are empty, or equivalently if

1 +max|p;| < 2rl/(n—
i<j

This is equivalent to the sufficient conditions given by Prescott (1977),
Stefansky (1972a,b), and Srikantan (1961). Note also that since
ri/(n—p') < 1, the upper bound can never be exact if p; = +1 for
some i ¥ j.

Calculation of the lower bound in (2.2.17) requires knowledge of the
py;s. In many designed experiments, these wiil have a simple structure
so that the lower bound can be calculated without difficulty. For
example, in a two-way table with one observation per cell there are only
three distinct residual correlations. Residual correlations for selected
models of 2* designs are given by Cook and Prescott (1981). In other
cases, the lower bound may be approximated further by replacing p;;in
B* and B~ by max.,,(p;) and min,_,(p;), respectively. Our
experience suggests that this will often be adequate.

EXAMPLE 2.2.3. ADAPTIVE SCORE DATA NO. 2. We have seen
previously that the upper bound on the p-value for the outlier test for
case 19 is 0.0425. While refining this value may be unnecessary from a
hypothesis testing point of view, it may be desirable to judge the
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accuracy of the upper bound when p-values are used to assess the
weight of evidence against the null hypothesis. This can be done using
the lower bound (2.2.17).

Direct application of this bound would require evaluation of about
420 probability statements. While it would be straightforward to write
a code to perform the required calculations, it will usually be sufficient
to employ the further approximation, so that the number of probability
statements that must be evaluated is reduced. A small number of
evaluations can be handled easily on many hand-held calculators.

Inspection of the residual correlations in Table 2.2.4 shows that all
correlations are in the interval [ —0.556, 0.202]. A first lower bound on
a~f* — B~ can be obtained by replacing each p;;in the expressions for
B~ and i by the lower and upper bounds, respectively. However, this
results in negative values for the lower bound on a—f* —f~ at
rig = 2.923, so a closer approximation is required.

A second inspection of the residual correlations reveals that one pair
has a correlation of —0.556, two other pairs have correlations of
—0.300, and of the remaining pairs 17 correlations lie in the interval
{0.002, 0.202] and 190 lie in [ — 0.221, —0.016]. A second lower bound
on a—f* — i~ can be obtained by using the four values {—0.556,
—0.300, —0.016, 0.202} in combination with their respective frequen-
cies {1.2.190,17} to evaluate B* and the four values {-0.556,
—0.300. —0.221,0.002} in combination with the same respective
frequencies to evaluate f~. This procedure, which requires the
evaluation of only eight probability statements, produces f* + i~
< 0.0016. In short, the true p-value corresponding to ryo = 2.823 is
between 0.0409 and 0.0425.

As further illustration, the lower bounds obtained by using this
procedure for « = 0.01, 0.05, and 0.1 are 0.00997, 0.0476, and 0.086,
respectively. Clearly, this procedure produces useful bounds in each
case. O

Multiple cases
As before, let t be an m-vector of case subscripts and let ¢, V, be as
defined previously. Multiple outlying cases can be modeled under a
shift model by

Y=XpS+Do+e¢ E(e)=0, Var(e)=c1 (2218

where ID is 1 x m with k-th column d;, and ¢ is an m-vector of unknown
parameters. The normal theory statistic 1 for testing ¢ = 0 is obtained



Table 2.2.4 Residual correlations for the adaptive score data

1 1000
2 -0.059 1.000
3 —~0.048 —0.008 1.000
4 —0.048 0.002 —0.071 1.000
5 —0.050 —~0.059 —0.048 —0.048 1.000
6 —0.054 —0.112 —0.030 —0.026 —0.054 1.000
7 —0.052 -0.091 —0.037 —0.034 —0.052 ~0.068 1.000
8 —0.048 —0.018 —0.063 —0.066 —0.048 —0.035 —-0.040 1.000
9 —0.048 0013 —0.075 —0.081 —0.048 —0.021 —0.032 -0.069 1.000
10 —0.054 —0.112 —0.030 —0.026 —0.054 —0.078 —0.068 —0.035 --0.021  1.000
11 —0.047 0.023 —0.079, ~0.086 —0.047 —0.016 —0.029 —0.073 —0.093 -0.016 1.000
12 —0.048 0.002 —0.071 —0.076 —0.048 —0.026 —0.034 —0.066 —0.081 —0.026 —0.086 1.000
13 —0.048 —0.008 —0.067 —0.071 —0.048 —0.030 —0.037 ~0.063 —0.075 —0.030 —0.079 —0.071  1.000
14 —~0.048 —0.018 —0.063 —0.066 —0.048 —0.035 —0.040 —0.060 —0.069 ~0.035 —0.073 ~0.066 —0.063 1.000
I5 —0.048 —0.018 —0.063 —0.066 —0.048 —0.035 —0.040 —0.060 —0.069 ~0.035 —0.073 ~0.066 ~0.063 -0.060 1.000
16 —0.048 —0.008 —0.067 —0.071 —0.048 —0.030 —0.037 —0.063 —-0.075 —0.030 —0.079 ~0.071 —0.067 —0.063 ~0.063 1.000
17 —0.049 —0.029 —0.059 —0.062 —0.049 —0.039 —0.043 —0.057 —0.064 —0.039 —0.066 —0.062 —0.059 —0.057 ~0.057 —0.059 1.000
18 —0.106 —0.556 0.084 0.123 —0.106 —0.300 —0.221 0.046 0.162 —0.300 0202 0.123 0084 0.046 0046 0084 0.008 1.000
19 —0.052 —0.080 —0.041 —0.039 —0.052 —0.063 —0.058 —0.043 —0.037 —0.063 —0.035 —0.039 —0.041 —0.043 —0.043 —0.041 —0.045 —0.183 1.000
20 —0.048 —0.018 ~0.063 —0.066 —0.048 —0.035 —0.040 ~0.060 —0.069 —0.035 —0.073 —0.066 —0.063 —0.060 —0.060 —0.063 —0.057 0.046 —0.043 1.000
21 ~0.048 ~0.008 —0.067 —~0.071 —0.048 —0.030 —0.037 ~0.063 —0.075 ~0.030 ~0.079 —0.071 —0.067 —0.063 —~0.063 —0.067 ~0.059 0.084 —0.041 —0.063 1.000
{ 2 3 4 5 6 7 8 9 10 11 12 3 14 15 16 17 18 19 20 2
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in analogy to the development leading to (2.2.15) (Gentleman and Wilk,
1975b; Cook and Weisberg, 1980),

oo (=Y te) (1~ p' —m)
T (= p)d = el (1= V) Ter)(m)

The null distribution of this statistic under normality is F(m,n—
p" —m). Critical values for the multiple case outlier test can be based on
the Bonferroni inequality, but these critical values are likely to be very
conservative.
The multiple case analogue of the internally Studentized residual,
since Var(e,) = a*(I-V,), is
. el(I=V) e

AL L. (2.2.19)
g

The relationship between tfand rlis given by

(np m)

mn—~p —rd)

Computations. Computing r{ can be simplified by the use of
appropriate matrix factorization. Gentleman (1980), for example, has
used a Choleski factorization of I1—V,: There is an m x m upper
triangular matrix R such that RTR = I — V| (for necessary software, see
Dongarra et al, 1979). Given this factorization, the Studentized
residual can be computed in two steps. First, solve for a in the
triangular system R"a = e,. Then, compute r{= a"a/3?. This method
has the advantage that if 1* is the subset consisting of the first m* <m
cases included in 1, then rf = ala, /6% where a, is the first m* elements
of a.

Alternatively, let V, = TAI'T be the spectral decomposition of Vi,
with the columns of " (eigenvectors) denoted by y,, ¥5, ..., ¥, and
the diagonals of A denoted by A, < ... < 4,. Following Cook and
Weisberg {1980),

tf=

(2.2.20)

71 eI)2

Ms

1
=_2

(2.2.21)

provided that 4, < 1. If 4, = 1, deletion of the cases in 1 results in a
rank deficit model and a test to see if 1is an outlying set is not possible
using the mean shift outlier model.

Finding the set 1 of m cases most likely to be an outlying set requires
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. . n . .
finding 1to maximize r} over all ( possible subsets of size m. Even
m

for modest n, if m is bigger than 2 or 3, this can be very expensive. This
problem can be approached in at least two ways. First, some linear
models have a special structure for V {and thus also for the V) and this
structure can be exploited. Gentleman (1980) has used this idea to
obtain an algorithm for outliers in an r x ¢ table with one observation
per cell. She finds, for example, if m = 2, ¥, can only be one of three
possible 2 x 2 matrices, while for m = 5, V, will be one of 354 possible
5 x 5 matrices. The factorization of V,or I — V| need only be computed
once, and then r#can be calculated for all i with a common value for V.
Alternatively, sequential outlier detection methods can be used. These
methods have the disadvantage of failing to account for the signs of the
residuals and their relative position in the observation space; the m
cases with the largest residuals need not be the best candidates for an m-
case outlier. Furthermore, residuals of opposite sign or on opposite
sides of the observation space can mask each other so none appear as
outliers if considered one at a time. Sequential outlier methods have a
long history, dating at least to Pearson and Sekar (1936); see also
Grubbs (1950) and Dixon (1950). Mickey et al. (1967) provide a
modification of the sequential methods based on fitting models using
stepwise regression methods that add dummy variables to delete
outliers. The Furnival and Wilson (1974) algorithm can be used to
perform the same function.

EXAMPLE 2.24. ADAPTIVE SCORE DATA NO. 3  The eight pairs
of cases with largest rf or t# are listed in Table 2.2.5. All these pairs

Table 2.2.5 Eight largest r} for the adaptive

score data :

1 rf t?
(3, 19) 9.788 9.032
(13, 19) 9.788 9.032
(11, 19) 9.287 8.127
(14, 19) 9:268 8.094
(5,19) 8.944 7.561
(20, 19) 8.877 7454
(17, 19) 8.844 7.402

(10, 19) 8.624 7.066
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include case 19;in fact, the subsets with the 20 largest rfall include case
19. However, since the critical value for the m = 2 outlier test at level
0.05 based on the Bonferroni bound is 14.18, none of the pairs would be
declared as an outlying pair by this conservative test. Clearly little is
gained here by considering cases in pairs. Case 19 is found to be an
outlier by itself, and we should not be surprised to find that it remains
an outlier when considered with other cases. In problems where the
cases have a natural relationship, perhaps in space or in time, pairs of
cases that include individual outliers may well be of interest. This is not
so in this example. O

Other outlier models

The mean shift outlier model is not the only plausible model for
outliers. As might be expected, alternative formulations can lead to
different procedures. For example, Cook, Holschuh, and Weisberg
(1982) consider a variance-shift model in which the homoscedastic
model (2.1.1) holds for all but one unknown case with variance
wo?, w > 1. Assuming normality and maximum likelihood estimation
for (w, B; 0%), the case selected as the most likely outlier need not be the
case with largest ¢; or r;, and thus at least the maximum likelihood
procedure based on this model is not equivalent to the mean-shift
model. However, if the case with the largest Studentized residual r; also
has the largest ordinary residual e, then that case will be identified as
the most likely outlier under both the mean and variance shift models.

Another outlier mode!l assumes that data is sampled from a mixture
g(x) = nfi(x}+ (1 — n)f5 (x), with mixing parameter n. This formu-
lation can include both location and scale shift models by appropriate
choice of f; and f,. Aitkin and Wilson (1980) consider maximum
likelihood estimation of 7 and the parameters of f; and f, assuming
that the densities are normal. Marks and Rao (1979) present a similar
example with 7 assumed known. Since for this problem the likelihood
function is often multimodal, the solution obtained, necessarily by an
iterative method, will be sensitive to choice of starting values. Such
mixture models have also been considered in a Bayesian framework
(Box and Tiao. 1968; Box, 1980).

All of these methods differ from the outlier procedure based on the
maximum Studentized residual in the philosophy of handling outliers
since they are designed to accommodate outliers in the process of
making inferences about the other parameters. Our approach is to
identify outliers for further study. The action to be taken as a result of

o
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finding an outlier, such as case deletion or downweighting, will depend
on the context of the problem at hand. This approach is more
consistent with the overall goal of identifying interesting cases.

The outlier problem has recently received more detailed treatment by
Barnett and Lewis (1978) and Hawkins (1980).

2.2.3 PREDICTED RESIDUALS

The ordinary and Studentized residuals are based on a fit to all the data.
In contrast, the i-th predicted residual e, is based on a fit to the data
with the i-th case excluded. Let f denote the least squares estimate of
based on the full data and let f;, be the corresponding estimate with the
i-th case excluded. Then, the i-th predicted residual is

ey =yi—x By i=1,2...,n (2.2.22)

Each e, has several interpretations. First, one may think of it as a
prediction error, since the data on the i-th case is not used in obtaining
its fitted value. Anderson, Allen, and Cady (1972) and Allen (1974) use
PRESS = Xe}, (the predicted residual sum of squares) as a criterion for
model selection, better models corresponding to relatively small values
of PRESS. Much the same motivation, except from a Bayesian-
predictivist point of view, is provided by Lee and Geisser (1972, 1975).
Stone (1974) and Mosteller and Tukey (1977) discuss the related ideas
of cross validation in which the data are split into two or more subsets,
and parameters estimated on one subset are used to obtain fitted values
for the other subsets to validate the model. A limit of this process, which
gives rise to e, is obtained by dividing the data into n subsets, each
consisting of a single case.

A relationship between e and e¢; is easily obtained using the
formulae in Appendix A.2,

e =i~ xiTB(i)
BT 0.5 S
=Yi—X; <ﬁ 1— v
=& (2.2.23)
1—v

which is identical to the estimate of ¢(2.2.14) under the mean shift

model. Deleting case i and predicting at x; is therefore equivalent to
adding a dummy variable d; to the mode! and estimating a coefficient.




34 RESIDUALS AND INFLUENCE IN REGRESSION

Moreover, the i-th predicted residual divided by the least squares
estimate of the standard error of prediction based on the reduced data
is equal to the i-th externally Studentized residual,
€y
t; = G+ xT (XX, ) 7 ' (2.2.24)
where X, is obtained from X by deleting the i-th row x{.

It is clear that the e, are normally distributed (if the ¢; are normally
distributed) with mean zero and variance 6% /(1 — v;;), and have the same
correlation structure as the e;. Use of the predicted residuals in place of
the ordinary residuals in case analysis will tend to emphasize cases with
large v; while use of e; tends to emphasize cases with small v;;. Using
PRESS as a criterion for model selection will result in preference for
models that fit relatively well at remote rows of X. To correct for this,
Studentized versions of the predicted residuals and of PRESS can be
suggested. Not unexpectedly, these will get us back to r; and ¢;:

€y

€
5 =4 2.2.26
Gl (-0 (2220

Alternative versions of PRESS may be defined as Zr? or Zt2 in the same
spirit as the weighted jackknife suggested by Hinkley (1977). See
Geisser and Eddy (1979) and Picard (1981) for other uses of these
residuals in model selection.

2,24 UNCORRELATED RESIDUALS

While the Studentized residuals do correct the residuals for equal
variance, the correlation structure of the residuals is not changed.
Clearly. e can be transformed to have a different correlation structure.
Since the distribution of e is singular, the obvious goal of transforming
so that the elements of the resulting vector are uncorrelated can be met
only if we are satisfied with a lower-dimensional vector. This, in turn,
has the serious drawback that the identification of residuals with cases
becomes blurred, and interpretation of these transformed residuals as
case statistics is generally not possible. However, for some special
purposes, such as formal tests for normality, change points, or
nonconstant variance, transformation to uncorrelated residuals has a
certain intuitive appeal.
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Suppose that an n x (n — p') matrix C defines a linear transformation
€ = C"Y. We will call & a vector of linear unbiased scalar (or LUS)
residuals if

E(€)=0 (unbiased condition) (2.2.27)
Var (&) = g1 (scalar covariance matrix condition)(2.2.28)

These conditions require only that C'X = 0 and C'C = 1. The two.
common methods of choosing C both require that p' cases be
nominated to have zero residuals. The choice of the nominated cases
may be arbitrary, so that the definition of the uncorrelated residuals is
not unique.

Suppose we partition e = (e], e]), X" = (X[, X]), C"=(CI,C]
such that the subscript 1 corresponds to the p’ cases nominated to have
zero residuals, and subscript 2 corresponds to the remaining n—p’
cases. We assume X, to be nonsingular. It follows from (2.2.27) and
Appendix A.2 that C, must satisfy

I=CI[I-X,(X"X)"'XI]"'C, (2.2.29)

C, can be chosen to be any factorization of the matrix in square
brackets in (2.2.29). C, is then determined uniquely from C} =
-CIX, XL

BLUS residuals

Theil (1965) added the requirement of best, to get BLUS residuals, by
requiring € to minimize E{ (€ —¢,)7(& —e,)]. Theil (1968) showed that
this is equivalent to using a spectral decomposition to find C,.
Computational methods are given by Theil (1968) and Farebrother
(1976a).

Using the BLUS residuals, Theil proposed a competitor to the
Durbin-Watson (1950, 1951) test for serial correlation; critical values
of Theil’s test are given by Koerts and Abrahamse (1968, 1969). These
two tests have been compared in several studies (Abrahamse and
Koerts, 1969; Smith, 1976, Durbin and Watson, 1971) and are generally
comparable in power, although the Durbin-Watson statistic has
superior theoretical properties. Variants of Theil’s method are given by
Durbin (1970), Abrahamse and Louter (1971), Abrahamse and Koerts
(1971), and Sims (1975).

Huang and Bloch (1974) used € in place of e in testing for normality.
They point out that the independence of the BLUS residuals holds if
and only if the errors are normally distributed, and thus, under a non-




36 RESIDUALS AND INFLUENCE IN REGRESSION

normal distribution for &, the apparent advantages of using the BLUS
residuals disappears. Furthermore, they point out that the indepen-
dence of the BLUS residuals is lost if heteroscedasticity is present.
Thus, it should be no surprise that e appears to be more useful in
normality tests than €. Hedayat, Raktoe, and Telwar {1977) use the
BLUS residuals in a test for nonconstant variance.

Recursive residuals

To construct the recursive residuals (Brown, Durbin, and Evans, 1975).
it is necessary to first order the cases, typically by time. With the cases
ordered, the k-th recursive residual &, is defined as

&=0  k=12...,p

FA }’k"xfﬁk—x
* \/[1+XI(XI-1X;‘-1)”‘X;‘]’

where f,_, and X, _, are computed using the first k— 1 cases only.
The term recursive is applied because f, can be computed from f, _, by
use of an updating formula. Under (2.1.1) and normality, it is
straightforward to show that the ¢, for k > p’ are independent and
N (0, 6%). Equivalent versionss of (2.2.30) have been proposed as early as
Pizetti (1891). Algorithms for their construction are given by Brown et
al. and Farebrother (1976b).

The recursive residuals, which correspond to using a Choleski
factorization to choose C, (Fisk, 1975), are appropriate for examining
assumptions that depend on the order of the cases. Brown et al.
(1975) consider two tests for a change point in the parameter vector fas
a function of k via cumulative sums of recursive residuals. Phillips and
Harvey (1974) use the recursive residuals in developing a test for serial
correlation. Tests for heteroscedasticity using recursive residuals are
discussed by Hedayat and Robson (1970) and Harvey and Phillips
(1974).

k=p'+1,...,n(2230)

2.3 Plotting methods

Residuals can be used in a variety of graphical and nongraphical
summaries to identify inappropriate assumptions. Generally, a
number of different plots will be required to extract the available
information.
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2.3.1 STANDARD RESIDUAL PLOTS

Standard residual plots are those in which the r; or ¢; are plotted against
fitted values y; or other functions of X that are approximately
orthogonal to r; (exactly orthogonal to the ¢;). Anscombe (1973) gives
an interesting discussion of the motivation for these graphical pro-
cedures. The plots are commonly used to diagnose nonlinearity and
nonconstant error variance. Patterns, such as those in Fig. 2.3.1(b)-(d).
are indicative of these problems, since under a correctly specified model
the plots will appear haphazard, as in Fig. 2.3.1(a).
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Figure 2.3.1 Residual plots. (a) Null plot. (b) Nonconstant variance.
(c) Nonlinearity. (d) Nonlinearity. Source: Weisberg (1980a)

Historically, the ordinary residuals have been used most frequently
in standard residual plots. Recently, however, a number of authors,
including Andrews and Pregibon (1978), have indicated a preference
for the Studentized residuals. The patterns in plots using the r; will not
be complicated by the nonconstant residual variances and will
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generally be more revealing than those using e;. It is possible, for
example, for a plot using the ¢, to show a pattern similar to that in
Fig. 2.3.1(b) simply because the v; are not constant.

In simple regression, the plot of residuals against y; provides the
relevant information about the fit of the model that is available without
use of extra information such as time or spatial ordering of the cases.
In multiple regression, the proper choice of horizontal axis for this
plot is more problematic, as the two-dimensional plot is used to
represent a model in a p’-dimensional space. In essence, a
vector in p'-dimensional space is chosen and the data points are
projected onto that single vector. For example, in the fitted model y = 3
+ 2x; +4x,, a plot of r; against x, will plot all points with the same
value of x, (regardless of x,)at the same position of the abscissa, while
a plot of r; versus y, treats all cases with the same value of 3 + 2x, + 4x,
as equivalent. The first of these two plots may be used to find model
inadequacies that are a function of x, alone, such as the need to add x?
to a model, or nonconstant variances of the form var (¢;) = x,;02, i
=1,2,...,n, but will be inadequate for detecting an interaction
between x, and x,. Similarly, the plot of the residuals versus y; will be
useful in finding model inadequacies in the direction of the fitted values,
such as a variance pattern that is a monotonic function of the response.

For any n-vector Z, the vector VZ is in the column space of X. The
equivalence class of points plotted at the same place on the abscissa
consists of a (p—l)-dimensional flat. The plot of residuals
against VZ will be most useful if the model acts in the same way
on all points in the equivalence class. The common choices for the
abscissa are VY = Y, and, if X; is the j-th column of X, VX, = X,. Less
common, but equally useful, are plots against principal component
score vectors, which, except for a scale factor, are the columns of
the n x p matrix of left singular vectors in the singular value de-
composition of Z. The use of these corresponds to plotting in the
direction of the eigenvectors of 27T &,

EXAMPLE 2.3.1. cLouDSEEDINGNO. 3. Figure2.3.2isa plotofr;
versus y; for the cloud seeding data. This plot is clearly indicative of
some problem, since cases 1 and 15 are well separated from the others,
predicted rainfall is negative for two cases, and the general pattern of
the residuals appears to decrease as j; increases. It may show the need to
transform Y to correct possible nonlinearity and perhaps to eliminate
negative predicted rainfalls, or it may suggest other remedies such as
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Figure 2.3.2 r; versus fitted values, cloud seeding data

transforming predictors, or giving special attention to the cases that are
separated from the rest of the data.

Figure 2.3.3, a plot of r; versus § — Ne, suggests that the variance is a
decreasing function of S— Ne since most of the large residuals
correspond to small values of § — Ne, In combination, the two plots
clearly suggest that the original model is inadequate. but the appropri-
ate remedial action is not clear. [J

Plots of residuals against VZ are often difficult to interpret because
informative patterns can be masked by the general scatter of points. As
an aid to using these plots for relatively large data sets, Cleveland and
Kleiner (1975) suggest superimposing robust reference lines. Let the
values plotted on the abscissa be denoted by a,, k = 1,2, ..., n with
the a, ordered from the smallest to largest, and let a;. . . . . g be the
[ values of a with the smallest absolute deviation from a,. Let b,
j=1,..., 1 be the corresponding values of the ordinate (usually the
residuals or Studentized residuals). For each k, robust estimates of the
0.25, 0.50, and 0.75 quantiles of b, j = 1, .. ..l are plotted against a
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Figure 2.3.3 r; versus S — Ne, cloud seeding data

robust estimate of the median of the a,; (computer code is given by
Gentleman, 1978; see also Cleveland, 1981). The window length ! must
be chosen to balance resolution and stability, and is often chosen by
trial and error.

EXAMPLE 2.3.2. OLD FAITHFUL GEYSER. A geyser is a hot spring
that occasionally becomes unstable and erupts hot water and steam
into the air. One particular geyser, Old Faithful in Yellowstone
National Park, is particularly well known and is one of the major
tourist attractions in the United States. It erupts at an interval of about
40-100 min, with eruptions lasting from 1-6 min, to heights of near
35 m. National Park personnel predict eruption times based on the
length of the last eruption. Their predictions are based on the empirical
linear equation (minutes to the next eruption) = 30 + 10 x (duration of
current eruption in minutes). Because the physical mechanisms that
govern eruptions of the geyser are unknown, the prediction problem is
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one of statistical modeling based on observed values of intervals and
durations only.

Figure 234 contains a scatter plot of y=interval versus
x = duration for 272 eruptions of Old Faithful in October, 1980. These
data were provided by Roderick A. Hutchinson, the Yellowstone Park
geologist. Following standard park procedure, intervals are measured
from the beginning of one eruption to the beginning of the next. The
figure indicates that a simple regression model is at least plausible for
this prediction problem, although the clustering of points into two
groups is clearly evident. Figure 2.3.5 gives a plot of r; versus x;. While
the clustering is clear, there is no obvious problem. However, if the
robust reference lines are superimposed, as in Fig. 2.3.6 (with [ = 30),
slight curvature in the plot becomes apparent: extreme durations lead,
on the average, to predictions that are too long. With the reference lines
superimposed we recognize the possible need for a transformation of
this data. O
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Figure 2.3.4 y (interval to next eruption in minutes) versus x (duration of
current eruption to the nearest 0.1 min) for 272 eruptions of Old Faithful
Geyser, October, 1980. Source: Roderick A. Hutchinson, Yellowstone National
Park
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Figure 2.3.6 Enhanced residual plot, Old Faithful data, window width = 30
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EXAMPLE 2.3.3. RESIDUALS IN PLACE. When the cases in a data
set have identifiable physical locations, useful information about a
model may be obtained by a semigraphical display obtained by plotting
the residuals in their physical locations. An example of this is given by
Daniel (1976) who discusses a classic 2° experiment on beans reported
by Yates (1937). The experiment was carried out in blocks of 8, with two
3-factor and one 4-factor interaction confounded with blocks. Fittinga
model including one block effect, four main effects and one 2-factor
interaction, Daniel obtained residuals, and plotted them in their
locations in the field (for a balanced design, all the v; are equal, so a plot
of the residuals is equivalent to a plot of the Studentized residuals), as
reproduced in Fig. 2.3.7. This plot indicates a region of apparent high
fertility that extends into all four blocks, and is therefore not removed
by the blocking effects. Daniel reanalyzed the data, using only blocks |
and 111 and found that the estimated residual variation is reduced by a
factor of 3.0

Il
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\ |
-2 + -7\ 9 s -6 -12 -3
\
| \
I N
J ~—~
-2 -2 -3/ 4 +3 «10 ) -2 -8
4 L7
P //'
-1 -10 ( +3 v7 +g Y -2 ) +3
14 { v

Figure 2.3.7 Residuals in place. Source: Daniel (1976). reprinted with
permission

When a constant term is not included in a model, plots of residuals
versus VZ are complicated by the fact that the simple regression of e on
VZ is nonzero. If ¢, y, and X are, respectively, the average of the
residuals, the ys, and the vector of averages of the xs, then é = y —X'f
must be zero only if the constant is in the model. The slope of the
regression of e on VZ is

. 1"VZ
“ZVNZ-(1"VZ)n

(23.1)

Thus, even a null plot will exhibit systematic features, especially if e is
far from zero.
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2.3.2 ADDED VARIABLE PLOTS

For models with a constant, the standard plot of e versus VZ exploits
the orthogonality (or near orthogonality if the r; are used) between
plotted variables. Systematic nonlinear features of such plots suggest
model inadequacies, and may be useful when specific alternative
models are not available. However, they do suffer from the visual
difficulty that is often apparent in attempting to detect systematic
features of a swarm of points. This difficulty can be overcome by using
plots in which a systematic linear feature indicates an incorrect model.
To obtain these plots, we must choose a specific alternative for the
fitted model. From the alternative, a plot, and usually a test, can be
derived that compares the two models. These plots are often easy to
interpret and can be very useful.

Consider first an alternative model that differs from (2.1.1) by the
inclusion of a new explanatory variable Z. We hypothesize as an
alternative to (2.1.1) the model

Y=XB+0dZ+¢ (23.2)

An appropriate test comparing (2.3.2) to (2.1.1) is the F-test for ¢ = 0.
An equivalent plot is derived as follows. Defining as usual
V = X(X"X)" X7, multiply both sides of (2.3.2) by I-V, to get

A-V)Y = I-V)XB+¢(-V)Z+(A=V)e  (233)

The left side of (2.3.3) is just the residual vector e for the model (2.1.1).
The first term on the right side is exactly zero. Taking expectations over
e in (2.3.3) gives
E(€)=¢(I~-V)Z (2.34)
which suggests that a plot of e versus (I — V)Z will be linear, through
the origin. We call the plot of e versus (I — V)Z an added variable plot,
since it is designed to measure the effect of adding a variable to a model.
These plots have been discussed or illustrated by Draper and Smith
(1966, 1981), Anscombe (1967), Mosteller and Tukey (1977), Belsley,
Kuh and Welsch (1980), and Weisberg (1980a).
In the regression of e on (I—-V)Z, the estimated slope is
: ZTI-V)Y
o= 2'(1-V)Z
and the intercept is 0 if there is a constant in the model. .
By the conditions given in Kruskal (1968), the correct generalized least
squares estimate obtained using the covariance matrix implied in (2.3.3)

(2.3.5)
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is identical to the ordinary least squares estimate given by (2.3.5). Using
the results near (2.1.5), it can be shown that ¢ is identical to the least
squares estimate of ¢ obtained from the regression of Y on both X and
Z. From this it follows immediately that the residuals in the added
variable plot are the same as the resnduals for the regression of Y on
both X and Z.

Added variable plots are very useful for studying the role of a
variable Z if it enters linearly into a model. The general scatter of the
points gives an overall impression of the strength of the relationship.
Individual points that are well separated from the rest of the data give
heuristic information about the effects of outlying points on individual
coefficients, and may suggest cases for special study.

The added variable Z can represent either a constructed variable that
is defined by a specific alternative model, as will be discussed later in this
chapter, or one of the variables in the model. If U, is the projection
matrix on all the columns of X except X,, then the k added variable
plots of (I — U, )Y versus (I — U, )X, have been advocated by Belsley et
al. (1980), who call them partial leverage regression plots.

Non-null behavior

When the appropriate mode! for the relationship between Y and (X, Z)
is more complicated than model (2.3.2), the usefulness of the added
variable plot depends on V. To see this, consider the model

Y=XB+¢dZW+¢ (2.3.6)
where ZW has i-th element
A A0
W o % 237
2 {log @ A=0 (237)

Power transformations are used in several places in this chapter, and
provide a rich and interesting class of nonlinear functions. Using a
linear Taylor series expansion about A = 1, z\¥ ~ z, 4+ (1 — 1)z;l0g (z;),
so the model (2.3.6) is approximately

Y=XB+PZ+p(A~1)L+e (2.3.8)

where L is an n-vector with i-th element z; log (z;). Multiplying by
(I - V) and taking expectations,

E(€=¢(I-V)Z+¢(A—-1)1~-V)L (2.3.9)
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Thus the regression of e on (I — V)Z may have any shape if V is chosen
appropriately and ¢ # 0, A # 1. Similar results are obtained if Y is a
nonlinear function of X,

Computations. The added variable plots for each X, are potentially
expensive to compute since for each plot two sets of residuals must be
computed. However, Mosteller and Tukey (1977) and Velleman and
Welsch (1981) outline a method to obtain these plots in a relatively
simple way. For the variable X, Equation (2.3.5) implies that

5= XT(-U,)Y
“TXTI-U X,

where A, = (I-U,)X,/X[(I-U,)X, is the k-th column of an n x
p’ matrix A. In matrix form, (2.3.10) is simply f= A"Y. But,
since B =(X"X)"'X"Y, it follows that AT = (XTX) !XT, the
Moore-Penrose generalized inverse of X. Except for a scale factor,
(I=U,)X, is the k-th column of A: If a;; is the (i, j)-th element of A,
the i-th element of (I1—U,)X, is a,/Z,af. Given (I-U,)X, and
e = (1 -V)Y, the vector (I1-U,)Y is computed from the identity

(I=UY = e+ (1-U,)X,B, (2.3.11)

which is proved by writing V as a sum of projections, V = U, + T,
where T, is the orthogonal projection on (I—U,)X,. Then (I-U,)
Y = (1-V)Y+T,Y, which upon simplifying gives (2.3.11).

As long as sufficient computer storage is available, the
Moore~Penrose inverse can be computed to obtain added variable
plots. However, if X is illconditioned, the Moore-Penrose inverse can
be numerically unstable. G. W. Stewart (personal communication,
1981) suggests that a stable algorithm can be based on the QR
decomposition (Stewart, 1973). If X, is the last column of X, Q,,. is the
corresponding column of Q,and r,. . is the indicated element of R, then
I=UX, =r1,,Q,. I-Uy)X, can be computed for other columns
by using routines SQRDC, SQRSL, and SCHEX in LINPACK
(Dongarra et al., 1979).

= AlY, k=1,2,...,p" (23.10)

EXAMPLE 2.3.4. JET FIGHTERS No. 1. Stanley and Miller, in a
1979 RAND Corporation technical report, have attempted to build a
descriptive model of the role of various design and performance factors
in modeling technological innovation in jet fighter aircraft. Using data
on American jet fighters built since 1940, they used the date of the first



DIAGNOSTIC METHODS USING RESIDUALS 47

flight as a stand-in for a measure of technology: presumably. the level of
technology is increasing with time. In some of their work. they
considered the following variables:

FFD = first flight date, in months after January 1940:

SPR = specific power, proportional to power per unit weight;
RGF = flight range factor;

PLF = payload as a fraction of gross weight of aircraft:

SLF = sustained load factor; '

CAR = 1 if aircraft can land on a carrier; 0 otherwise.

Exact definitions of all these quantities can be found in Stanley and
Miller (1979). Between 1940 and 1979, 39 American jet fighters were
flown. Of these, 14 aircraft were modifications of earlier aircraft, and
for three others, the F-14A, F-15A, and F-16A, data are not available.
Data on the 22 remaining planes are given in Table 2.3.1. Following
Stanley and Miller we will fit models with FFD (or transformations of
it) as a linear function of the other variables.

Table 2.3.1 Jet fighter data. Source: Stanley and Miller (1979)

Case ID FFD SPR RGF PLF SLF CAR
1 FH-1 82 1468 3300 0.166 0.10 0
2 Fl-1 80 1.605 3.640 0.154 0.10 0
3 F-86A 10t 2,168 4870 0.177 290 1
4 FI9F-2 107 2054 4720 0275 110 0
5 F-94A 115 2467 4110 0298 100 ]
6 F3D-1 122 1294 3750 0.150 090 0
7 F-89A 127 2183 3970 0000 240 1
8 XFI10F-1 137 2426 4650 0.117 180 0
9 F9F-6 147 2607 3840 0.155 230 0

10 F-100A 166 4567 4920 0.138 320 1
1t F4D-1 174 4588 3.820 0.249 350 0
12 F11F-1 175 3618 4320 0.143 280 0
13 F-101A 177 5855 4530 0172 250 1
14 F3H-2 184 2898 4.480 0.178 3.00 0
15 F-102A 187 3.880 5390 0401 300 1
16 F-8A 189 0455 4990 0008 264 0
17 F-104A 194 8088 4500 0251 270 1
18 F-105B 197 6502 5200 0366 2.90 1
19 YF-107A 201 6081 5650 0.106 290 1
20 F-106A 204 7.105 5400 0.089 3.20 1
21 F-4B 255 8548 4200 0222 290 0
22 F-111A 328 6321 6450 0187 200 1
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An issue in building a2 model for these data is the choice of appro-
priate scaling for the response and for the explanatory variables. The
use of FFD as the response suggests the unlikely assumption that
technological innovation is constant over time. It is perhaps more
reasonable to transform FFD so that the rate of change decreases with
time, since we are measuring innovation in one general technology. A
possible alternative scaling is the logarithm of FFD as a response, but
the value of log {FFD) will depend on the choice of origin for FFD, If
FFD is measured in months after January 1, 1900, then log (FFD) for
the range of first flight dates in the data would represent rates of change-
that are nearly constant, while using January 1, 1940 as an origin will
allow greater variation. Following Miller and Stanley, we tentatively
adopt this as an origin both to allow for greater variation in the rate of
change and because 1940 represents a reasonable origin for the jet age.
In this example, we will define LFFD = log (FFD), and use natural
logarithms. We return to the problem of scaling FFD later.

The regression of LFFD on the five predictors is summarized in
Table 2.3.2. Three of the five variables are associated with large
t-values, and the coefficients for CAR and PLF are negative, indicating
that the ability to Jand on carriers, and the payload size adjusted for the
other variables, are negatively related to LFFD. The aircraft with the
largest v;; is the F-111A with v,, ,, = 0.496, although several of the v;;
are of comparable magnitude. The F-111A also has the largest
Studentized residual, r,, = 2.337, with corresponding t,, = 2.77.

The added variable plots for SPR, RGF, and SLF are given as
Figs. 2.3.8-2.3.10. The apparent linear trends in the first two of these

Table 2.3.2 Fitted models for jet fighter data

Full data Case 22 (F-111A) deleted
Variable Estimate t-value Estimate t-value
Intercept 372 13.96 4.12 15.45
SPR 0.085 394 0.075 401
RGF 0.22 3.55 0.10 1.56
PLF —0.48 —-1.02 ~0.45 —1.15
SLF 0.084 1.82 0.14 3.19
CAR -0.23 —2.66 -0.20 - 2.66

df = 16; 6 = 0.026; R* = 0.83 df = 15; 6% = 0019; R* = 0.85
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figures suggest the usefulness of these variables as predictors, although
in each plot our attention is drawn to one case, the F-86A for SPR and
the F-111A for RGF. These cases may have an 1mportant role in
determining the corresponding coefficients.

Figure 2.3.10, the added variable plot for SLF, shows only a slight
linear trend, as reflected in the corresponding t5, = 1.82in Table 2.3.2,
However, the F-86A and F-111A are quite far from the trend line and
may indicate that the presence of these two aircraft actually suppresses
the usefulness of SLF.0)

2.3.3  PARTIAL RESIDUAL PLOTS

Partial residual plots have been suggested as computationally con-
venient substitutes for the added variable plots. Recall that an added
variable plot is a plot of (I-U,)Y = e+ (I-U,)X,f, versus
{1 — U, )X,. The first component e of the ordinate is orthogonal to the
abscissa and represents scatter. The second component represents the
systematic part of an added variable plot.

rorument
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Computationally, the most difficult part of an added variable plot is
obtaining U,. If this matrix is replaced by zero the result is a partial
residual plot of e+ X, f, versus X,. Ezekiel (1924) used such a plot to
diagnose the need to transform an explanatory variable. As with the
added variable plot, the two terms that make up the ordinate are
orthogonal, the first term representing scatter and the second giving the
systemmatic component. Again, the slope of the regression in this plot
is fi,, and the residuals from the regression line are given by the
elements of e. This plot was called a partial residual plot by Larsen and
McCleary (1972), and a residual plus component plot by Wood (1973).

Although both the added variable plot and the partial residual plot
have the same slope and the same residuals, their appearance can be
markedly different. In the added variable plot, for example, the
estimated variance of the slope is

nop\ . 1 ;
("—2>6 Z(xik“fu)z(l—R,f) (2.3.12)

where R} is the square of the multiple correlation between X, and X,,
the matrix containing the other Xs. Apart from the multiplier
{(n—p')/(n—2), the apparent estimated variance of B, in the added
variable plot is the same as the estimated variance of 3, from the full
regression. In the partial residual plot the apparent variance of f3, is

n—p'\ ., 1
2.3.13
(""2)0 2(xXu—%,)? ( !

which ignores any effect due to fitting the other variables. If R{ is large,
then (2.3.13) can be much smaller than (2.3.12), and the partial
residual plot will present an incorrect image of the strength of the
relationship between Y and X, (conditional on the other X's). In fact, it
can be seen that the partial residual plot is a hybrid, reflecting the
systematic trend of X, adjusted for X,, but the scatter of X,
ignoring X,.

EXAMPLE 23.5. JET FIGHTERS NO. 2. The partial residual
plots corresponding to the added variable plots for SPR, RGF, and
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Q0.6

2
SLF
Figure 2.3.13 Partial residual plot for SLF, jet fighter data

SLF given previously are shown as Figs. 2.3.11-2.3.13. The two plots
for SPR (Figs. 2.3.8 and 2.3.11) are not too different, although the
overall impression of the partial residual plot is of a stronger
relationship than is shown in Fig. 2.3.8, and the F-86A is no longer an
extreme point. The two plots for RGF are very similar, and would lead
to the same conclusions. The two plots for SLF, however, are quite
different. In particular neither the F-111A nor the F-86A stand apart
from the rest of the data in Fig. 2.3.13, and the general swarm of points
is shifted right.(J

234 PROBABILITY PLOTS

Let y,, ya, . . ., y, denote n independent, univariate observations and
let F denote a cdf from a location/scale invariant family with mean u
and variance ¢®. Under the hypothesis that the ;s are an identically
distributed sample from F, the regression of the vector of observed
order statistics u' = (u;, u,, . . ., u,), 4, = max (y,), on the vector of
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expected order statistics from the cdf F, of the standardized variate
(y—u)/a is linear {Lloyd, 1952),

E(u)=pul+oca (2.3.14)

where the i-th element of the n-vector a is a; = E({(u;— 1)/). This
implies that a plot of u versus a can be used to check the appropriate-
ness of the hypothesized cdf F, with a substantially nonlinear plot
indicating an incorrect choice. Such plots are called probability plots
and have been in use since at least 1934 (Bliss, 1934).

When the hypothesized distribution does not correspond to the
actual sampling distribution, the shape of the probability plot depends
on the ‘difference’ between the sampling distribution and the hypo-
thesized distribution. If the actual sampling distribution has relatively
short tails, then the probability plot will tend to be S-shaped /" A long
tailed sampling distribution leads to,~shaped plots. Relatively skewed
sampling distributions result in J-shaped/or inverted J-shaped/”
plots, depending on the direction of the skew.

Probability plots can also be used as devices to find a few elements of a
sample that differ from the others. For example, Daniel (1959; see also
Zahn, 1975a,b) suggested using probability plots to assess the signifi-
cance of effects in unreplicated factorial designs with all factors at two
levels. If the absolute values of the usual contrasts are plotted against
half-normal order statistics then the large or significant contrasts will
be plotted near the upper right corner of the plot, while the smaller or
nonsignificant contrasts will more or less fall on a line; see Zahn (1975a)
for details. The identical method can be used to detect outliers in
general: outlying elements of a sample will tend to fall toward the
extremes of the plot, while most of the points will fall on a line that does
not point toward the apparent outliers.

In general judging the adequacy of a probability plot requires
experience. For the normal distribution, Daniel and Wood (1980) and
Daniel (1976) provide many pages of training plots that may help the
analyst gain the necessary experience.

The construction of probability plots may be hindered by the
unavailability of exact values for expected order statistics. However,
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adequate approximations can usually be constructed from F !, For the
standard normal cdf ®, for example, a, = ® ! ( (i = 3/8)/(n + 1/4))
provides an excellent approximation for n>5 (Blom, 1958).
Approximations for the half-normal distribution are given by Sparks
{1970), and for the gamma distribution by Roy, Gnanadesikan and
Srivastava (1971, pp. 286-98). Wilk and Gnanadesikan (1968) coined
the term Q—-Q plot (for quantile versus quantile) for these probability
plots to reflect the practical manner in which they are constructed.
In some problems, it may be useful to have a summary statistic for a
probability plot. An intuitively reasonable summary for symmetric
families is the squared correlation between the plotted quantities,

. (u'ay
W= @y oy

Small values of W' would give evidence against the assumed
distribution.

The statistic W’ was suggested as a test for normality by Shapiro and
Francia (1972, see also Weisberg and Bingham, 1975); a similar statistic
was suggested by Filliben (1975). W’ was originally suggested as an
approximation to the Shapiro and Wilk (1965) W statistic,

(@a™Q" 'u)?/(a"Q " %a)
Z (; — a)?

where Q is the variance—covariance matrix of the order statistics from
the standard distribution (€ is given for n < 50 for the normal by
Tietjen, Kahaner and Beckman, 1977). Weisberg (1974) pointed out
that for the normal distribution W and W’ are essentially identical.
Both statistics have reasonable power against a wide class of alternat-
ives. Critical values for the normal distribution are given by Shapiro
and Witk (1965) and Shapiro and Francia (1972), and have been widely
reprinted elsewhere. Prescott (1976) has studied the behavior of H'in
the presence of one or two outliers. Shapiro, Wilk and Chen (1968) and
Pearson, D’Agostino and Bowman (1977) compare various tests for
normality. .

In regression, the probability plot and W (or W')are usually applied
to e or to the r; since ¢ is unobservable. For example, normal plots of
residuals or Studentized residuals are a standard feature of most
regression packages. Unfortunately, normal plots and the correspond-
ing tests may not be effective when applied to residuals. Recall from

Equation (2.1.4) that e; = ¢;—Z;v;;¢;. As long as the ¢;s have finite

(2.3.15)

W =

(2.3.16)
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variance, X;v;;¢; will tend toward normality and in some cases may
dominate ¢;. Thus, the ¢; or the r; may exhibit a supernormality property
{(Gentleman and Wilk, 1975a; Gnanadesikan, 1977) and behave more
like a normal sample than would the ¢;. In small samples, the usefulness
of normal plots is unclear, and depends on n, p’, and on V (Weisberg,
1980b). In larger samples, however, if max (v;) = 0 (as required for
asymptotic normality) W and W' applied to residuals is the same as
applying them to the unobserved errors (Pierce and Kopecky, 1979). In
such cases, a normal plot of residuals may be interpreted in a way
equivalent to a normal plot of a univariate sample.

Atkinson (1981), following Gentleman and Wilk (1975a, b), suggests
a method of interpreting probability plots of residuals, even in small
samples. The technique presented here is a straightforward extension of
Atkinson’s basic idea.

For a problem with (I-—V) fixed, m pseudo-random n-vectors

g, ..., ¢&,are generated from F (usually, F will be taken as standard

normal). The pseudo residualse, = (I-V)g,,k = 1,2,. .., marethen
computed. Let the ordered elements of ¢, be denoted by ¢;, and, for
each i, let ef}), 0 < 1 < 1, denote the  x 100 percentile of the empirical
distribution of {eyy, k = 1,2, ..., m}. Simultaneous probability plots
of the two n-vectors with elements (eff") and (e, */") describe an
envelope, roughly like a (1 —2a)x 100% simultaneous confidence
region. The probability plot of the data is then plotted along with the
corresponding envelope. If the observed residuals fall beyond or near
the boundary of the envelope, the assumption that ¢ is sampled from F
is called into doubt. If it is desired to use the envelope as an exact test,
further simulation may be necessary to determine the size. Atkinson
(1981) uses a transformation of residuals in this plot, and chooses to use
F = half-normal distribution, but the ideas are the same regardless of
the transformation and choice of F.

EXAMPLE 2.3.6 CLOUDSEEDING NO. 4. Toillustrate probability
plots, we again use the cloud seeding data. Figures 2.3.14 and 2.3.15 are
normal probability plots for the variables S — Ne and P, respectively.
These plots are included for illustration only, since the sampling plan
outlined in Chapter 1 would not lead us to expect the predictors to
behave as a normally distributed sample. However, the plot for S — Ne
is approximately linear, as one would obtain from a normal sample.
The value of W' = 0.972 is well above the 10 %, point of its distribution
given normality. The plot for P is clearly not straight, indicating
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Figure 2.3.16 Normal probability plot with simulated envelope for r;, cloud
seeding data

positive skew by its shape. The value of W’ = 0,757 is much less than
the 19 point of its distribution given normality.

Figure 2.3.16 is a normal plot of Studentized residuals for the model
(1.1.3). With so many parameters and only 24 cases, we cannot expect
this plot to exhibit non-normal behavior; the simulated envelope

- in the plot can be expected to be useful here. Since the observed

plot is generally within the envelope, we have no evidence against
normality.

2.4 Transformations

The situations in which a transformation of the data might prove
worthwhile can be conveniently arranged in three classes. In the first,
the responses y; are independent and come from a known non-normal
family of distributions. A transformation is selected so that the
distribution of the transformed responses is sufficiently close to normal
to allow application of the appropriate normal theory methods. The
arcsin and square root variance stabilizing transformations for the
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binomial and Poisson distributions are typical examples. The import-
ant point here is that the selection of the transformation is based on the
known distribution of the response variables.

In the second class, the expected responses Ey; are related to the
explanatory variables x,, . . ., x, by aknown nonlinear function of the
parameters. A transformation is selected to linearize the response
function. If the distribution of the errors is sufficiently well behaved, the
transformed data can be analyzed using standard linear least squares.
For example, if theory suggests the relationship Ey = fexp (#, x).
then it is reasonable to expect an approximately linear relationship
between log (y) and (x), log (y) = log (84) + 8, x. It will, of course. be
important to perform various diagnostic checks on the transformed
model since there is no guarantee that the standard least squares
methods will be appropriate. If, for example, the errors ¢ in the original
model have mean zero, constant variance, and are such that
y = Boexp (f;x)(1 +¢) then the centered errors in the transformed
model will also have mean zero and constant variance, y; = [log(f,)
+Elog(1+e)]+p,x+[log(l +e)—Elog(l +¢)]. On the other
hand, if the errors in the original model are additive, y = B, exp (f, x)
+¢, then the error variances in the transformed model will depend
on Ey,

In the final class, neither the distribution of the errors nor the
functional form of the relationship between Ey and the explanatory
variables is known precisely. This situation is perhaps the most difficult
to handle since a specific single rationale for choosing a transformation
is lacking. Generally, we would like a transformation to result in a
model with constant error variance, approximately normal errors, and
an easily interpreted and scientifically meaningful structure. One
method of proceeding in this situation is to specify a family y* of
transformations indexed by a possibly vector-valued parameter 4 and
then use the data to select a specific transformation that may result in a
model that has all the desirable properties.

Methods of selecting a transformation in situations falling in the first
or second class are well known and good discussions can be found in
many standard references. For example, Scheffé (1959, Section 10.7)
discusses a general method of choosing variance stabilizing transform-
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ations. Daniel and Wood (1980, Chapter 3) give plots of a variety of
nonlinear forms that can be transformed to linear forms. In this section,
we concentrate on the third class of situations. We first present a
number of families of transformations and sketch a method of analysis
based on likelihood considerations. Several related graphlcal and
approximate methods are discussed later.

2.4.1 FAMILIES OF TRANSFORMATIONS

For a positive response variable y > 0, Box and Cox (1964) studied a
slight generalization of the family of monotonic power transformations
used earlier by Tukey (1957),

y'-1
Jo_| T A#0

log (v), A=0

This family contains the usual log, square root, and inverse transform-
ations as special cases and is scaled to be continuous at 4 = 0. y¥ is
convex in y for 2 = land concave in y for 4 < |, and is increasing in
both yand 4. It will be useful for inducing approximate symmetry when
the response is skewed. One effect of the log transformation, for
example, is to lighten one tail of the distribution. Generally, (2.4.1) will
be sensible in situations where the origin occurs naturally and the
response is skewed and positive. Since most robust methods of
estimation are dependent on symmetry, (2.4.1) might be used prior to
the application of such methods.

If the origin is artificial or negative responses occur, added flexibility
is provided by the extended power family,

{2.4.1)

(y+i)h-1
I e (24.2)
log (y +4,), Ay =0

Here, y + 4, > 0. In some situations, it may be sufficient to substitutea

convenient value for 1, and then proceed using (2.4.1) in combination
with the shifted response y + 4,.

John and Draper (1980) propose the family of modulus
transformations

(Iyt+ 1Y —1
i | sign(y )[ “7_—] A0 a4y
sign (y)[log (|y|+ 1)1, A=0

gl A AN F
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for obtaining approximate normality from symmetric long-tailed
distributions. This family is monotonic, continuous at i = 0, and
applicable in the presence of negative responses. When the responses
are all positive the modulus family reduces to a special case of the
extended power family (2.4.2). Basically, (2.4.3) applies the same power
transformation to both tails of a distribution symmetric about zero. If
desirable, an arbitrary point of symmetry can be included by adding a
parameter 1, as in (2.4.2). If A < 0, then y¥ is restricted to the interval
(A" -1

The family of power transformations can be applied in any problem
with positive responses. As mentioned before, however, this family will
be most useful for removing skewness and, thus, may not work well
when the response is bounded above as well as below. For responses
constrained to the interval 0, b] some improvement might be realized
by using the family of folded-power transformations (Mosteller and
Tukey, 1977, p. 92; Atkinson, 1982)

vl A
y*—(b—y)

yW = A ' 270 (2.4.9)
log[y/tb—y»]. 4=0

which contains the usual logit transformation (4 = 0) as a special case.
If the responses are concentrated near 0 or b, this family will behave like
the power family.

242 SELECTING A TRANSFORMATION

In their original paper, Box and Cox (1964) discuss both likelihood and
Bayesian methods for selecting a particular transformation from the
chosen family. Following this account, the development of the specific
methods for any of the transformations families discussed above is
straightforward. Here we consider only likelihood based methods.

Itis assumed that for each 4, y*¥is a monotonic function of y and that
for some unknown 4 the vector of transformed responses Y ¥ = (y1)
can be written as

YO = Xpte (24.5)

where the quantitites on the right are consistent with previous notation
and, in addition, the elements of ¢ are independent and (approximately)
normally distributed with mean zero and constant variance ¢%. The
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probability density of the untransformed observations is
J 2ng?)~ "2 exp{ ~53 (YA-X B (YW-X ﬂ)} (2.4.6)
where J is the Jacobian of the transformation

n dy {4)
= ﬂ T

i= Vi
For fixed 4, (2.4.6) is the standard normal likelihood and thus the log
likelihood maximized over f and ¢2, apart from an unimportant
constant, is

Leax(A) = ~4nlog[RSS(4; Y)/n]+log(J) (2.4.7)

where RSS denotes the residual sum of squares from a fit using the
transformed responses,

RSS(AY) =YW [I-V]Y®,
Equivalently, the maximized log likelihood can be written as
Lyax(A) = —4nlog [RSS(4, Z)/n] (2.4.8)
where the n-vector Z has elements
7P =yt

In this latter form, the correction for change of scale is apparent. If
more than one model is to be considered, the analyses are conveniently
studied using the normalized transformation z{%, so the residual sum of
squares for each A are on the same scale and can thus be compared. The
normalized transformation should also provide better computational
accuracy, particularly for large A.

For an arbitrary collection of n positive scalars a,, a,,. .., a,, let
g(a) denote the geometric mean function

n 1/n
gla) = <U1 ai)

The normalized transformation for the extended power family is then

(Y|+AZ) 1—1
SN T A #0
28 =1 Agh-Yy+4,) s (2.4.9)

g(y+24;)log (yi+ 4,), =0

Ao

[ WY TR S



DIAGNOSTIC METHODS USING RESIDUALS 63

which gives the corresponding transformation for the power family by
setting A, = 0. The normalized transformations for the modulus and
folded-power families are

R EIER s .
N e | 40
7 = Slgn(y')[lg“’(lyl+l) ¥ (2.4.10)
sign(y)g(Iyl+ Dlog(lyl+ 1),  2=0
and
}’:'1 ~(b— )’i)/1 )
, . #0
2= { Ag* Tt -t *#0 an
b 'gly(b—ylogly/(b—y)], 4=0
respectively.

The maximum likelihood estimate of A can be obtained by maximiz-
ing (2.4.7) or (2.4.8), or by finding the solution to dL,,(2)/d. = 0.
Alternatively, when 1 is a scalar, Box and Cox suggest reading 4 from a
plot of L., (4) against A for a few selected values of 4. Unless special
software is available, such plots will require one regression for each
value of A chosen. The accuracy of the estimate of 2 obtained in this way
will usually be acceptable since in practice it is desirable to round 4 to a
convenient or theoretically justifiable value.

An approximate {1 —a) x 100 %; confidence region for / is given by
the set of all A* satisfying

2[ Lpan () — Linax (A*)] < 2% (2, v) (2.4.12)

where y?(a, v) is the (1 —a) x 100 percentile of a chi-squared distri-
bution with degrees of freedom v equal to the number of componentsin
A. When 1 is a scalar such confidence regions are easily constructed
from the plot of L. (A) against 2.

Invariance

Before turning to examples, a few general comments may remove some
of the concerns about this procedure that are likely to arise in practice.
We first comment on invariance under rescaling the responses and then
briefly discuss normality, the choice of a model, and methods of
inference,

From (2.4.11) it is easily seen that for the family of folded-power
transformations the estimate Awill be unchanged under rescaling of the
responses, y; % ¢y;, ¢ > 0. Thus, without loss of generality. the
responses may be scaled so that b = 1. If X contains a column of Is, the
extended power family will be invariant under rescaling in the sense
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that (4, %;) S(1;, c4;). If X does not contain a column of 1s, this
family is not invariant under rescaling when 4, # 0. Schlesselman
(1971) discusses this problem and suggests modifications of the power
family that yield scale invariant estimates when regression is through
the origin. The transformations obtained from the modulus family are
not invariant under rescaling, a characteristic that is likely to be
annoying in practice. However, Shih (1981) suggests a generalized two-
parameter modulus transformation that is scale invariant.

Normality

The Box-Cox procedure for choosing a transformation is based on the
assumption that Y is normally distributed. It is clear, however, that in
general this assumption cannot be true, although it may hold in certain
special cases (4 =0 in the power family). Hernandez and Johnson
(1980) investigate the consequences of this inconsistency for the power
family. Their results suggest that asympotically 2 and the least squares
estimates of fand o based on the transformed data are chosen to make
the distribution of the transformed data as close as possible to a normal
distribution, as measured by Kullback-Leibler divergence. They
emphasize that appropriate diagnostic checks should always be applied
to the transformed data since an adequate approximation to normality
is not guaranteed by this procedure.

Choice of model and scaling the predictors

The role of X in selecting a transformation for Y can be crucial since the
likelihood procedure tries to achieve EY™ = Xf in addition to
normality and constant variance. The indicated transformation for one
X-structure may not be the same as that for another and the selection of
X may well be the most important step. Generally, X should be selected
so that the resulting model can be interpreted without great difficulty, is
flexible enough to describe important possibilities, and is scientifically
meaningful.

Box and Cox suggest the following technique as an aid to under-
standing the importance of selected columns of X in determining a
transformation. Partition g7 = (f7], f% ) where g, is ¢ x 1 and for fixed 4
let L (4] 8, = 0) denote the maximized log likelihood for the model
with #, = 0. Then

I'm:u(’:lllfz =0) = [-nulx(':') - %IIlOg[] + "'_"il'[')TF(/ia Z)] (24.13)

A v
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where F(A; Z) is the usual F-ratio for H: B, =0 in terms of the
normalized response z{¥. If both L., (4|8, =0) and L, (i) are
plotted against A on the same graph then the difference between the
heights of the two curves at a selected value of A isa monotonic function
of F(4; Z). Large differences indicate that inclusion of g, may yield an
improved fit, If the maxima of the likelihoods occur at substantially
different values of 4 then the transformation under 8, = 0 may be
attempting to compensate for inadequacies in the reduced model.

Inference
Once an appropriate transformation has been selected, the analyst
must choose between conditional and unconditional methods of
inference for the transformed data. In the conditional approach the fact
that the data are used to select a transformation is ignored and the
analysis proceeds as if the appropriate scale were known a priori. In
contrast, unconditional methods include 4 as an unknown parameter
and allow for the appropriate modification of confidence statements.
Historically, conditional methods of inference seem to dominate the
literature on transformations. Bickel and Doksum (1981) provide a
comprehensive account of the unconditional approach and demon-
strate that the unconditional variances of parameter estimates can be
much larger than those from the conditional approach. If. for example,
the power family is used to select a transformation of a simple random
sample and 1 = 0, then (Hinkley, 1975)

: Eyptin2 )2
var (7 = & | 14 B
n  6n o

The second term on the right is the amount that the variance is inflated
due to estimation of A. Hinkley and Runger (1980) provide a number of
compelling arguments in favor of the conditional approach. They
comment that unconditional confidence statements must logically take
a rather useless form. For example, an unconditional confidence state-
ment based on the average of a transformed simple random sample
might read: ‘On some unknown scale A, which is probably around ia
95 % confidence interval for Ey® is 7% + a.’ Such statements relate to
unknown parameters in unknown scales and cannot be very helpful.

Carroll and Ruppert (1981) investigate the variance inflation due to
estimating 4 when prediction of future observations is the primary goal
and the data are back-transformed so that the predictions are always
made in the original scale. They conclude that, while there is some
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inflation in this problem, it is generally not severe or important. For
further discussion, see Box and Cox (1982).
In this monograph we adopt the conditional approach.

exampLE 24.1. TREEDATANO. 1. To provide a first illustration
of the use of the Box-Cox procedure, we use the power family in
combination with the tree data from the Minitab Student Handbook
{Ryan. Joiner and Ryan, 1976, p. 278). The data, given in Table 2.4.1,
consist of measurements on the volume Vol, height H, and diameter D

Table 2.4.1 Tree data. Source: Ryan et al. (1976)

D = Diameter H = Height Vol = Volume

8.3 70 10.3
8.6 65 10.3
8.8 63 102
10.5 72 16.4
10.7 81 18.8
10.8 83 197
11.0 66 15.6
11.0 75 182
11.1 80 226
T 11.2 75 19.9
113 19 242
11.4 76 21.0
114 76 214
11.7 69 213
120 75 19.1
129 74 222
129 85 338
13.3 86 214
13.7 71 25.7
13.8 64 249
14.0 78 34,5
14.2 30 31.7
14.5 74 36.3
16.0 72 383
16.3 77 42.6
173 81 554
17.5 82 55.7
17.9 80 58.3
18.0 80 51.5
18.0 80 51.0

20.6 87 710
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at 4.5 ft above ground level for a sample of 31 black cherry trees in the
Allegheny National Forest, Pennsylvania. The data were collected to
provide a basis for determining an easy way of estimating the volume of
a tree (and eventually the amount of timber in a specified area of the
forest) using its height and diameter. Since the volume of a cone or
cylinder is not a linear function of diameter, a transformation of 1ol is
likely to result in a fit superior to that provided by the untransformed
data. ' ,
Generally, a straightforward method of proceeding is to consider the
simple additive model for the transformed response, here (}'ol)* on D
and H. For illustration, we consider also a second model (}ol)* on H
and D2, since it is not unreasonable to suppose that the area of a cross

. section of the tree rather than its diameter was reported. As a common

reference for these two models, we include the third and final model
(Vol)® on H, D, and D? which was investigated by Ryan et al. (1976.
p. 279). We refer to these as Models 1, 2, and 3, respectively.

With 4 = 1, a preliminary inspection of the plots of the Studentized
residuals r; against the fitted values, H and D for each of the three
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Figure 2.4.1 r; versus D for Model 1, tree data
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models confirms that transformation is likely to be worthwhile. For
Model 1 the plot of r; versus D given in Fig. 2.4.1 shows a clear
nonlinear trend, while for Model 3 the plot of r; versus H given in
Fig. 2.4.2 strongly suggests that the variability increases with H. Other
plots yield similar conclusions, although some are a bit ambiguous.

Plots of L. (4) against A and the approximate 959, confidence
intervals from (2.4.12) for each of the three models are given in
Fig. 2.4.3. The maximum likelihood estimate of 4 indicates a different
transformation for each model. (Maximum likelihood estimates were
determined by golden section search; see Kennedy and Gentle, 1980,
p. 432.) For Model 3, 1= —0.066 and the suggested transformation is
(Vol)® = log (Vol), while the suggested transformations for Models 1
and 2 are 1 = 1/3 and 2/3, respectively. Comparing Models 1 and 3 we
see that the transformation A = 1/3 is compatible with both likeli-
hoods. Also, if A = 1/3 is used to transform Vol in Model 3, then the
term in D? is unnecessary and if A = 0 is used to transform Model 3,
then D? does contribute to the fit. (From (2.4.13), the F-statistics for D?
are F(0; Z) = 119 and F (1/3; Z) = 0.03.) Based on this analysis, there
is little reason to prefer Model 3 over the simpler (¥ol)"*/* on D and H.
It is reassuring that the variables in the latter model are dimensionally
compatible, a condition often overlooked in practice.

A comparison between Models 2 and 3 can be carried out in a
manner analogous to that given above. The essential difference is that
the transformation suggested by Model 2 does not seem compatible
with the likelihood for Model 3. In this comparison, Model 3 may be
preferable.

The residual mean squares in terms of Z!* for Model | with 2 = 1/3,
Model 2 with A = 2/3, and Model 3 with 1 = O are 4.84, 5.62, and 4.68,
respectively. Based on this and the previous analysis, Model 1 with
A = 1/3is our preference from among those considered. Unfortunately,
this transformation does not seem to correct ali of the deficiencies
noted earlier. The transformation successfully induces additivity, and
the scatterplot of r; versus H given in Fig. 2.4.4 indicates that the
variance structure has been improved, although case 31 now stands out.

This example is intended to illustrate the use of the Box-Cox
procedure and the kinds of results that can be expected. Certainly,
other reasonable models can be formulated. For example, the relation
between the volume, height, and diameter of a cylinder or cone,
Vol o« D*H, suggests an additive model with all variables replaced by
their logarithms. Transformations of the explanatory variables will be
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Figure 2.4.4 r; versus H, for Model | with 1 = 1/3, tree data

considered later in this section. For further discussion of transform-
ations in this data set, see Atkinson (1982).0

2.4.3 DIAGNOSTIC METHODS

Andrews {1971a) demonstrates that the likelihood method for choos-
ing a transformation is sensitive to outlying responses. Since the scale is
subject to question prior to the application of this methodology,
diagnostic procedures applied to the untransformed data may not yield
reliable conclusions. An outlier in the untransformed data, for example,
may be brought into line by a transformation. Carroll (1980) proposed
a robust method obtained by replacing the likelihood function by an
objective function that is less sensitive to outlying responses. Although
Carroll's method is superior to the likelihood method in terms of
robustness properties, it is still sensitive to outliers. Diagnostic support
for the likelihood method is clearly important.
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In this section we discuss two additional methods for assessing the
need to transform the responses. These methods, due to Atkinson
(1973, 1982) and Andrews (1971a), can be based on new explanatory
variables constructed from the original data and have graphical
counterparts that are useful for identifying anomalies. Because of this
diagnostic ability and ease of calculation, these methods should prove
valuable by themselves or as support for a likelihood analysis.

Atkinson’s method

Atkinson’s method is based on the score statistic ip(4y) for the
hypothesis 4 = A,. The score statistic does not require iteration and can
be obtained using standard regression routines, To see how this is done,
let Zto) = (z{%)) and

hi Z(/l)

tAa) =
G 0A

4= Ay

where Z* may correspond to any of the single parameter transform-
ation families discussed previously. Apart from an unimportant sign
change, the score statistic is equal to the usual t-statistic for the
hypothesis ¢ = 0 in the model

2V = XB + G +¢ (2.4.14)

Asymptotically, the null distribution of t,(4,) is standard normal, but
its distribution in small samples is intractable since both Z*)and G!%
are random variables with nonstandard distributions.

In this approach to the calculation of 1, (4,), G** is regarded as a new
explanatory variable which Box (1980} terms a constructed variable.
The corresponding model (2.4.14) can be viewed as an approximation
obtained by expanding Z'* in a Taylor seriesabout i, (Atkinson, 1982).
In this expansion, the coeflicient of the constructed variable
¢ = Ao — Aand thus the least squares estimate ¢ of ¢ provides a quick
estimate 4 of A,

A=Ay~ (2.4.15)
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Estimates obtained in this way will often be good approximations to 4,
but Atkinson (1982) demonstrates by example that adequate agreement
cannot be guaranteed in general. Nonetheless, in the absence of special
software £ may prove useful.

Another adjunct to this method is the added variable plot for the
constructed variable G Ideally, this plot should show a consistent
and clear linear trend, indicating that the evidence for the transform-
ation is spread evenly throughout the data. Outliers in an added
variable plot may correspond to cases which are distorting the evidence
for a transformation and thus require special attention. Substantial
curvature may be an indication that a modification of the transform-
ation family would permit a closer representation. Suppose, for
example, that the folded power transformation family (2.4.4) yields a
plot with a strong and consistent linear trend. The added variable plot
for the power family (2.4.1) will likely show strong curvature since the
constructed variables for the power and folded-power families are not
linearly related.

Andrews’ method

Like Atkinson’s method, Andrews’ method is based on a test of the
hypothesis A = A,. The test statistic is constructed by expanding Y
about 4,,

Yo = Y 4 (2, — 1) GLo)
where
oY (A

G (‘).o) =
y A

5=
Since YW = X f+e,
Yo 2 X+ (Ao — ) GYo + 2 (2.4.16)

This model is similar to the model (2.4.14) used in the construction of
the score statistic. However, (2.4.14) is based on the normalized
transformed responses z{* whereas (2.4.16) is based on y{%), In effect,
Andrews’ approach ignores the Jacobian of the transformation.

The statistic for Andrews’ test is equal to the t-statistic for the
hypothesis 2, — A = 0 in the model

Yo = XB+ (1o —A)GM +¢ (2.4.17)

where G is equal to G !/’ evaluated at the fitted values from the null
model Y = XpB+e. It follows immediately from the work of
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Milliken and Graybill (1970) that the t-statistic has a standard
t-distribution with n —p’ — 1 degrees of freedom. That is, Andrews’ test
is exact.

As in Atkinson's method, the least squares estimate of 4, —/ from
(2.4.17) can be used to obtain a quick estimate of 4 and the added
variable plot for the constructed variable C}“’ should be inspected for
unusual features.

Application to the power family

It is informative to compare the constructed variables for the Andrews
and Atkinson procedures for the power family in combination with the
hypothesis of no transformation (4, = 1). In this situation it is easily
verified that

G‘y” = [§ilog ()~ + 1],
where ¥, is the i-th fitted value from Y = Xf+¢, and

GV = {yilog[yi/g(y)] - yi+log[g(»]+1}

The associated test statistics depend on these constructed variables
only through the residuals (I - V)G'" from the regression of G'" on
X. If X contains a constant column, (I — V)1 = 0 and the constructed
variables simplify to

§ G = [filog (5] (2.4.18)
an
G = (y;loglyi/g(»] —y) (2.4.19)

Since (I — V) Y = 0, it is clear that the approximation of G{" obtained
by substituting y, for y, is equivalent to G{"). Thus, in this situation G\"
may be regarded as an approximate version of G,

Although Andrews’ method yields an exact test, there is evidence that
this method has some loss of power relative to Atkinson’s method
(Atkinson, 1973). Andrews’ method also has certain robustness pro-
perties that are not shared by Atkinson’s method. With replication, for
example, all cases in a single cell will have the same fitted value and
consequently methods based on ¥ will be less sensitive to a single
outlier than those based on Y (Atkinson, 1982).

Tukey’s test
Tukey’s well-known single degree of freedom for nonadditivity is
obtained using the constructed variable G = (y7) obtained under the
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hypothesis of no transformation (A, = 1). Andrews (1971a,b) and
Atkinson (1982) discuss the relationship between Tukey’s test and their
respective methods. A discussion of Tukey's test applied to two-way
tables is given in Section 2.5.

EXAMPLE 24.2. TREEDATANO. 2. The score statistics (1) and
the corresponding quick estimates 1 for each of the three models used
for the tree data of Example 2.4.1 are given in Table 2.4.2. For
comparison, the likelihood estimates are also given. In each situation,
the need for a transformation is indicated by the score statistic and the
agreement between 1 and 1 seems adequate.

Table 2.4.2 Transformation statistics, tree data

Full data Case 31 deleted
Model tp(1) A pi tp(1) i pi
1. H D 7.41 0.394 0.307 6.84 0.252 0.234
2. H, D? 3.25 0.686 0.662  3.55 0.537 0.550
3. H, D, D? 3.18 0.134 -0066 4.38 -0.169 -0.121

Figure 2.4.5 contains added variable plots for the constructed
variables (2.4.19) in each model. In the plots corresponding to Models |
and 2, case 31 stands out as a possible outlier and thus may be having an
undue effect on the analysis. In the plot for Model 3, case 31 is not as
noticeable. The effects of case 31 can be seen by removing it from the
data and recomputing 7, 4, and t,(1). These values are also given in
Table 2.4.2. For each model the agreement between A and 4 is still quite
good and the score statistics indicate that transformations are still
needed. Without case 31, however, the suggested transformations can
change. For model 2, the suggested transformation is A = 2/3 for the
full data and 4 = 1/2 for the reduced data. Either transformation may
yield an adequate model since, as further analysis will show, they are
compatible with the likelihood based on the full and reduced data.(

EXAMPLE 24.3. JETFIGHTERSNO.3. In Example2.3.4, rescaling
of FFD tolog (FFD), with FFD measured in months after January 1940
was done on logical grounds. We now consider the choice of scale for
FFD more systematically.

Figure 2.4.6 gives a scatter plot of r; versus fitted values for the
regression of FFD on the other variables in addition to a constant. This
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Figure 2.4.5 Added variable plots for the score statistic, tree data. (a) Model
1. (b) Model 2. (c) Model 3

figure is a paragon of ambiguity. It allows a variety of interpretations,
spread increasing to the right, a slight downward bow in the plot, an
outlier in the F-111A, or no problem at all, depending on the skill and
the preconceptions of the investigator. Finding a pattern in a scatter of
points may be a difficult task, and often renders plots such as this one
nearly useless,

The solid curve in Figure 2.4.7 is a plot of L, (4) versus A for the
family of power transformations. The likelihood estimate of A is
7= —0024 and the asymptotic 95% confidence interval excludes
4 = 1; the log transformation is clearly suggested. A scatterplot of r,
versus fitted values for the log transformed data is given in Fig. 2.4.8. As
before, this plot does not provide a clear indication of a deficiency in the
model, although the F-111A still stands out.

The score statistic for the hypothesis 1o = 1 confirms the need to
transform, tp(1) = —3.88, although the quick estimate of A seems
unacceptably far from 4,1 = —0.54. The added variable plot for G{"is
given in Fig. 2.4.9. In this plot, one case, the F-111A, is well separated
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Figure 24.6 r; versus fitted values, jet fighter data, response = FFD

from the rest and it appears that our conclusions may change if it were
deleted. Figure 2.4.10 is the constructed variable plot for GV after
deletion of the F-111A. The linear feature of Fig.2.49 is now
completely absent, and the need to transform is less clear. Without
the F-111A, t5(1) = —0.05. Inferences based on the likelihood method
are also very sensitive to the presence of this case. As shown by the
dashed curve in Fig. 2.4.7, 1 is close to 1 when the F-111A is deleted.

Although the evidence for the need to transform FFD is weak and
depends heavily on the F-111A, the log transformation may be sensible
for two reasons. First, as previously stated, FFD is a stand-in for
technological level and LFFD is more palatable than FFD. Second,
while the F-111A does seem to be different, it is the most recent aircraft
in the data, and for that reason we may wish to modify a model to
provide a better fit to it than we would for a plane developed 20 years
earlier.(J
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244 TRANSFORMING THE EXPLANATORY VARIABLES

Box and Tidwell (1962) suggest a general procedure to aid in the
selection of transformations for the explanatory variables. A useful
version of their procedure begins with the assumption that the response
v; can be written as

p
yi = ﬁo + Z ﬂjx}j:i’+£,-, i= l, 2, P /] (2420)
j=1

where x}%' denotes the transformation of the j-th explanatory variable
and the ;s are (approximately) normal with zero mean and constant
variance ¢®. Any of the single parameter transformation families
discussed previously in this section may be used for x4, (Extensions to
multiple parameter transformation families are immediate.) Of course,

we may also have x{3' = x;;.i=1,2,..., n, for selected j.
As an alternative to the use of nonlinear methods, inferences about
the 4;s can be based on an approximation to (2.4.20) obtained by
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expanding x,“J’ about the hypothesized values Aq;,j =.1,2,..., p,

= flo+ Z Bxtio 4 Z Bi(=Aojglior +e;  (24.21)

j=1 Jj=1
where
0
0! } o= (/
gt = -—x -
61 Y '11=40;'

Jj

In this model, the transformation parameter 4; is related to the slope of
the added variable plot for the constructed variable g{je/. A linear trend
insucha plot may be taken as an indication that 4; # 4, ;; the absence of
a linear trend indicates that either A; = 4y; or ff; = 0. As before, these
plots can also be used to identify outlying cases that may be distorting
the evidence for a transformation.

The approximate model (2.4.21) is still nonlinear in the parameters,
but a quick estimate 1; of 4; is

2= Ao+ ‘zl (2.4.22)
J
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where 43}- is the least squares estimate of f;(4; — 4¢;) from (2.4.21) and Bj
is the least squares estimate of #; from the null model

yi=Bo+ L Bixte +e
i

Further iteration using the 1 ;8 as starting values may be used to find
estimates which further reduce the residual sum of squares for the
original model (2.4.20). The quick estimate in combination with the
added variable plot will usually suffice for diagnosing the need to
transform. For the method to be effective, however, ; must have a
relatively small standard error. Substantial collinearity among the
columns of X, for example, can result in unreasonable results,
particularly for the quick estimates.

For illustration, consider the family of power transformations
(2.4.1). The constructed variable is

oo = dolx* log ()]~ [x¥— 1]
2

which is equivalent to

vy X log (x)
g 0) ;2
Ao ‘

since the projection of (g(4,)) onto the orthogonal complement of the
space spanned by the remaining columns (variables) of X is all that
matters. When the hypothesis is that of no transformation (1, = 1) the
constructed variable is simply g*' = x log(x) which can be easily
computed with nearly any regression program.

EXAMPLE 24.4. TREE DATA No. 3. We use the tree data de-
scribed in Example 2.4.1 to illustrate the use of the Box-Tidwell
procedure. Figure 2.4.11 gives the added variable plots for the
constructed variables D log (D) and H log (H). The estimated coef-
ficients with their estimated standard errors for the regressions of Vol
on (D, Hyand on (D, H, D log (D), H log (H)) are given in Table 2.4.3,

The plot for D log (D) in Fig. 2.4.11 shows a clear linear trend and
thus indicates the need to transform diameter. From Table 2.4.3, the
corresponding quick estimate of the power is 4, = 1 + 7.204/4.708
= 2.53. In contrast, the plot for H log (H) shows no linear trend and
thus a transformation of H is probably unnecessary. The suggested
model, Vol on D*3 and H, is not far from the model Vol on D? and H
that was used in Example 2.4.1. In fact, the latter model might be
preferred based on ease of interpretation. Recall from Example 2.4.1,
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Table 2.4.3 Regression summaries for two models, tree duta

Estimate s.e. Estimate s.e.
Intercept - 57987 8.638 65.567 124.718
D 4.708 0.264 —~21.463 5.065
H 0.339 0.130 —1.757 9.363
Dlog (D) 7.204 1.394
Hlog (H) 0.405 . 1.762

however, that Vol on D? and H can be refined further by transforming
Vol, However, for Vol on D?-% and H, the score statistic t,(1) = — 1.44
suggests that a transformation of Vol may not provide much
improvement.

In some problems, iteration may provide substantially improved
estimates of the 4;s for those variables requiring a transformation. In
this example, the iterated estimate of 1, remains close to 2.5.

Finally, the Box-Tidwell procedure applied to the model (Fol)!/3 on
D and H that was suggested in Example 2.4.1 may be used to argue that
transformations of D and H after Vol are not likely to result in much
additional improvement. Such sequential procedures should not be
confused with methods for the simultaneous estimation of transform-
ations for the response and explanatory variables. (1

EXAMPLE 2.4.5. CLOUD SEEDING NO. 5. In the Box—Cox
method of selecting a transformation for the responses, the scales of the
explanatory variables are held fixed. This may not be appropriate for
the cloud seeding data since the response Yand prewetness P are both
measures of amount of rainfall. It seems sensible that these variables
should be measured in the same scale.

To investigate the need for transforming Yand P simultaneously, we
use the power family in combination with the model,

YO = X, B+ Bs PP + APV +¢ (24.23)

‘where X, is the 24 x 9 matrix of explanatory variables excluding
prewetness and action x prewetness, P is the 24-vector of trans-
formed prewetness values, A is a 24 x 24 diagonal matrix with i-th
diagonal element equal to 1 if the i-th day was seeded and O otherwise,
and ¢ is N(0, 62I). Following the discussion in Section 2.4.2, the log
likelihood maximized over f and ¢ for fixed 1 is

Lnax(D) = =3 log (Z9T[1 = V129
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where V% s the usual projection matrix for model (2.4.23). The
maximum likelihood estimate A of A can be read from a plot of L,y (4)
versus 4 for a few selected values of A. For each plotted point a new
value of P and thus a new value of V¥ has to be computed.

Figure 2.4.12 gives a plot of L.,, () versus A along with the
associated 95 %, asymptotic confidence interval. The maximum likeli-
hood estimate is 1 = 0401 and 1 = 1 is well outside the confidence
interval. Since Yand P are both measures of the volume of rainfall, the
cube root transformation seems a sensible choice.
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Figure 2412 L., () versus 4, cloud seeding data

A diagnostic plot for this procedure can be obtained by using model
(2.4.14) in combination with the Box-Tidwell method. Model (2.4.14)
with iy = 1 can be rewritten as

2 = X, By + 5P+ Bis APV 4 (1~ DG + 5

Next, expanding P* about 4 = | as in (2.4.21) and rearranging terms
leads to
20 = XB+ (A= 1) [BsGY + BisAG/" — GV ] +2
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where X is the matrix containing all untransformed explanatory
variables and

()
(“=(3P

» 3 =‘=Plog(P)

~'This form suggests that an added variable plot for the constructed
variable

G = (B G + s AG — G, (2.4.24)

where s and f3, 5 are the least squares estimates of #5 and f8, s from the
regression of Z" on X, may be a useful diagnostic.

Figure 2.4.13 gives the added variable plot for the constructed
variable G. There seems to be a strong linear trend in this plot, but cases
1 and 15 clearly stand apart and may be controlling our impression of
the plot in addition to the results of the likelihood analysis. The least
squares slope of the added variable plot is —0.762 which is an estimate
of 21— 1. Thus a quick estimate of Ais 4 = 1 —0.762 = 0.238 which is
not too far from the cube root transformation suggested previously.
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Figure 2.4.13 Added variable plot for (2.4.24), cloud seeding data
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When cases 1 and 15 are removed, the evidence for a transformation
disappears. The dashed curve in Fig. 2.4.12is a plot of L, (1) versus A
for the reduced data. The maximum likelihood estimateis now A = 1.24
and A = 1is well within the 95 9; asymptotic confidence interval. In the
absence of additional information, the results of any analysis of these
data, regardless of the transformation used, should be interpreted with
caution. In future examples using the cloud seeding data, we will use the
cube root transformation. O

2.5 Residual analysis in two-way tables

The linear model for the unreplicated two-way table is an example of
the kind of model that could be studied using the diagnostic methods
discussed earlier in this chapter. However, since the appearance of
Tukey’s (1949) one degree of freedom test of additivity, a body of
methods that take advantage of the special structure of two-way tables
has developed. These methods, which can often be generalized to
higher-dimensional layouts, merit special study as examples of the ways
in which additional information can be used in diagnostic methods. We
survey some of these methods here.

2.5.1 OUTLIERS

Let y;; denote the response in row i and column j of an r X c table, and
let wyy=Eyy, p=p, =g —f, and ;= j;—j . Then the usval
additive model can be written as

Vij=p+o+pi+ey i=1,2...,nj=12,...,¢c (251)

where the errors ¢;; are uncorrelated and have mean zero and constant
variance 2. Methods for détecting outliers relative to this model have
been investigated by Gentleman and Wilk (1975a,b), Daniel (1978),
Draper and John (1980), Gentleman (1980), and Galpin and Hawkins
(1981) among others. Barnett and Lewis (1978) give an informative
discussion. Generally, the residuals e;; = (y;;— y;, — 7,;+J..) from a fit
of the additive model are reliable indicators of a single outlying cell. If,
for example, a single outlying value of magnitude 8 occurs in cell (1, 1)
then , :

Eey  =0(r—1)(c—1)/re,

Ee ;= —0(r—1)/re, j=2

Eey = —0(c—1Y)fre, i=2 (2.5.2)
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and
Ee;; = 0/rc, otherwise

Thus, the residual corresponding to the outlying cell will have the
largest absolute expectation provided r = 3, ¢ = 3. Since the residual
variances are constant for this model, there is no essential distinction to
be made between the ordinary residuals and the Studentized residuals.
A formal, normal theory test for a single outlier can be based on the
maximum normed residual

MNR = max |eij!/(z eé)m (2.5.3)
ij ij

This statistic is equivalent to max,|t;| obtained from the mean shift
outlier model described in Section 2.2.2. The 1%, 5% and 10%, points
of MNR for r = 3(1)10, ¢ = 3(1)10, from Galpin and Hawkins (1981),

- are reproduced in Table 2.5.1.

When two or more outlying values are present the residuals will often
lack noticeable peculiarities since the effects of multiple outliers can
filter through the entire table of residuals in complicated ways
(Gentleman and Wilk, 1975a; Daniel, 1978). Gentleman (1980) dis-
cusses methods for finding the k most likely outliers; that is, the k
observations whose removal provides the greatest reduction in the
residual sum of squares. This is equivalent to finding the k observations
that maximize the multiple case Studentized residual.

2.52 NONADDITIVITY

When nonadditivity is suspected, a useful initial representation of the
response is

Vi = kto+ B4+, i=1,...,nj=1...,¢
(2.54)

where u, o, f;, and ¢;; are as previously defined and y;; = p;; — i, — [
+ ... Of course, the usual additive model is obtained if y;; = 0 for all i
and j. An equivalent condition for additivity is that all two-by-two
contrasts of the form p;;— p;,;— pij;, + py,; be equal to zero. Johnson
and Graybill (1972a) exploit this fact to develop a method for

~ estimating o2 in the presence of partial nonadditivity.

A variety of models and tests for nonadditivity can be obtained by
imposing additional structure on the interaction terms y;;. The model
associated with Tukey’s test (1949) is perhaps the best known and is




Table 2.5.1 Critical values for MN R = maximum normed residual in two-way tables. Starred values are exact. Source: Galpin and
Hawkins (1981), reprinted with permission

r 3 4 5 6 7 8 9 10

a = 0.01

3 0.660 33*

4 0.674 84* 0.66511*

5 0.664 34* 0.63995* 0.60797*

6 0.64597* 0.613 02* 0.57774* 0.546 28*

7 0.62576* 0.58767* 0.550 80* 0.51901* 049193

8 0.605 84* 0.564 63* 0.52707* 0.49538 0.468 70 0.44599

9 0.586 96* 0.543 86* 0.50611* 047475 0.448 57 0.42641 0.407 36

10 0.569 35* 0.52516* 0.487 50 0.456 58 0.43094 0.409 31 0.39079 0.374 69

3 0.648 10* o =0.05

4 0.64512* 0.620 66*

S 0.624 15* 0.58971* 0.55513*

6 0.600 08* 0.560 79* 0.52491* 0.494 59

7 0.576 66* 0.53513* 0.498 97 0.468 99 0.443 96

8 0.55498* 0.512 56* 0.476 60 0.44715 042273 040213

9 0.53521* 0.49265 045712 0.428 27 0.404 47 0.384 47 0.36736

0

051724 0.47498 0.43998 041175 0.388 56 0.369 11 0.35251 0.33812

—




—

SOV~ Wnb W

0.637 15*
0.624 79*
0.599 44*
0.57303*
0.548 46*
0.52626
0.506 30
0.488 32

0.594 44*
0.561 85*
0.53274*
0.50747*
0.485 52
0.466 31
0.449 34

0.52711*
0.497 58
0.47257
0.45115
0.43260
041633

=010

0.468 38
0.44395
042321
0.40533
0.38973

0.420 19
0.40013
0.38290
0.36790

0.38070
0.36407
0.34962

0.34798
0.33402

0.32051
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obtained by setting

for all i and j. This model may be viewed as a way of modeling a linear-
by-linear interaction in latent variables associated with rows and,
columns and is sometimes called Tukey’s concurrence model. Tukey’s
1 df test of additivity is obtained using a standard procedure for
converting a nonlinear model to a linear model (Milliken and Grayhbill,
1970): Replace o; and f; in y;; with their least squares estimates &; and /?j
from the additive model (2.5.1) and then construct the usual F-statistic
F, for the hypothesis ¢ = 0. Under the null hypothesis and normality,
this statistic has an F-distribution with 1 and (r—1)(c—1)—1df.
Graphica!l aids useful in interpreting this test can be constructed using
the methodology of Section 2.3. The power of Tukey’s test and its
robustness in non-normal situations have been investigated by Ghosh
and Sharma (1963) and Yates (1972).

Mande! (1961) suggested two alternative structures for the inter-
action terms;

Vij = aif; (2.5.6)
and
yij = oyb; (2.5.7)

for all i and j. The models associated with (2.5.6) and (2.5.7) are called
the row and column regression models, respectively. These models can
also be motivated by appealing to the notion of latent variables
associated with rows (2.5.7)%)r columns (2.5.6) and, relative to (2.5.5),
are more flexible approaches to nonadditivity. In the row model, a test
of additivity is obtained by replacing ; in (2.5.6) with its least squares
estimate from (2.5.1) and then constructing the usual F-statistic F,,
for the hypothesis a, = a, = ... = a, = 0. Under the null hypothesis
and normality, this statistic has an F-distribution with r—1 and
(r—1)(c—2)df. The analogous test for the column model is con-
structed in the same way. :

It is important to remember that these tests for nonadditivity are
obtained by approximating a nonlinear model with a linear model that
can be handled using standard techniques. Under the alternative
hypotheses, the statistics F, and F,, do not have noncentral
F-distributions, as would usually be the case in standard applications. -
In the presence of nonadditivity, the residual mean square resulting
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from a fit of the linearized version of the model is positively biased. This
bias can be severe if ¢ or Za? is large. Hence, these methods should not
be regarded as being more than relatively straightforward ways of
detecting nonadditivity. If nonadditivity is found, it may be wise to
abandon the linearized version of the model in favor of more
appropriate methods of analysis. For example, the data might be
transformed to restore additivity.

In the approaches of Tukey and Mandel, it is necessary to assume the
presence of main effects (¢;# 0. §; # 0) for the interactions to be
present. This and the specific structures assumed for y;; place an often
unwarranted limitation on the types of nonadditivity that will be
detected by these techniques. Johnson and Graybill (1972b) proposed
setting

Yij = (SW(UJ (2.5.8)

where Z,w;=2%;u; =0 and Ew}=2Xu} =1, as a more general
structure for detecting nonadditivity. Essentially, this assumes that the
interaction v;; is a quadratic function of latent variables that need not
be related to the main effects. This form would be appropriate if the
interactions do not occur systematically across the entire table, but do
occur systematically in a subset of the full table or in only an isolated
cell. For example, a single outlier in cell (1, 1) corresponds to
WT=w)=k,(r—1,—1,—1,...,=1) and U= (u;) = k,(c -1,
-1, —1,..., —1) (see Equation (2.5.2)), where k,, and k, are con-
stants chosen to insure that WTW = UTU = 1. As a second illustra-
tion, consider a nonadditive table in which the subtables formed by the
firsts < r — 1 rowsand the last r — srows are additive, the nonadditivity
being due solely to the difference between the subtables. Let y,;; = ;;
fori=1,2,...,5j=12,...,cand py;; = p;fori=s+1...., r
and j=1,2,...,c. Then wy =k (r—s)fori=12,.. .sand w; =
—kys for i=s+1,...,r,and UT =k,(fd, ;— A, —f, ;+i, )
Generally, (2.5.8) can model any alternative situation in which the
matrix with elements Ee;; is of rank 1.

Since the interaction terms are not functions of the main effects, the
method used previously for constructing an easy test of additivity (&
=0) does not apply. Instead, Johnson and Graybill derive the
maximum likelithood estimators under the assumption of normality.
Let E = (e;;) be the r x ¢ matrix of residuals from the additive model.
Then the maximum likelihood estimators of the parameters in the
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Johnson-Graybill model are

it
I

03.‘ =5 -J.

By=2,=J.

9% = lar gest eigenvalue of ETE

W = normalized eigenvector of EET associated with 52

U = normalized eigenvector of ETE associated with &2
and

@ =[22e-2

The likelihood ratio test statistic for H: 6 = 0 is a monotonic function
of

= 82 / Z ‘j; e} (2.5.9)
Large values of A furnish evidence against additivity. Johnson and
Graybill (1972b) give the upper 1 %, 5%, and 10 % points of the null
distribution of A. These are reproduced in Table 2.5.2.

In addition to providing a reasonably flexible test, the
Johnson-Graybill approach provides a useful method for diagnosing
more specific forms of nonadditivity. Plots of w; versus &; or i; versus
/i may suggest that the column or row regressnon models respectlvely,
or perhaps Tukey’s model, is appropriate. If W and U each contain a
single relatively large value then this may be taken asan indication of an
outlier in the cell corresponding to the coordinates of the large values.
The signs of the elements of W serve to identify a decomposition by
rows of the full table into two subtables that may be more nearly
additive. If the elements of the same sign are of the same order of
magnitude then this might be taken as an indication that the subtablés
are additive. At the very least, such subtables require further inspection
when nonadditivity is present. Similar comments apply to U.

For further discussion of the Johnson-Graybill approach and
extentions to situations in which the rank of the matrix of the expected
residuals is greater than 1, see Hegemann and Johnson (1976a) and
Mandel (1971). Bradu and Gabriel (1978) present a graphical technique
as an aid to determining an appropriate model. Hegemann and
Johnson {1976b) compare the power of Tukey’s test to that based on
the Johnson-Graybill model. Their general conclusion is that if the row
and column effects are large and the structure y;; = ¢a;f8; is appropri-
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ate then Tukey's test will have the greater power. Otherwise, the
Johnson-Graybill test is preferred.

EXAMPLE 2.5.1 AGRICULTURAL EXPERIMENT. We illustrate the
methods suggested in this section using data on a two-way classifi-
cation design from Carter, Collier, and Davis (1951). This data set was
used by Johnson and Graybill (1972b) to illustrate the use of their test.
The data, which are part of a larger experiment to determine the
effectiveness of blast furnace slags as agricultural liming materials on
three soil types, are presented in Table 2.5.3(a). The response is yield of
corn in bushels per acre.

As a base, we first consider the fit obtained from the additive
model (2.5.1). The ANOVA table and the normed residuals,
e;;/(Z;L;e})! 2, are presented in Tables 2.5.3(c) and 2.5.3(b). respect-
ively, The results in Table 2.5.3(c) suggest that the average soil effects
are significant while the average treatment effects are not. The usual
estimate of 62 from the additive model is 79.0. The pattern of the signs
of the normed residuals in Table 2.5.3{b) might be taken as an
indication that the additive model is not appropriate. The MNR occurs
in cell (5, 3) and has the value 0.603 which has a p-value less than 0.05,
Evidently, there is reason to suspect that the observation in cell (5. 3)
does not conform to the assumed model; that is, either the model or the
observation is wrong.

We next fit the Johnson-Graybill model. The maximum likelihood
estimates of the interaction parameters are

82 =943.02
WT = (—0.476, —0.337, 0.086, 0.040, 0.767, —0.212, 0.131)
and
U7 = (—0.206, —0.581, 0.787)

The maximum likelihood estimate of 62 is 0.21. This is a biased estimate
of 2. Johnson and Graybill proposed an alternative estimator 62 of o2
that will be unbiased when additivity holds,

<Z "izj“52>
5.2 ij

T r—De-1=E@s?
where the expectation is taken under the hypothesis § = 0. Tables of
E(62/g%)areavailable from Mandel (1971). 1f § # 0 then the estimate is
no longer unbiased. For the problem at hand E{(6%/0?) =894 and




Table 2.5.2  Upper percentage points for null distribution of A (Equation (2.5.9)). Starred values are exact. Source: Johnson and
Graybill (1972b), reprinted with permission

a =001

3 0.99997*

4 0.9975* 0.8930

5 0.9883* 0.9303* 0.9004

6 0.9743* 0.9082 0.7825 0.7194

7 0.9587* 0.8619* 0.7325 0.7325 0.6457

8 0.9429* 0.8446 0.7407 0.6470 0.6243 0.5809
10 0.9135* 0.7575 0.6924 0.6516 0.5523 0.5044 0.4452
12 0.8879* 0.7411 0.6514 0.5702 0.5170 0.4911 0.4372 0.3969
16 0.8472* 0.6256 0.5788 0.5167 0.4560 0.4331 0.3628 0.3372 0.2837
20 0.8164* 0.5966 0.5462 0.4955 0.4229 0.3945 0.3364 0.3095 0.2567 0.2249
32 0.7571* 0.5367 0.4788 0.4198 0.3700 0.3326 0.2818 0.2485 0.2049 0.1794
50 0.7089* 0.5043 0.4423 0.3722 0.3178 0.2864 0.2430 0.2139 0.1731 0.1496

100 0.6498* 0.4463 0.3771 0.3189 0.2720 0.2421 0.1977 0.1698 0.1359 0.1151

o = 0.05
3 0.9994*
4 0.9873* 0.8567
5 0.9648* 0.8811* 0.8407
6 0.9406* 0.8505 0.7294 0.6681
7 0.9168* 0.8003* 0.6823 0.6703 0.5957
8 0.8974* 0.7811 0.6815 0.5985 0.5733 0.5345
0 0.8630* 0.7043 0.6361 0.5901 0.5096 0.4680 0.4143



12 0.8357*
16 0.7950*
20 0.7661*
32 0.7127*
50 0.6713*
100 0.6218*
3 0.9975*
4 0.9743*
] 0.9425+*
6 0.9135*
7 0.8879*
8 0.8660*
10 0.8308*
12 0.8037*
16 0.7647*
20 0.7376*
32 0.6886*
50 0.6512*

100 0.6071*

0.6936
0.6295
0.6290
0.5349
0.5978
04610

0.8349
0.8458*
0.8130
0.7631*
0.7435
0.674%
0.6594
0.6022
0.5737
0.5161
0.4887
0.4421

0.5979
0.5356
0.5054
0.4469
04127
0.3583

0.8021
0.6975
0.6548
0.6487
0.6057
0.5695
0.5131
0.4843
0.4306
0.3978
0.3490

0.5242
0.4760
0.4542
0.3894
0.3482
0.3024

0.6398
0.6358
0.5725
0.5570
0.5001
0.4550
0.4329
0.3740
0.3362
0.2942

04774
04227
0.3932
0.3454
0.3002
0.2595

o =0.10

0.5687
0.5462
0.4972
0.4563
0.4137
0.3778
0.3329
0.2913
0.2533

0.4501
0.3991
0.3652
0.3105
0.2706
0.2311

0.5098
0.4489
0.4289
0.3815
0.3502
0.2992
0.2624
0.2255

0.4016
0.3390
0.3139

0.2296
0.1892

0.3982
0.3830
0.3268
0.3023
0.2556
0.2226
0.1850

0.3665
0.3064
0.2876
0.2335
0.2020
0.1629

0.3506
0.2952
0.2765
0.2257
0.1960
0.1595

0.2656
0.2408
0.1938
0.1643
0.1306

0.2562
0.2326
0.1881
0.1598
0.1279

0.2117
0.1702
0.1423
0.1116

0.2049
0.1654
0.1386
0.1001
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Table 2.53 Agricultural data. Source: Carter et al. (1951). (a) Data.
{b} Normed residuals. (c) Analysis of variance

(a) Data (b) Normed residuals
Soil Soil
Treatment 1 2 3 1 2 3

a 11.1 326 63.3 -0066 —0.299 0.365
b 15.3 40.8 65.0 -0.082 -0.185 0.268
¢ 227 52.1 58.8 0.023 0.046 —0.069
d 238 52.8 614 0.011 0021 -0.032
e 256 63.1 41.1 0.158 0445 —0.603
f 312 59.5 78.1 —0082 —-0095 0.177
)

258 553 602 0040 0067 ~0.107

(¢} Analysis of variance

Source df SS MS F
Treatments 6 731.1 1218  0.88
Soils 2 5696.3 28482 20.61
Residual 12 9474 79.0

&% = 1.43. Both estimates of o2 are considerably smaller than that
obtained from the additive model. The likelihood ratio test statistic for
& = 0 has the value A = 0.9954, with the corresponding p-value less
than 0.01. )

In an effort to understand the precise nature of the nonadditivity, we
turn to an inspection of W and U. First, plots of W, versus & and Up
versus fi; do not display a clear linear trend and thus neither Tukey’s
model nor the two versions of Mandel's approach is likely to provide an
adequate explanation. The corresponding F-tests confirm this obser-
vation, as the three F-statistics are all less than 1. Second, an inspection
of W reveals that treatments a, b, and f seem to form an additive
subtable; the elements of W corresponding to these treatments are all
negative and of the same order of magnitude. However, the remaining
positive elements are not of the same order of magnitude; the element
corresponding to treatment e is 19 times as large as the element
corresponding to treatment d. The interpretation is that, while the
subset formed by treatments c, d, ¢, and g may be more nearly additive
than the full table, it does not seem to form an additive subset.
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Similarly, inspection of U suggests that the first two columns form an
additive subtable. Inspecting both vectors simultaneously with a view
towards detecting a single outlier isolates treatment e in the third
column as a possible outlying cell. This again implicates cell (5, 3).

At this point a number of options for further analysis are available.
One might, for example, replace the suspected outlier with a pseudo-
value and reanalyze the data. However, this as well as many other
techniques requires the specification of a model and at this point an
appropriate model is unknown. A more useful procedure is to delete
treatment ¢ entirely and reanalyze the data for additivity.

With treatment e deleted, the estimate of ¢? based on the additive
model is 30.0 and the F-tests corresponding to the interactive
components in the Tukey and Mandel models are again nonsignificant.
Fitting the Johnson-Graybill mode! to the reduced data set yields the
following estimates

62 = 29524
WT = (0.623, 0.373, —0.382, —0.300, 0.150, —0.463)
U7 = (-0.205, —0.582, 0.787)

62 =225

G2 = 15.15

A = 09853

Both estimates of o2 have increased, and A still has a p-value of less than
001 indicating that some nonadditivity remains. Inspection of W
reveals that treatments a, b, and { again form an additive subtable and
that treatments ¢, d, and g form a subtable that is more nearly additive
than when treatment e was included. The interpretation of U is the
same as previously given. In short, it appears that the nonadditivity
present in the reduced data set is due to the difference between the sets
of treatment {a, b, f} and {c, d, g} in the third column. In retrospect,
much the same conclusions might have been reached from an
inspection of a plot of the data such as that given in Fig. 2.5.1. The
response lines for treatments a, b, and f are nearly parallel as are those
for {c, d, g}, while the response line for treatment e is anomalous. Of
course, hindsight is usually more accurate than foresight and such
visual inspections become difficult in larger tables.

A separate analysis of each set of treatments suggests that the data
within a set are additive: for both treatment sets the tests of o = 0 have
corresponding p-values greater than 0.05. Further, under the additive
model, the estimates of 62 from the treatment sets {a, b, f} and {c, d, g}
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Figure 2.5.1 Agricultural data

are 9.23 and 1.01, respectively. These estimates are, of course, much
smaller than the original estimate from the additive model. The ratio of
the estimates, each being based on 4 df is 9.14 and this is approximately
the 2.5 % point of the appropriate F-distribution. This suggests that
either nonadditivity is still present in treatment set {a, b, f} or the
variances of the treatment sets are different.

To this point, the analysis suggests that the nonadditivity in the data
is due primarily to the differences between the treatment subtables
{a, b, f}, {c,d, g}, and {e}. Depending on interest, the analysis of the
treatment effects could be carried on in a variety of ways.

In addition to this analysis of the Johnson—-Graybill model, a
transformation to induce additivity could prove useful. Indeed, the
entire Johnson-Graybill approach might have been overlooked in
favor of the transformation methods of Section 2.4. As illustrated
below, however, this may often be unwise since not all nonadditivity
can be removed by a transformation.

A plot of L .. (4) for the power family is given as Fig. 2.5.2. The
maximum likelihood estimate is 1 = 0.497 and 1 = 1 (no transform-
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Figure 2.52 L. (4) versus 4, agricultural data

ation)is near one end of the asymptotic 95 %, confidence interval. There
is only mild evidence of the need to transform. The score statistic is
tp(1) = 1.64 and the corresponding quick estimate is 2 = 0.087 which
suggests the log transformation. (In this example, the agreement
between 1 and 1 does not seem adequate.) Based on the transformed
data with 1 = 0497, MNR = 0.582 for cell (5, 3) with a p-value near
0.05, and A = 0.9828 which has a p-value of less than 0.01.

While the transformed data are still nonadditive, it is possible that
the results of the likelihood analysis are being distorted by the outlying
cell. This suspicion is reinforced by the added variable plots for the
score statistic given in Fig. 2.5.3. Another application of the likelihood
method, this time without treatment e, gives 7 =0.397 which is
consistent with the cube root transformation. For cube root trans-
formed data without treatment e, A =0.9680. Again. substantial
nonadditivity remains. O

The exploratory approach used in the previous example can, if
necessary, be formalized. Marasinghe and Johnson (1981a, b) provide
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Figure 2.5.3 Added variable plot for the score statistic, agricultural data

likelihood ratio test statistics and associated critical values for the
hypotheses HW = 0, GU = 0,and HW = GU = 0 where Hand G are
full rank matrices of contrasts. Besides providing formal tests, this
material can help avoid the problems of overinterpretation that are
inherent in any exploratory analysis.



CHAPTER 3

Assessment of influence

*To arrive inductively at laws of this kind, where one quantity depends on or
varies with another, all that is required is a series of careful and exact measures
in every different state of the datum and quaesitum. Here, however, the
mathematical form of the law being of the highest importance, the greatest
attention must be given to the extreme cases as well as to all those points where
the one quantity changes rapidly with a small change of the other.”
HERSCHEL, 0p. cil.

The diagnostic methods presented in the last chapter are useful for
finding general inadequacies in a model. A related question that cannot
be easily addressed by those methods is that of stability, or the study of
the variation in the results of an analysis when the problem formulation
(see Fig. 1.2.1}is modified. If a case is deleted, for example, results based
on the reduced data set can be quite different from those based on the
complete data, as was suggested by many of the examples in Chapter 2.
We call the study of the dependence of conclusions and inferences on
various aspects of a problem formulation the study of influence.

The basic idea in influence analysis is quite simple. We introduce
small perturbations in the problem formulation, and then monitor how
the perturbations change the outcome of the analysis. The important
questions in designing methods for influence analysis are the choices of
the perturbation scheme, the particular aspect of an analysis to
monitor, and the method of measurement. The possible answers for
these separate questions can lead to a variety of different diagnostics.
For example, diagnostics resulting from perturbation schemes applied
to the data case by case can be quite different from those resulting from
perturbation schemes applied to assumptions such as normality of
Errors.

In this chapter, we consider only one perturbation scheme in which
the data are modified by deletion of cases, either one at a time or in
groups. Case deletion diagnostics have found the greatest acceptance,
and have been applied in many problems besides linear least squares
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regression. We will also limit our study to aspects of the analysis that
can be summarized by the sample influence curve, to be described here
at some length. Other approaches to the study of influence are
described in later chapters.

3.1 Motivation

Not all cases in a set of data play an equal role in determining estimates,
tests, and other statistics. For linear least squares, the results of the last
chapter suggest that cases with v; near 1 or with large Studentized
residuals will play a larger role. In some problems, the character of the
regression may be determined by only a few cases while most of the
data is essentially ignored. An extreme example of this is given in
Fig. 3.1.1 for simple regression. If the one point separated from the
others is moved, downweighted, or completely removed from the data,
the resulting analysis may change substantially, as illustrated by the
two regression lines computed with and without the separated point.
While the change in the line can be anticipated from inspection of the
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Figure 3.1.1 A simple regression scatter plot. —— regression of y on x, all

data, R? = 0.90. - - - regression with the separated case removed, R* < 0.01
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scatterplot, the change in other summaries such as R? can be startling.
For the complete data in Fig. 3.1.1, R? = 0.90, while if the one
separated case is removed R? is less than 0.01 (see Weisberg, 1980a.
Example 3.3, for a discussion of the dependence of R? on the spread of
the independent variables).

Table 3.1.1 contains a further example of a somewhat different
character. In fitting the model Ey = f,+ 8, x, + 8, x,,case 4 may be
considered an outlier because of its large Studentized residual, but it
will have only modest influence on the estimates of the fis. Deletion of
case 6, with vge = 1, will result in a rank deficient model, so this case has
a large influence. This example is deceptively simple, but the same
conditions can occur in much larger problems if the role of case 6 is
taken over by a small set of cases, and if the structure of x, and x, is
made less obvious by a nonsingular linear transformation.

Table 3.1.1 A hypothetical example

Case x; x; y vy ¢ r; t
1 I 1 3 04714 —0.1286 —0.3886 ~0.34
2 1 2 4 0.2857 —0.1429 -03714 —0.33
3 1t 3 5 0.1857 —-0.1571 —0.3826 —-0.34
4 1 4 7 0.1714 0.8286 2.0000 5]
5 1 5 7 0.2429 -0.1857 —0.4689 -0.42
6 0 6 8 1.0000 0 Undefined  Undefined
7 17 9 0.6429 -0.2143 —0.7878 -0.74
Bo = 1.914 (t = 2.64); B, = 0.200 (1 = 0.37); ff, = 1.015 (¢ = 10.76).
6% =0.2071; df = 4; R* = 0.97

The ability to find influential cases can benefit the analyst in at least
two ways. First, the study of influence yields information concerning
reliability of conclusions and their dependence on the assumed model.
For example, the usefulness of the complete data regressionin Fig. 3.1.1
is highly dependent on the validity of the separated case. Alternatively,
if deletion of an influential case from a data set changes the sign of an
estimated parameter, relevant inference concerning that parameter
may be in doubt. Second, we shall see that cases in the p-dimensional
observation space that are far removed from other cases will tend to
have, on the average, a relatively large influence on the analysis. This, in
turn, may indicate areas in the observation space with inadequate
coverage for reliable estimation and prediction.
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The techniques developed here are not intended to provide rules for
the rejection of data, as influential cases are not necessarily undesirable.
Often, in fact, they can provide more important information than most
other cases.

The emphasis in this chapter is on detecting influential cases rather
than on how to deal with them once they are found, since final
judgments must necessarily depend on context, making global recom-
mendations impossible. Some of the possible actions can be given,
however. If the influential cases correspond to gross measurement
errors, recording or keypunching errors, or inappropriate experimental
conditions, then they should be deleted or, if possible, corrected. If an
influential case cannot be traced to conditions that justify its removal
and the model is known to be approximately correct, a formal outlier
test might be useful, although such tests cannot be expected to be
powerful. Collecting more data or reporting the results of separate
analyses with and without the cases in question are two additional
possibilities that are often appropriate. Finally, in situations where
predictions are important it may be possible to circumvent partially the
effects of influential cases by isolating stable regions, or regions where
the influence is minimal and unimportant.

In the next three sections of this chapter we review some of the results
concerning the influence curve. Sample versions of the influence curve
provide justification for the basic tools used for finding influential
cases.

3.2 The influence curve

Let 7, be a vector-valued statistic of length k based on an independent
and identically distributed sample z,, z,, . . . , z, from the cdf F defined
on R™ Of interest is the assessment of the change in 7, when some
specific aspect of the problem is slightly changed. A first step in such an
assessment is to find a statistical functional T that maps (a subset of ) the
set of all cdf’s onto R* such that, if F is the empirical cdf based on
1,.7,, .. .. I, then T (F) = T,. If such a functional exists, then we can
study the properties of 7, by examining the behavior of T (F) or T (F)
when F or F is perturbed.

As a simple example, considerm = k = land T, = n™' £z; = 7, The
corresponding statistical functional is

T(F) = [2dF(2)
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so clearly T'(F) = _[zdﬁ = Z. This estimator would be called robust
if ‘small’ changes in F or F do not produce wild fluctuations in 7 (F)
or T'(F).

To aid in our study, we make use of the influence curve (Hampel,
1968, 1974; nearly parallel work appears in Tukey, 1970, and Andrews,
Bickel, Hampel, Huber, Rogers and Tukey, 1972), and. in particular,
various finite sample versions derived from it. For the most part, our
approach to the influence curve is heuristic; for rigorous treatments.
interested readers are urged to consult recent books by Huber (1981)
and Serfling (1981).

Let &, denote the cdf giving mass 1 to z in R™. The vector-valued
influence curve IC, ((z) of T at F is defined pointwise by

IC, 1(2) = lim LL=9F teé:] ~T(F)
e—~0, 3

(3.2.1)

provided the limit exists for all zin R™. Thus, the influence curve is just
the ordinary right-hand derivative, evaluated at ¢ =0, of 7'[(1 —¢)
F +¢d,]. It gives a measure of the influence on the statistical functional
T of adding an observation at zas n — co. For notational simplicity. the
dependence of the influence curve on F and 7 will be supressed when no
confusion is likely to result.

The original use of the influence curve and related notions exploited
by von Mises (1947, 1964) and expanded upon by Reeds (1976) is in
determining asymptotic properties of an estimator. Hampel (1968) and
Andrews et al. (1972) use influence curves to compare estimators and to
suggest robust modifications of existing estimation techniques. For
example, M-estimators are modified versions of maximum likelihood
estimates that have desirable properties for the corresponding
influence curves. The main use in this work is anticipated by Devlin,
Gnanadesikan and Kettenring (1975), Pregibon (1979, 1981), Cook
and Weisberg (1980), and Hinkley (1977): The influence curve is used to
monitor the influence of individual cases on estimates.

The following introductory example illustrates the use of the
influence curve and suggests specific procedures for special purposes.

EXAMPLE 3.2.1. THESAMPLE AVERAGE.. The influence curve for
w=T(F)={zdF(with k =m = 1) can be computed directly from
(3.2.1) to be
1—¢ 5z — ’
IC(2) = lim L ZOKYezz0 (322)

£—-0 €




106 RESIDUALS AND INFLUENCE IN REGRESSION

An undesirable property of the sample average is that its influence
curve is unbounded; that is, small changes in F can produce large
changes in the estimator.

The influence curve can also be used in a number of ways to see how
individual cases affect the sample average. Suppose that a single
additional case z were added, giving a sample of size n+ 1 and the new
sample cdf F, = nF/(n+ 1)+ (1/(n+1))8,. It easily follows that

T(F,)=T(F)+ (z—T(Fy)

n+1
or

_ - 1
Z, =12 +;;_—T(z —2) (3.2.3)

where Z, =T(F,). For a fixed sample size n, Z, — 7 increases linearly
as z deviates from Z. This gives the influence of a single future case on
the current sample average Z and only indirectly reflects the influence of
o i=1,2,...,n on z Equation (3.2.3) is related to the sensitivity
curves suggested by Tukey (1970).

The influence of the i-th case z; on Z may be determined by removing
z; from the sample and proceeding as before,

1
I=Zyt-(z=2y) i=12...,n
]

where Z;, denotes the sample average computed without the i-th case.
This describes a collection of n influence curves obtained by deleting
each case in turn. The influence of z; on 7 is obtained by evaluating the
i-th curve at z = z;. This results in the n case statistics

Z"'Z‘(")=;(Z,-—'Z—(,')), i=l,2,...,n,

which can be expressed more informatively by writing (z; — Z;,) in terms
of the full sample average,

F—3, = (z;—3)/(n—1) (3.2.4)

Thus. the influence of a single case depends on the sample size and the
full sample residuals. Any case with a sufficiently large residual will be
influential for the sample average. O

3.3 The influence curve in the linear model

The first step in finding the influence curve for the least squares
estimator of £ in model (2.1.1) is to construct the appropriate
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functional T. Following Hinkley (1977), let the (p' + 1)-vector {x', y)
have a joint cdf F with

X\ . 1_(Z(F) y(F))
EF{(y)‘x’“}“(y"m °(F) (30

By allowing x to have design measure (3.3.1) will also describe problems
with X fixed. The functional corresponding to the least squares
estimator of B is

T(F)= X Y (F)y(F) (3.3.2)
assuming, of course, that Z is nonsingular. Next, let §, = J4 ;) be the cdf
that places mass 1 at (x7, y). The p’-dimensional influence curve as a
function of (x7, y) is defined pointwise by (3.2.1). An explicit formula is
obtained by writing

€
L((1=gF +ed,) = (1 =e)Z(F)+—xx") 335

V(1 —e)F +¢€d,) = (1 — &)y (F)+eyx
From (3.3.3) updating £~ (F) to 7 ((1 — ¢)F +¢4,) is equivalent to
adding a new case at x with weight ¢/(1 —¢). Using Appendix A.2,

E-1(1 —&)F +¢5,) =T1—[z-‘(m——8—-z-*(n X
—¢ 1—¢

x(1 +1—P_'—;x72"(F)x)"xTZ_’(F)} (3.34)

Substituting for T( (1 —&)F +¢d,) in the definition of the influence
curve, simplifying, and taking the limit gives

IChp(x,y) =Z 1 (F)x(y —x"T(F)) (3.3.5)

If interest centers on a set of ¢ independent linear combinations
of the elements of B, then it is more appropriate to consider the
influence curve for these combinations. Let = Zf, where Z is a
q x p’ rank g matrix. It is easily shown that the influence curve for
V=Zf=17ZT(F)is

ICy r(x,y) = ZxICy (X, y) (3.3.6)

As with the influence curve for the sample average, the influence
curve for linear least squares regression is unbounded in each
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component as y — X'1"(F) becomes large. This observation has led to
the development of robust regression methods that generally bound
influence by downweighting cases with large residuals. In addition,
however, the componentwise influence can grow large, even if
y— XTT'(F)issmall, if x is far from Ep(x)and substantially in a direction
of an eigenvector corresponding to a small eigenvalue of Z(F). Robust
regression methods may also be highly influenced by such cases, as
discussed in Chapter 5.

For the influence curve to provide a useful diagnostic procedure in
regression, (3.3.6) must be modified by replacing (x, y) by (x;, yi)
i=12...,n and by replacing parameters by statistics. Although
(3.3.6) is a useful theoretical diagnostic, as Hampel (1974), Mallows
(1975). and others have pointed out, it describes an estimation
technique with respect to a theoretical sampling population F. In any
finite sample situation, more information relevant to the specific
problem can be obtained by removing dependence upon F and using an
asymptotically equivalent finite sample version, like those in
Example 3.2.1, that corresponds directly to the observed data.

3.4 Sample versions of the influence curve

Several finite sample versions of the influence curve that depend on an
observed sample have been suggested. Two of these, which shall be
called the empirical influence curve (EIC) and the sample influence
curve (SIC), have received the greatest attention, and will be discussed
most completely here; both are discussed by Mallows (1975). They will
be presented as a continuation of the previous section on least squares
estimation of 8, but the ideas are general and the application to other
situations should be clear.

34.1 EMPIRICAL INFLUENCE CURVES

In general, the EIC is obtained by substituting the sample cdf F for F
in the influence curve. For linear models, using (3.3.5) and setting
B =T (F) gives : '
EIC(x, y) = n(X"X) " 'x(y —x"f) (3.4.1)
and
EIC, = EIC(x;, y;) = n(XTX) 'x¢; (3.4.2)

where, as usual, ¢; = y, — x] f. The EIC is appealing on several grounds,
as it appears to be an exact analogy to the influence curve. It measures
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the effects of an infinitesimal perturbation of £ at x;, and corresponds
to the infinitesimal jackknife method of Jaeckel (1972: see also Miller.
1974). The EIC pretends that an infinitely large sample has been used to
obtain F, and it measures the instantaneous rate of change in the
estimator as a single case at x is added to the data.

A second sample version of the influence curve can be constructed to
display the influence of the i-th case on the computed estimate of f. The
general idea is to substitute the sample cdf with the i-th case deleted for
F in the influence curve and then evaluate the resulting EIC at the i-th
case. This is analogous to the treatment in Example 3.2.1.

Let F; denote the sample cdf with the i-th case deleted. For least
squares estimators of f, substitution of F“(,», for F in (3.3.5) yields an
empirical influence curve with the i-th case deleted,

EIC4(x, y) = (n = 1)(X{ X)) " x (3 = x" ) (34.3)
where ﬁ(,-) = 7'(ﬁ(i,) and
X5 X/ (n—1)y = [xx"dF

This represents n EICs, one foreach i = 1,2, ..., n. The influence of
the i-th case is determined by evaluating (3.4.3) at (x;, y;).

EIC,(x;, y)) = (n— 1)(X'(ri) X))~ ! X (y; — X;'rﬁ(i)) (3.4.4)

Using the relationships in Appendix A.2, this can be more informatively
expressed in terms of the full sample,

EIC,(x;, yi) = (n— D(XTX) " I xie,/(1 — v)? (3.4.5)

The interpretation of EIC;, is analogous to that for EIC. It should be
remembered, however, that EIC;, is the result of the evaluation of n
separate influence curves.

34,2 SAMPLE INFLUENCE CURVES

Both the EIC and EICy, are constructed under the fiction that
infinitely large samples have been used to obtain F and £,
i=1,2,...,n The sample size n in (3.4.2) and (3.4.5) appears as a
result of the covariance structure and does not necessarily reflect the
effects of a finite sample. When investigating the influence of individual
cases on computed statistics, a more explicit dependence on n is
desirable, or else important finite sample characteristics can be
obscured. A more desirable sample version of the influence curve can be
obtained by setting F = F and taking e = — 1/(n — 1) in the definition
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of the influence curve (3.2.1). Evaluating at z{ = (x{, y;)ande = —1/(n
—1), we find (1 —e)F + sél‘ = F;,. The sample influence curve is then

SIC; = —(n—1) (T(F)~T(F))

= (n-1)(F~By) (3.4.6)
_(n—-1) (XTX) " 'xe
- 1 —-v;

which is proportional to the change in the estimate of # when a case is
deleted.

The essential difference between these three sample versions of the
influence curve appears in the power of the (1 —u;) term in the
denominators, while the numerators are essentially the same when
evaluated at the sample points, Recall that remote rows of X will tend to
have | — v;; small. The EIC;, will be most sensitive to cases with v;; large,
while EIC will be least sensitive. The SIC lies between these versions in
terms of relative weight given to v;;.

Any of these sample versions of the influence curve for § may be
transformed to a sample influence curve for ¢ = Z g by multiplying on
the left by Z; see (3.3.6).

An alternative and perhaps more immediately revealing derivation of
EIC;, EIC, and SIC; can be obtained from a related perturbation
scheme (Pregibon, 1979, 1981; Belsley et al., 1980). Let all cases have
error variance a2, except for case i with var (g,) = o2/w;, w; > 0. Then,
using Appendix A.2, the weighted least squares estimator of f as a
function of w; can be written as

o a XTI (- we,
Bw)=p—— T (34.7)
Differentiating (3.4.7) with respect to w; yields
s d oo (XTX) xe
Af(w) = aw, Blw) = = —wo (34.8)

The EIC;, apart from the multiplier n, is found by evaluating A B(w;) at

w; = 1 and thus describes the rate of change in the estimator as w;

deviates from 1. Similarly, the EIC;, is found by evaluating A f(w;) as

w; — 0. and it measures the rate of change in the estimator as the i-th

case is deleted. The SIC is a compromise between EIC and EIC, since
1

(n—=1)7"'SIC; = J AB(w;)dw, (3.4.9)

V]
is the average gradient over the whole interval.



ASSESSMENT OF INFLUENCE 11

EXAMPLE 34.1. cLoUDSEEDING NO, 6. Figure 3.4.1 contains a
graph of the estimate of f, 4 from the cloud seeding model (2.4.23) with
A = 1/3 as the weight for case 2 is varied from O to 1. The comments
made above concerning the three empirical influence curves are clear.
The EIC corresponds to the derivative at w; = |, which seems too small.
while EIC;,, the derivative as w; — 0, seems too large. The SIC, which
corresponds to the slope of the line joining B(0) and f(1), appears to
provide a more satisfactory summary of this curve.[]

2.0 8.2 0.4 0.6 9.8
w2

Figure 3.4.1 J§,4(w,) versus w,, cloud seeding data. Note: s.e. (B,.(1) =
0.177, s.e. (B,4(0)) = 0.324

EXAMPLE 3.4.2. PARTIAL F-TESTS. Partial F-tests for the hypoth-
esis that the individual coefficients of f are zero are commonly used to
simplify a linear model. When using this procedure, it is not uncommon
to find that retention of a particular coefficient depends on the presence
of a single case. This behavior seems particularly prevalent when the
model contains polynomial terms. The influence of individual cases on
the partial F-tests can be seen from the SIC for the associated F-
statistics (Cook, 1979).
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Let f, denote the k-th component of f§ and define

T = Bk/&\/(bk)

where b, is the k-th diagonal element of (XTX)' The partial
F-statistic for the hypothesis that 8, = 0 is F, = 12. Further, let ﬂk(,,,
Tuiip Duciy G8y» and F;, denote the analogous quantities based on the
data set without the i-th case,
Characteristics of the SIC; = (n— 1) [F, — F};] are most easily seen
by expressing F,; as a function of F,. We consider the three
components comprising F,;, separately: using Appendix A.2,

ﬁk(i) = Bk — e/ (1 =),
bk(i) = b, + Cl%i/(l - Uyi),

6hy=[n—p)o*—el/(1-v)]/(n—p' —1)
o = 4N (XTX) " 'x

and

where

and d, is a unit vector of length p’ with 1 in the k-th position. After
substituting these three forms into

Fk(i) = ﬁf(n/&(zi)bk(i)
a little algebra will verify that

[Tk U,"' 1/27]2

—-p

(""P “1) (1 _”u> :]

Foo =G0 Ui oy MO

where p denotes the correlation between f, and x7 f, and r, is the i-th
Studentized residual.

Recall that v;/(1 — v;) will be relatively large for remote points. The
term (n—p — 1)r2/(n—p' —r?) = t? will be large when the i-th case is
an outlier, and under the null hypothesis it has an F(l,n—p —1)
distribution.

It seems clear from inspection of Equation (34 10) that almost
anything can happen to the partial F-statistics when a case is removed.
Two general observations seem particularly interesting, however:
Suppose that the deleted case appears to be an outlier (r? is large) and
that p(r;;/(1 —v;))''2 is negligible; empirical investigations indicate
that typically p is not negligible by itself. Then,

n—p —1
Fk(l) Fk(n p?;‘i‘>> Fk




ASSESSMENT OF INFLUENCE 113

Deleting a case with r? > 1 in a dense region will tend to increase all
partial F-statistics.

Next, consider the deletion of a point that fits the model quite well
(r? <1). Then,

F._F :{PTk[Uii/(l—'l’ii)]m’*"i}z_ 2
ke L+ p2o/(1 —vy) :

and we can generally expect all partial F-statistics greater than one to
decrease when a conforming point which has v; large is deleted.[]

3.5 Applications of the sample influence curve

The sample influence curve defined at (3.4.6) has natural appeal as the
basis for diagnostic techniques that locate influential cases. We recall
again its basic properties: It is computed from observed data and apart
from constants it is interpreted as the change in a statistic when a case is
deleted. Also, for many problems including linear least squares
regression, the SIC, or approximations thereof, can be easily computed.
We shall see that the sample influence curve has other desirable
properties derived from geometrical considerations and from exten-
siops to the study of the influence of groups of cases.

In the remainder of this chapter, methods for finding influential cases
are developed from the sample influence curve; methods based on the
EIC or EIC can be developed similarly. To be most useful, such
methods should allow the cases to be ordered on the basis of influence.
For linear least squares, the SIC for f is a p-dimensional vector and
there is no natural ordering of multidimensional vectors. Even in the
case p' =2 where a scatterplot of the SIC can be constructed and
inspected, there is no natural way to construct a complete ordering of
the points on the basis of influence. It is necessary. therefore, to use a
norm to characterize influence and order cases. A norm may be
regarded as a function which maps the SIC into R!. Of course, there isa
natural ordering (less than) for points in R'. The choice of a norm to
characterize the SIC is a crucial part of the study of influence.

Norms can be usefully defined from properties of a model. We call
such norms external. Alternatively, they can be defined without
reference to the model by considering the n values of the sample
influence curve as a multivariate sample, and applying an internal norm.
After a study of characterizing norms for the influence of a single case.
we turn to multiple case influence measures, which are straightforward
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generalizations of the one-at-a-time statistics. Other norms for in-
fluence are discussed in Chapters 4 and 5.

3.5.1 EXTERNAL SCALING

In linear least squares regression, the sample influence curve for g is
given by

(n—1)"'SIC; = B— By (3.5.1)

Since SIC; is a p'-vector, it is useful to consider norms D;(M, ¢)
determined by a symmetric, positive (semi-)definite p’ x p’ matrix M

and a positive scale factor ¢:
SIC‘ M SIC‘
D;M, ) = (n—l)z—————~—————( ) MSIC)

_ (By— B™™ (B, — B)

4

(3.5.2)

Contours of constant D;(M, c) are ellipsoids of dimension equal to the
rank of M. The contours may be viewed as being centered at f or ﬁ(,-,,
both interpretations being used in what follows.

This general norm has a useful interpretation in terms of linear
combinations of the elements of f#. Let z denote an arbitrary p’' x 1
vector, k = ((n— 1)2c)~! and, assuming that M is positive definite, let

¢ ={z|2™™ "'z <k}
As a function of z, the SIC for 27§ is

SICi(z) = (n— )2"(B— B)
and

max [SIC;(z)]* = D;(M, ¢)

zed

The maximum is attained in the direction of M (B — B,;,). Thus, D;(M, c)
can be interpreted as the maximum over z of the squared sample
influence curves for z f when z is constrained to lie within the ellipsoid
&. Of course, the ordering over i of these maxima will not change if
k > 0 is allowed to be arbitrary, but independent of i.

Clearly, the character of D;(M, ¢) is determined by M and ¢, which
may be chosen to reflect specific concerns. In what follows, we discuss
both internal and external norms. The inner-product matrix M is
nonstochastic for external norms in linear least squares. For internal
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norms, which are developed in Section 3.5.2, M is stochastic even for
linear least squares.

A form of D;(M, ¢) that reveals the effects of varying M and ¢ is
obtained by using Appendix A.2 to express B in terms of the full
sample,
exF(XTX) IM(XTX) xe;

Di(M1C)=
c(l—v;)?
_ FxT(XTX) P MIXTX) 'y
e (I —vy)
P
= riz—c—P,-(M) {3.5.3)

where r, is the i-th Studentized residual and P;(M) is defined implicitly
in this expression. By the nature of the regression problem, M and ¢
should be chosen to make D; (M, ¢) invariant under changes of scale and
nonsingular linear transformations of the rows of X. In particular, ¢
should be chosen so that §%/c is scale free. While there are many ways to
achieve this, two stand out as obvious candidates: Choose ¢ = ké? or
kéZ,, where k > 0 is a known constant that does not depend on X. The
former choice was suggested by Cook (1977a, 1979) and Cook and
Weisberg (1980), while the latter choice has been suggested by Belsley et
al. (1980) and Atkinson (1981, 1982). If ¢ = k&2, then r2é?/c = r}/k.
On the other hand, when ¢ = ké, it follows from (2.2.8) that r}é?/c
= t?/k where, as before, t? is the i-th externally Studentized residual.

For either of these choices for c, the stochastic part of D;(M, ¢)
depends only on r?. Since the null distribution of r? does not depend on
X, or on the actual values of the parameters, it is reasonable to ask how
the influence of the i-th case can be altered when the fit, as measured at
the i-th case by r?, is fixed, With r? fixed, it is clear from (3.5.3) that
influence is a monotonically increasing function of P,(M). If P;(M) is
large, the observed value of r? must be small for the case to be
uninfluential. However, Er? = 1 under a correct model and thus cases
with large P;(M) will typically be influential.

If M is nonstochastic, then so is P;(M), and its magnitude depends on
the location of xT relative to the distance measures determined by the
inner-product matrices (X"X)"!M(XTX)"! and (X"X)" . It can be
expected that cases with large v;; will have P;(M) large also. However,
this need not necessarily follow since by choice of M the numerator of
P,(M) can be small even if vy is large.

We view P;(M) as the potential, relative to M, for the i-th case to be
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influential. Potential is important since it can be used to describe and
detect configurations of the rows of X that are likely to produce highly
influential cases.

M= XX, ¢ = p'6*

Although the class of invariant norms is large, one stands out by appeal
to usual confidence ellipsoid arguments. A (1 —a)x 100% confi-
dence ellipsoid for f based on B is given by the set of all f* such that

(f* = A'XTX) (B* - B)
p'd?
This ellipsoid is centered at B, with contours determined by the
eigenvalues and eigenvectors of (X"X); p'6? is a scale factor used to
assign proper values to contours. Reference to (3.5.4) suggests setting
M = X"X and ¢ = p'd? in (3.5.2), to give
s AT PO
D= D X7X, 6 = P BIXTX) Bo=B) o
p'c
This measure, first proposed by Cook (1977a), gives the squared
distance from B to ﬁ“, relative to the fixed geometry of XTX. By
exploiting the similarity to (3.5.4), values of D;(X"X, p'é?) can be
converted to a familiar probability scale by comparing computed
values to the F(p’, n— p’) distribution. For example, if D;(X"X, p'é?)
equals the 0.50 value of the corresponding F distribution, then deletion
of the i-th case would move the estimate of f# to the edge of a 50%
confidence ellipsoid relative to B. However, D;(XTX, p'é?) is not
distributed as F; this comparison is used only for converting D; to a
familiar scale (Cook, 1977b).
Figure 3.5.1 illustrates the measure D;(X "X, p'4?) for a problem with
p' = 2 and no intercept. The figure is derived from a linear approxi-
mation to a nonlinear problem to be discussed in Example 5.1.1, The
elliptical contours correspond to D;(X "X, p'3?) = constant. Although
contours of constant influence are elliptical, the (f, Ba) often tend
to have nonelliptical scatter. In the figure, they generally fall along a
curve, with the exception of the one clearly influential case in the lower-
left corner,
Alternatively, D; can be rewritten as

D, = (V- V)"V - V) (3.5.6)

1*2

pao

SF(l—a;pin—p) (3.5.4)
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Figure 3.5.1 [zz(,.,yersus B1., in a model with no intercept. + indicates the full
data estimate (f,, f,). Ellipses are contours of constant D; with values shown

where ?(,-, = Xﬁ(i). For problems where prediction is of more interest
than estimation, D; may be viewed as the usual Euclidean distance
between Y and ?(i,. Clearly, any norm in the p’-dimensional estimation
space may be regarded as a norm in the n-dimensional observation
space provided that M is of the form M = X"BX.

A computationally convenient and revealing form for D; is obtained |
by substituting M = XX into (3.5.3) (Cook, 1977a)

1
D"='~r2

7

p : I —vy;

Vii

(3.5.7)

Apart from the constant p’, D, is the product of a random term r? and
the potential P,(X"X) = v;/(1 — v;), which is a monotonic function of
v;;. For linear least squares, computation and examination of the v;; has
become common practice (see, for example, Hoaglin and Welsch, 1978),
and this is sensible if M = X "X is used to define a norm. The potential
itself can be given several interesting interpretations. Cook {1977a)
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noted that v;/(1 —v;;) = var (y;)/var (e;). Weisberg (1980a) pointedsout
that

X! (X$H X)) ™ x = va/(1— o)

so the potential is a distance relative to the ellipsoids defined by
(X{HXq) ™! Huber (1981) noted the relationship J; = (I — v;;)x] B
+ ;1 so that potential can be interpreted as a function of the relative
weight of y; in determining ¥,. Finally, v;/(1 — v;;}is proportional to the
total change in the variance of prediction at x,, ..., x, when x; is
deleted,

g/l —vy) = [Zvar(ijB(n) -2 var (X,-TB):]/GZ
Jj J

The i-th case will be called influential if D; is large; the exact definition
of large will depend on the problem, but D, greater than I, correspond-
ing to distances between 3 and B, beyond a 50% confidence region,
usually provides a basis for comparison.

EXAMPLE 3.5.1. COMBINATIONS OF r?, v;. Suppose that in a
data set with p" = 3 and n = 100, four pairs of (e;, v;;) occur as given in
Table 3.5.1. For each of these four cases D; = 3.0,s0 deletion.of any one
of the four would move the estimate of B to the edge of a 95%
confidence region about #, and each would be called highly influential.
However, the reasons for the influence in the four cases are not the
same. Cases 3 and 4 appear to be outliers given the extreme values for r;,
while for the other two cases the influence is apparent because of the
potential; the large values of v;; indicate that these cases are relatively
far removed from the bulk of the data.[]

EXAMPLE 3.5.2. RAT DATA. In an experiment to investigate
the amount of a drug retained in the liver of a rat, 19 rats were

Table 3.5.1 Residuals and v;; for four hypothetical cases

€ Vii T D;
1 0.6325 0.9000 1.000 30
2 1.732 0.7500 1.732 3.0
3 9.000 0.2500 5.196 3.0
4 16.087 0.1000 9.000 3.0
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randomly selected, weighed, placed under light ether anesthesia and
given an oral dose of the drug. The dose an animal received was
determined as approximately 40 mg of the drug per kilogram of body
weight, since liver weight is known to be strongly related to body
weight and it was felt that large livers would absorb more of a given
dose than smaller livers. After a fixed length of time each rat was
sacrificed, the liver weighed, and the percent of the dose in the liver
determined. '

The experimental hypothesis was that, for the method of determin-
ing the dose, there is no relationship between the percentage of the dose
in the liver (Y) and the body weight (X ), liver weight (X ,), and relative
dose (X ;).

The data and sample correlations are given in Tables 3.5.2 and
3.5.3(a). As had been expected, the sample correlations between the
response and the explanatory variables are all small, and none of the
simple regressions of dose on any of the explanatory variables is
significant, all having t-values less than 1 as shown in Table 3.5.3(b).
However, the regression of Yon X, X,, and X gives a different and

Table 3.5.2 Rat data. Source: Weisherg (1980a)

X y-Body weight X ,-Liver weight X;-Relative dose Y

(9) (9)

176 6.5 0.88 042
176 9.5 0.88 0.25
190 9.0 1.00 0.56
176 8.9 0.88 0.23
200 - 7.2 1.00 0.23
167 89 0.33 0.32
188 8.0 0.94 0.37
195 100 0.98 0.41
176 8.0 0.88 0.33
165 7.9 0.84 0.38
158 6.9 0.80 0.27
148 7.3 0.74 0.36
149 5.2 0.75 0.21
163 8.4 0.81 0.28
170 - 7.2 0.85 0.34
186 6.8 0.94 0.28
146 7.3 0.73 0.30
181 9.0 0.90 0.37

149 6.4 0.75 0.46
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Table 3.53 Rat data. (a) Sample correlations.

X,-Body weight (g) 1.000

X,-Liver weight (g) 0.500 1.000

X ;-Relative dose 0.990 0.490 1.000

Y 0.151 0.203 0.338 1.000

Body weight Liver weight Dose Y

Table 3.5.3 Rat data. (b) Regression summary, t-values in parentheses

Model including

Coefficient X, X, X, (X1, X3,X3)

Intercept 0.196 0.220 0.133 0.266
(0.89) (1.64) (0.63) (1.37)

B, (rat weight) 0.0008 -0.0212
(0.63) (—2.67)

B, (liver weight) 0.0147 0.0143
(0.86) (0.83)
B (dose) 0.235 4,178
(0.96) {2.74)

contradictory result; two of the explanatory variables, X and X3, have
significant t-tests, with p < 0.05 in both cases, indicating that the two
measurements combined are apparently useful indicators of Y. If X, is
dropped from the model, the same phenomenon appears. The analysis
so far might lead to the conclusion that a combination of dose and rat
weight is associated with the response. '

Figure 3.5.2 gives plots of r;, v;, and D; against case number for the
model Yon X, X,, X;. The r; do not display any unusual features as
they are all less than 2, without obvious trends or patterns. However,
inspecting the D;, we locate a possible cause: case 3 has D3 = 0.93; no
other case has D; bigger than 0.27, suggesting that case 3 alone may have
large enough influence to induce the anomaly. The value of v, = 0.85
indicates that the problem with this case is that the vector x, is different
from the others.

When case 3 is deleted, and the model is refit, the t-values for the
coefficients of X,, X,, and X5 are all substantially less than 1 in
absolute value, so the anomalous result of a significant pair of
regressors can be attributed to case 3 alone. Of course, this could have
been anticipated from the discussion given in Example 3.4.2.
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The reason for the influence of case 3 must now be studied.
Inspection of the data indicates that this rat, with weight 190 g, was re-
ported to have received a full dose of 1.00, which was a larger dose than
it should have received according to the rule for assigning doses (for
example, rat 8 with a weight of 195 g received a lower dose of 0.98). A
number of causes for the result found in the first analysis are possible:
(1) the dose or weight recorded for case 3 is in error or (2) the
regression fit in the second analysis is not appropriate except in the

2 PO
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. Figure 3.5.2. Rat data: plots against case number. (a) r;. (b) r; (cont'd

overleaf’)
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1.00

0.7 —

0.58 —

9.25 |—

0.00 — * H—R A
%) ) 10 1S 20
(¢} Case number

Figure 3.5.2 Rat data: plot against case number. (¢) D;

region defined by the 18 points excluding case 3. This has many
implications concerning the experiment. It is possible that the combi-
nation of dose and rat weight chosen was fortuitous, and that the lack
of relationship found would not persist for any other combinations of
them, since inclusion of a data point apparently taken under different
conditions leads to a different conclusion. This suggests the need for
collection of additional data, with dose determined by some rule other
than a constant proportion of weight.[]

Alternative full rank choices for M, ¢

The choice of (M, ¢) determines the geometric character of the norm.
The class of (M, c) for which D;(M,c) is invariant under linear
transformations is large, but the examples considered in Fig. 3.5.3
depict four obvious choices corresponding to p'-dimensional elliptical
contours.

Figure 3.5.3(a) shows the measure D; = D;(X"X, p’6?) that has been
previously considered. All points on the ellipsoid drawn have the same
value for the characterizing norm. Measures using M = X[, X,
(Figs. 3.5.3(b) and (c)) can be usefully viewed as corresponding to
measuring the distance from B to B relative to the ellipsoid defined
without the i-th case and centered at ;. As illustrated, the resulting
ellipsoids need not all be of the same shape, and thus direct comparison
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Figure 3.5.3 Graphical comparison of four norms: (a) D;(X"X, p'é2). (b)
Dy(X§) Xy, p'62). (0) Di(X[) Xy, p'GE). (d) DUXTX, ')

of the norm from case-to-case is questionable. From Fig. 3.5.3(b), for
example, deletion of case 2 appears to lead to more nearly circular
contours than did deletion of case 1 and, while D (XX, p'é?)
= D,(XTX, p'é%), the relationship between D (X[,X, p'd?) and
D, (X%, X2y, p'6?) is uncertain, as either may be larger.

In Fig. 3.5.3(b), ¢ = p'6* while ¢ = p'd, in Fig. 3.5.3(c). These two
figures look alike and they have the same contours of constant value,
but the values assigned to the contours are different, as the scale factors




124 RESIDUALS AND INFLUENCE IN REGRESSION

are different in each figure. This, too, has the effect of making
comparisons between cases more difficult.

The fourth measure, graphed in Fig. 3.5.3(d), can be viewed again as
the distance from f;;, to f using ellipsoids determined by the full sample
M = XTX, but applying different scale factors for each i, so compar-
ability of the values of the norm is again unclear. The measure

'Di(X'X, 6{)) has been called (DFFIIS) by Belsley et al. (1980).
" Atkinson (1981) discusses [D;(X7X, po(,,/(n—-p’))]"z.

Other differences between these norms can be seen by examining
their algebraic forms, as listed in Table 3.5.4. Atkinson suggests using
a2, in place of &7 since this will give more emphasis to outlying cases
(t? > r? whenr? > 1). Belsley et al. replace 62 with 63, in order to make
the denominator statistically independent of the numerator under
normal theory. We prefer measures based on a fixed geometry where M
and ¢ do not depend on i since such measures provide an unambiguous
ordering of cases. In addition, &% could be replaced by a robust
estimator in order to reduce the effects of outlying cases on the
estimated scale.

Table 3.5.4 Normed influence measures. Source: Cook and Weisberg (1980)

M ¢ Reduced form
X'X o L Vi
p -y
1 Uy
X'X al —t} =
Pag Py,
x(Tl'lx(l') ' P’(;Z Lr Uii
]
X X oG 'I;T‘izvii
T(XTX) ! XTX -1
[diag(X*X)" '] p'al i,t,?x' (X7X) 1 MIX'X) x
P — by
I e 1 XX
P 1 — vy

Lower-dimensional norms
If M 1s chosen to have rank ¢ < p’, contours of constant D;(M, c) are
g-dimensional ellipsoids. In particular,if Zis a g x p’ rank g matrix such
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that ¢ = Z g is of interest, then the norm with
M=ZTZ(X'X)"'Z")"'Z; c = qd? (3.5.8)

is an invariant norm corresponding to g-dimensional ellipsoidal
confidence contours for y based on ¥ = Z§.

Suppose a subset of the elements of f, say the last g, is of interest.
Partition X = (X, X;), where X, is nx ¢. If Z = (0, 1),

(X7X;)™' 0
0 0

Substituting this choice of M into the general form (3.5.3) for D;(M, ¢)
and simplifying yields

(XTX) I M(XTX)™! = (XTX)™! —[ } (3.5.9)

2 2 *
i Oy—Uy _ry Wy

D} = D;(M, ) = — =

q 1—uvy q l—uv;
where U =X, (XTX,)"'X], and W* =V —U projects onto the
columns of (I—U)X,. The u; can be obtained from the projection
matrix for X,, and the w¥ obtained by subtraction. The potential P,(M)
for this measure is w}/(1 — v,;) which will tend to be relatively small if
the i-th row of (I — U)X, is sufficiently close to zero or to the sample
average if the constant is not in X,.

Two special cases of lower-dimensional norms are of some interest.
If we set g = 1, then the measure concentrates on a single coefficient of
the parameter vector. If ¢ = ¢, is used to replace ¢ = 2, the resulting
measure is called DFBETAS,;; by Belsley et al. (1980). The potential
when g = 1 will be small if the i-th residual from the regression of X, on
X, is small. In the general situation with g = I, suppose ¥ = '8, If
¢ = 62, the norm becomes (Cook, 1977a)

D;(M,c) = p'Dip*(x] B, 2" B) (3.5.11)

(3.5.10)

where p(.,.) is the correlation. The maximum p'D; of this norm for
fixed i occurs at z = x;.
If g = p, c = pé?, and the intercept is excluded, then

0o 0
M=<0 wer) (3.5.12)
and ,
DM, ¢) = 1L 2= 1/m (3.5.13)

p 1—uy
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When the intercept is not of interest, this last measure may be
preferable to the more usual D; = D;(XTX, p'd%). We will continue to
use D; since modification of results for (3.5.13) is straightforward.
When x; = X, v; = 1/n, and measure (3.5.13) is zero. Relative to this
measure, observations at X have no influence.

EXAMPLE 3.53. cLoup sEepING No. 7. For the cloud seeding
data, the coefficients for the seeding effect and interactions are of
primary interest, so the choice of

WT = (Bh[}l:!,/’l«taﬁlS’ﬁlG)

is suggested. The distance measure based on ellipsoids for , can be
computed from (3.5.10). For the data using Y*/® and P*/® the values
of D; and DY are given in Table 3.5.5 (the other columns in this table
refer to a later example). The ordering of cases on influence is similar for
the two measures. Case 2 is the most influential, but D, is over three
times the size of D%.0J

Predictions
The diagnostics considered thus far measure the influence of individual
cases in terms of their effects on the estimation of selected linear
combinations of the elements of . The general measure D;(M, ¢),
however, is applicable in situations where prediction rather than
estimation is the primary goal.

Let X, bea g x p’ matrix and suppose we wish to predict the g-vector
of future values

where &, is independent of the vector of errors eAin (2.1.1) and
Var (¢,) = ¢21. A point prediction for Y, is ¥, = X, 8, and

Var(Y,-Y,;) = o X (X"X)"*X] + 0?1 (3.5.15)

A (1 —a) x 100% normal theory prediction region for Y is given by
the collection of all g-vectors Y* such that

(Y, = Y5 [X, (XTX) ' XF+177 (Y, - Y¥)
~2
4o

SF(l—aq,n—p)
(3.5.16)

The sample influence curve for the point prediction ¥, is propor-
tional to (¥, — ¥, ) = X; (B — By;,). This in combination with (3.5.16)




Table 3.5.5 Influence statistics, cloud seeding data

Case e r; v L D, DY 89 5! J;
1 0.578 0.522 0.552 0.507 0.030 0.031 0.703 0.774 0.172
2 -0.301 —1.143 0.975 —1.158 4.555 1.377 0.816 1.000 62.189
3 —0.645 —0.638 0.626 —0.622 0.062 0.043 0.547 0.605 0.192
4 1.287 0.940 0.314 0.935 0.037 0.024 0.700 0.492 0.073
5 -0.872 —0.686 0411 —0.672 0.030 0.012 0.396 0.355 0.056
6 0.303 0.300 0.627 0.289 0.014 0.011 0.291 0.510 0.103
7 —2.861 -2.573 0.548 —3.528 0.729 0.714 0911 0.935 0.220
8 2.438 1.683 0.233 1.828 0.078 0.097 0.727 0.480 0.061
9 0.070 0.055 0.412 0.053 0.000 0.000 0.009 0.008 0.001
10 —1.545 —1.165 0.358 —1.183 0.069 0.077 0.493 0.367 0.059
11 0.747 0.554 0.334 0.538 0.014 0.012 0.284 0.157 0.032
12 —0.951 —0.630 0.167 —-0.615 0.007 0.008 0.349 0.052 0.025
13 0.138 0.106 0.387 0.102 0.001 0.001 0.032 0.026 0.004
14 —0.203 —-0.135 0.170 —-0.130 0.000 0.000 0.008 0.003 0.00t
15 2.165 1.620 0.347 1.742 0.126 0.154 0.709 0.637 0.082
16 0.045 0.035 0.374 0.033 0.000 0.000 0.002 0.001 0.000
17 - 0.881 —1.071 0.753 - 1.078 0.318 0411 0.900 0.980 0.724
18 0.303 0.601 0.907 0.586 0.320 0.399 0.409 0.974 2.326
19 0.071 0.050 0.261 0.048 0.000 0.000 0.002 0.001 0.000
20 0.645 0.638 0.626 0.622 0.062 0.071 0.547 0.605 0.192
21 —0.495 —0.345 0.249 —-0.333 0.004 0.003 0.086 0.023 0.008
22 1.125 0.817 0.307 0.806 0.027 0.032 0425 0.272 0.044
23 1151 1.080 0.585 1.088 0.149 0.185 0.744 0.835 0.212
24 —-2313 - 1.938 0.479 -2.209 0.315 0.303 0910 0.908 0.165
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suggests the norm D;(M, ¢) with ¢ = g¢? and

M = XT{X,(XTX)" !X +1]" !X, (3.5.17)
If a single prediction is of interest then ¢ = 1, X, = xJ and
Di(M, ¢} = p'Dip*(x] B, x] BYo, /(1 +v;) (3,5.18)

where v, = xJ (XTX)"!'x, and p? is defined following (3.5.11). Thus,
the norm of the sample influence curve for a single prediction is simply
the analogous norm (3.5.11) for estimation, reduced by the factor
v, /(1 +v,). Clearly, p'D; provides an upper bound for predictive as well
as estimative influence.

A drawback to the use of D;(M, ¢) for prediction is the requirement
that X, be specified a priori. If a model is to be used primarily for
prediction. X ; may not be known during the development of the model.
A possible solution to this problem is to construct X, by choosing
points that in some sense cover the region of interest. Coverage could
be reflected both in terms of the location of the points and their density.
From this point of view, a useful default is the choice X, = X; that is,
consider the predictions at the cases used to construct the model. Then,

M = XT[1+V]~'X = }(X7X)
since [1+V] ! =1-4V. When X, =X,
D,M, ¢) = £ p, (3.5.19)
2n

A second possible solution to the problem of an unspecified X , is to
set ¢ =1 and, for each i, choose X, to maximize (3.5.18). Let

vy =% (XTX)7'x, and rewrite (3.5.18) as
r2p2,
DM, ¢) = —— L

M9 = Ty

Thus, maximizing D;{M, c) by choice of X, is equivalent to maximizing
vZ/(1 +v,) (see Appendix A.3). It follows that

vl 1
max (~£~) = py—— (3.5.20)
x, \1+v, n+1
and therefore
i—1/n+1
max [D;(M, ¢)] = r? ‘L—l—/-(:—-—) (3.521)
X; Vi

For large n, this is essentially p'D;.
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3.5.2 INTERNAL SCALING

In the linear least squares problem, use of an external norm that
corresponds to using confidence contours to order the values of the
sample influence curve is straightforward and appealing. These norms
are based on fixed metrics that do not depend on the observed behavior
of the sample versions of the influence curve. Of course, they do depend
on the expected behavior of the data in so far as (X7X) ™! or the related
inner-product matrices accurately reflect the variance of 8. In contrast,
internal norms are based on a matrix that derives from the observed
values of the appropriate sample version of the influence curve. Internal
norms may be constructed to be robust with respect tG variations in the
model or methods of analysis that would necessitate different external
norms. If, for example, the mode! were altered to have Var(e)
= g?W™! where W is known, then to be consistent with previous
rationale the inner-product matrix XX for an external norm should be
changed to XTWX,

We present two methods for internal scaling. In the first, the n values
ﬁ—-ﬁ(,-, are treated as an unstructured p’-dimensional sample, and a
multivariate outlier technique is used to order the values. Other
methods for ordering a multivariate sample are given in Andrews
(1972), Gnanadesikan (1977), and Barnett and Lewis (1978, Chapter 6).
In the second, we consider the norms D;(M, ¢), where M, and ¢ are
chosen through use of the jackknife method.

Ordering using a multivariate outlier statistic

One method that is particularly well suited for study of the n values of
the SIC is Wilks’ (1963) criterion for detecting a single outlier in a
multivariate sample. Let b,,b,,...,b, be p’-vectors, and define
b=n"'Zband A = X (b;—b) (b;—b)". Wilks’ criterion selects b, as a
possible outlier if i minimizes

|Awl
Al (3.5.22)
Since |A| is proportional to the square of the volume of a
p'-dimensional ellipsoid, minimizing this ratio is equivalent to choosing
b; to minimize the volume remaining after b; is deleted, so in some sense
b; must be far from the other vectors b;, j # i.

The results on determinants in Appendix A.2 can be used to simplify
the ratio (3.5.22). One finds that minimizing (3.5.22) is equivalent to
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maximizing the distance
6= (b;—b)"A~'(b;—b) (3.5.23)

overi=1,2,...,n For linear least squares, explicit formulae for the
&; can be obtained for any of the empirical versions of the influence
function discussed earlier in this chapter. It is useful here to discuss the
EIC and the SIC separately.

For the empirical influence curve (3.4.2), it is sufficient to take
b, = (XTX)" 'x;e; and thus b = 0. The inner product matrix, say Ag, is
then

Ao =Y b;bl = (XTX)"’[Ze}xjx}} (XTX)"!  (3.5.24)

The quantity (n/{n—p'))A, is a robust estimate of Var () obtained
using the weighted jackknife method proposed by Hinkley (1977).
Substituting into (3.5.23), the corresponding normed measure is

6 = (b;—b)Ag " (b;—b)
-1
= e?xf[Zeijx}] X, i=12...,n (3.5.25)
i

The statistic 67 can be computed by first defining W to be an nx n
diagonal matrix with diagonals e}, j =1, ..., n. The ) are then the
diagonal elements of W2 X (XTWX) ™! XTW!/2 the projection on the
columns of W!/2X,

For the sample influence curve defined at (3.4.6), we can take
b, = (XTX)™ 'x;e;/(1 — v;). Since b is not zero, the form (3.5.23) does
not simplify. The cross product matrix, say A,, is

2 .
= (XTX)“<Z ej—-x-xT——niiT) (XTX)! (3.5.26)

(1 _vjj)2 JT
where nz = Zx;e;/(1 —vj;). The matrix (n—1)A,/n is the estimate of
Var (f) obtained from the usual, unweighted jackknife (Miller, 1974).
Although the corresponding internally scaled measure ! can be
computed exactly, some desirable algebraic simplification is possible if
the usually small correction for the center Z is neglected. Setting Z = 0\,\78(
and substituting into (3.5.23), the resulting measure is

e?

i x] i | 3527
(l—uﬁ)zx" 2(1_ x;x] | x (3.5.27)

5l
vy;)

e
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As with the EIC, this measure can be computed as the diagonal
elements of the projection on the columns of W'/?X, where the n x n
diagonal matrix W has diagonal elements e? /{1 — v;;)%.

Jackknife method

The jackknife can be used to provide an alternative internal scaling
method for empirical influence curves. In the most frequently used
version of the jackknife, estimates are obtained by averaging n analyses,
each obtained by deleting one case at a time from the data (Miller, 1974,
provides a review). In many problems, jackknife estimates of
parameters and variances have desirable properties. For example,
Hinkley (1977) suggests nAy/(n—p') as an alternative estimator of
Var(f) that is robust against nonconstant error variances. This, in
turn, suggests the use of J, = D;(Ag ", p'n/(n—p’)) as an alternative
to D; = D;(XTX, p'6?). The interpretation of J, is the same as that of
D,, except that the metric should now be more robust. The statistic J,,
fori=12,...,n,is given by
n—p etxI[Y el x;x]17'x

np' (1 —vy)?
n—p & '
= o) (3.5.28)

Ji=Di(Ag ', p'n/(n—p)) =

J; provides an interesting compromise between §? and é!. In addition,
the interpretation of J; as a robust version of D; has some appeal. A
drawback of J,, at least for linear least squares, is that its compultation
will generally require a second pass through the data to obtain 37, while
D, is computed directly from r; and v;.

EXAMPLE 3.54. cLOUD SEEDING No. 8. Table 3.5.5 lists the
values of 67, 8/, and J;, as well as D, and DY as discussed in Example
3.5.3 for the cloud seeding data in the cube root scale. The statistics
show reasonable agreement, although J, = 62.189 and 4} = 1.000 are
remarkably large, stressing the role of case 2 more clearly. Also. J,4
= 2.326 suggests further interest in case 18. The EIC measure 47 pays
less attention to the v;, and the 67 are large for cases with large r?.[]

3.5.3 GRAPHICAL AIDS

The study of influence can be augmented by a number of graphical
displays. The most elementary are plots of the statistics r;, v, and
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D;(M, ¢) against case number. As illustrated earlier in Example 3.5.2,
these plots provide a quick method of finding cases with large residuals,
high potential, and high influence. They will be especially effective if the
sample size is too large to make examination of lists of statistics useful,
or if the ordering of cases is meaningful.

Atkinson (1981) has suggested that influence for an entire sample can
be assessed by a display of the [D;(M, ¢)]1'/? in a half-normal plot, with
a simulated envelope added as described in Section 2.3.4, High
influence cases will appear as isolated points at the far right of the
graph. If no cases are influential this plot should be approximately
straight. If part of the plot falls outside the simulated envelope, then
some evidence is given that the assumptions used to compute the
envelope, usually normality, independence, and constant variance, do
not apply.

A third graphical aid for the assessment of influence is the added
variable plot discussed in Section 2.3.2. Using the notation of that
section, the added variable plot is a graph of the residuals obtained
when X, is deleted from the model, (I1—-U,)Y, against the residuals
from the regression of X, on the other Xs, (I - U,)X,. In some ways
these plots can be interpreted as a plot of y versus x in simple linear
regression. Individual or groups of cases that stand apart from the rest
of the cases should be investigated further. Their influence on the
coefficient in question can be determined by deleting them, either
individually or in groups, and recomputing the regression. Often, it will
be found that such cases are influential.

While these plots are undoubtedly useful in trying to understand
influence, they must be interpreted and used with some care since their
use does not correspond to any standard case-by-case diagnostic
method. When any case is omitted from the data, the projection matrix
U, changes and the entire character of the plot can change. In addition,
these plots can fail to identify highly influential cases. If the i-th
diagonal element of U, is large, the corresponding elements of (I
- U,)Yand (I - U)X, will tend to be small and thus the plotted point
may not exhibit unusual characteristics, while the corresponding case
could substantially influence j,.

EXAMPLE 3.5.5. CLOUDSEEDING No. 9. Figure 3.5.4(a) is a half
normal plot of D}/? for the cloud seeding data in the cube root scale.
The relatively wide envelope at the right of the plot suggests that an
influential case is very likely given the particular array of X'sin this data;
one such influential case is observed. Aside from this one point, the plot
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is essentially straight, suggesting that the model may be adequate. In
contrast, the plot given in Fig. 3.5.4(b) for the untransformed cloud
seeding data is generally curved. Atkinson (1982) would take this as
evidence of the need to transform the data. ]

EXAMPLE 3.5.6. JET FIGHTERS NO. 4. Added variable plots for
the jet fighter data are given in Figs. 2.3.8-2.3.10. In the plot for SLF,
Fig. 2.3.10, it appears that the F-111A suppresses the usefulness of this
variable since, if this case were deleted, the remaining cases would
appear to show a slight systematic trend. When the point correspond-
ing to the F-111A is removed from the data in Fig. 2.3.10, but the
residuals are not recomputed, the slope increases from 0.0837 t0 0.1156.
Figure 3.5.5 is the correct added variable plot for SLF, with the
residuals recomputed after the F-111A is deleted from the original data.
The slope fitted here is 0.1386, so just deleting the F-111A from
Fig. 2.3.10 results in an underestimate of the slope. Furthermore, the
spread in Fig. 3.5.5 and 2.3.10 is markedly different, and the two plots

Residuals of LFFD on SPR RGF PLF CAR

Q.4

9.9:—

_82[—

_0'4[—1|1|1111111114|11|L11|1
-3 -2 -1 %] 1 2

Residuals of SLF on SPR RGF PLF CAR

Figure 3.5.5 Added variable plot for SLF computed without the F-111A, jet
fighter data
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suggest different conclusions concerning SLF. From Fig. 3.5.5, SLF is
more clearly important. [J

3.6 Multiple cases

Both the derivation of the influence curves, and the diagnostic
procedures developed from them, have concentrated on the effects of
individual cases on estimates. For theoretical use of influence curves to
study estimators, it can be expected that a study of pointwise influence
will suffice. Additionally, in many practical data analytic problems.
consideration of cases one at a time will provide the analyst with most
of the information needed concerning the influence of cases on the
fitted model. However, it can happen that a group of cases will be
influential en bloc, but this influence can go undetected when cases are
examined individually. This is illustrated with Fig. 3.6.1. If point Cor D
isdeleted, the fitted regression will change very little. If both are deleted,
the estimates of parameters may be very different. Conversely, if A or B
is deleted the fitted line will change but if both are deleted. the fitted line
will stay about the same.

cx
%
xA
x X
x X
Y x X% x XX
8 Figure 3.6.1 Illustration of joint
X influence. Source: Cook and
X Weisberg (1980)

The generalization of the influence curve and its empirical versions to
multiple case problems is straightforward. Let 1 be an m-vector of
indices of selected cases, 17 = (i}, i, ..., in) | <i; < n, and continue
the earlier notation so that the subscript (1)’ means ‘with the m cases
indexed by 1 deleted,” while ‘1” without parentheses will mean that only
the cases indexed by 1 are remaining. For linear least squares. one
obvious generalization of the sample influence curve is

SIC, = (n—muB—Bu)
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n . . .
There are < ) possible sets of cases at which the sample influence curve
m

can be evaluated.

The (externally) normed measure D, (XX, p'6?) is

5 TreTwry B
Dy = D/(XTX, p'6%) = (Boy—B)( ;I(&zxxﬂ(.,——m B6.1)

as given by Cook and Weisberg (1980). The other externally normed
measures discussed in the last section are similarly defined for multiple
cases. The geometric interpretation of these measures is identical to
that for m = 1. An influential subset for estimating § will correspond
to a large Dy.

As might be expected D; can be expressed in multidimensional
analogues of the r; and v;;. The results are obtained by first expressing
B, as a function of B. Following Bingham (1977),

Bu) = (Xﬁ)xm)"1 X?],Y“,
= (XTX-XX))"'(X"Y-XTY)) (36.2)
The inverse in (3.6.2) is computed using the basic formula in Appendix
A2 to give
Bu = [XTX)™ !+ (XTX) ™! XF(I— V) ™! X,(XTX) ™1 ][XTY - xw,]

=f—(X"X)"! XI[-A-V) ' X B+(I+(d-V)! VY]
(3.6.3)

Since (I-V)) ' =1+(I-V) 'V,
Bu=B-(XTX)"'XTI-V) e (3.6.9)

Finally, substituting into (3.6.1) leads to the form

ef(I-V) 'V i(I-V)) !¢

1 A2

p'é
This result can be better understood by using the spectral de-
composition Vy=TATT, where I, with columns 7, is an mxm
orthogonal matrix of eigenvectors, and A is an m x m diagonal matrix

Dy = (3.6.5)

of elgenvalues 04, =...Z50,51.
D = (l“l“T FATY) !TATT(ITT-TATIT) e

1= ' A2

p'é

_(TTe)TX-A)""A(I-A)"' (I'Tey)

p'é*

(3.6.6)
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If 4,, = 1, the inverse in (3.6.6) does not exist, the data remaining after
the cases indexed by 1 are removed are rank deficient, and a unique
estimator B, does not exist. When 4,, = 1, weset D, = + c0.If4,, < 1,a
scalar version of (3.6.6) is given by

| A
Dy =— hz—’] 3.6.7
1 pl lzzl [ | 1 _ll ( )
where, forl=1,2,..., m
(y]er)? '
2 _— e —————
1 6_2(1 —‘A’) (36.8)

Under normality, the h? are identically distributed. The form (3.6.7) for
D, is directly comparable to D;, except D, is given as a sum over m
orthogonal directions of squared residuals times fixed components,
while for D;,, m = 1,

Other norms

The other choices for norms discussed in Section 3.5.1 can also be
generalized to the case m > 1 with little difficulty. In particular, if a
lower-dimensional norm corresponding to = Z B is of interest, then
DY = Di(M, ¢), with M, ¢ defined by (3.5.8), provides the appropriate
norm. One can show that ¢D¥ < p'D, for all 1 and ¢, so if D, is
negligible, so is DY. In the special case where Z = (0,1 ),and (X,, X,)is
the conforming partition of X, DY becomes

qé?Df = e[ (1-V))" (V= U)(I-V)) ' (3.6.9)

where U is the appropriate principal minor of X, (XTX,) 'X].
The internally scaled norm for SIC, can be obtained by following the
derivation in Section 3.5.2. In practice, computation of this norm for
m > 1 is likely to be impractical because of the need to compute
(I—Vy)~! (or its eigenvalues) for all possible subsets of size m.

3.6.1 GENERALIZED POTENTIAL

For m = 1, potential has been defined as essentially the fixed part of the
characterizing measure D;(M, ¢). Since each of the fixed parts of the
measures given in Table 3.5.4 is a monotonic function of v;, these
norms provide equivalent information on potential and v; is a
reasonable summary. When m > 1, the notion of potential is more
elusive since D;(M, ¢} will not conveniently factor into fixed and
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random parts. However, useful insights can be obtained from an
investigation of D;.

Dividing and multiplying the right side of expression (3.6.7) for D, by
T hi gives

‘D, = (Zh Z L (3.6.10)
pb = i) THE)T=7, 6.
This form can be simplified in two ways. First, by definition
Thi= —(—-;2—‘—)— =r? (3.6.11)

which is the generalization of r? given at (2.2.19). Next, define
q? = h}/Zhi. Under normality, each g follows a Beta distribution
with parameters 1/2 and (m — 1)/2; their joint distribution is Dirichlet.
We can therefore write

2
D =— —_— = (3.6.12
I 7 q le )

where Q; = Z¢g#4,/(1 — 4,). This form corresponds closely to that for
m = 1, since D, is factored into r#, which measures the degree to which
( Y,,'X,) is an outlying set, and a potential-like term that has random
components that are independent of the parameters in the model.

Several observations concerning Q; can be made by simultaneously
considering {q?} and the eigenvalues of V. First,

A A
< <
1-2, _Q‘—l—l,,,

This interval is nonstochastic. If 4, is small, the cases indexed by 1 will
have little potential regardiess of the observed values of {g?}. For
example, if each vy, i €1, is small, it follows that Q) must be small since

< tr (V) = Zv;. On the other hand, if 4, is large, the cases must
have high potential. Since A, < min (v;;), a necessary condition for 4, to
be large is all v;; must be large; that is, each case individually must have
high potential.

For example, suppose m = 2 and 1 = (i, f), with v = v;; = v;;(x; and
x; lie on the same elliptical contour). If, in addition, v;; = 0, then
V, =¢l, Ay = 4, = v and D;= D;+ D;. In this very special example,
the potential for this pair is large or small according to the size of v.

If m > p'.at most p’ of the eigenvalues of V,are nonzero since V| has

(3.6.13)
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rank of at most p’. Hence, for m = p', we may write

i A
o= Z fhzl

O
Y
l=m-p'+1 —'11

’

mz2p

and the potential interval (3.6.13) has a lower bound of zero.

In situations where A, is small but 4, is large, Q; depends on the
values of {g{}. When m = 2, g} is distributed as Beta (}, }), which has a
U-shaped density with most of its probability massed near G and 1. Q,
will therefore tend to fall near one of the extremes of (3.6.13), and ¢; will
tend to fall along one of the eigenvectors of V;. When m > 2, the density
of each g} is reverse J-shaped, with mode at zero. Thus when
m > p', Q; will tend to be small since each g7 will be small on the
average.

For any m =2 and under a correctly specified linear model, the
expected potential is

1
E(Q)= ZE(q,Z)X,/(l -A) = ;;Z}»l/(l ~ )
1
=;tr(V,(l-—Vl)'l) (3.6.14)

When the cases indexed by 1 form an outlying set under the shift
model Y = XB + D¢ +e¢, 62r¥/o? has a noncentral chi-squared distri-
bution with noncentrality parameter

uTu = ¢7(I-V,)¢/o? (3.6.15)

One can show that, under this model, the joint distribution of {4/}
depends on u = ¢~ (I—-A)'?I'"¢. With m = 2, one can show that

_ 1,7 l 2 2
Eq} = 1TR_3U W) [—~—"‘~]+“—‘ (3.6.16)
2 yul uTu
Clearly, outliers can occur in ways which force the potential to be large
or small.

EXxAMPLE 3.6.1, m= 2. For illustration, consider the situation in
which m = 2 and v; = v for i€1. Let p denote the correlation between
the residuals indexed by 1. Then 4, = v~ (1 —v)|p|. A, = v+ (1 —v)|p|
and the associated eigenvectors are (1, sign(p))/\/2 and
(1, —sign (p))/\/2, respectively. If | p} or (1 ~ v) is small, the potential
will be essentially deterministic and equal to v/(1 — v), which may be
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large if the points in question are remote. This situation is illustrated
for p = p’ = 2 by points x, and x, in Fig. 3.6.2. The points x, and x,
lie along the axes of the ellipse XT(XTX)™'x = v and thus |p| = 0. A
configuration for which |p| may be large is illustrated by points x,
and X; = —x,. For these points, p = v/(1 —v) and thus 1, = 0 and
i, = 2v, and Q; depends on the orientation of e, relative to the
eigenvectors (1, 1)/\/2 and (1, — l)/\/2. If the elements of e, are of
opposite sign and approximately equal in absolute value, @, will be near
its maximum, 2v/(1 — 2v). On the other hand, if the elements of ¢, are
approximately equal, Q; will be near zero. Similar comments apply to a
replicated pair where p = —v/(1 —v).0J

X2

Figure 3.6.2 Contour of constant v;

Clearly, for potential to be large the maximum eigenvalue of V; must
be large. As illustrated in Example 3.6.1, this will occur for m = 2 if the
residual correlation (Appendix A.3) between the two cases is large in
absolute value. However, the associated interpretation depends on the
sign of this correlation as well as its absolute value. If the correlation is
large and negative, then the two cases are probably near each other and
may be judged simultaneously. If the correlation is large and positive,
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the cases will lie on opposite edges of the sampled region and
simultaneous judgments of such cases may not be desirable.

A complete characterization of potential relative to D, requires
knowing 4,/(1—4), !=1,2,...,m. However D, depends on
/(1 =) only through Q, which is statistically independent of 6%r
There are a variety of ways to summarize this information on potential.
The interval [A, /(1 — 4,), 4,,/(1 — 4,,}]. the expected potential (3.6.14)
and the maximum potential 2, /(1 —1,) (or just i,) are reasonable
candidates. We believe that the maximum potential is the most
desirable single number summary since it characterizes configurations
of the rows of X that can lead to highly influential groups of cases for
reasons that are independent of the fit.

Using (3.6.4), the multiple case norm D;(M, ¢) can be written in a
form which allows a general definition of maximum potential:

e (I-V) ' X (XTX) " '"MXTX) ' XT(I-V,) te

Dl(M’C)= -
=00 (3.6.17)
where ¢
0,0M) = LAV X (XTX) I MXTX) T XT (L= V) ey

ef(I-V)) le

(3.6.18)
As in the case when m = 1, we consider only two choices for ¢: Choose
¢ = ké? or ké}, where k > 0is a constant that does not depend on X or
Y. With M fixed and ¢ chosen as above, we define the maximum
potential relative to M as max,[Q,(M)]. From the definition of
Q,(M), it follows that

maxe, [Q1(M)] = Ano [(1= V)72 X (XTX) T M(XTX) ! x
XT(1—-v) '] (3.6.19)

where 1., [A] denotes the maximum eigenvalue of the matrix A. For
M = XTX, this reduces to 4,,/(1 — 4,,) as before. For the measure with
M = XJ, X, the maximum potential is A,. Thus. the choices
M = X"X and M = X}, X, provide essentially the same information
about the maximum potential of a particular configuration of the rows
of X to be influential.

Alternative measures of potential
A fixed measure of potential can be defined by appealing to the volume
argument analogous to that used for Wilks' statistic (3.5.22). In this
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formulation, the potential at X, is measured by
Xh Xl _
IXTX|
High potential or remote sets are indicated by small values of this
measure, which is based on the internal dispersion of the xs in much
the same way as the internal norms are based on the dispersion of the
sample versions of the influence curve.

The measure {3.6.20) appears in a factorization of a statistic for
detecting influential cases by Andrews and Pregibon (1978) (see
Chapter 4). It was advocated as a generalized ‘leverage’ measure by
Draper and John (1981).

The type of potential being measured by (3.6.20) seems to differ
fundamentally from that measured by the expected or maximum
potential. These latter measures judge the potential of a set of cases in
the determination of §, while (3.6.20) measures the degree to which X is
isolated from the remaining rows of X in the p'-dimensional space
defined by the explanatory variables. As pointed out by Draper and
John (1981}, cases which have high potentia! according to (3.6.20) need
not have high potential in the estimation of g. In reference to the second
situation in Example 3.6.1, for example, |I-V,|=(1 -4, 1 -21,)
= (1 —0)(1 = 2v) = 1 — 20, If vis large the pair of points will be judged
to have high potential according to (3.6.20). However, if e] «c (1, 1) the
points will have no potential and thus no influence on f.

Although (3.6.20) is not directly relevant to an investigation of the
cases that influence B, the information it provides may be useful in
other phases of an analysis. If, for example, it were possible to design
for the collection of additional data, knowing which of the present
points are remote in the factor space would certainly be helpful.

=V, =T(1-2,) (3.6.20)

EXAMPLE 3.6.2. ADAPTIVESCOREDATANO.4. Toillustrate some
of the previous comments on potential we consider two pairs of cases
from the data given by Mickey et al. (1967). The model is simple linear
regression and the n = 21 cases are plotted in Fig. 2.2.1. As indicated in
the plot. cases 2, 18, and 19 are in question.

Table 3.6.1 gives the case statistics D;, r?, and v;; for i = 2, 18,and 19.
Case 19 appears to be an outlier from the assurned model. As shown in
Example 2.2.3, the p-value associated with case 19 is between 0.0409
and 0,0425. Although case {9 appears as an outlier, it has relatively little
influence. Removal of this observation would move f to the edge of a
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Table 3.6.1 Selected case statistics, adaptive score data

Case, i r vy D,
2 0.89 0.155 0.08

18 0.73 0.652 0.68

19 197 0.053 0.22

209, confidence ellipse. Case 18, on the other hand, fits the model quite
well, but is influential because of the associated high potential v,4 |4
= 0.652. Removal of this observation would move f to the edge of a
489 confidence ellipse. Case 2, as well as the remaining cases in the
data, would probably go unnoticed when inspecting individual case
statistics.

Consider next the highly influential pair (2, 18), D; g, = 6.37.
Removal of this pair would move f to the edge of a 99.2 °, confidence
ellipse. However, this does not appear to be an outlying pair since
th.1s = 2.01. This pair must, therefore, be influential because of the
associated potential. In fact, Q, = 3.50, which lies near one end of the
interval [0.012, 3.85] computed from (3.6.13). Q, depends on the
eigenvalues (1, = 0.012 and 4, = 0.794) of V,, |4, and on the chance
orientation of e, (g, relative to the associated eigenvectors. The
observed value of Q, is large for this pair since el 5 = (—9.57,
—5.54) is in the direction of the eigenvector associated with 4,, (—9.57.
—4.53). However, since the lower endpoint of the potential range is
small, Q, for this pair does not necessarily have to be large. If e, and e
had been of opposite sign, @, might have been small enough to make the
pair uninfluential. The fact that e, and e, have the same sign and thus
lie on the same side of the fitted model could be an indication that the
model is incorrect; possibly there are outliers present or a quadratic
term is needed.

In contrast to the previous situation, the pair {18, 19} is uninfluential,
D(ys.19) = 0.15, but may be outlying, t}s, 4, = 6.30. Of course, the
possibility that this is an outlying pair is due in part to the presence of
case 19. The observed Q, = 0.037 is very near the lower end of the
potential range [0.036, 2.025]. This value is small because €5 (g, =
(— 5.54, 30.28) lies in the direction of the eigenvector corresponding to
Ay, (—5.54,33.77).

Four possible summary measures of potential are given in
Table 3.6.2 for three pairs of cases. From the information in the first
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Table 3.6.2 Measures of potential, m = 2, adaptive score data

Pair Wiv(i-v)™']  Lu[v,] H-v|  A/0-2,)
(2,18) 1.93 041 0.20 3.85
(18,19) 1.03 035 032 2.02
(11,18) 1.07 037 0.30 207

three columns of this table, it may be difficult to form firm judgments
about the potential of the new pair (11, 18).(J

3.6.2 COMPUTING Dy

One goal in examining subsets of m > 1 cases is to find groups of cases
that, while not individually influential, are influential en bloc. Finding
influential subsets which include smaller influential subsets may add
little information because the observed influence of the subset will be
due, in part, to the influence of the smaller subset. Conversely, finding
an uninfluential subset that includes one or more cases that are singly or
jointly influential would not decrease the interest in those cases. Thus,
good candidates for inclusion in subsets will have small distance values
for m = 1, but they may well have relatively large values of v; or rZ.

Alternatively, it may be desirable to consider the possibility that the
individual cases in an influential subset are related (for example, by time
or location). In this situation, good candidates for inclusion in subsets
will include influential cases.

EXAMPLE 3.6.3, cLOUDSEEDING No. 10. Theabove remarkscan
be illustrated by reference to Fig, 3.6.3, which contains a semigraphical
summary of A, t#, and D, for m = 2 in combination with the cube root
model for the cloud seeding data. In the display, rows and columns
correspond to case indices; thus, for example, the symbol in row 5,
column 8 represents the values of the statistics for the pair 1 = (5, 8).
The computed values have been divided into groups so that the more
ink used in printing the symbol, the larger the value. The displays
illustrate that: (1) subsets with high potential consist of case 2 and any
other case, case 18 and any other case and the pair (3, 20);
(2) pairs for which t 2 is large contain cases 7 or 24; and (3) the influential
pairs consist of case 2 and most others, (3, 20yand (7, 18). Itis clear that
case 2 should be considered as being highly influential, and little is
gained by viewing it as one of a pair.

S .

1+ e b 5 e e SIS
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Figure 3.6.3 Semigraphical display of i.,,, t}.and D,. cloud seeding data

Among the pairs whose removal does not result in a rank deficient
model, the most likely outlying pair is (7, 15) with t} 5, = 13.82. the
most influential pair is (2, 5) with D, 5, = 16.48, and the pairs with the
highest potential are (2, 15) and (2, 5) with 4,,, equal to 0.9834 and
0.9822, respectively.

The only additional information obtained by an examination of all
pairs is for (3, 20). For this pair, 4, = 1,and its deletion leads to a rank
deficient model. These cases require special handling. and. to accom-
modate them, deletion of a variable (EA) from the model is desirable.(]

For m = 2 and n not too large, semigraphical displays like Fig. 3.6.3
can be used to present the information about pairs of cases. However. if
m > 2 or n is large, this summary becomes impractical, and better
computational and display methods are needed.

If sufficient computer memory is available to store the residual vector
and all of the elements of V, an efficient algorithm for finding multiple
case outliers can be based on the Furnival and Wilson (1974) method
for subset selection. However, an equivalent algorithm for finding
subsets with large D, is not immediately apparent, since altering a
subset by addition, deletion, or substitution of a case can result in
substantial changes in the eigenstructure of V, and hence in the value
of D,. Even so, complete storage of V is usually impractical and realistic
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techniques for finding influential subsets should use only the residuals
and the diagonal entries of V. Using only these, upper bounds for D,
can be derived, and only if these are sufficiently large must D, be
computed exactly.

For the first upper bound, since 4,,/(1 =4, 2 A4/(1-4) =1,
2,...,m, D can be bounded by ’

1 A n
D, < n 2
1 p’éz (l _}‘m)z l; (yl el)
1 .
= oE o )eTI‘FTe, (3.6.21)
or.since TTT =1,
P
< m iel
D, = =) <_—p’a‘2> (3.6.22)

For this to be useful, 1,, must be replaced by an approximation that
can be computed without forming V,. Assuming tr (V,) = trace of V,
to be less than one, the simplest approximation is 4,, < tr (V,). Thus,

el
D < tr(V,) <iel )

(I—tr (V))* \p'é?

or equivalently,

i el
D < —e 'e,' v (3.6.23)
(1- Z Uu)z pe

iel

The upper bound in (3.6.23) depends only on the single case statistics
and provides a potentially different upper bound for each 1. For any
subset with tr (V) 2 1, a better approximation to 4,, is required, which
requires forming V,. If m is small (2 or 3) exact computation of Dy is
probably as efficient as approximating 4,,.

For fixed m, let T = max,(Z;.,v;) and R* = max, (T, e?), where 1
varies over all subsets of size m under consideration. Two upper bounds
for the right side of (3.6.23) are then

tr(V,) R?
D, =< -
T (L —tr (V) p'é?

(3.6.24)
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and, if T < 1,

T  Ziel
Di<g 7 p,(';z (3.6.25)
These last two may be combined to give
T R?
D = s ‘ (3.6.26)

Clearly, (3.6.23) < (3.6.24) < (3.6.26),and (3.6.23) < (3.6.25) < (3.6.26).

An algorithm for finding all relevant subsets with fixed m can be
based on these approximations. First, influential subsets of size smaller
than m may be eliminated if desired. Then, the remaining v;; and e? are
ordered, largest to smallest. The four inequalities can then be applied to
subsets with tr (V) < 1 in the order (3.6.26), then (3.6.24), or (3.6.25),
and finally (3.6.23). Exact computation is required if (3.6.23) is too big.
By considering subsets according to the ordered lists of v; and e?, the
subsets that are more likely to be influential are considered first, and
once one of the bounds is sufficiently small, no further subsets made up
of cases lower in the lists need to be considered. Generally, this method
will be useful in data sets with n large relative to p’, where tr (V,) will
usually be less than 1. In smaller data sets, relatively more subsets must
be considered. Cook and Weisberg (1980) discuss examples, for m = 2
and m = 3, and for two data sets, one with n = 21, p = 8 and the other
with n = 125, p = 4. The results of a simple algorithm are summarized
in Table 3.6.3. The number of subsets is less than the total number of
possible subsets because cases influential in subsets of a smaller size
were not considered as m was increased. While in data set 1 little is

" Table 3.6.3 Computations using bounds. Source: Cook and Weisberg (1980)

Data set 1 Data set 2
n=2,p=28 n=125p=4

m=2
number of subsets considered 155 7503
number of applications of inequalities 153 651
number of D, computed 74 5
m=3
number of subsets considered 560 302621
number of applications of inequalities 560 74802

number of D, computed 520 727
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gained by use of the inequalities, in data set 2, with large n, substantial
decrease in computation is apparent.

EXAMPLE 3.64. DRILLDATA. Inthisexample, weconsider a data
set obtained from an experiment to characterize the performance of a
certain type of drill bit over a range of drilling conditions. For each
experimental run, the work piece and drill were placed at opposite ends
of a lathe and the values of the following design variables were set:

S = speed of rotation of the work piece in surface feet per minute;

F = feed rate in inches per revolution (rate at which the drill passes

through the work piece);

D = diameter of the drill bit.

The rate of rotation of the drill bit was held constant throughout the
experiment. The response variable Yis the axial load (thrust) on the
drill bit during the drilling process. ’

The experimental runs were originally arranged in a completely
randomized composite design, but the experiment was prematurely
terminated for reasons that are unimportant in this analysis. The data,
as provided by M.R. Delozier of Kennametal, Inc, Latrobe,
Pennsylvania, are given in Table 3.6.4. The coarseness of the responses
is due to rounding in the measurement technique; the responses for
each combination of S, F and D are from replicate runs. The portion
of the design that was completed is shown graphically in Fig. 3.6.4. The
size of each point is proportional to the number of replicates at that
point.

Since the possibility that the response is a nonlinear function of the
explanatory variables cannot be discounted, we tentatively adopt the
second-order response surface model

Y= ﬁo+ﬂ1S+ﬁzF+53D+szSF+ﬂxssD+ﬂ23FD+ﬁuSz
+ 852 F*+ 833 D% +e¢ (3.6.27)

Figure 3.6.5 gives plots of L, (4) versus A for the power family of
transformations for the second-order model (3.6.27) and for the first-
order subset model Y= B,+ 8,5+ B, F+ B, D + ¢ Evidently a trans-
formation can improve the fit of the second-order model, but will not
result in a significantly improved fit for the subset model. The
magnitude of differences between the ordinates of the two curves shows
that including the cross product and quadratic terms does improve the
fit regardiess of the transformation selected. While the likelihood
analysis clearly suggests that some transformation is necessary, it
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Table 3.6.4 Drill data. Source: M. R. Delozier

Case S F D Y
1 450 0.0060 1.50 430
2 450 0.0060 1.50 368
3 300 0.0045 1.50 306
4 300 0.0045 1.50 306
) 481 0.0050 2.25 894
6 375 0.0045 2.25 813
7 450 0.0060 3.00 969
8 450 0.0060 3.00 969
9 375 0.0065 2.25 976

10 300 0.0045 3.00 727
11 300 0.0045 3.00 606
12 375 0.0050 1.00 276
13 450 0.0045 1.50 338
14 450 0.0045 1.50 399
15 300 0.0060 1.50 368
16 300 0.0060 1.50 368
17 375 0.0050 2.25 894
18 375 0.0050 2.25 732
19 375 0.0050 2.25 813
20 375 0.0050 2.25 894
21 375 0.0050 2.25 732
22 375 0.0050 2.25 813
23 375 0.0050 2.25 813
24 375 0.0050 2.25 894
25 375 0.0050 2.25 813
26 269 0.0050 . 2.25 813
27 450 0.0045 3.00 727
28 450 0.0045 3.00 485
29 300 0.0060 3.00 969
30 300 0.0060 3.00 847
31 375 0.0050 3.50 1126

provides little help for deciding on a particular choice since the
asymptotic 957, confidence interval contains most of the power
transformations used in practice. In this analysis we use the logarithmic
transformation LY, since it is near the maximum likelihood estimate
and has been found to be appropriate in past analyses of similar data.
Transformations of the design variables will not be considered in this
example. 4 ,

The mean squares for lack of fit and pure error from the second-
order model using LY are 0.0779 and 0.0114, respectively, and the
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corresponding F-statistic is equal to 6.8 with 5 and 16 df. Even with

the logarithmic transformation, the fit of the model does not seem

adequate. Similar results are found for other transformations con-

tained in the 95 % confidence interval given in Fig. 3.6.5. Rather than

attempting to build a more complicated model, we next consider
- various diagnostics applied to the second-order model.

The added variable plot of the constructed variable for the power
family is given in Fig. 3.6.6. No single case seems to be greatly
influencing the transformation, although cases 5, 9, and 31 form a
group in the upper-left corner and may be jointly influential. Figure
3.6.7 gives a scatter plot of the Studentized residuals for the data with
LYas response versus the fitted values. Aside from showing that
cases 5,9, 28, and 31 have absolute Studentized residuals larger than 2,
this plot is of little help. Case 9 has the largest Studentized residual, and
ty = 3.36; the Bonferroni p-value is 0.097. When the mean square for
pure error is used to estimate o2, ry = 4.26. With this substitution, r
has a nominal t(16)-distribution since case 9 is not replicated. The
corresponding p-value using the Bonferroni inequality is 0.019.

200
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Figure 3.6.6 Added variable plot for the score statistic, drill data
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Figure 3.6.7 r; versus fitted values, drill data

Index plots of v; and D, are given in Fig. 3.6.8. Cases 9 and 31
have the largest potential and the largest influence, vy o = 0.663,
vy;, 33 = 0.550, Dg =1.49 and D,; = 0.63. In view of the relative
positions of cases 9 and 31 in Fig. 3.6.4, the high potential for these
cases should not be surprising. A probability plot of the Studentized
residuals gives no reason to doubt the assumption of normality.

At this point we delete case 9, examine the case statistics for the
reduced data, delete the most influential case, and continue sequentially
in this manner until the least squares fit seems well behaved. A summary
of this process, which ended with the deletion of cases 6, 9, and 28, is
given in Table 3.6.5. From Fig. 3.6.4, cases 6 and 9 lie on the F axis on
opposite sides of the origin. Evidently, the second-order model is
unable to describe the observed thrust along this axis, particularly
outside of the central cube. Case 28 is one of two replicates on the
upper, back, right corner of the cube. The response for case 28 is
apparently much too small, judging from the fit of the model and the
response at the second replicate.
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Figure 3.6.8 Index plots, drill data. (a) v;. (b} D,

Asacheck on the above sequential procedure, we computed t7and D,
for all possible 1 with m = 2 and 3. Table 3.6.6 gives the four largest
values of tfand D, for m = 2and m = 3. The most likely outlying triplet
contains cases 6, 9, and 28, as identified previously. The agreement
between sequential and simultaneous methods cannot, of course, be
guaranteed in general. The Bonferroni p-value for 1 = (6,9, 28)is 0.003.
The most influential triplet is 1= (9, 12, 31) with D ;. 3;, = 10.84.




Table 3.6.5 Drill data. (a) Regression summaries

All data Case 9 deleted Cases 9, 28 deleted  Cases 6, 9, 28 deleted Cases 9, 12, 31 deleted
Estimate t Estimate t Estimate t Estimate t Estimate 1
Intercept — 6.7 —20 -126 -39 -—119 —46 —14.7 —74 5.26 1.0
S 0.017 2.1 0.0060 0.8 0.006 6 1.1 -0.000041 —-00 -00015 —0.2
F 2.68 2.3 5.90 44 5.54 52 7.17 84 —184 -0.8
D 192 34 1.57 33 1.62 42 1.38 5.0 4.87 4.8
S2  —0.000021 —23 -—-0.0000065 —0.8 —0.0000051 —-0.7 0.0000035 0.7 0.0000034 0.5
F*  -0.27 —26 —0.58 —-46 —-0.52 -52 =067 -84 0.16 0.7
D? —0.38 -52 =030 -47 —0.30 -58 —-024 —64 —1.05 —49
SF 0.00015 0.2 0.00015 0.3 —0.000 34 —-07 —0.00028 -0.8 0.00015 0.3
SD -0.00068 —09 —0.00068 -1.1 —0.00014 —-03 —-0.00020 —0.6 —0.00068 -~14
FD 0.1} 1.5 0.11 19 —0.062 1.3 0.067 1.9 0.119 2.5
p 0.165 0.135 0.107 0.077 0.106
R? 0.90 093 0.96 0.98 0.95
F¥; 685 403 446 0.33 0.89
df 21 20 19 18 18

* F for lack of fit (see Weisberg, 1980, Sec. 4.3)
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Table 3.6.5 Drill data. (b) Case statistics

Statistic All data Case 9 deleted Cases 9, 28 deleted
D¢ 0.03 0.32 0.41

D,q 0.36 0.48

D, 1.49

Vs, 6 0.187 0.284 . 0.29

35, 28 0.376 0.377 .

g g 0.663

te 1.90(16)* 3.59(16) 4.10(15)

t2g —4.92(15) —4.69(15)

tg 4.26(16)

* df for nominal ¢, using available orthogonal pure error.

Table 3.6.6 Selected case statistics form = 2 and m = 3,

drill data

Subset D, i}
(12, 31) 5.82 16.10
6,9 3.32 15.35
(5, 26) 2.39 14.32
2,9 2.38 10.70
(28, 31) 2.15 21.16
(9, 28) 1.66 15.29
9, 12, 31) 10.84 1115
(12, 27, 31) 6.58 14.47
(12, 26, 31) 6.14 10.37
(8,12, 31) 6.10 10.59
(6,9, 28) 3.04 21.07
(12, 28, 31) 5.24 26.65
(5, 26, 28) 2.26 26.40

Removal of this triplet will displace § to the edge of a 99.9997%
confidence region. The least squares fit of the second-order model
without this influential triplet is summarized in the final columns of
Table 3.6.5(a).

Of the five points identified in this analysis, four (6,9, 12, 31) are
single replicates on the D and F axes and two (6, 9) of these four are
contained in the outlying triplet. Any analysis of these data will be
strongly dependent on the validity of these four cases and, unless the
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precise form of the model is known, conclusions will be tentative at
best. At this point, little can be gained by further analysis of these data,
since conclusions must depend so heavily on the four unreplicated
points. Useful statements concerning the relationships between the
variables will require more experimental runs.

Box and Draper (1975) propose a design criterion that will help avoid
the ambiguity inherent in this analysis: To minimize the effects of a
small proportion of outlying responses on the fitted values, choose a
design to minimize the dispersion of the v;s, £ (v,; — 5)?/n. For fixed n
and p', this is equivalent to choosing a design to minimize v since
t=p'/n is fixed. The design points in this example give min(v;;)
= 0.104, max (v;) = 0.663, # = 0.323 and X (v; — 9)?/n = 0.0247. One
way that this design can be improved is to move 6 of the 9 center points
to replicate the previously unreplicated points, giving min (v;;) = 0.190,
max (r;) = 0.382, 7 = 0.323 and Z (v; — )*/n = 0.003. Generally, it is
necessary to replicate the remote points in a composite design to gain
some robustness against outliers.(]



CHAPTER 4

Alternative approaches to
influence

‘The path by which we rise to knowledge must be made smooth and beaten in
its lower steps, and often ascended and descended. before we can scale our way
to any eminence, much less climb to the summit.’

‘ HERSCHEL. op. cil.

The diagnostic statistics presented in the last chapter share a common
heritage: they all depend on the same perturbation scheme. namely case
deletion, and they all use a sample influence curve to monitor changes
in the resulting analysis. These methods seem to have found wide
acceptance because of their intuitive appeal and computational simp-
licity. Other approaches to the problem of assessing influence can be
developed by altering either the method of perturbation, or by
changing the aspect of the analysis that is monitored. In this chapter we
look at several methods that do not depend directly on the influence
curve, but do use case deletion perturbation schemes. There are both
advantages and perils in these other approaches. A principal danger is
the possibility of designing a measure that has no firm theoretical basis;
a useful measure must refer to some specific part of the analysis and the
values of the derived statistics must be monotonic measures of what is
meant by influence. The main advantage in other approaches is the
possibility of monitoring factors other than changes in the location
estimates. The methods based on the sample influence curve, for
example, are largely insensitive to changes in estimated scale; other
methods can take an alternate view.

We consider three approaches to influence that generally meet the
requirements of the last paragraph. The first of these compares the
volume of confidence ellipsoids based on full and reduced samples,
thereby directly including changes in estimated scale in the measure.
The second related measure is due to Andrews and Pregibon (1978) and
can be thought of as a general omnibus diagnostic, although it is
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weakly dependent on the structure of the regression problem. We then
turn to a Bayesian predictivist procedure in which predictive distri-
butions of future observations are compared. This method is more
comprehensive than the others, combining several aspects of the
analysis into a single measure. After a comparison of influence
measures, we briefly discuss methods that can be used to calibrate the
various influence measures.

4.1 Volume of confidence ellipsoids

One possible measure of the uncertainty in estimating a vector of
parameters is the volume of a corresponding confidence ellipsoid
{Cook and Weisberg, 1980). This volume is also related to various
measures of design optimality with smaller volumes corresponding to
more informative designs. A reasonable measure of influence that
responds to this uncertainty or information is the change in volume
when a subset of cases is removed. Computation of this measure is
straightforward, since the volume of an ellipsoid is proportional to the
inverse square root of the determinant of the appropriate cross product
matrix.

To obtain a general measure, reorder X so that the last g < p’
columns of X correspond to the coefficients of interest and partition
X = (X, X;) with X, n x q. Similarly, define C = (0, 1), so ¢ = Cfis
the coefficient vector of interest. A (1 —a) x 100 %, confidence ellipsoid
for ¥ based on § = CJ is

EW) = {W*|(W* —§)T(CXTX) I CTYy L y* — )
< qé*F(l—a; g, n—p')} 4.1.1)

If a subset of m cases indexed by 1 is deleted, then the corresponding
ellipsoid based on l//“, = CB,, is

(W) = {W*IW* — P ) T(CXEX )™ ' CH™HW* — )
< qéiF(1—a;q,n—p' —m)} 4.1.2)

The volumes of the two ellipsoids are
Vol(€ () o (qd2F )**|C(XTX) ! CT| /2 (4.1.3)
and
Vol(&,,(¥)) o« (g8 FT)IC (XEX )  CTIM2 (4.14)

where we adopt the shorthand F = F(l-«;q,n—~p’) and FJ' =
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F(1 —o;g,n—p' —m). The logarithm of the ratio of (4.14) to (4.1.3) is

Vol(é
VR, (¥) = log[ l/ool((é('”((:l))))]

IC(XH)X“,)_ 'CT| Gm
-1
= 2log[ [CX™X)~TCT] Fq 4.1.5)

The results in Appendxx A.2 can be used to simplify (4.1.5): 63,/6% =
(n—p' —r})/(n—p’ — m)and the ratio of determinants can be shown to
equal

“"Ux‘
[1-Vil

where U = X, (XTX, )~ ! XTis the projection on the columns of X that
are not of direct interest,and U, and V, are m x m submatrices of Uand
VY, respectively. Combining these results into (4.1.5) and simplifying
gives

VR\(¥) = —}logl ~V | +}log|l - U,

—p—-m F
_zlog(LfT_'g J_) (4.16)

For m = 1, two choices for q are of general interest. First, if ¢ = p’,
then C=1,|1-V,[=1—-v, [I-U;| =1 and (4.1.6) becomes

, Vol(6y) | _ r n—p'—1 F,
VRi-log[ Vol(8) = —zlog(l —vy) 2108 ;:'—ETF?F;‘

4.1.7)
Apart from the ratio of F-values, this is equivalent to the statistic
COVRATIO given in Belsley et al. (1980). Alternatively, if the intercept
is ignored then C = (0,1)), [1-V;|=1-v;,|I-Uj| =1-1/n, and
(4.1.6) becomes

— VOI(g(l)(W)) _1 1 _
VR, = log[-———~—y 1@ W) ] slog (1 —v)+4log(l —1/n)
P AP =L Ey 418
2log<n—p’—r? Fé) e

This form is recommended for general use in situations when the origin
lies well outside the region of applicability of the model. This will
happen often when the explanatory variables are not centered.
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The log volume measure can be positive or negative. A negative
measure means that deletion of the cases indexed by 1 decreases volume
and hence increases precision. This will occur for m = 1ifr}? is large but
v; is small. A positive value of this ratio implies a larger volume for the
reduced data, and less precision. This will occur in general for m = 1
whenever v;; is large. The volume measure seems to balance the effects
of the residual and the potential, and these in turn pull the measure in
opposite directions,

4.2 The Andrews and Pregibon diagnostic

A distinct alternative method for detecting influential cases in linear
regression was suggested by Andrews and Pregibon (1978). Initially,
consider the effects of an outlier in Y and an outlying row of X
separately. First, the deletion of a case corresponding to an outlier in Y
will tend to result in a marked reduction in the residual sum of squares.
The residual sum of squares, therefore, is a diagnostic for detecting
influential cases arising because of an outlier in Y. Second, as seen in
Section 4.1, the influence of a row of X is at least in part reflected by the
change in |X"X| when the row is deleted. If |X"X] changes substantially
when x; is deleted, then the corresponding case (y;, x[) will have a large
influence on B or, minimally, Var(p).

Andrews and Pregibon suggest that these separate diagnostics based
on change in the residual sum of squares and | X" X | be combined intoa
single diagnostic based on the change in (n —p’)é? x | X7X]| resulting
from the deletion of one or more cases. Specifically, they suggest the
ratio

R = (h—p'— m)é(n‘x{nxuﬂ
! (n—p)a*|1X7X]|
(n—p' —m)é
= -V |
(n—p'o

(1-%5)
=(1-——|lI-V,| (4.2.1)

as a measure of the collective influence of the cases indexed by 1.

A form for R, which allows additional insight into its behavior can be
obtained as follows. Let X* = (X, Y), the matrix of explanatory
variables augmented with Y. From Appendix A.2,

[X*TX*| = [XTX||YTY - YTX(X"X)"'X"Y|
= (n—p)6?|X"X| (4.2.2)
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Thus, (4.2.1) can be represented as

_ XX

= T TRe] (4.2.3)

Several immediate observations can be made from this form. First, R; is
a unitless measure. Second, R, !/? — 1 corresponds to the proportional
change in the volume of an ellipsoid generated by X*T X* when the
cases indexed by 1 are deleted. Small values of R, correspond to
influential cases. Finally, R, is invariant under permutations of the
columns of X* and thus the vector of responses Y is not given special
recognition. For this reason, R;does not make full use of the structure
of the regression problem. If there is interest in particular aspects of the
problem, then it may be desirable to use other measures that reflect
those interests directly. On the other hand, R, may serve effectively as
an omnibus measure of influence.

Under normality, (n—p'—m)é3,/(n—p')é* follows a Beta distri-
bution with parameters (n — p’—m)/2 and m/2, so R, is proportional
to a Beta random variable and reference values based on moments can
be easily calculated.

For comparative purposes, it is convenient to take minus one half the
logarithm of R;, which is
AP, = —}log(R,) = —}log|I—V,|+3}log (#ﬁ) (4.2.4)

- -
This statistic will now be large for influential cases, and can be
compared to the analogous volume ratio based on a p’-dimensional
ellipsoid (4.1.7). The two statistics differ primarily by signs and relative
weights of the two terms, and by a factor of —1/(n—p'—r?) in the
second logarithm, If (n — p’) is large enough to ignore this last factor,
these statistics use the same information but combine it differently.

The determination of R, for all subsets of m cases can be a
formidable computational task. Andrews and Pregibon (1978) discuss
strategies for approaching this problem.

4.3 Predictive influence

In this section, we present a Bayesian method for assessing the influence
of cases on the prediction of future observations. The method,
developed by Johnson and Geisser (1979, 1980), uses Kullback-Leibler
divergences to measure the difference between predictive densities
based on full and reduced data sets. The discussion here is restricted to
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the linear model (2.1.1), although the technique is quite general and
applicable in many other situations. We first assume that ¢2 is known
and later extend the methodology to the more common situation in
which ¢? is unknown. The former situation is easier to study since the
corresponding analytic details are relatively uncomplicated.

4.3.] KULLBACK-LEIBLER DIVERGENCES AND PREDICTIVE
DENSITIES WITH 02 KNOWN

Let Y denote an n-vector of random variables that can be represented
by the linear model (2.1.1) and assume that the errors ¢ follow an
n-dimensional normal distribution with mean 0 and covariance
o’1, N, (0, o*1). Given the observed value y of Y, we suppose that the
goal is to predict a g-dimensional vector Y, of future observations that
are represented by the linear model

where &, is N_(0,0%I), X is a ¢ x p’ known matrix of explanatory
variables and g is the same as that in (2.1.1).

The predictive density for Y, given y, X, X/, and ¢?, is a standard
Bayesian tool for inference about Y, (Aitchison and Dunsmore, 1975;
Geisser, 1965, 1971). Predictive densities are free of unknown para-
meters by construction. The mean and median of the predictive density
are obvious choices for point predictions while the spread and shape of
the predictive density reflect the uncertainty of prediction. To obtain
the predictive density, it is first necessary to find the posterior density of
the unknown parameter f.

Let f(-|n, Z) denote the density for a N,(u, X) random vector.
Following Johnson and Geisser, we assume the improper prior p(f)d
« d g for B. The posterior density p(Bly) for fgiven Y =y is

S(yIX8, s> 1)p(B)
[f(yIXB, o D)p(P)dp

The corresponding predictive density for Y, given y, X, X, and o? is

§fy 1%, 8, Uzl)p(ﬂIY)dﬂ=f(yfleﬁ,02(l+Xf(XTX)"XZ)3)2)
(4.3.

p(Bly) = (4.3.1)

As implied by the notation, this predictive density is N (X, B, a1
+ X, (XTX)"'X7}]) and is obtained by averaging the sampling density
of the future observations with respect to the posterior distribution of
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B. A useful property of the predictive density (4.3.2) is that it will
converge almost surely to the sampling density of Y, (Johnson and
Geisser, 1979).

The influence of a collection of cases 1 on prediction can be
determined by comparing the predictive density based on the full data
to the corresponding density obtained after removing the cases in
question. From (4.3.2), the predictive density for the reduced data is
N,(X, By 021+ X (X[, X)) "' XT1). Influence is reflected by chan-
ges in both the location and shape of the predictive density. Of course,
one way to compare these densities and thus assess influence is to
compare the locations and scales separately. This quite naturally leads
to developments similar to those in Chapter 3 and Section 4.1.

A comprehensive method for comparing predictive densities can be
based on the Kullback-Leibler measure of divergence, defined as
follows. Let g;, i = 1, 2, be densities and let E; be the expectation
operator with respect to g;. The Kuliback-Leibler divergence measure
d(g,, g,) is defined by

d(gy,92) = E,[loglg/92)] = [loglg,/g:)g,(x}dx  (4.33)

This measure will be positive if g and g, are different and will equal
zeroifg, = g,.If f; = N, (u,,E)and f; = N, (4,, L,), assuming that
X,, X, are positive definite, it is not hard to verify that

2d(f1, f2) = (ny —Pz)Tzfl(#l — ) +log(Z1/1Z 1)
+tr(E,X;Y)—n (4.3.4)

The first term on the right of (4.3.4) corresponds to the distance
between centers of f; and f; relative to contours of constant density for
f>. The second term compares the volumes of ellipsoids based on the
two distributions and it will be zero only if the volumes are equal. The
third term, tr(X; X; '), may be conveniently viewed as a ‘remainder’
that compares the eigenstructure of I, to that of £,. Forexample, if £,
and X, commute and thus have the same eigenvectors, then tr(Z, Z; ')
is simply the sum of the ratios of the eigenvalues of X, to the
corresponding eigenvalues of Z,.

432 PREDICTIVE INFLUENCE FUNCTIONS, 0> KNOWN

The predictivea distributions for the full and reduced data sets
are [ = N (X, B, [1+ X (X"X)"'X}1) and 1, = N (X, B o[}
+ X, (X7, X)) 7' XT]), respectively. The Kullback-Leibler divergence
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measure can be computed in two ways, depending on which of these
distributions is associated with f; and which with f; in (4.3.3). From
(4.3.4), we see that distance between centers is computed relative to f;,
which suggests associating f; with the full data predictive density. We
adopt this idea and, following Johnson and Geisser, we call d(j(,,,f)
predictive influence function (PIF).

EXAMPLE 4.3.1. PREDICTIVE INFLUENCE WHEN ¢ = I, m = 1,0
kNown. Letx] =X, v, =x}(X"X) 'x;and y;; = x}(XTX)7'x
The predictive density / based on the full data for a single future
prediction at x, is N(x} [i aX(l+v ) and the correspondmg density
fi, based on the reduced data is N {X} B, 62[1 + v, +v7 /(1 —v;)]}.

Using (4.3.4) and after a little algebra, the PIF d(f.f;x,) for a

single prediction at x, can be written as
Usi
el

i s v, B
<1+vf>:|+[l+9i2j<—”_l__vﬁ>(1+vf):| 1 (43.5)

where p? = v} /v,v, is the squared correlation between x] Band x} B.
Thus, the behavior of this PIF depends on D;(X"X, 02), p¥, v, and v;;.
With o2 replaced by 62, the first term on the right of (4.3.5) is the same
as that obtained from a comparison of point predictions in the
frequentist approach discussed in Section 3.5; see (3.5.18) and the
subsequent discussion.

The second and third terms on the right of (4.3.5) depend only on
1+ plreyo /L(1+v,) (1 — )], the ratio of the variance associated with
S, to that of f. Since this ratio is always = 1, the variance of the
predictive distribution cannot decrease when a case is deleted and o? is
known. The change in variance will tend to be large when v;; is large and
X, =X.[J

To usea PIF,itis first necessary to specify X, the matrix containing
the points in the factor space that correspond to future predictions.
This is clearly a disadvantage since X, will not normally be known
during the development of the model. To overcome this problem and
thus make the PIFs more available for use as routine diagnostics,
Johnson and Geisser (1980) suggest using X in place of X,. When
X X,, we will write d; for d(fu,,f where fy,=N (Xﬁm,
o [1+X(XE)Xy) " XT]) and £ = N, (XB, a*(1+ V).

2d(.ﬂ|)v[ xf)— D; (XTX Uz)pl
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To obtain a relatively simple form for d,, we substitute into (4.3.4)
term by term. First, the change in centers is

(1 = #2) T2 (1 — ) = (B~ Bu)"XT(U+ V) 'X(B~ By)/o”
= (B—Bu)"X"(1—4V)X (B~ Bu)/o?
= D((XTX, 2¢?) (4.3.6)
Thus, the distance between u, and g, is measured by a member of the
class of norms of the SIC, D;(M, c), with 62 in place of &2. Also, this
form is closely related to the influence curve for prediction obtained as

a result of a frequentist approach.
Next, the change in volume is measured by

log|Z,|—log|Z,| = log |1+ V]| —log |1+ X (X[, X)) " 'XT|

Since V is a rank p’ symmetric, idempotent matrix, the eigenvalues of
I+V are 2 with multiplicity p’ and 1 with multiplicity n—p’ and
[T+ V| = 27, Next, using Appendix A.2 to evaluate the partitioned
form of |1+ X(X{, X))~ ' XT| that results from the partition X'
= (X{, XD, it follows that

4+ X(XEX)  XT| =27 {1 +4V,(I-V,)" ]

Combining terms, the change in volume can be obtained from the
determinant of a single m x m matrix,

log|Z,|—log|Z| = —log|T+3V,(1-V,)" ! (4.37)

that depends only on the eigenvalues of V.
The final term of d; is

tr[Z, 271 ] =t [T+ X(XEX) ' XTI+ V)™ 1]
=tr[(I+ X (X, X)) 1XT)(1-3V)]

=n _%H tr [XTX(X], X)) ']

=n+itr[V,(1-V)~ '] (4.3.8)

which again depends on the eigenvalues of V. Finally, combining the
last three results, d; can be expressed as

dy=D((X"X,40%) = $log [T +3V (1= V)" [+ 5 [V,(1-V) "]
(4.3.9)
The PIF d, depends on only e, and V,. The predictive approach,
therefore, utilizes the same building blocks as the previous approaches.
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The main difference is in how the predictive approach combines this
information to produce one overall measure of influence.

The form for d; given in (4.3.9) is perhaps the most useful for the
purposes of computation since all quantities are calculated from the
full data. For interpretation, however, the identity

xl(xﬁ)xm)_l)ﬁT: Vl(l e vl)_l

is useful: tr [V,(I — V;)~ '] is proportional to the sum of the variances
of the estimated values, based on the reduced data, at the cases indexed
by 1. In addition, under a correct linear model,

E[D\(XX,46%)] = r [Vi(I1-V) ']

which is the average squared distance between the centers of the
ellipsoids associated with the predictive densities based on the full and
reduced data and is proportional to the expected potential discussed in
Section 3.6.1.

4.3.3 PREDICTIVE INFLUENCE FUNCTIONS, 6> UNKNOWN

When ¢? is unknown, the predictive densities are multivariate Student
densities rather than multivariate normal. Let S, (v, g, X) denote an
n-dimensional Student density with v degrees of freedom, location
parameter p and dispersion matrix X. Assuming the joint prior
p(B,c*)dBde? x 6" *dBdo? and -setting X, =X, the predictive
densities based on the full and reduced data sets are

Sa(n—p',XB,6*(1+V))
and .
Sn (n - p’ —m, xﬁ(l)’ 6.(21)(] + x(x;‘i)X(]))— ! xT))7

respectively. Unfortunately, the PIFs based on these densities are
complicated and difficult to study. Johnson and Geisser (1980) use
normal densities to approximate the predictive Student densities, and
then develop the corresponding approximate PIFs along the lines
indicated above.

For v > 2, the covariance matrix for a multivariate Student random
variable is [v/{v —2)]Z. It is reasonable to use

~( n—=p \,
N,,<Xﬂ, (;—_p,_z)a I+ V))
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(xﬁ(.,,(—-——'"—’1—)0(.,(1+X(xu,xm> >>

m—p -2

and

densities to approximate the predictive densities based on the full and
reduced data, respectively. The approximate PIFd; can now be
developed by following the steps in the ¢®> known case. The terms that
measure the change in volume and eigenstructure depend on the ratio
6%/6* and thus on r& The approximate PIF may be written as

a'=<'n_i{3>0(xTx 46%) + ik tr [V, (- v,)~ 1]

—4loglI+4V,(1— ,)"I+ [ki—log (k) —1] (4.3.10)

I = n-—-p -2 : ri
' n—m—p'—2 n—p

Apart from constants, the difference between d, and d, is in the
presence of k; in the former measure. Since k, is a decreasing function of
r# it will be small when the cases indexed by 1 do not conform to the
assumed model.

The special case m = 1 is informative,

‘m=p -2 k{ o vy
a.___p(n p . o i 11 1 u
= ey Dtal\ioe, g\ 1+3 -

+3 (c—log (k) — 1) (43.11)

where

Thus, d; depends only on n, p', r?, and v and is a monotonically
increasing function of v; when n, P, and r? are fixed, With n, p'.u;; fixed,
disa convex function of r2, and, if v;; is small the minimum of d; can
occur with r? > 0. As a practical matter, the fact that d; is not always
monotonic in r? may not be important, since the minimum will occur
for a very small value of r;.

If the Kullback-Leibler divergence is computed with the roles of the
full and reduced densities interchanged, the resulting measure is
somewhat more complicated. In particular, the part of the measure that
compares centers uses a metric that is different for each choice of i, and
thus is not directly comparable from case to case; see Johnson and
Geisser (1979) for further details.




168 RESIDUALS AND INFLUENCE IN REGRESSION

An alternative to choosing X, = X
In Example 4.3.1, we discussed the PIF for a single prediction at x,
when m =1 and ¢® is assumed known. Here, we discuss the cor-
responding results for o unknown. Notation, unless otherwise
defined, follows that in Example 4.3.1. The predictive densities for the
full and reduced data sets are Student densities which may be ap-
proximated by normal densities as before. Let d(x,) be the approxi-
mate PIF obtained using the normal approximation.

Using (4.3.4) and the result of Example 4.3.1, it can be verified that

24 _Pm=p-2, 0, vy

Uy Uy
x i "
f) n-p' ! f].+ f

+kl l
v 1+,

—]og[l-fp.flz ]+k —logky—1 (43.12)

v 1+,

—p — 2
(=)0
n—p—3 n—p

as before. The difference between (4.3.12) and the analogous expression
in Example 4.3.1 is in the presence of k;.

As indicated previously, the usefulness of ai(x,) as a routine
diagnostic is limited because of the requirement that x, be specified a
priori. Indeed, this limitation was the motivation behind Johnson and
Geisser's suggestion to use X, = X for routine checking. A potential
problem with this approach, however, is that d;(x s) may be large for
some points X, that are not adequately reflected by the diagnostic
resulting from setting X, = X. This can be overcome by using
d¥ = max[d;(x,) )] with the maximum taken over all possible values of
X. so that, for each i, the PIF is evaluated at the point x¥ where the
influence is maximized. This is the same as one of the approaches
used in the discussion of the frequentist approach to prediction given in
Section 3.5. If d¥ is small then it can safely be concluded that the i-th
case is uninfluential for any single prediction. The same conclusion
does not necessarily follow when d; is small, since there may exist points
for which d;(x ; ) is relatively large. If d¥ is large then predictions around
x ¥ will be seriously influenced by the i-th case. Further investigation
may be necessary to determine the stability of predictions in other
regions.

It is easily verified that d;(x,) is monotonically increasing in
p[v/(1+0v,)] and that it depends on X, only through this term.

where
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Thus, to maximize d;(x,) by choice of X, it is sufficient to maximize
pir[vs/(1+v,)]. From Appendix A.3 it follows that

. Vs 1 I
; =—{ v;— 43.13
n£x<pf1+vf) Lm[v n+1J ( )

Substitution into (4.3.12) yields

2* = (r:-p’—z)riz [u=1/n+ D], [oa=Lin+ 1]
n—p 1 —vy 1 -
‘l°g{l+£&r—71_ﬂ%ﬂ}+k;—log(k.-)—l (4.3.14)

The first term, which measures location differences, is proportional to
(3.5.21), the analogous measure from the frequentist approach. The
remaining terms are similar to those in d;, but are adjusted to give
differential weights to the various components. For example, each of
the final three terms of d¥ is 1/n times the corresponding term in d,.
Each of the remaining terms in d* can be obtained from the
corresponding term in d; by replacing $[v;/(1 —vy)] with [vi—1/
(n+1)1/(1 —v;). These relationships suggest that d; may be relatively
more sensitive to the removal of cases with large values of r? while d¥
will be more sensitive to cases with large v;.

4.4 A comparison of influence measures

Thus far, we have considered no less than four distinct types of
diagnostic statistics to assess influence, each with many variations. A
comparison of the various measures can be useful. As representatives of
the normed influence curves, we will consider for m= |,
D; = D;(X"X, p'6*)and D; = D(X"X, p'G%,). To represent the volume
ratios, we use VR; defined by (4.1.7) and the logarithm of the
Andrews-Pregibon measure AP; defined by (4.2.4). Finally, two
measures based on the Bayesian predictivist approach, d; defined by
(4.3.11) and d¥ defined by (4.3.14), will be compared. The major
omissions from this list are the measures that require specification of a
set of combinations of coefficients of interest for study and the
internally scaled measures. These latter measures may have different
behavior than the overall measures, depending on the structure of a
specific problem.

When cases are considered one at a time, all of these influence



170 RESIDUALS AND INFLUENCE IN REGRESSION

measures are functions of r?, v, and the constants, n, p’, and, for the
volume ratio, a ratio of percentage points of F. Thus, all the statistics
use the same building blocks but combine the information differently.
The behavior of these statistics can be studied by comparing them for
various combinations of n, p', v, and r?. Figure 4.4.1 contains plots of
all six measures versus v; for n = 50, p’ = 5, and a different value of r}
in each plot, r? =0, 1, 4, and 9, respectively. Since the statistics have
different calibrations, we compare the qualitative shapes of the curves
rather than their values.

When r? =0, B B, = 0, and both D; and D; are exactly 0 for all
values of v;. The other measures do not have this property, and all
become larger for v, large. The Andrews—Pregibon measure and the
volume measures behave like a constant times log (1 — v;;), while the
predictive measures respond only to much-larger values of v;. For
r# = 1. the two distance measures D; and D; are identical and require
moderately large values of v; to exhibit influence. The volume and
Andrews-Pregibon measures are not sensitive to the increase from

r{ =0 to r} =1 and exhibit essentially the same behavior as in
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PO I U R SR R

9.0 2.2 2.4 2.6 2.8 1.9
(d) Vii
Figure 4.4.1 Several influence measures. (a) r? =0 (b) r’=1 (c) rP=4
@ rf=9

Fig. 4.4.1(a). The predictive measures d} and d; are quite similar to the
distance measure D;.

As r; increases from |1, the qualitative judgements made when r? =1
continue to be valid but are more clearly displayed in Fig. 4.4.1(c). The
measures d*,d;, D;,and D} all behave like D;, while the volume measure
and the Andrews-Pregibon measure behave similarly. For the volume
measures in Fig. 4.4.1 (c)and (d), if v; is sufficiently small ¥ R} is negative,
and it becomes positive as v, increases, For example, VR isabout —0.5
at v; = 0.02 in Fig. 4.4.1(d), and increases to 0 at about v;; = 0.65 and
then becomes positive. In this figure the trade-off between r? and v;; in
the volume measure is clear.

In summary, for m = 1, the measures form two classes: those that
respond to r? and v;; essentially as D; does (D;, D}, d;, d¥),and those that
are relatively insensitive to v;;(AP;, VR;). The former measures appear
to provide an appropriate balance between potential and residuals, At
least for m = 1, D;, the easiest of these to compute and to interpret,
seems preferable.
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For m > 1, the comparison between the influence measures is much
more complicated, but some general comments are in order. First, the
volume measures V'Rjand AP depend only on (n — p’ — ri)/(n—p’). the
eigenvalues of V|, and constants. If n— p’ is large, these measures are
relatively insensitive to r2 The measures D,, D, d,,and d¥ all have a lead
term like Dy and hence they behave similarly. These depend not only on
rfand the eigenvalues of V,, but also on the orientation of the vector e,
of residuals in an appropriate geometry. Thus, two groups of cases with
identical rfand eigenvalues of V| need not have the same influence as
measured by D,. For these measures, then, the notion of an influential
subset is more complicated, and the discussion of potential in
Section 3.6.1 is relevant.

Draper and John (1981) conducted a detailed examination of the
relative merits of AP, and D,. In addition to showing that AP, may
isolate cases that are not outliers or influential for parameter estim-
ation, they show by example that the reverse may also happen: The
Andrews—Pregibon statistic cannot be guaranteed to locate outliers or
cases that are influential for . They recommend the study of r?
(essentially their Q,), {1 —V,|. and D,. In the larger class of statistics
discussed here, it is clear that their advice is sound, although their
choice of potential measures |I — V,| may be replaced by one of those
discussed in Section 3.6.1.

EXAMPLE 44.1. cLouD SEEDING NoO. Il. Table 4.4.1 lists
several of the influence statistics discussed in this chapter for the cloud
seeding data; see also Table 3.5.5. The subset ¢ is chosen as in
Example 3.5.3. The important observation from this table is that the
ordering of cases on influence is different for the various statistics.
Computation of them all can lead to confusing conclusions. A more
reasonable approach is to adopt one of the measures - possibly D, - as
the standard and use additional measures as called for by specific
concerns.[]

Calibration

The various influence measures discussed in this and the previous
chapter each provide a way of ordering individual or groups of cases
based on their impact on a selected characteristic of the analysis.
Experience with a given measure will provide additional insight that
can be useful for an understanding of the importance of its magnitude.
Beyond this, however, there are only a few methods of calibration
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Table 44.1 More influence measures, cloud seeding data

Case D, VR, VR, (%) R, d; d¥
! 0.030 0.343 0.184 0439 0196 0367
2 4.555 0.782 0.392 0023 18579 36.696
3 0.062 0.359 0.166 0363 0310 0633
4 0.037 0.144 0.060 0639 0104  0.187
5 0.030 0.250 0.095 0568 0125 0216
6 0.014 0414 0.206 0371 0234 0448
7 0.729 ~1.158 —0.571 0222 3499  3.151
8 0.078 —0.261 —-0.124 0600 0305 0302
9 0.000 0.330 0.188 0.588  0.099  0.106
10 0.069 0.071 0.043 0575 0176 0327
1 0.014 0.251 0.123 0.650 0087  0.113
12 0.007 0.187 0.096 0807 0048  0.037
13 0.001 0.319 0.166 0612 0093 0092
14 0.000 0.252 0.125 0828 0063 0017
15 0.126 -0.182 - 0.080 0522 0390 0538
16 0.000 0.317 0.186 0.626  0.090  0.082
17 0.318 0.318 0.231 0225  1.039  2.166
18 0.320 0.669 0.485 0090 2493 5239
19 0.000 0.280 0.153 0739 0072 0036
20 0.062 0.359 0.211 0363 0310 0633
21 0.004 0.257 0.123 0.745  0.068  0.045
22 0.027 0.180 0.098 0.657 0089  0.148
23 0.149 0.202 0.133 0378 0434 0886
24 0.315 —0.384 -0.188 0370  1.057 1380

available. As mentioned previously, many of the measures of the form
D\(M, ¢) can be monotonically transformed to a more familiar scale
that does not depend on n and p’ by comparing D;(M, ¢) to the
percentage points of the appropriate F-distribution. For example, the
knowledge that the removal of case 1 would move the least squares
estimate of fto the edge of a 95 Y} confidence region while the removal
of case 2 would move the same estimate to the edge of a 59 region is
surely more useful than just knowing that case 1 is more influential
than case 2. In addition, half-normal plots with a simulated envelope
(see Sections 2.3.4 and 3.5.3) can be used in combination with any of the
influence measures to help avoid problems of overinterpretation. These
techniques are intended as aids to interpretation and not as found-
ations for accept-reject rules or p-values.

Dempster and Gasko-Green (1981) suggest methods for sequen-
tially removing individual cases and determining conditional p-values
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that can be used to formulate stopping criteria. Their methods are
based on the repeated application of a selection rule to determine the
most discrepant case at each stage. The class of available selection rules
is large and includes many of the influence measures discussed
previously. Belsley et al. (1980) discuss other methods such as the use of
gaps for determining the cases that require further attention.




CHAPTER 5

Assessment of influence in other
problems

‘In the study of nature. we must not, therefore, be scrupulous as to how we
reach to a knowledge of such general facts: provided only we verify them
carefully when once detected. we must be content to seize them wherever they
are to be found.”

HERSCHEL, op. cit.

Most of the methods for the analysis of influence presented in earlier
chapters depend on the elegance of the linear least squares regression
problem. The use of the sample influence curve to measure influence is
aided by the algebraic updating formulae in Appendix A.2 that allow
computations to be done from full sample statistics; interpretation of
normed influence measures is made clear by appeal to elliptical
confidence regions that characterize linear least squares regression.

As mentioned in Section 3.4, the extension of the sample versions of
the influence curve to other problems is conceptually straightforward.
As a practical matter, however, the use of these ideas can be expensive
since exact updating formulae are generally lacking. To compute
the sample influence curve for a parameter 0, for example, values of
8,,i=1,2,...,n, in addition to the complete data estimate are
needed, and each of these may require iteration, In addition, the
definition of a residual and the choice of a norm can be troubling.
Norms of the sample influence curve based on elliptical contours will
not always be appropriate.

In this chapter we discuss ways in which diagnostics for linear least
squares regression might be extended to more complex situations. In
the next section we present a general definition of residuals and suggest
an extended version of the v;s. A general approach to influence,
including likelihood-based measures, is discussed in Section 5.2. A
relatively inexpensive approximation of the sample influence curve is
suggested and this in turn leads to the problem of judging the accuracy
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of the approximations. Sections 5.3-5.5 contain discussions of non-
linear least squares, logistic regression and robust regression, respect-
ively. We comment briefly on several other problems in Section 5.6.

The general purpose of this chapter is to suggest ideas rather than
specific diagnostics. Except perhaps for logistic regression, the specific

methods presented have not been studied in great detail and more work -

is required before definite recommendations can be given.

5.1 A general definition of residuals

Cox and Snell (1968) define residuals for a fairly general class of models
and suggest a method for determining their first two moments. This in
turn leads to a generalization of some of the diagnostics for linear least
squares regression to more complex models.

Assume that the i-th response y; is a known function g; of an
unknown parameter vector @ and an unobservable error g;.

yi = (0, &) i=12 ..., n (5.1.1)

The errors g; are assumed to be continuous, independent and identically
distributed with a completely known distribution, so location and scale
parameters are not distinguished. This formulation excludes some
standard models such as time series and components of variance
problems where the response may depend on the errors in a more
complicated way.

Assuming a unique solution for g, (5.1.1) may be re-expressed in the
form

8|' = hl'(yh 0), i = 1. 2, P 1] (5.1.2)
Cox and Snell define the i-th residual g; by
éi=h|‘(Y|'v§)v i=1,2,...,n (5.1.3)

where 8 is the maximum likelihood estimate of 0. We call & a maximum
likelihood residual (Cox and Snell call it a crude residual).

Suppose, for example, that (5.1.1) is the usual linear model written as
yi = X] B+ o&;, where the g;s are independent, identically distributed
normal random variables with E{¢;) = 0-and var (¢;) = 1. If

OT = (ﬂT! O'),

gi=(—x]BYs
= ei/(zef/")llz

then
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and #; is a standardized version of the ordinary residual ;. (In this
chapter, 62 is the maximum likelihood estimator of ¢2.)

In general, moments of the maximum likelihood residuals cannot be
obtained explicitly. Useful approximations to E(;) and E(£?) can,
however, be obtained from a quadratic expansion of (5.1.3) about 0,

gxe+(0—0)TH,(0)+ 3 (0—0)TH,(0) (0—0) (5.1.4)

where H,(0) is a g-vector with elements oh;(y;, 8)/00;, and H,(0) is a
q x q matrix with elements 9*h;(y;, 0)/90,00,, both evaluated at 0.
Expressions for E&, var (£,), and cov (&, £;) in terms of H,(0), H,(0), the
expected information matrix, the score vector and the second-order
bias of the ML estimator 8 are given by Cox and Snell; see also Cox and
Hinkley (1974, Chapter 9). These expressions take the form
E()= E()+a
var (§;) = var () —c¢; (5.1.5)
cov (&, &;) = ¢;j ‘
In all but the simplest situations, the determination of the a;s and ¢;;s
will require a considerable amount of tedious algebra.

In the usual linear regression model, the expressions in (5.1.5) are
exact. One finds that E(g;)=a; =0, var(g) = 1, ¢; = n{v; —p'/n)/
(n—p')and ¢;; = —nv;;/(n—p'), i # j. Generally, we expect that the ¢;;s
can be viewed as extensions of the v;;s and used as diagnostics in an
analogous manner.

Using (5.1.5) a Studentized version ¢} of the ML residuals can be
defined so that E(e¥*) = E(g;) and var (¢}) = var (g) to order 1/n. The
motivation for this is analogous to that for the ;s in linear regression:
Thee}s provide a better reflection of the ¢;s and plots can be interpreted
without the complications caused by nonconstant means and variances.

EXAMPLE S.1.1. LEUKEMIA DATA No. 1. Leukemia is a type of
cancer characterized by an excess of white blood cells. At diagnosis, the
count of white blood cells provides a useful measure of the patient’s
initial condition, more severe conditions being reflected by higher
counts. Feigl and Zelen (1965) discuss the use of the white blood cell
count as an explanatory variable in models to predict survival time after
diagnosis.

Feigl and Zelen (1965) report the survival times in weeks and the
white blood cell counts for a sample of 33 patients who died of acute
leukemia. In addition, each patient was classified as AG positive or AG



Table 5.1.1 Leukemia data, y = survival time in weeks, WBC = white blood cell count, and related statistics for 17 patients
diagnosed as AG positive. Source: Feigl and Zelen (1965)

Case WBC Vi a i & ¥ LD, By 7 D} (X™WX,p")
1 2300 65 -0013 0315 056 049 0.03 0.085 —0.61 0.02
2 750 156 ~0088 0770 079 070 0.11 0.247 —0.28 0.01
3 4300 100 0013 0160  1.17 112 0.03 0.112 0.17 0.00
4 2600 134 -0.007 0279  1.23 1.20 007  0.170 0.23 0.01
5 6000 16 0022 0106 022 0.9 002 0017 —1.68 0.02
6 10500 108 0.029 0061  1.94 191 0.08 0.116 0.72 0.03
7 10000 121 0029 0063 213 211 0.41 0.129 0.83 0.05
8 17000 4 0028  0.068 009 007 007 0006 —3.02 0.03
9 5400 39 0019 0121 051 0.46 0.01 0042 —0.70 0.01

10 7000 143 0.025  0.088 212 211 0.16  0.147 0.83 0.06
1 9400 56 0028 0066 096  0.90 000 0059 —005 0.00
12 32000 26 0015 0140 080  0.74 0.03 0070 —0.23 0.00
13 35000 22 0013 015 071 0.65 0.04 0.066 —0.36 0.00
14 100000 1 -0.037 0453 005 003 0.35 0011 —4.12 0.09
15 100000 | ~0.037 0453 005 003 035 0011 —4.12 0.09
16 52000 5 -0.002 0245 019 015 0.18 0.024 185 0.04
17 100000 65 —~0.037 0453 347 418 989  0.689 238 6.26
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negative, indicating the presence or absence of a certain morphologic
characteristic in the white cells. The data for the 17 patients classified
AG positive are given in Table 5.1.1; data for the AG negatives are given
in a later example. To develop a prediction equation based on the AG
positive cases, we use a model mentioned by Fiegl and Zelen and
expanded upon by Cox and Snell (1968),

yi = [0, exp(0,x;)1¢;, i=12...,n (5.1.6)

where y; is the survival time for the i-th patient, ¢, ..., ¢, are

independent, standard exponential random variables, and if x} is the

(base 10) logarithm of the i-th white blood cell count, x; = x|~ x".
The log likelihood L(6,, 8,) is easily found to be

L(0,,0,) = —nlog(0,)— Z,Vi exp(—0,x,)/0, (5.1.7)

and the expected information matrix is

(n/()f 0 )
0 Y x}?

Selected contours of constant L(0,, 0,) are plotted in Fig. 5.1.1 (the
points plotted in this figure will be discussed later). The maximum
likelihood estimates §, = 51.109 and 0, = — 1.110 were determined
using Newton's method.

The ML residuals defined by

& = hi(y; 0) = yrexp (—0,x,)/0, (5.1.8)

are given in Table 5.1.1. Case 17 has the largest residual, §,, = 3.47.If
the ¢; are treated as a sample from a standard exponential distribution,
the residual for case 17 is not large, since the probability that the largest
order statistic exceeds 3.47 is 0.42. Of course, the ML residuals do not
have constant expectation or variance, and it is possible that a
Studentized version would be more revealing.

For the ML residuals defined by (5.1.8) Cox and Snell provide the
approximate moments,

E() =1 +§1’~1+%(x,-z.\'} —xt Y x/ (X x})? (5.1.9)

= 1 +ai
and

var (&;) = 1 ~£+(x,~2x}—3x,—22xf)/(2xf)z
. (5.1.10)
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Ifigﬁre 5.1.1 Likelihood contours for leukemia data. ‘+" indicates
07 = (51.109, — 1.110) with L(f)= —83.88." x ' indicate §,,. '+ indicates 8},

With the summations fixed, both E(§) and var () are quadratic
functions of x; with maxima occurring at the values of x; that are closest
to £x3/2Xx} and x3/6Zx}, respectively. The values of a; and c;; are
given in Table 5.1.1. As expected, the values of ¢;; are largest at the
extremes with ¢,;, = 0.77 the maximum. In analogy with linear
regression, case 2 may have a substantial influence on the ML estimates.

Cox and Snell construct a Studentized version ¢ of the ML residuals
by using (5.1.9) and (5.1.10) in combination with the transformations
e = {&/(1 —1)}' *% Assuming that ¢} has a standard exponential
distribution, it can be shown that appropriate transformations are
given by I, = —0.21c;~1.43q; and k; = $(2a;+¢;), i=1.2,...,n
The values of ¢¥ are also given in Table 5.1.1. The largest difference
between & and e* occurs at case 17, e¥; = 4.18. The chance that 4.18
would be exceeded in a sample of 17 from a standard exponential
distribution is 0.23 so that there is still no reason to suspect case 17 asan
outlier.
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The plots of the Studentized ML residuals versus the expected order
statistics from a standard exponential distribution and the plot of &*
versus x; give no reason to question distributional assumptions, or to
diagnose general failure of the model. Overall, the solution seems well
behaved to this point.[(J

5.2 A general approach to influence

For ease of presentation, we shall continue to use the model described
at (5.1.1), although the ideas to be discussed in this section
are applicable to other paradigms as well. In particular, it is no
longer necessary that the errors be expressible in the form given
at (5.1.2).

Measures of the influence of the i-th case on the M L estimate 6 can be
based on the sample influence curve SIC;oc 6 — 5(,-,, where (7(“ denotes
the ML estimate of @ computed without the i-th case. While this idea is
straightforward, it may be computationally expensive to implement -
since n+1 ML estimates are needed, each of which may require
iteration. When faced with this expense, it may be useful to consider a
quadratic approximation of L), the log likelihood obtained after
deleting the i-th case:

Liy(0) = Ly (0)+ (0 — 0)T L, (0) +4(0 — 0)TL, (8) (0 - D)
(5.2.1)

where (,,(0) is the gradxem vector with j-th element 0L, (0)/00;
evaluated at 8 = 8 and L(,,(O) has (j, k)-th element 9%L,(0)/00; 0,

evaluated at 0 = 0. If —L,(0) is positive definite, the quadratic
approximation is maximized at
08 = 0~ (L, (0) 1Ly (0 (52.2)

Werefer to 0}, as a one-step approximation to 8, since it is the same as
would be obtained by a single step of Newton’s method using @ as
starting values to maximize L,(0) (see Kennedy and Gentle, 1980,
Chapter 10).

If 6, is not too different from @, and L,;(8) is locally quadratic, the
one-step estimator should be close to the fully iterated value. For cases
that are influential, 8 — 0, is ‘large’, the accuracy of the one-step
estimator is likely to be lower, but an accurate approximation to 0“) will
not be needed as long as 0 — 0(,, is sufficiently ‘large’ to draw our
attention for further consideration.
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In the linear least squares problem, elliptical norms of the sample
influence curve provide a sufficiently rich class of metrics for ordering
cases on influence. In more general problems, this class can be overly
restrictive, especially if elliptical confidence contours are not appropri-
ate. If we let t(0) be a function of the g-vector @, then a general measure
can be viewed as any function m(t(8), 1(@ (,,) ) that maps into the
positive real line. Most of the aiternative methods for assessing
influence given in Chapter 4, for example, can be expressed as members
of this general class. However, since m(t(9), 1(5(,-,)) is not in general a
function of the sample influence curve, the theoretical foundations for
influence measures derived from the influence curve may be lacking.
Before any alternative measure is to be adopted, its logical foundation
must be carefully studied.

Animportant example of the general measure is derived from the use
of contours of the log likelihood function to order cases based on
influence. Let L(0) be the log likelihood based on the complete data, We
define a likelihood distance LD; as

LD; = 2[L(0)— L(y)] (5.2.3)
or, using the one-step estimator,
LD} =2[L(0)— L(8})] (5.2.4)

This is easily seen to be in the general class with t(6) = L(6),and LD, is

not necessarily a function of just the sample influence curve for 6.
The measures LD, and LD} may also be interpreted in terms of the

asymptotic confidence region (see Cox and Hinkley, 1974, Chapter 9)

16: 2[L(0) - L(0)] < x(a; 9)}

where x*(«; q) is the upper a point of the chi-squared distribution with
q df, and q is the dimension of 6. LD, can therefore be calibrated by
comparison to the y?(q) distribution.
Ifthe log likelihood contours are approximately elliptical, LD, can be
usefully approximated by Taylor expansion of L(f,;) around 0.
L@y =L (‘)+(?>?.-,—6)TL<6)+%<0(.-,—G)T(L'(én(5(.-.~0>

" and, since L(9) =

= (0, — 0T (— L)) (0,,—6) (5.2.5)

A different approxlmatlon can be obtained by replacing the observed
information — () in (5.2.5) by the expected information matrix,
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evaluated at . Either of these approximations, however, can be
seriously misleading if contours of L(8) are markedly nonelliptical.
The likelihood distance can be easily modified to accommodate
situations in which a subset 8, of 6 is of special interest. Let
= (87, 63) and 07, = (07, 61 ,)- An asymptotic confidence region
for 8, is given by

{0,: 2[L(B)— L(8,, 6,(8,))] < x* (e, 41)}

where g, is the dimension of 8, and
L0, 0,(6,)) = moax [L(86,, 0,)]

denotes the log likelihood maximized over the parameter space for 8,
with 8, fixed (Cox and Hinkley, 1974, Chapter 9). The asymptotic
confidence region measure of the displacement of 8, when the i-th case
is deleted is now

LD(8,18,) = 2[L(0)—- (01(:), 92(01(.')))]

= 2{L(B)- max (LB, 05)1} (5.2.6)

with a similar measure obtained if one-step estimators replace fully
iterated ones. This measure is compared to the y*(q,) distribution for
calibration.

As an illustration, consider again the usual linear model Y = X
+ og, with the ¢; assumed independent, identically distributed N (0, 1).
If ¢ = 0, is known, it is easy to verify that

LD,(p) = D{X"X, o3) (5.2.7)
If 62 is unknown but fis of special interest, (5.2.6) provides the desired
measure with 8, = , 8, = 0. One finds
L) = L(B 6% = —glog(Zn&Z)
and :

I: NI:

L(B,o*(B) = —5 10g [2ro? ()] -

where o(B) = (y;— xI B)*/n. Settmg B = By,
LDi(Blo%) = nlog[(a* (By))/6*]
=nlog [;{117 D+ 1] {5.2.8)
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Since LD;(B|6?) is a monotonically increasing function of D, it is
equivalent to D;. Finally, the likelihood distance for (8, a?) is found to
be

LD,(B, %) = nlog (6%,/8%) + (yi— xTBw)* /3% — 1

1 n n—p—1 t
= nloe [(n—d) t?+n—P'—1]+(1,—”u) :
(5.2.9)

Interestingly, this expression is guaranteed to be monotonically
increasing in t? only if the model contains a constant. For fixed n, p’, and
v;, LD;(B, o) is minimized at tZ = (n—p’— 1) (1 —nv,)/(n — 1) which
may be positive if regression is through the origin.

EXAMPLE 5.2.1. LEUKEMIA DATA NoO. 2. The individual points
plotted in Fig. 5.1.1 represent 8, = (01(,,, 62(,,) i=12,...,17 for
the leukemia data discussed in Example 5.1.1. Only case 17 deviates far
from the full sample ML estimate: 0( 17y = (41.920, —2.184), while the
full sample ML estimates are 8, = 51.109 and §, = —1.110. The
likelihood distance measure for case 17is LD, = 9.89. Comparing this
value to the percentage points of a 12(2) distribution indicates that the
removal of case 17 will displace 8 to the edge of a 99 asymptotlc
confidence region.

The values of LD, i =1, 2,..., 17, are given in Table 5.1.1. The
second largest value of LD,, LD14 = LD, = 0.35, indicates minimal
movement so that case 17 is the only individually influential case.

Recall from Example 5.1.1 that case 17 has the largest ML resid.al,
but there was insufficient evidence to reject it as an outlier. The
influence of case 17 seems to be due to its large ML residual in
combination with the relatively large value of ¢;;, An inspection of the
original data reveals that case 17 corresponds to a patient with a very
large white blood cell count (100 000) who survived for a relatively long
time. Feigl and Zelen (1965) mention that high white blood cell counts
are unreliable so a measurement error in x, ; may be contributing to the
influence of case 17. In any event, conclusions based on such data
should be viewed skeptically. -

In the preceding discussion, the fully iterated estimates 0(,) were used,
but the one-step estimates computed from (5.2.2) would have served as
well. When superimposed on Fig,. 5.1.1, the one-step estimates for i
= 1,2, ..., 16 are nearly indistinguishable from the cloud of points
around the maximum of the log likelihood. The only noticeable
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disagreement occurs at case 17. The one-step estimate 8/, 4, falls at the
point indicated by a ‘star’ in the lower left-hand corner of Fig. 5.1.1.
Since 6},,, is farther from & than d,,,,, LD}, would still be large.

Finally, the quadratic approximation to LD; given at (5.2.5) would
probably work well in this example since the log likelihood contours
are nearly elliptical; the approximating elliptical contours and the one-
step estimators were given in Fig. 3.5.1. However, the elliptical
approximation is not always applicable since even in this example it is
possible to transform the parameters to get clearly nonelliptical
contours for the log likelihood function.[]

5.3 Nonlinear least squares
The nonlinear regression model is given by
yi=l(x,0+0e;, j=1,2...,n (5.3.1)

where f(x;, 0) is a scalar-valued function that is nonlinear in the
g-vector of unknown parameters 0, and the ¢; are independent and
identically distributed N (0, 1). For this problem, the maximum like-
lihood estimate @ of 0 can be obtained by minimizing the residual sum
of squares,

n

G(0) = ) (y;=[(x;,0)) (532)
izl
The problem of determining 6 can be treated as a special case of the
general unconstrained maximization problem, although special
methods that use the fact that G (8) is quadratic are often appropriate;
see Kennedy and Gentle (1980, Section 10.3).

The problem of assessing influence in the nonlinear least squares
problem can be approached using the general methods outlined earlier
in Sections 5.1 and 5.2. In particular, one-step estimators 5(‘,-, of the
vectors 0, that minimize the objective functions '

G(i)(o) = Z ()‘J —j'(xjv 0))21 I = lv 21 BN L (5-3'3)
j#i
can be found by application of the result given by Equation (5.2.2).
However, particularly interesting results can be obtained if we allow a
further approximation. We suppose that, in a neighborhood about 0,
J1ix;. 0) is approximately linear,

Sf(x;, 00 = f(x,0) + 2] (0 — D) (5.3.4)
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where 2] is the j-th row of the n x g Jacobian matrix Z.
-1 | af(x;.0) f(x;. 0)
= e 535
g [ a0, 20, s 32

If the approximation (5.3.4) is substituted into G ;, (0) defined by (5.3.3).
the resulting objective function is minimized at

6(1.-) =0+ (Z(Ti) Zm)_l Z(Tuz)em

where e is the n-vector with elements ¢; = y;—f(x;. 6). This form
corresponds to that obtained by using a single step of the
Gauss-Newton method (see Kennedy and Gentle, 1980, Chapter 10).
The last equation is simplified, with the aid of Appendix A.2 and the
fact that ZTe=0 to give a more usual form. Defining
= 27(Z72)"'%;, we find (Fox, Hinkley and Larntz. 1980)

FTF\- 15
0y = A (5.3.6)
M =

When this particular algorithm is used to produce the one-step
estimators, the nonlinear least squares problem is essentially replaced
by a linear one, with the role of X taken by Z. Most of the diagnostics
and residual analyses for linear least squares may be expected to apply
at least approximately in nonlinear least squares. In particular, an
approximate Studentized residual is

al
a /(1 ~1dy)

f.:

t

where 62 = G (0)/n. An elliptical norm of the sample influence curve is
DAZTZ, q6%) = (8 —0,)"(Z7Z) (0 — 8,,,)/q6>

When 6“, is replaced by the one-step approximation 8. this norm
becomes
AZ A
P N ry U'l‘
DHZ'Z,46%) = ——

Py (5.3.8)

In this and the following two sections, we continue to use D;(-, -} to
denote an elliptical norm. The parameter under consideration should
be clear from context. One step versions will be denoted by D! (-, -).

The use of elliptical norms for influence, whether based on one-step
or fully iterated estimates, may be inappropriate for some nonlinear

(5.3.7)
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problems if G(68) has markedly nonelliptical contours. In many
problems, elliptical confidence regions can be badly biased (Beale,
1960), and the bias may depend on the parameterization chosen for the
model (Bates and Watts, 1980, 1981; Hamilton, Watts and Bates, 1982).
The problem of choosing a parameterization can thC important
effects on the analysis of influence.

Alternative norms for 8 — 8}, or 0 — 8, that are less dependent on
the shape of contours of G(0) can be suggested, but these will require
considerably more computation. The first of these norms is derived
from the form for D; given by (3.5.6) as a norm of the change in the
vector of fitted values. For the nonlinear regression problem, this
becomes

Y, (S5 0= (x;, 00))° (5.39)

When f(x;, 0) is exactly linear in 0, D; and FD! are proportional;
otherwise, they may be quite different. When the parameterization of
the model is at issue, FD} may be the preferred statistic since it depends
on the parameterization only through approximation of 0, 1f 0, is
used in place of 8}, FD; is invariant under choice of parameterization.

Finally, we consider measures derived directly from log likelihood
displacement. With reference to the (¢ + 1)-dimensional contours for
(0. 02). the measure is

LD:" (@, o? 2[L(9 0:2)_ L(O(,), (G(‘i))z)]

_ n G(i)(o(li)) _ _ (0(1))
‘""’g[(rr—l) G(0) ] DG

(5.3.10)
where G, (8) = G(8) — (y; — f(x;, 0))*>. When 0 alone is considered, the
resulting measure from (5.2.6) is

LD} (010%) = nlog G (3L)/G )] (5.3.11)

As with FD}, computation of either likelihood norm requires a pass
through the data for each i, so these will be useful generally only if n is
not too large.

EXAMPLE 5.3.1. DUNCAN’s baTA. Duncan (1978) discusses a set
of artificial data with n = 24, and for which the appropriate model is

0,
Yi=g5— fexp(—0,x;)~exp(—0,x;)] +0¢;
0,0,
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The data are given in Columns 2 and 3 of Table 5.3.1. The remaining
columns of the table give ¢;, 7, 0y, DHZTZ,26?), FD!, and the two
likelihood distances computed from one-step estimates given the
maximum likelihood estimate 07 = (0.1989, 0.4454). From these statis-
tics, case 9 appears as a candidate for a possible outlier, and it is clearly
influential in this problem by any of the measures, assuming that the
one-step approximation is adequate. To explore the adequacy of the
approximation, we have computed the fully iterated estimators , for
each i, using the modified Gauss-Newton algorithms with 0 as the
starting value. No more than three iterations were required to obtain
about four-digit accuracy on 9. The correspondence between 0,,and
0}, was very good, with the largest deviation occurring for case 9.
Figure 5.3.1 is a contour plot of G(0) for this problem, with the fully
iterated ;, added to the plot. In addition 8}, is indicated.

©0.5500

0.4833

9.4167

0.3508

)

@.1590 Q.1700 Q.19@0 9.2108 @.2300 Q.2580

Figure 53.1 Contour plot of G(f), Duncan’s data.

8,

.

+* indicates 7 =

(0.1989,0.4454), where G (8) = 0.0007/279. The points plotted are 8;,. The point
at the *«" is 8,




Table 5.3.1 Duncan’s data and related statistics. Source: Duncan (1978)
Case x; ¥, e 3 £, D} FD} LD}(0,6%)  LD}Bls*) B}, 83,

t 05 000530 -—00794 —1426 00293 0.031 0.030 0.104 0.064 0.2051 04514

2 05 004356 —0.0411 ~0.739 0.0293 0.008 0.008 0.021 0.017 0.2021 0.4485

3 05 000603 -—00787 —1413 00293 0.030 0.029 0.100 0.062 0.2051 04513

4 05 005198 -—-0.0327 —0588 00293 0.005 0.005 0.019 0.011 0.2015 0.4479

5 1 015303 0.0085 -~ 0.157 00688 0.001 0.001 0.022 0.002 0.1978 0.4446

6 I 017526  0.0308 0.564 00688 0.012 0.012 0.034 0.025 0.1951 0.4427

7 1 015337 0.0089 0.163 00688 0.001  0.001 0.022 0.002 0.1978 0.4446

8 I 020580  0.0613 1.124  0.0688 0.047  0.048 0.107 0.102 0.1913 04399

9 2 03692 01586 2960 0.1008 0491 0.523 4.854 1.103 0.1773  0.4446
10 2 018513 -—0.0258 —-0482 0.1008 0013 0.013 0.039 0.028 0.2024 0.4455
1.2 025143 0.0405 0.755 0.1008 0.032  0.032 0.072 0.070 0.1934 0.4452
12 2 015610* —0.0549 —1.024 01008 0059 0.158 0.125 0.124 0.2064 0.4457
13 4 018093 -0.0474 —-0888 0.1089 0.048 0.050 0.108 0.108 0.2008 0.4333
14 4 019627 -00320 —-0.600 01089 0.022 0.023 0.056 0.049 0.2002 0.4372
15 4 026221 0.0339 0636 0.1089 0.025 0.024 0.058 0.052 0.1975 0.4540
16 4 015962 -0.0687 -1.287 01089 0.101 0.107 0.256 0.231 0.2016  0.4279
17 8 011619 —0.0253 —0486 0.1529 0.021 0.022 0.057 0.047 0.1960 0.4340
18 8 02085  0.0671 1.290 01529 0150  0.138 0.315 0.291 0.2065 04758
19 8 018540  0.0439 0.844 01529 0064 0.061 0.129 0.129 0.2039  0.4653
20 8 009583 -—-00456 —0.877 01529 0.069 0.074 0.156 0.156 0.1937 04247
21 16 005278  0.0200 0360 0.0393 0.003  0.003 0.021- 0.005 0.2005 0.4490
22 16 001473 —0.0181 —0327 00393 0.002 0.002 0.021 0.005 0.1975 04421
23 16 0.05738  0.0246 0443 0.0393 0004 0.004 0.021 0.008 0.2008 0.4498
24 16 002519 -00076 -0.138 00393 0000 0.000 0.021 0.001 0.1983 0.4440

* Given as 0.25610 by Duncan
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At least for this one problem, we have found that the one-step
influence measures provide the same qualitative information as the
fully iterated ones and an influential case is clearly identified. In some
problems where the G(8) surface is less well behaved, we should expect
that the one-step procedures will not work as well. Further research
and experience with these methods is required.(]

5.4 Logistic regression and generalized linear models

Although the logistic regression model does not fall in the general
framework for residuals given in Section 5.1, the results for the
assessment of influence given in Section 5.2 can be applied. We first
consider influence assessment, and then present several alternatives for
defining residuals.

Consider a sample Y' = (y;, y2. . . . , ya) of independent random
variables such that y; is binomially distributed B(n;, p;) with n; known
and p; unknown. The logistic regression model specifies the

- relationship

’1_l=logit(p])=log[pj/(l_p1)] =x}.ﬁ? J= 1’ 2,.‘.,’!, (54'1)
where X, X5, ..., X, are p’-vectors of explanatory variables and #is an
unknown parameter vector. In such models, estimation of fis typically

a major concern.
The log likelihood for n = X is

L= LXB) = Y [yx[B—a;(xIB+b;(y)]  (542)
j=1 :
where a;(z) = n;log[1 +exp (2)] and b;(z) = log <Z’) The maximum
likelihood estimate B of B is often found using Newton's method.
Once Bis obtained, a one-step estimator g, of ﬁm can be found using
the general results of Section 5.2. Following Pregibon (1981), but using
different notation, define p; = exp (x] B)/[1+exp(x] B)] and let W be
an n x ndiagonal matrix with j-th diagonal n;p; (1 — p;). Also, let § be an
n-vector with j-th element §; = y; —n;p;. One can show that

L(i)(;lv) = X8 t4(;‘) = - (X{, W(i)xm) (5.4.3)
so that, using (5.2.2) and Appendix A.2,
Bly = B+ (XE W X)) ™! XT3y,
A(XTWX)x;$
1 -y

(54.4)
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where #; is the i-th diagonal element of V =W!"2X
(XTWX) 'XTW!2 Pregibon (1981) discusses the accuracy of this
one-step approximation and concludes that componentwise the ap-
proximation tends to underestimate the fully iterated value, but that
this may be unimportant for identifying influential cases.

Measures for the differences f— B, or B~ B, can be derived using
elliptical approximations, likelihood displacement, or changes in fitted-
value vectors as discussed in the last two sections. Following Pregibon
(1981), however, we will consider only the first of these,

DY XTWX, p') = i[ § ] b (5.4.5)
' ‘ p'Lmpi(1—p) (1 “f’ii)z o
to characterize influence for logistic regression (Pregibon’s measure ¢}
differs from (5.4.5) only by the factor p’ in the denominator).
Comparison of (5.4.5) to D; suggests that §7/[n;p;(1 — p;)(1 — b;;)] and
{; may be interpreted and used in the same way as r? and v in linear
regression.

Residuals for logistic regression can be defined in many ways.
Equation (5.4.5) and the analogy with linear least squares suggests the
quantities

xi = §i/[nipi(1 — )32 (54.6)
Landwehr, Pregibon and Shoemaker (1980) and Pregibon (1981) use
an alternative set of residuals based on individual components
of the log likelihood ratio or deviance statistic, dev = —2[L(Xﬁ)
— L{logit (y;/n;))], where L (logit (y;/n;)) is the log likelihood obtained
when each n; is estimated by logit(y;/n;). The deviance has an
asymptotic y%(n—p’) distribution. Components of deviance are de-
fined as

dev; = + /2[1,(logit (yi/n))— Li(x] B)1*72 (5.4.7)

where [;(n) = y;n — a;{n)+ b;(y;) is the log likelihood based on the i-th
case only, and the plus sign is used if logit(y;/n) > x7 B and the minus
sign is used otherwise. Clearly, dev = Zdev?. Landwehr et al. (1980)
advocate the use of dev; in graphical procedures.

Finally, Cox and Snell (1968) suggest a somewhat more complicated
set of residuals based on a transformation to normality proposed by
Blom (1954). Let

Gu)y= [t P (1 —1)""Pd, 0=<u<l
The quantity $(u)/$(1)is the incomplete beta function 1,(2/3, 2/3). The

SRR SR R A 2 s
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i-th residual is then
\/n- [p(yi/m) — $1pi — $(1 = 25, )/”i}"»_]»
' piio(l—p)tie
Cox and Snell state that this set of residuals has essentially normal

behavior, even for n; as small as 5 and p; = 0.04. Estimates of the
variances of these residuals are given by Cox and Snell.

EXAMPLE 5.4.1. LEUKEMIA DATA No. 3. The data for all 33
patientsare given in Table 5.4.1 in a form appropriate for fitting logistic

Table 5.4.1 Leukemiadatafor logistic regression. Source: Feigl
and Zelen (1965)

Cuase WBC AG 3 n
1 2300 1 1 1
2 750 1 1 |
3 4300 1 1 I
4 2600 1 1. 1
5 6000 1 0 1
6 10 500 1 1 1
7 10000 1 1 1
8 17000 1 0 |
9 5400 1 0 1
10 7000 1 ! 1
I 9400 1 1 |
12 32000 1 0 I
13 35000 t 0 1
14 52000 ] 0 1
15 100 000 | 1 3
16 4400 0 1 ]
17 3000 0 1 1
18 4000 0 0 1
19 1500 0 0 1
20 9000 0 0 1
21 5300 0 0 1
22 10000 0 0 1
23 19000 0 0 1
24 27000 0 0 1
25 28 000 0 0 1
26 31000 0 0 1
27 26000 0 0 1
28 21000 0 0 ]
29 79 000 0 0 1
30 100 000 0 0 2
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models. We take the response y to be the number of patients surviving
at least 52 weeks for each combination of WBC = white blood cell
count, and AG =1 for AG positive patients and AG =0 for AG
negative patients. The five patients with WBC = 100000 are collapsed
into two groups, one (case 15) consisting of the three AG positives (with
one survivor) and one (case 30) consisting of two AG negatives (with no
SUrvivors).
The usual summary statistics obtained from fitting the model

logit(p;) = Bo + f, WBC + 5, AG (5.4.8)

are given in Table 5.4.2(a). The deviance has the value 27.24 with 27 df.
There is no indication from this summary that the model is grossly
inadequate.

Table 5.4.2 Logistic regression summaries, Leukemia data

(a) Full data (b) One case removed
Estimate Asymp. s.e. Estimate Asymp. s.e.
Intercept -~ 1.307 0.814 0.212 1.083
WBC ~0318x107* 0.186x107% —-0.235x10"3% 0.315x 1073
AG 2.261 0.952 2.558 1.234
df 27 27
Deviance 27.24 19.11

Index plots of the ;. the diagonal elements of V and D} (XTWX, p’)
are given in Figs. 5.4.1-5.4.3, respectively. Clearly, case 15 is unusual
and may be seriously influencing the fit. From Fig. 5.4.1, x,5 is not
unusually large and thus the influence of case 15 is apparently due to its
relative position in the factor space. Case 15 consists of the results for
n,s = 3 AG positive patients with WBC = 100000. The fact that one of
these patients survived for a relatively long time is surely contributing
to the influence of this case.

To understand the role of case 15, we could refit the model after
removing either all three patients in case 15 or just the suspect patient
(patient 17 in Table 5.1.1). For these data, both alternatives lead to
essentially the same revised fit. Table 5.4.2(b) summarizes the fitted
model after the removal of patient 17 or, equivalently, modifying case
15 by setting y,5 = 0 and n,5 = 2. The summaries for the full and
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reduced data in Table 5.4.2. are clearly quite different. This difference is
further illustrated in Fig. 5.4.4 which gives plots of the fitted survival
probabilities versus WBC and AG for the full and reduced data.
Surprisingly, the removal of patient 17 increases the estimated
probability of survival for patients with small values of WBC. The
influence of case 15 is certainly overwhelming.
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The influence of patient 17 is of course dependent on the assumed
form of the model. One reasonable alternative to model (5.4.8) is
obtained by adding the interaction variable WBC x AG to allow for the
possibility that the slopes for the 4G positive and AG negative groups
may differ. For these data, however, the addition of the interaction term
does not lead to a significantly improved fit. For the full data the
asymptotic t-value for WBC x AG is 0.88 and case 15 is still the only
influential case. After the removal of case 15, the 1-value is 0.38 and no
single case is seriously influential.

Asanother alternative, we could transform WBC viaa log transform-
ation, as was done in Example 5.1.1. When this alternative is pursued.
the importance of case 15 is lessened. For example, D5 (XTWX, p')
= (.47, and the fitted models with and without patient 17 are not as
different, as illustrated in Fig. 5.4.5. This reiterates the lesson that the
influence of a case can be changed by transformation.J
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Figure 54.5 The fitted probability of survival as a function of W BC, using
log ( WBC) as a predictor, leukemia data
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Logistic regression is one member of the class of generalized linear
models described by Nelder and Wedderburn (1972); see also
Wedderburn (1974, 1976). With the appropriate modifications, many of
the results for the logistic model can be applied in the larger class.

LetY, Yo, ... Y, denote n independent random variables such that
¥; has density ’

Jily; 2) = exp [y — aglo) + bi(y)] (5.4.9)

Further, assume that a one-to-one function k can be specified such that
o; = k(x] B, i=12,...,n

where x; is a p’-vector of observable variables, and #is an unobservable
parameter vector. For logistic regression, o; = log[p;/(1 —p;)],
k(z) = z,and the other quantities are defined after {5.4.2). The function
k is called a link function since it provides the link between the
parameters o; and the linear regression function. It is often useful to
formulate the link function in terms of E(y).

The log likelihood for n; = xT # based on the i-th case only is simply

Li(ny) = yik(n:)— Ai(n))+ bi( ;) (5.4.10)

where A;(n;) = a;(k(n;)). The corresponding score and observed in-
formation are ) .
Csin) = him) = yik ) = Ailm) (5.4.11)
and .
wilni) = —Lim) = — yik(n:) + A (n;) (5.4.12)

respectively. For logistic regression, s; = y; — n;p; and w; = n;p;{1 — p;),
i=12....n
The log likelihood for f based on all n cases is

L= ) LxTp)
i=1

and the corresponding maximum likelihood estimate § of fsatisfies the
system of equations

XTs=0

where § is the n-vector with elements §; = s;(x] B) defined at (5.4.11).
Methods of inference, computations and the uniqueness of the
estimators are discussed in Nelder and Wedderburn (1972) and
Wedderburn (1974, 1976). Here, we assume that the maximum
likelihood estimate is unique.
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In general, the diagnostic methods developed for logistic regression
also can be used for generalized linear models characterized by
(54.9) and (5.4.10). In particular, (5.4.4) and (5.4.5) apply with
W = diag [w; (xF )], and § = (s;(x] B)). where w; and s; are defined at
(5.4.12)and (5.4.11), respectively. One possible general extension of the
Studentized residual r? suggested by this procedure is F} =
§iz/wi(1 — by;).

The #? arise also in connection with an extension of the normal
theory mean shift outlier model, as outlined in Section 2.2.2, when
applied to generalized linear models. One way to describe the
possibility that the i-th case is an outlier is to let

n; = x] B+ ¢d; j=12..., n (54.13)

where d; = 1 if j = i and 0 otherwise. This form might be appropriate
for the leukemia data, for example, because high white blood cell
counts are unreliable. It is easily verified that the maximum likelihood
estimator of f under (5.4.13) is equal to E(,-,, the maximum likelihood
estimator of # obtained from the original model after deletion of the i-
th case. The maximum likelihood estimator of ¢ will satisfy s;(x] f;,
+¢)=0.

In general, #? is a modified version of the score test statistic (Cox and
Hinkley, 1974, p. 324) for the hypothesis ¢ = 0 obtained by substitut-
ing the observed information matrix for the expected information
matrix. For models with k () = 0, the observed and expected inform-
ation matrices are the same, and 7} is the score test statistic. This
happens, for example, in logistic regression.

EXAMPLE 54.2. LEUKEMIA DATA No. 4. The log likelihood
based on the i-th case for the AG positive cases in the leukemia data can
be written as

liim) = —y;exp[ —log(0,)—0,x;]—[log (0,)+0,x;]

which is of the form given at (5.4.10) with k(n;) = —exp (—n,), 4:(n;)
=1, bi(y;) =0, and n, = x]p with g7 =[log(0,),0,]. The cor-
responding score and observed information are

$i = yiexp(—ni)—1
and
w; = yexp (~n;)

Thus, W = diag[ y;exp (—x] B)], and §; = y;exp (- x] f)— 1. Values
of DN(XTWX, p), b, and 7; are given in the last three columns of
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Table 5.1.1 for the AG positive cases. The information contained in
these three statistics is similar to that given by the &} and ¢;; obtained in
Section 5.1, and the fully iterated influence measure LD, obtained in
Section 5.2 (values for these statistics are also given in Table 5.1.1). The
two distance measures LD, and D! (XTWX,p') show very good
agreement, both clearly identifying case 17 as influential. Similarly, the
ef and the f; are closely related, with large &} corresponding to large #;
and small £} corresponding to large negative f;. The agreement between
the ¢;; and the §; is not as strong as between the other statistics. Thus,
the ¢;; and the §; do not appear to contain the same information.[]

5.5 Robust regression

In the usual linear regression model Y = X f + ¢, a robust estimate f of
B is obtained by minimizing

‘i pLyi—x B)a] (5.5.1)

i=1
with respect to g, where p is a suitably selected loss function and G is a
robust scale estimate that may be determined previously or simul-
taneously to achieve scale invariance. Estimators that minimize (5.5.1)
are called M-estimators, a shorthand for maximum likelihood type
estimators. For a discussion of robust regression methods see, for
example, Huber (1977, 1981) and Hogg (1979).

Robust regression is designed to reduce or bound the influence of
outlying responses that often occur when sampling from a symmetric
long-tailed distribution. A number of authors, including Huber (1977),
caution that robust regression may be ineffective in the presence of
remote points in the factor space. Robust estimates can be as sensitive
as least squares estimates to such points and it is for this reason that
measures of case influence are needed in robust regression.

Many of the methods discussed in Chapter 3 for measuring the
influence of the i-th case can be applied to robust regression without
change. For example, let all cases have error variance o2 except for case i
which has var (&) = ¢2/w;,w; > 0,and let W = diag (w;), w; = 1 forall
i # i. Then the influence of case i can be assessed by applying (5.5.1) to
the transformed model

WIZY = WIZX B+ W!i2g (5.5.2)

and monitoring the behavior of the corresponding robust estimates
B (w;) as w; is varied.
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EXAMPLE 5.5.1. CLOUD SEEDING NO. 12. In this example, we
illustrate the preceding remarks by using the loss function (Huber,
1964, 1973), .

22
Iy ]ZI <c
plz)= . o2
clzf— =,
2

{5.5.3)
lz] > ¢

with ¢ = 1.345 to fit model (2.4.23) modified according to (5.5.2) with
i = 2, to the cloud seeding data. The robust estimates f(w; ). 0 < w,
< 1, were obtained via an iterative algorithm based on Newton's
method as described in Huber (1977, p. 38) and Holland and Welsch
(1977). The value of w, was stepped from w, = 1 to 0; at each step the
last value of (f, 5) was used as starting value.

Figure 5.5.1 contains a plot of the B4 (w,) component of f(w,)
against w,. The diagonal line is added for reference; the approximate
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Figure 5.5.1 f,4(w,) versus w,, cloud seeding data. Standard error at wy = |
is approximately 0.07
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standard error at w, = | isabout 0.07. Clearly, 4 (w, ) is insensitive to

perturbations near w, = 1, but is highly sensitive to perturbations as

w, — (. This plot should be compared to the corresponding plot for

least squares estimation given in Fig. 3.4.1, In this example the behavior

of the least squares and robust estimators are remarkably similar. [
The sample influence curve (3.4.6) for robust regression is

SIC; = (n—1)(B~ B) (5.5.4)

where B, = B(w; > 0) is the robust estimate of g computed without
the i-th case. Various useful norms of the sample influence curve can be
obtained by following the rationale used in the linear least squares
problem. One possible norm of the sample influence curve is
D;(XTX, p'k)where k is a scalar chosen so that k(X7 X))~ ! corresponds
to an estimate of the asymptotic covariance matrix of p (see Hogg,
1979; Huber, 1981, Chapter 7).

A second norm can be based on the iteratively reweighted least
squares approach to computation of §. Let & = (y,— x/ B)/&, ¢ (2)
= dp(z)/dz and let W = diag {{(¢;)/é;}. The norm is then given by
D, (XTW X, p'a?). Generally, it is difficult to recommend a specific
norm of this type since the best way to estimate the covariance matrix of
B is apparently unknown.

As indicated previously in this chapter, computation of the sample
influence curve will most likely be expensive. We consider again the
possibility of using a one-step estimate B, in place of B, Let
V' =dy (2)/dz, Q= diag(§;) where §;=y'(¢) and let v; = §ix]
(XTQX)~!x;. Then a single step of Newton’s method using the fully
iterated, complete data estimates (ﬁ, ) for starting values gives

BL = B__a(xTQx)ul x; ¥ (&)
W =

=,

(5.5.5)

provided, of course, that the relevant quantities are well defined (for
example, 0;; # 1). For linear least squares, the one-step estimator is
exact and reduces to
. . (XTX) 'xe
B = P ‘ (5.5.6)
— Uy
as shown at (3.4.6). The correspondence between least squares and
robust estimators should be clear from a comparison of (5.5.5) and
(5.5.6). In particular, the residuals ¢; in (5.5.6) have been replaced by the
Winsorized residuals &y (¢;) and v; has been replaced by 5.

i
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A precise characterization of the accuracy of this one-step approxi-
mation (5.5.5) is unavailable, but the following observations may help.
First, for estimators with redescending ¢-functions, such as Andrews'
(1974) sine estimator, (X{, Q,, X ;) need not be positive definite and
the one-step ‘estimator b(‘n cannot be guaranteed to decrease the
objective function. The one-step estimators can be expected to be more
satisfactory for monotone -functions.

Second, it is not difficult to verify that if y is piecewise linear (for
example, the ¢ function corresponding to (5.5.3)) and if the classifi-
cation of €; according to the pieces of / is the same as the classification
of the one-step residuals é} = (y; — x] B, )/ for all j # i. then B},
= ﬁ(,-). More generally, the accuracy of the one-step approximation
seems to depend on the differences |¢&; —é il

Assuming a sufficiently accurate one-step approximation, the effects
of remote points in the factor space on robust estimators can be
illustrated by using Huber's loss function:

- 1, l&l=c
4= 0, otherwise
- X,T(XTQX)_lx.', eil<c
Uii = :
0, otherwise
and —HXTQX) 'xee, &< —c
5(XTQX)_IX"5.'
11—y, ’

FXTQX) 'xe, é>c
If —c < & < c, theinfluence of the i-th case can be greater than that for
least squares since v; < §;, i = 1,2, ..., n. Similarly when |é;] > c the
influence of the i-th case will generally be less than that for least squares.

Consider, for example, the situation in which §; = 0 but g; = 1forall
j#F i 1f € > c, then

(n—-1)[B-B1=0-1)

B"ﬁ(li) =

—c<¢ <c

(XTX)"'x
[—v

(6c)
which is the SIC; for least squares reduced by the factor ¢/é;. Also,
forj+#i

B-Bl= 5(XTX)"‘e‘j[ (I = v;)x; + v x; J

(1-v;)01 “"Ujj)-'uizj
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EXAMPLE 5.52. cLOUDSEEDINGNO. 13, Toillustrate the use of
the one-step approximation, we use the cloud seeding data. The full
sample estimate for Huber's method was obtained with the least
squares estimate as starting values, with Huber’s (1977} proposal 2 as
the iterative computing method, and using & = median absolute
residual/0.6745 to estimate scale. Fifteen iterations were required to get
a solution such that the maximum proportional change in any
coefficient from the last iteration was less than 0.01. One-step measures
D} (XTWX, p'd?) and ‘fully iterated® D,(XTWX, p'¢?) based on 10
iterations were then computed.

Table 5.5.1 lists the two measures for the five cases with the largest
values of D;(XT W X, p'?). With the exception of the clearly influential
case 2, agreement between the two measures is adequate, and even case
2 is clearly identified by the one-step measure. Overall, 9 of 24 cases are
underestimated using the one-step estimate, but none seriously.

Table 5.5.1 Five largest influence measures, cloud
seeding data

Case DI(XTWX, p'6?) D;(XTWX, p'é2)
2 20.21 9.03
4 0.42 0.49
7 0.34 0.38

17 0.92 0.85

24 0.51 0.37

This analysis has been repeated for Andrews’ (1974) sine estimator
and for several other data sets. While the results for the sine estimate
applied to these data generally agree with the results for the Huber
estimate, in other problems we have found the agreement to be much
worse. More work is needed to understand the one-step distance
measures and their usefulness when applied to the robust estimators.[]

5.6 Other problems

In this section we give brief accounts of some of the other problems for
which influence has been studied, including the correlation coefficient,
discriminant analysis, and linear regression with incomplete data.

g TR T
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5.6.1 CORRELATION COEFFICIENT

Suppose that X, X, are normal random variables with means p,, s,.
variances ¢%, ¢}, and covariance a,,. The influence curve for the
correlation coefficient p = ¢,,/0,0, was given by Mallows {1975} as

[

IC(xy,x,) = ¥, %, = 2 (X1 + %3) {5.6.1)

where X; = (x;—p;)/g;, j = 1, 2. The empirical influence curve for a
sample (x,;,xy;), i=1,2,...,n, is obtained by substituting the
corresponding sample cdf F in place of F,

EIC (x,, x,) = .e,.\*-z-—‘zl(.ff +%2) (5.6.2)

where X; = (x;—X;)/s;, X; = Z;x;;/nand s} = %, (x;; — 5;)*/n, j = 1,2,
and p is the usual estimator of p. The sample influence curve is given by

SIC; = (n—=1){(p — b)) (5.6.3)

Both sample versions of the influence curve for p can provide useful
information on the effects of single cases in determining p. In small
samples, however, where efficient calculation and methods of display
are not a serious issue, the SIC seems preferable, as it has a
straightforward interpretation and is perhaps the most directly rele-
vant. Devlin et al. (1975) suggest the SIC for use in detecting outliers that
substantially affect p.

For the usual estimator p, the SIC can be studied by expressing 4, as
a function of p and other full sample statistics. One finds

i)_rlirZi/n
[ "’%i/")(l “"‘%i/")]”z

where rj; = (x; — X;)/[s;(1 — 1/n)!/?] is the i-th Studentized residual.
i=1,2...,n, for the j-th marginal sample, j = 1. 2. Since r} is a
monotonic function of the normal theory test that the i-th case is a
" marginal outlier under the mean-shift model, the denominator of
(5.6.4) will be small if either x,; or x,; appears to be an outlier when
judged against the respective marginal samples. A marginal outlier will
have a substantial influence on .

The numerator in (5.6.4) measures the joint effect of (x,;, x,;) and

i)(“ = (56.4)
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depends on the location of (x,;, x,;) relative to (X, X,). If, for example,
p>0and x,; <%, and x,; > %, {or x;; > %, and x;; < X,) then
f" - i’(i) <0. .

In large samples, an approximation to the sample influence curve
niay be sufficient. As a first-order approximation, expand the denomi-
nator of (5.6.4)in (r?;/n, r},/n)in a linear Taylor expansion'about (0, 0).
For large n, (5.6.3) becomes

A

Slcizrli’n—g(rf."*‘rgi) {5.6.5)

which is essentially the empirical influence curve evaluated at (x;, x,;).
Devlin et al. (1975) suggest a graphical technique based on this
approximation. Let

=l il'{"&z il“‘j\fz i
u, 2[(1+f3)”2+(1"/3)”2J

and

so that
EIC(x(,x;) = (1 = pH)uu, (5.6.6)

The advantage of this form is that the contours of constant influence
are hyperbolae. Devlin et al. (1975) suggest superimposing selected
contours of the EIC on scatter plots of (u,, u,) and, then reading the
approximate influence directly from the plot.

As seen previously, procedures based on‘the EIC should be
reasonable approximations to the SIC aslongas nislarge and the r} are
small to moderate. If r},~ is large (the case is well removed from the
centroid), Devlin et al. (1975) suggested that the EIC will usually
underestimate the SIC. For this reason, their graphical procedure is
perhaps best used as an initial screen. If a case is found to be influential
it may be necessary to conduct a more precise investigation using the
SIC.

5.6.2 DISCRIMINANT ANALYSIS

Campbell (1978) has considered the use of the influence curve as an aid
in detecting outliers in two population normal discriminant analysis.
He derives the theoretical and sample influence curves for the usual
summary statistics, namely the Mahalanobis D2, the vector of dis-
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criminant means, and the vector of discriminant coefficients {see
Lachenbruch, 1975, for precise definitions). Assuming a perturbation in
the first population, the influence curve for D? evaluated at a point x isa
quadratic function of the difference between the discriminant scores at
x and at the mean of the first population. The sample influence curve, in
which estimates replace parameters, corresponds to a v;-like measure,
since there is no component of the influence curve to correspond to a
residual. Thus, influential cases for D? are those that are more distant
(in an appropriate metric) from the mean of the other population.
Campbell also discusses a function of the influence curve for D? and the
other statistics that can be useful in graphical methods for the study of
outlying cases.

5.6.3 LINEAR REGRESSION WITH INCOMPLETE DATA

Suppose we wish to fit a linear model of the type discussed earlier in this
monograph but values for some of the variables are not observed. We
call this a regression problem with incomplete data. Many writers have
addressed the problem of estimation of parameters with incomplete
data, often assuming that the unobserved data are ‘missing at random’
(Rubin, 1976), and that the observed data follow a muitivariate normal
distribution (see, for example, Little, 1979). Computational methods to
find the maximum likelihood estimates of parameters of the con-
ditional distribution of the response, given the predictors, have been
given by Orchard and Woodbury (1972), Dempster, Laird and Rubin
(1977) and Hocking and Marx (1979), among others.

In all of this literature, little or no attention has been paid to the
problem of analyzing residuals and assessing influence. Shih (1981) has
made first steps in this direction. He defines residuals by essentially
using the general approach of Cox and Snell outlined in Section 5.1. If
the EM-algorithm of Dempster et al. is used for the computations a
very elegant result is obtained. At convergence of the algorithm, fill-in
values for unobserved values are estimated, and the residuals can then
be computed in the usual way based on the filled-in data. Studentized
residuals, however, are not as easy to obtain, as the likelihood function,
which is needed for the methods of Cox and Snell, is relatively
complicated. Shih has also considered the use of one-step estimators.
also using the EM algorithm, of the sample influence curve.

Generally, the maximum likelihood residuals seem to be superior to
the competitors, such as the residuals computed only from the fully
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observed cases. However, much more experience with these residuals is
required for them to be well understood.

For influence analysis, one can show that incomplete cases will
generally not be influential. In addition, the extent to which one-step
approximations are useful seems to depend on the covariance structure
of the data, and the pattern of the incomplete data.



Appendix

A.1 Weighted least squares

The weighted least squares model is given by
Y=Xp+¢ {A.L])

where all quantities are as defined near (2.1.1), except that Var (e)
= g*W~'and Wisaknown n x ndiagonal matrix withw;; > 0. The w;;
are often called case weights. Although weighted least squares esti-
mators can be computed directly, it is usual to transform to an
unweighted least squares problem, and solve this simpler version.
Multiplying both sides of (A.1.1) on the left by W'/2,

WI2Y = WI2X B+ W2
or, if Y* = W!2Y, X* = W!/2X, and &* = W/2%,
Y* = X*f+5* (A.12)

Since Var (¢*) = ¢21, it follows immediately that f = (X*TX*)"!X*Ty*.
Computationally, then, § can be obtained by multiplying »;
and each element of x;, including the constant, by w2, and solving
the resulting unweighted least squares problem, Using this
transformation, the residuals are e* = Y* —X*§ = W/2(Y - Xj).
while the correct residuals for the model (A.1.1) are e = Y — Xf. The
elements of e* are sometimes called weighted residuals, and of course e
= W™ 2e* Studentized residuals are identical under either formu-
lation. Distance measures are also the same under both formulations,
provided, of course, that the correct norm is used. For model (A.1.1).
the appropriate norm is D;(X"WX, p’'6%), which is equivalent to
D;{X*VX*, p'3?), the correct norm for (A.1.2).
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A.2 Updating formulae

Let A be a p’ x p’ rank p’ symmetric matrix, and suppose that a
and b are g x p’ rank ¢ matrices. Then, provided that the inverses
exist,

(A+a™) ' = A ' - A 'aT(I 4+ bA 1aT) " 'BA™!  (A21)

This remarkable formula shows how to modify the inverse of the
corrected cross product matrix when one or more rows of a matrix are
deleted or added. The most important special case is that ofdeleting a
single row x{ from X. Setting A = X™X, a = —x/, b=x/,

(XTX) " txxT(XTX) 7!
L—x/(X'X)"'x,
(A.2.2)

(XX ™' = (XX —xx])™* = (XX)"!

A version of this formula was given by Gauss (1821), and in several
papers about 1950 (Bartlett, 1951; Plackett, 1950; Sherman and
Morrison, 1949; Woodbury, 1950). Bingham (1977) used this basic
formula in a wide variety of applications in regression. A discussion of
the history of this type of updating, and gencrahzauons of it, is given by
Henderson and Searle (1981).

A closely related result concerns the determinant of a partitioned

q x q matrix Z, where
A B
Z=

and A and D are nonsingular. Then,
|Z| = |Al|ID-CA~'B| = |D||A-BD"!C| (A23)

This result is attributed to J. Schur by Henderson and Searle (1981). It
can be used to establish several useful updating and downdating
formulae, For example, let A=X"X,B=X/,C=X,and D=1,
where the use of 1 as a subscript is as in Section 3.6. Then

]X(T,,X(,,l = |xTX - xlTxll
= |1 XX] 1= X (X"X) "' X[ |
= |XTX||I - V|| (A.2.4)
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A.3 Residual correlations

Let v;; = x](X"X) ™ 'x; be the (i, j)-th element of V and define p;; to be
the correlation between the i-th and the j-th residuals,
— .

P = (o —op 7 A0

If x; = x;, then .
Pij= — v/ (1 —vy) (A32)

The residual correlation for replicated rows of X is thus always negative
and will be large only if the corresponding v;; is large. However,

pij = —ou/(l —v5) = —1/(c - 1)

where ¢ > 1 is the number of replicates of x;. For replicated points,
therefore, large negative correlations (p;; < —4) can occur only if x; is
replicated twice,

To investigate the general causes of a large vatue for p}, we shall fix x;
and choose x; to maximize p; (Cook, 1979). The required calculations
are facilitated by first writing p7; in terms of explicit quadratic forms in
x;. Let

gy = Xg (XH X))~ X
Using (A.2.1),
Vi = Dy — Veigpuin/ (1 + Visgiy)- (A.3.3)
and
Vuiy = Vi + Vg (1 — 0. (A.3.4)

These expressions show how to update and downdate the elements
of V:

viy = i/ (1 + Vi) (A.3.9)

Vjj = Vjji— vizj(i)/(l + Vi) (A.3.6)
and

Vi = Uiy /(1 + vii)- (A.3.7)

Finally, p} may be expressed as,

2
0]
(1 + vy) (1 —vj50)) + Uizj(i)

1+ viig o
=[(1—Uﬁm)< 5 “>+IJ (A.3.8)
Vijw)

pij =
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This form is convenient since v, and v}, are quadratic forms in x; and
the corresponding inner product matrix (X§,X;,) ! does not depend on
X; by construction. Since x; is to be held fixed, v is a constant. Thus, to
maximize p} by choice of x; it is sufficient to maximize

02 .
Sxi) = ——. (A.3.9)
If the model contains a constant term, as will usually be the case, the
first term of x; is constrained to be 1 and the maximum of f{x;) must be
taken with respect to the last p components of x;. Assume that the
independent variables are measured around the sample averages in the
reduced data set, and let x{ = (1, xJ) and

i (Vin=1) 0
(XHXw) ' = (0 (&, g‘(i))_1>

1 -
Vijiy = 'n‘j_‘l""xiT(%) L)~ x;

Then,

and (A.3.9) can be usefully re-expressed as

{{1/(n—= 1)1+ x] (X Xy) " 'x;}?
(1 +[1/(n= D]+ x7 (X8 T) "' x)

The largest possible value for p?, will obviously depend on the subset
of R? over which the maximum is taken. If the model contains
functionally related terms (for example, x and x?) the appropriate
subset may be complex and will depend on the model. Here, we
consider the unconstrained maximum over R” by first considering
subsets of the form G(k) = {x;|x[ (X}, Z;,) "' x; = k, k > 0} and then
maximizing over k. The effect of this is that for some models the derived
maximum may not be attainable.

Using the Cauchy-Schwarz inequality, it can be verified that

S k L ix
rg‘aki( [j(xi)]— [n/(n— 1)] +k|_(n - l)\/k

which is attained at

x; = kd /(] (AT, %) " xR

fix) = (A.3.10)

2
iT( CAN AN ‘xj)m
(A3.11)

The global maximum can now be obtained by finding the value of k
which maximizes (A.3.11). This value is k* = nx] (2, &) !x;
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Substituting k* into (A.3.11) and the resulting expression into (A.3.8)
and simplifying yields the final result,

n 1 '
mx.’«?x (ﬂlzj) = L)jj(i);;:_l_ - "—_“T (A312)
which is attained at x; = nx;. _

These results show that for pj; to be large either x; or x; must be a
remote point. Otherwise, vj;;, and thus (A.3.12) will be small. A second
requirement for a high correlation is that one point must be (ap-
proximately) a positive scalar multiple of the other, x; = dx; where
d > 0. With x; fixed, the value of x; which maximizes pj; is x; = nx;.
Moreover, since the right side of (A.3.11) is monotonically increasing in
k for k < k*,in any fixed data set the correlation between a remote pair
of points which are (approximate) replicates will tend to be large.
Finally, when n is large, high correlations will also occur when

x; = —dx;. When x; = — x; the cases lic on the opposite edges of the
sampled region and p;; > 0.
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Nonlinear regression, 186-191
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Normality, tests for, 5556
Norms, see Influence measures

One-step approximations, 182, 185,
187, 203
Outliers, 1, 2, 6. 10, 15, 18, 103
Bonferroni bounds in testing for,
26-28, 151
chance of detecting, 14, 21
generalized linear models and. 199

mean-shift model for, 20-22, 28--31.

199. 205
multivariate, 129, 205
transformations and. 69, 72--74, 76.
79
two-way tables and. 31, 86 87, 91,
93,97
probability plots and, 54 55
variance-shift modet for, 32
tests for, 22, 25
sequential methods for detecting, 31
Partial leverage regression plots, 45
Partial residual plots, 50-53
PIF, see Predictive influence function
Potential. 115, 125
alternative measures of, 141-144
expected, 139
generalized, 137-144
maximum, 141
Power transformations, 60. 72, 73, 76.
31,98
extended, 60, 62
Predictive influence function, 164
PRESS. 33, 34
Probability plots, 53-57
calibration of, 56
outliers in, 55
Projection matrix (V). 11-23
algebraic properties of, 125, 128,
136, 165, 166
computation of, 13
designed experiments and, (4, 156
diagonal elements of, 12-17
example of, 22-23
submatrices of, 18
Projection operators, 11, 12, 38. §1. 84

Q-0 plots, 55
QR decomposition 13, 46

R2, change in, 103
Rejection of data, 104
Replication, 12
Residuals, 1, 10-57
bias in, 15-17, 178

'Vﬁ\)

BLUS. 35
correlation between, 16, 17. 19, 27,
139, 140, 211 213
definitions of, 177- 182, 187, 192,
199
maximum normed, &7
ordinary, 10, 14 17,87
plots of, 3757
predicted, 3}
recursive, 36
Studentized. [8-20, 20 12, 34, 37,
55, 87. 180-182. 199
weighted, 209
Residual plots. problems in
interpreting, 74-73
Residual plus component plot. 50
Robust regression. 1. 2. 14. 60, 105,
108. 200--204

Sample influence curves. 108 111, 130,
13S0 182,208
Score statistic, 71. 72, 74, 76, 83, 99,
199

Sensitivity curves, 106
Serial correlation, 36
Shapiro-Wilk test for normality, 53
SIC. see Sample influence curves
Statistical functional. 104
Supernormality, 56
Symbols, definitions of

D;. 116

Dy 136

D{M.¢). 115

DY o137

DY IRT

e.e il

e 33

EIC,; 109

118

1Cy p(z) 103

pland p). 3

ri 18,20, 34

. 18. 30, 34

SIC;. 110

120,21, 34

3. 30

wi L1140 117118

Vi 18,30

X M

Xiiy. 135

X, 135

X2

Y. 11

Pir 33

B 135
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pijx 16, 27, 211
G 20

Transformations, 6, 38, 39, 41, 45,

58-86, 98, 148-150, 197

diagnostics for, 70-77

explanatory variables and, 78-86

families of, 60-61

inference after, 65

invariance of, 63

maximum likelihood estimation of,
61-63

normality after, 64

quick estimates of, 71, 73, 74, 76,

SUBJECT INDEX

79, 81, 85, 99
score test statistic for, 71, 72, 74,
76, 83, 99
simultaneous (Y and X), 83-86
Tukey’s test for additivity, 73, 87, 90,
92, 96

Updating formulae, 210
V, see Projection matrix

Volumes of confidence ellipsoids,
158-160

Weighted least squares, 209





