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Preface 

Residuals are used in many procedures designed to detect various types 
of disagreement between data and an assumed model. Many of the 
common methods of residual analysis are founded on work in the early 
1960s by F. Anscombe, J .  W. Tukey, G. E. P. Box. D. R. Cox, 
C. Daniel and K. S. Srikantan. The methodology grew steadily 
through the early 1970s and by 1975 residual analysis was widely 
regarded as an integral part of any regression problem, and many 
methods using residuals had been incorporated into generally dis- 
tributed computer packages. An implicit presumption at that time 
seems to be that most deficiencies are correctable through proper 
choice of scales, weights, model and method of fitting, and that 
residual analysis was used only to produce stronger, compelling 
conclusions. During the late 1970s interest in residual analysis was 
renewed by the development and rapid acceptance of methods for 
assessing the influence of individual observations. These developments 
allow a more complete understanding of an analysis, and have 
stimulated an awareness that some deficiencies may not be removable 
and thus inherent weaknesses in conclusions may necessarily remain. 

In the first part of this monograph, we present a detailed account of 
the residual based methods that we have found to be most useful, and 
brief summaries of other selected methods. Where possible, we present 
a unified treatment to allow standard options to be viewed in a larger 
context. Our emphasis is on graphical methods rather than on formal 
testing. In the remainder, we give a comprehensive account of a variety 
of methods for the study of influence. 

In writing this book, we have assumed that the reader is familiar 
with, or concurrently studying, linear models and regression methods 
at the level of Seber (1977), or, with some supplementation. Draper 
and Smith (1981) or Weisberg (1980a). An early version of this 
monograph was used as the basis of a course in Winter 1981 at the 



x P R E F A C E  

University of Minnesota, and many of the comments of the particip- 
ants have resulted in substantial improvements. Norton Holschuh 
read the final version and corrected many errors that might otherwise 
remain. Typing and other organizational matters were ably handled by 
Carol Lieb and Linda D. Anderson-Courtney. Almost all of the figures 
in this work were computer drawn at the University of Minnesota. 

St.  Puul, Mit~nesofa 
Janitar)- 1982 

R. Dennis Cook 
Sanford Weisberg 
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Introduction 

'Complicated phenomena. in which several causes concurring, opposing. or 
quite independent of each other. operate at once. so as to produce a compound 
effect, may be simplified by subducting the effect of all the known causes. as 
well as thenature ofthecase permits,either by deductive reasoning or by appeal 
to experience, and thus leaving. as it were, a residttal pltettomenon to  be 
explained. It is by this process, in fact, that science, in its present advanced state. 
is chiefly promoted.' 

J O H N  F. W. H E R S C H E L  (1830). A Prelitnitrary Discntrrse 
or1 the Study of Nurural Philosoph~ 

The collection of statistical methods that has come to be associated 
with the term 'regression' is certainly valued and widely used. And yet, 
an annoying and often sizeable gap remains between the necessarily 
idealized theoretical basis for these methods and their routine appli- 
cation in practice. It is well known, for example, that inferences based 
on ordinary least squares regression can be strongly influenced by only 
a few cases in thedata, and the fitted model may reflect unusual features 
of those cases rather than the overall  elations ship between the 
variables. Here, case refers to a particular observation on the response 
variable in combination with the associated values for the explanatory 
variables. 

There appear to be two major ways in which the gap between theory 
and practice is being narrowed. One is by the continued development of 
robust or resistant methods of estimation and testing that require 
progressively fewer untenable assumptions. Robust regression 
methods, for example, are a step ahead of least squares regression in 
this regard. The other line of inquiry is through the development of 
diagnostic tools that identify aspects of a problem that do not conform 
to the hypothesized modeling process. For example, the scatterplot of 
residuals versus fitted values that accompanies a linear least square fit is 
a standard tool used to diagnose nonconstant variance, curvature, and 
outliers. Diagnostic tools such as this plot have two important uses. 
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First, they may result in the recognition of important phenomena that 
might otherwise have gone unnoticed. Outlier detection is an example 
of this, where an outlying case may indicate conditions under which a 
process works differently, possibly worse or better. It can happen that 
studies of the outlying cases have greater scientific importance than the 
study of the bulk of the data. Second, the diagnostic methods can be 
used to suggest appropriate remedial action to the analysis of the 
model. 

These lines of development, robust methods and diagnostics, are not 
mutually exclusive. When robust regression is viewed as iteratively re- 
weighted least squares, for example, the weights associated with the 
individual cases may be useful indicators of outliers (Hogg, 1979). 
While it seems true that these approaches are in some ways competitive, 
one is not likely to replace the other in the foreseeable future. As long as 
least squares methods are in widespread use, the need for correspond- 
ing diagnostics will exist. Indeed, the use of robust methods does not 
abrogate the usefulness of diagnostics in general, although i t  may 
render certain of them unnecessary. 

This book is about diagnostics. The major emphasis is on diagnostic 
tools for data analyses based on linear models in combination with 
least squares methods of estimation. This material is given in Chapters 
2 4 .  In Chapter 5 we discuss corresponding tools for other selected 
problems. 

In the remainder of this chapter we introduce a data set that will be 
used for illustration throughout the rest of this book and suggest a 
basic paradigm for regression analysis. While many other data sets will 
be introduced in later chapters, a complete and detailed discussion of 
each of these is not possible. We hope that the following discussion can 
serve as a model for a useful, but perhaps not universally applicable, 
perspective on the use of diagnostics in data analyses. 

1.1 Cloud seeding 

Judging the success of cloud seeding experiments intended to increase 
rainfall is an important statistical problem (cf. Braham, 1979). Results 
from past experiments are mixed. It is generally recognized that, 
depending on various contributing environmental factors, seeding will 
produce an increase or decrease in rainfall, or have no effect. Moreover, 
the critical factors controlling the response are, for the most part, 
unknown. This fundamental treatment-unit nonadditivity makes judg- 
ments about the effects of seeding difficult. 
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In 1975 the Florida Area Cumulus Experiment (FACE) was 
conducted to determine the merits of using silver iodide to increase 
rainfall and to isolate some of the factors contributing to the treatment- 
unit nonadditivity (Woodley, Simpson, Biondini and Berkeley, 1977). 
The target consisted of an area of about 3 0 0  square miles to the north 
and east of Coral Gables, Florida. In this experiment, 24 days in the 
summer of 1975 were judged suitable for seeding based on a daily 
suitability criterion of S - Ne 2.1.5, where S (seedability) is the 
predicted difference between the maximum height of a cloud if seeded 
and the same cloud if not seeded, and Ne is a factor which increases 
with conditions leading to naturally rainy days. Generally, suitable 
days are those on which the seedability is large, and the natural 
rainfall early in the day is small. On each suitable day, the decision to 
seed was based on unrestricted randomization; as i t  happened, 12 days 
were seeded and 12 were unseeded. 

The response variable Y is the amount of rain (in cubic meters x lo7)  
that fell in the target area for a 6 hour period on each suitable day. To 
provide for the possibilities of reducing the variability and discovering 
some factors that may be contributing to the nonadditivity, 
the following explanatory variables were recorded on each suitable 
day: 

Echo coverage (C) = per cent cloud cover in the experimental 
area, measured using radar in Coral 
Gables, Florida, 

Prewetness (P) = total rainfall in the target area 1 hour before 
seeding (in cubic meters x lo7), 

Echo motion (E) = a classification indicating a moving radar 
echo (1) or a stationary radar echo (2), 

Action ( A )  = a classification indicating seeding (1) or 
no segding (0). 

The data as presented by Woodley et al. (1977) are reproduced in, 
Table 1.1.1. 

In addition to selecting days based on suitability (S -  Ne), the 
investigators attempted to use only days with C < 13 %. A disturbed 

day was defined as C > 13 %. From 'Table 1.1.1, the first two 
experimental days are disturbed with the second day being highly 
disturbed (C = 37.9 %). 

As a first step in the analysis of the re!;ults of this experiment, we 
suppose that there exists a vector-valued fiunction G such that the true 
or 'best' relationship between the response and the explanatory 
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Table 1.1.1 Cloud seeding data. Source: Woodley et a / .  (1977) 

Case A T S - N e  C P E Y  

variables is of the form 

Y = G(A, C, El P, S - Ne; B; 8 )  (1.1.1) 

where Y is the 24-vector of responses, B is the vector of unknown 
parameters whose dimension p' depends on G, 8 is a 24-vector of 
unobservable random errors, and the remaining arguments indicate 
that G may depend on the values of the explanatory variables A, C, E, P 
and S - Ne. For further progress the form of G must be specified. Since 
theoretical considerations that might suggest a form are lacking, we 
proceed by imposing tentative assumptionsthat seem reasonable and 
are not contradicted by available information. 

Initially, we suppose that G is of the form 
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where X is an 24 x p' full rank matrix whose columns correspond to 
explanatory variables,including but not limited to those given in (1.1.1). 
The choice of this form is based on convenience and the general notion 
that linear models with additive errors often serve as reasonable local 

approximations to more complex models; we have no firm information 
to support or deny this supposition. 

I ' We next choose the complete set of explanatory variables (that is. the 
, columns of X). First, since regression through the origin does not seem 

sensible here, we include a constant column of ones. Second, to allow 
for the possibility of nonadditivity, we include all cross-product terms 

I - 
between action A and the other explanatory variables listed in (1.1.1). 

I Finally, we include the number of days 7' after the first day of the 
I experiment (June 1,1975 = 0)as an explanatory variable. This variable, 

I which is also listed in Table 1.1.1, is potentially relevant because there 
I may have been a trend in natural rainfall or modification in the I 

I experimental technique. 
I I 
i With the five explanatory variables given in (1.1.1), X now contains 
I 
i 

p' = 11 columns. In general, we set p' = p + 1 if X contains a column of 1 
ones and set p' = p otherwise, so p is always the number of explanatory 

i variables excluding the constant. 
In scalar form, the model may be written as 

I 

: Now that the form of the model has been specified the goals of our 

1 analysis can be made more specific. The main goal is to describe the 
I difference A Y between the rainfall for seeded and unseeded days, 

Thus, the additive effect and the four possible interaction terms are of 
primary interest. The prediction of rainfall by itself is of secondary 
interest. 

Inferences concerning /I will be conditional on X and our analysis 
will be based, at least initially, on least squares methods since these are 
by far the most convenient and straightforward. For this to be sensible, 
however, a number of additional assumptions are needed: for each 
i = l , 2  , . . . ,  24, 
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(1) Eei  = 0 (appropriate model); 
( 2 )  var ( e i )  = a 2  (constant variance); 
(3) cov ( e i ,  E ~ )  = 0, i # j (uncorrelated errors); 
(4) any measurement errors in the elements of X are small relative to a; 

and 
(5) the errors ci are (approximately) normally distributed. 

If all of the structure that we have imposed so far is appropriate then 
the usual normal theory inferences based on the fitted model given in 
Table 1.1.2 will be accurate. But much of this structure lacks substant- 
ive support and if we are to have faith in the conclusions we must be 

, convinced that our assumptions are not seriously violated and that 
reasonable alternative structures will not produce severely different 
conclusions. Answers to the following questions will surely help: 

(1) Case 2 is considered to be a disturbed day and thus the process 
under study may differ under the conditions of case 2. Is case 2 
outside the local region of applicability of the assumed model? 
More generally, are there outliers in the data? 

(2) Is there evidence to suggest that the variances are not constant or 
that the distribution of the errors deviates from normality in 
important ways? 

(3) Is there evidence to suggest that the form of the model (EY = X j?) 

is not appropriate? 

Table 1.1.2 Fitted model, cloud seeding data 

Variable Estimate s.e. t-value 

Intercept 
A 
T 

S - N e  
C 
P 
E 

A  x  ( S - N e )  
A x C  
A x P  
A X E  
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The data as presented by Woodley et al. (1977) are reproduced in, 
Table 1.1.1. 

In addition to selecting days based on suitability (S -  Ne), the 
investigators attempted to use only days with C < 13 %. A disturbed 
day was defined as C > 13 %. From 'Table 1.1.1, the first two 
experimental days are disturbed with the second day being highly 
disturbed (C = 37.9 %). 

As a first step in the analysis of the results of this experiment, we 
suppose that there exists a vector-valued fiunction G such that the true 
or 'best' relationship between the response and the explanatory 
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in the left-hand square. More frequently, the method of fitting is as 
much determined by available software as by assumptions. In the vast 
majority of regression analyses, least squares is used to carry out fitting. 
Whatever method of fitting is used, the right-hand square corresponds 
to the fitted model, including estimates, tests, and so forth. The 
treatment of the cloud seeding data in Section 1.1 is essentially an 
estimation step. 

The bottom arrow in Fig. 1.2.1 is labeled criticism. I t  is meant to 
describe the act of critical assessment of the assumptions and the 
assumed model, given the fit in the right square and the actual data 
values. Criticism of a model may lead to modification of assumptions 
and thus further iteration through the system. The questions at the end 
of Section 1.1 may help guide this process. 

Most of the work on model building, both for the statistician 
developing methods and for the scientist applying them, has con- 
centrated on the upper estimation path. In precomputer days, the 
reason for this was clearly evident: fitting was laborious and time 
consuming. One of the earliest books on regression by Ezekiel (1930, 
1941) rarely strays far from the computational problems of regression, 
and barely ventures beyond models with two predictors. Even 
more recent books (Ezekiel and Fox, 1958; Ostle and Mensing, 1975) 
still discuss time-consuming methods of inverting matrices via 
calculator. Since the fitting of models was inherently so difficult, it is not 
unreasonable that methods of criticism would be slow to develop and 
rarely used. 

The availability of computers and the appearance of Draper and 
Smith (1966,1981) changed this trend. The problems of the estimation 
step, at least via least squares, are now easily and quickly solved, and the 
analyst can consider inherently more complicated problems of criti- 
cism. Most of the methods for criticism (diagnostics) require compu- 
tation of statistics that have values for each case in a data set, such as 
residuals and related statistics. As a class we call these case statistics, 
and call an analysis using these statistics case analysis. 

For the unwary, there is an inherent danger that is caused by the 
recent explosion of available methods for criticism. If every recom- 
mended diagnostic is calculated for a single problem the resulting 
'hodgepodge' of numbers and graphs may be more of a hindrance than 
a help and will undoubtedly take much time to comprehend. Life is 
short and we cannot spend an entire career on the analysis of a single set 
of data. The cautious analyst will select a few diagnostics for 
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application in every problem and will make aqadditional parsimonious 
selection from the remaining diagnostics that correspond to the most 
probable or important potential failings in the problem at hand. 

It  is always possible, of course, that this procedure will overlook 
some problems that otherwise could be detected and that the urge to 
always apply 'just one more' diagnostic will be overwhelming. The 
truth is: If everything that can go wrong does go wrong, the situation is 
surely hopeless. 



CHAPTER 2 

Diagnostic methods using residuals 

'Most of the phenomena which nature presents are very complicated; and 
when the effects of all known causes are estimated with exactness, and 
subducted, the residual facts are constantly appearing in the form of 

'I 
phenomena altogether new, and leading to the most important conclusions.' 

HERSCHEL, op. tit. 

The residuals carry important information concerning the appropriate- , 
ness of assumptions. Analyses may include informal graphics to display 
general features of the residuals as well as formal tests to detect specific 
departures from underlying assumptions. Such formal and informal 
procedures are complementary, and both have a place in residual 
analysis. 

Most residual based tests for specific alternatives for the errors are 
sensitive to several alternatives. These tests should be treated skepti- 
cally, or perhaps avoided entirely, until other alternatives that may 
account for an observed characteristic of the residuals have been 
eliminated. For example, outliers will affect all formal procedures that 
use residuals. Outlier detection procedures should usually be consid- 
ered before any formal testing is done. On the other hand, informal 
graphical procedures can give a general impression of the acceptability 
of assumptions, even in the presence of outliers. 

Anscombe (1961, Section 4.2) demonstrates that the whole of the 
data may contain relevant information about the errors beyond that 
available from the residuals alone. However, in the absence of specific 
alternative models or special design considerations, the residuals, or 
transformations thereof, provide the most useful single construction. \ 

2.1 The ordinary residuals 

The usual model for linear regression is summarized by 
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where X is an n x p' full rank matrix of known constants, Y is an 
,I-vector of observable responses, /? is a p'-vector of unknown 
parameters, and E is an n-vector of unobservable errors with the 
indicated distributional properties. To assess the appropriateness of 
this model for a given problem, it is necessary to determine if the 
assumptions about the errors are reasonable. Since the errors c are 
unobservable, this must be done indirectly using residuals. 

For linear least squares, the vector of ordinary residuals e is given by 

where V = (oil) = X(XTX)-'XT and %' = (ji) is the vector of fitted 
values. The relationship between e and E is found by substituting 
X/?+E for Y, 

e = (I - V)(X/?+&) 
= (I  - V)E (2.1.3) 

or, in scalar form, for i = 1 , 2 .  . . . , n, 

This identity demonstrates clearly that the relationship between e and E 

depends only on V. If the vijs are sufficiently small, e will serve as a 
reasonable substitute for E, otherwise the usefulness of e may be 
limited. For a sound understanding of the relationship between eand E ,  

and most diagnostics in general, an understanding of the behavior of V 
is important. 

2 . 1 . 1  THE H A T  M A T R I X  

The matrix V is symmetric (VT = V) and idempotent ( V Z  = V), and i t  
is the linear transformation that orthogonally projects any n-vector 
onto the space spanned by the columns of X. John W. Tukey has 
dubbed V the'hat'matrix since it maps Y into %',%' = VY (Hoaglin and 
Welsch, 1978). Since V is idempotent and symmetric i t  follows that 

trace(V) = rank(V) = p', v;j = rlii 

j 

and that V is invariant under nonsingular linear reparameterizations. 
This latter property implies that, aside from computational concerns, 
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collinearity between the columns of X is irrelevant to an understanding 
of how V behaves. 

The projection onto the column space of X can be divided into the 
sum of two or more projections as follows: Partition X = (X,, X,), 
where X1 is r i x q  rank q,  and let U = X,(X:X,)-'Xi be the 
projection matrix for the column space of XI .  Next, let XT be the 
component of X, orthogonal to XI, XT = (I  - U)X,. Then, 

is the operator which projects onto the subspace of the column space of 
X orthogonal to the column space of X,, and 

This representation shows that the diagonal elements vii are non- 
decreasing in the number of explanatory variables p'. It can also be 
shown that, for fixed p', the vii are nonincreasing in,n. 

Let X, = 1, an n-vector of ones. Then from (2.1.6) it follows 
immediately that 

V = l lT /n+  5(P P (2.1.7) 

and 

where % is the ti x p matrix of centered explanatory variables and x: is 
the i-th row of 5. For simple regression, yi = /I, + /I lxi  +ei, vii = l/n 
+ (si - X ) ~ / X ( S ~  - x)'. For p > 1, contours of constant vii in 
p-dimensional space are ellipsoids, centered at the vector of sample 
averages. 

The magnitudes of the diagonal elements of V play an important role 
in case analysis. From (2.1.8), oii 2 lln, i = 1,2, . . . , n, provided the 
model contains a constant. Upper bounds for vii depend on c, the 
number of times that the i-th row of X, x:, is replicated. If xj = xi, then 
lTi j  = tlii and, using the symmetry and idempotency of V, 

which implies that vii I l/c. Thus, 
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For models without a constant, the lower bound in (2.1.9) must be 
replaced by zero. The value of vii can attain its absolute maximum of 1 
only if xi occurs only once, and only if vij = 0, j # i. In this situation 
Ei = yi and the i-th case will be fitted exactly. I n  effect, a single 
parameter is then devoted to a single case. This situation is pathological 
and will rarely occur in practice except when a variable is added to 
model an outlier as in Section 2.2.2. I t  can, however. occur with some 
frequency in multiple case generalizations. 

The magnitude of oii depends on the relationship between x i  and the 
remaining rows of %. Characteristics of xi  which cause uii to be 

relatively large or small can be seen as follows (Cook and Weisberg. 
1980): Assuming that the intercept is included in the model, let p ,  2 11, 

2 . . . 2 ppdenote the eigenvalues of ST S, and let p , ,  . . . . pp denote 
the correspondingeigenvectors. Then, by the spectral decomposition of 
the corrected cross product matrix, 

Further, letting Oli denote the angle between p, and xi we obtain 

and 

Thus, vii is large if: (1) xT xi  is large, that is, xi  is well removed from the 
bulk of the cases; and (2) xi is substantially in a direction of an 
eigenvector corresponding to a small eigenvalue of 2P S. On the other 
hand, if x f x i  is small, vii will be small regardless of its direction. 

The elements of Vareconveniently computed from any orthonormal 
basis for the column space of X, such as that obtained from the singular 
value decomposition of X, or the first p' columns of the matrix Q 
from the QR decomposition (see, for example, Stewart, 1973). I f  
q: and qJ are the i-th and j-th rows of the first p' columns of Q, then 
V . .  = qTq.. 

11 I I 

Alternatively, the Choleski factor R (where R is upper triangular and 
RTR = XTX)can beused tocompute the v i j  without invertinga matrix, 
since 

0 . .  ' I  = xT(XTX)-'xj 
= xT(RTR)-'xj 
= aTaj 
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where ai = R - T ~ i  is a pf-vector. Now ai can be computed without 
inversion by the method of back substitution since R is upper 
triangular (see Dongarra, Bunch, Moler and Stewart, 1979, pp. 9.10). 

2.1.2 T H E  ROLE OF V I N  DATA A N A L Y S E S  

The distribution of e, the vector of ordinary residuals, follows 
immediately from (2.1.3): If E - N ( 0 ,  rr21) then e follows a singular 
normal distribution with E(e) = 0 and Var(e) = u2(1 - V), and the 
variation in e is controlled by V. 

The discussion of the previous section shows that cases remote in the 
factor space will have relatively large values of vii. Since var(ji)  = viia2 
and var(ei) = (1 -uii)a2, fitted values at remote points will have 
relatively large variances and the corresponding residuals will have 
relatively small variances. Because of the analogy between var(ji) and 
the variance of the sample average based on a simple random sample 

(a2/n), Huber (1977) calls l/vii the effective number of cases 
determining j i .  Indeed, we have seen that when vii = I, ji = yi. 

Many authors have hinted that the vii may play an important role in 
understanding an analysis based on (2.1.1). Behnken and Draper (1972) 
study the pattern of variation in the vii and note that wide variation 
reflects nonhomogeneous spacing of the rows of X. Huber (1975) and 
Davies and Hutton (1975) point out that if max(vii) is not considerably 
smaller than 1, it is probable that an outlier will go undetected when the 
residuals are examined. The average of the vii is p'/n and thus max(vii) 
2 p l / n .  Accordingly, i t  may be difficult to identify outlying cases unless 

I 

11 is considerably larger than p'. Box and Draper (1975) suggest that for 
a designed experiment to be insensitive to outliers, the vii should be 
small, and approximately equal. 

The importance of the vii is not limited to least squares analyses. 
Huber (1977) cautions that robust regression may not be effective, or 
work at all, if max(vii) is close to 1. Huber's rationale is that it will be 
difficult for outliers to be identified and thus downweighted in robust 
regression if max(cii) is large. 

The max(rii) is also important in determining the asymptotic 
character of least squares estimates: Let z denote a p'-vector with finite 
elements. Then a necessary and sufficient condition for all least squares 
estimates of the form zT$ to be asymptotically normal is max(vii) + Oas 
11 --+ .I.. ( Hu ber, 1973). If max (qi) is not small a normal approximation 
of the distribution of zT$ may be suspect, at least for some z (see Wu, 
1980. for further discussion). 
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Hoaglin and Welsch (1978) suggest a direct use of the I.,, as a 
diagnostic to identify 'high-leverage points'. The motivation behind 
this suggestion is based on the representation 

The fitted value j i  will be dominated by t i i i  y, if aii is large relative to 
the remaining terms. They interpret vii as the amount of leverage or 
influence exerted on ji by y i .  It is clear, however, that for any L!,, > 0, ji 
will be dominated by v i iy ,  if yi is sufficiently different from the other 
elements of Y (that is, an outlier). 

When the fitted model is incorrect, the distribution of the unobservable 
errors E and hence of the residual e will change. The goal in the study of 
the residuals is to infer any incorrect assumptions concerning e from an 
examination of e. Unfortunately, the correspondence between e and e is 
less than perfect. In some problems, model failures will not be usefully 
transmitted to e. In others, observed symptoms may be attributable to 
more than one incorrect assumption. 

Consider as an alternative to (2.1.1) the model 

where the n-vector B = (b , )  represents the bias in fitting (2.1.1) to a 
particular set of n cases. Often, the bias may be viewed, at least 
approximately, as B = Zq5, where 4 is an unobservable parameter 
vector. The columns of Z may represent important variables not 
included in X, or nonlinear transformations of the columns of X, 
perhaps polynomials or cross products. If (2.1.1) is fitted but (2.1.12) is 
the correct model, then 

E ( e i )  = (1 - v i i )b i -  v i j b j  (2.1.13) 
j + i  

Bias would be diagnosed by a systematic feature in a plot of residuals 
against a column of Z, if Z were known However, the use of residuals 
for cases with large vii in this or other diagnostic procedures is likely to 

be limited, unless the bias at that case is extreme, since both terms on 
the right of (2.1.13) approach zero as vii -t 1. If vii is small, ei may 
behave more like an average of the elements of B than like b , .  Most 
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procedures that use e to detect model bias will tend to emphasize the f i t  
of a model in the neighborhood of i (vii small) while ignoring the 
relatively remote points (uii large). 

E X A M P L E  2.1.1. I L L U S T R A T I O N  O F  B I A S .  Suppose that Xis given 
by the first two columns of Table 2.1.1 and Z is given by the third 
column. If the correct model is Y = X p i -  Zdf 8 ,  but the fitted model 
is Y = X ~ + E ,  the uii, hi, and E(ei) are as given in the next three 
columns of the table. Even in this small example, the differences 
between hi and E(ei) are clear. Cases wiih small vii will have hi 
accurately reflected (on the average) by the ei, but cases with large aii do 
not share this property. If the bias in the model was largest at extreme 
cases (cases with larger values of vii), we would not expect the residuals 
to diagnose this problem accurately. 

Table 2.1.1 Dart1 stlt illlrsfra~irry hias \c~llrr~ sortle vii arc large 

Now suppose that (2.1.1) is correct except that Var (e) = o Z W  - ' , for 
some unknown positive definite symmetric matrix W. If (2.1.1) is fitted 
assuming that Var ( E )  = 0'1, then E(e) = 0, but Var (e) = 02 

( I  - 1' I W - ' ( I  - V). Depending on W - ', the actual variances of the 
residuals may be quite different from a 2  (1 - vii), and from the variances 
for the residuals that would be obtained if the correct weighted least I 

squares model were used (see Appendix A.l). For example, suppose 
that 

so only case I has variance potentially different from a'. Let 
p f j  = I.:,/[( 1 - rii) ( 1  - qj)]. the squared correlation between the i-th 
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and j-th residuals (Appendix A.3). Then an easy calculation shows that 

and 

The effect of n~, # 1 depends on the values of \v,,  t : ,  , . and p: , .  If p:,  is 
small, var ( e , )  will be the only term seriously affected by the noncons- 
tant variance. However, ifp:, is large, then thechange in var ( e j )  will be 
comparable to the change in var (el ). If b r ,  is large. so c : ,  is less variable 
than the other errors, the true variances of the residuals will be smaller 
than their nominal values (in addition. the residual mean square will 
underestimate 02). If W ,  is small, then all the variances can become 
large. Analogous results for general W are more complicated, but it is 
clear that the residuals need not reflect nonconstant variances in the E, if 
some of the pizj are large. 

When both bias and nonconstant variance are present, the residuals 
will have both nonzero means and variances other than those given by 
the usual formulae. However, examination of the residuals will not 
generally allow the analyst to distinguish between these two problems, 
since both can lead to the same symptoms in the residuals. 

I 2.2 Other types of residuals 

For use in diagnostic procedures, several transformations of the 
ordinary residuals have been suggested to overcome partially some 
of their shortcomings. We first consider in Section 2.2.1 the 
Studentization of residuals to obtain a set of residuals that have null 
distiibutions that are independent of the scale parameters. These 
residuals are shown to be closely related to a mean shift model for 

I 
outliers (Section 2.2.2) and to the residuals obtained when each case in 
turn is left out of the data (Section 2.2.3). Alternatively. the residuals 
can be transformed to have a selected covariance structure: The usual 
suggestion is to obtain a vector of length n -p '  of residuals with 
uncorrelated elements. The methodology and usefulness of these 
residuals is briefly outlined in Section 2.2.4. 
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2.2.1 S T U D E N T I Z E D  R E S I D U A L S  

The ordinary residuals have a distribution that is scale dependent since 
the variance of each ei is a function of both u2 and v i i .  For many 
diagnostic procedures, i t  is useful to define a Studentized version of the 
residuals that does not depend on either of these quantities. Following 
Margolin (1977), we use the term Studentization to describe thedivision 
of a scale dependent statistic, say U ,  by a scale estimate 7'so that the 
resulting ratio S = U / T  has a distribution that is free of the nuisance 
scale parameters. David (1981) makes a further distinction between 
itlternul Studentization, in which U and Tare generally derived from the 
same data and are dependent, and exterrtal Studentization, where U 
and Tare independent. 

lnterrlal Studentizntion 
In least squares regression, the internally Studentized residuals are 
defined by 

where 6' = I; e ; / ( t ~  - p i )  is the residual mean square. We reserve the 
term Studentized residual to refer to (2.2.1). This transformation of 
residuals has been studied by Srikantan (1961), Anscornbe and Tukey 
(1963), Ellenberg (1973, 1976), Beckman and Trussell (1974), Prescott 
(1975), and many others. Many of these studies were motivated by a I 

concern about outliers. 
Ellenberg (1973) provides the joint distribution of a subset of 

m < n-p' Studentized residuals, assuming that (2.1.1) holds 
and E - N (0, d l ) .  The derivation of the joint distribution uses some 
interesting properties of the residuals and proceeds as follows. Suppose 
that an m-vector I = ( i l ,  i 2 ,  . . . , i,)* indexes the m Studentized 
residuals of interest, and define R I  and el to be m-vectors whose j-th 

i 
elements are riJ and e,),  respectively. Also, define VI to be the m x m 
minor of V given by the intersection of the rows and columns indexed i 
by I .  The rank of V, is no greater than p', and its eigenvalues are 
bounded between 0 and 1 .  The tn x m matrix I - Vl is positive definite 
whenever the maximum eigenvalue of V, is less than 1. 

The random vector el follows a N (0, a 2 ( 1  - V,) )  distribution. If we 
can find a quadratic form in e that is independent of el, then the joint 
distribution of e, and that quadratic form can be easily written. The 
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joint distribution of R, is then found by a change of variables and 
integration. 

Provided that the inverse exists, the required quadratic form is given 

by 
s:,, = e T e  - e:(I - V,)- ' e l  (2.2.2) 

where S:,, - aZX2 (n - p' - ni) and St,, and e l  are independent. These 
facts can be proved using Appendix A.2 to show that S; !  is the residual 
sum of squares for (2.1.1) with the cases indexed by I removed from the 
data. 

The joint density of e ,  and S& is then 

I 

where v = (n - p' - m)/2 .  Next, let D = diag ( 1  - vi ,  i l ,  . . . , 1 - L : ~  ), 
"7 ", 

and make the transformations 

R ,  = 6 - ' ~ - 1 / 2 ~ ,  (2.2.4) 

and 

6 = [ ( S ~ ) + e ~ ( I - V , ) - 1 e l ) / ( n - p ' ) ] 1 ~ 2  

Computing the Jacobian. substituting (2.2.4) into (2.2.3), and integrat- 
ing over 6 will give the density of R l .  If C, = D - ' I 2  ( I  - V , ) D -  ' I 2 ,  the 
correlation matrix of the residulas indexed by I, then the density of R,  is 

over the region rTC; ' r I n - p', and zero elsewhere. Form (2.2.5) can 
be recognized as an inverted Student function. Contours of constant 

i 
density of (2.2.5) are ellipsoids of the form rTC; ' r = c. For the special 
case of m = 1, (2.2.5) reduces to 

r ( v + + )  
v -  1 

( 1  - L) 
f ( r ) = ~ ( v ) ~ ( + ) ( n - p l ) l "  n - p  ; Irl I ( n  - p')'12 (2.2.6)  

Hence, r ' / (n  - p') follows a Beta distribution, with parameters 112 and 
(n - p l -  1)/2,  and it follows that E ( r i )  = 0, var ( r i )  = 1 and, from 
(2.2.5), cov ( r i ,  r j )  = - v i j / [ ( l  - v i l ) ( l  - v j j ) ]  ' I 2 ,  i # j. 
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The Studentized residuals are used as replacements for the ordinary 
residuals in graphical procedures, such as the plot against fitted values 
(Andrews and Pregibon, 1978; Anscombe and Tukey, 1963). They are 
also basic building blocks for most of the case statistics to be discussed 
in this and later chapters. 

External Studentization 
For externally Studentized residuals, an estimator of 02 that is 
independent of ei is required. Under normality of the errors, 
Equation (2.2.2) provides such an estimate. Defining 6;) to be the 
residual mean square computed without the i-th case, it follows from 
Equation (2.2.2) that 

(n - p')G2 - ez/(l - uii) 
6;) = 

n - p i - 1  
(2.2.7) 

Under normality, 6;, and ei are independent, and the externally 
Studentized residuals are defined by 

t i = ,  
ei 

o,~, (1 - uii)ll2 
(2.2.9) 

The distribution of ti is Student's t with n - p' - 1 degrees of freedom. 
The relationship between t i  and ri is found by substituting (2.2.8) into 
(2.2.9), 

n p t  ' 1 2  

t i = r i (  n-p , - r i  '.) (2.2.10) 

which shows that t: is a monotonic transformation of r f .  

2.2.2 MEAN S H I F T  OUTLIER MODEL 

Suppose that the i-th case is suspected as being an outlier. A useful 
framework used to study outliers is the mean shift outlier modei, 

Y = X/?+di$+& 

E ( E )  = 0, Var (E )  = 021 (2.2.1 1) 

where d, is an ,I-vector with i-th element equal to one, and all other 
elements equal to zero. Nonzero values of 4 imply the i-th case is an 
outlier. 
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Under this model an outlier may occur in y,, xi, or both. Suppose, for 
example, that yi is not an outlier while the i-th row of X is in error by an 
unknown amount 6,; that is, observed (x i )  = x i  - 6 , .  Then, 

which is in the form of (2.2.1 1) with 4 = 6f  /?. 

It is instructive to rewrite (2.2.11) by making the added variable 
orthogonal to the columns of X (as described near (2.1.5)), 

where /?* is not the same as /? in (2.2.11), but 4 is the same in 
both formulations. Because of the orthogonality, (2.2.13) can be fitted 
in two steps. First, fit the usual regression of Y on X, ignoring the 
additional variable. Next, estimate $J from the regression of the 
residuals e = (I - V ) Y  computed in the first step on the added 
variable ( I  - V)di 

$ = 
1 - V )  (I - V )  ei - -- 
( I - ( I - V )  l - v i i  

The sum of squares for regression on X is YTVY, while the additional 
sum of squares for regression on ( I  - V)di is J2(d:(1 - V)'di) 
= eT/(1 -vii). Hence, the residual sum squares for (2.2.13) is 
YT(I - V ) Y  - eZl(1 - uii). Assuming normality, the t-statistic for a 
test of d = 0 is 

which follows a t (n  - p l -  1) distribution under the null hypothesis. 
However, comparison of (2.2.15) with (2.2.7) and (2.2.9) shows that this 
test statistic for the shift model is identical to the externally Studentized 
residual. 

Under the mean shift outlier model, the nonnull distribution of 
t: when 4 # 0 is noncentral F with noncentrality parameter 
4 2 ( 1  - vii)/a2. Since the noncentrality parameter is relatively small for 
vi, near 1, finding outliers at remote points will be more difficult than 
finding outliers at cases with vii small. Yet it is precisely the former cases 
where interest in outliers is greatest. Also, since oii is increasing in p'. 

outliers become more difficult to detect as the model isenlarged. 
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When the candidate case for an outlier is unknown, the test is usually 
based on the maximum of the t; over all i. A multiple testing procedure, 
such as one based on the first Bonferroni inequality (Miller, 1966), 
must be used to find significance levels. A nominal level a, two-tailed 
test for a single outlier will reject if maxi Iti 1 > t(a/n; n - p' - 1). 
Cook and Weisberg (1980) suggest the alternative rule max, I ti I = I ti I 
> t(viia/pl; n - p' - 1). This rule maintains the overall significance level 
but provides an increase in power at cases with large vii. Special tables 
for the outlier test are provided by Lund (1975), Bailey (1977) and 
Weisberg (1980a). Moses (1979) provides useful charts. Tietjen, Moore 
and Beckman (1973) give critical values for simple linear regression. 

EXAMPLE 2.2.1. ADAPTIVE SCORE DATA NO. 1. The simple re- 
gression data shown in Table 2.2.1 are from a study carried out at the 
University of Calfornia at Los Angeles on cyanotic heart disease in 
children. Here, x is the age of a child in months at first word and y is the 
Gesell adaptive score for each of n = 21 children. The data are given by 
Mickey, Dunn and Clark (1967) and have since been analyzed 
extensively in the statistical literature. 

Table 2.2.1 Gesell adaptive score (y) and age atfirst word 
(x), in months, for 21 children. Source: Mickey et al. (1967) 

Case x y Case x y 

The lower triangular part of the symmetric matrix V is given in 
Table 2.2.2. Since even for simple regression V is n x n, it is rarely 
computed in full, but we present it here for completeness. Examination 
of this matrix indicates that most of the vii are small (19 of the 21 are in 



Table 2.2.2 Projection matrix, V, for adaptive score data 

1 0.05 
2 0.05 $13 
3 0.05 0.01 0.06 
4 0.04 -0.00 0.07 0.07 
5 0.05 0.05 0.05 0.04 0.05 
6 0.05 0.10 0.03 0.02 0.05 0.07 
7 0.05 0.08 0.04 0.03 0.05 0.06 0.06 
8 0.05 0.02 0.06 0.06 0.05 0.03 0.04 0.06 
9 0.04 -0.01 0.07 0.07 0.04 0.02 0.03 0.06 0.08 

10 0.05 0.10 0.03 0.02 0.05 0.07 0.06 0.03 0.02 0.07 
11 0.04-0.02 0.07 0.08 0.04 0.01 0.03 0.07 0.08 0.01 0.09 
12 0.04 -0.00 0.07 0.07 0.04 0.02 0.03 0.06 0.07 0.02 0.08 0.07 
13 0.05 0.01 QB6 0.07 0.05 0.03 0.04 0.06 0.07 0.03 0.07 0.07 0.06 
14 0.05 0.02 0.06 0.06 0.05 0.03 0.04 0.06 0.06 0.03 0.07 0.06 0.06 0.06 
15 0.05 0.02 0.06 0.06 0.05 0.03 0.04 0.06 0.06 0.03 0.07 0.06 0.06 0.06 0.06 
16 0.05 0.01 0.06 0.07 0.05 0.03 0.04 0.06 0.07 0.03 0.07 0.07 0.06 0.06 0.06 0.06 
17 0.05 0.03 0.06 0.06 0.05 0.04 0.04 0.05 0.06 0.04 0.06 0.06 0.06 0.05 0.05 0.06 0.05 
18 0.06 W - 0 . 0 5  -0.07 0.06 0.17 0.13 -0.03 -0.09 0.17 -0.11 -0.07 -0.05 -0.03 -0.03 -0.05 -0.00 @ 
19 0.05 0.07 0.04 0.04 0.05 0.06 0.06 0.04 0.03 0.06 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.10 0.05 
20 0.05 0.02 0.06 0.06 0.05 0.03 0.04 0.06 0.06 0.03 0.07 0.06 0.06 0.06 0.06 0.06 0.05 -0.03 0.04 0.06 
21 0.05 0.01 0.06 0.07 0.05 0.03 0.04 0.06 0.07 0.03 0.07 0.07 0.06 0.06 0.06 0.06 0.06 -0.05 0.04 0.06 0.06 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 
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the range 0.05-0.09), the only exceptions being = 0.15 and v,,, ,, 
= 0.65. Since Xuii = 2, the diagonal for case 18 is relatively large. (The 
role of case 18 in this data set will be discussed at some length in 
succeeding sections.) Also, the oij, i # j,are generally small and positive, 
the exceptions again being associated with cases 2 and 18. 

Next consider the linear regression model, y, = Po + P,xi + ci for the 
data in Table 2.2.1. A scatter plot of the data is given in Fig. 2.2.1; the 
numbers on the graph give the case number of the closest points. From 
this graph, a straight line model appears plausible although cases 19,18, 
and possibly 2 appear to dominate our perception of this plot. If the 
points for these three cases were removed, the perceived linearity would 
be less pronounced. Cases 18 and 2 fall near the perceived (and the 
fitted) regression line, while case 19 is quite distant. 

Figure 2.2.1 Scatter plot of the adaptive score data 

Figure 2.2.2, an index plot (plot against case number) of the 4, reflects 
the comments of the last paragraph, with the residual for case 19 clearly 
larger than the others. Figure 2.2.3 provides a plot of ri versus );i, a 
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0 5 10 15 20 25 

Case number 

Figure 2.2.2 Index plot of residuals, adaptive scores data 

standard plot used to find various problems that might be a function of 
the fitted values. Cases 18 and 19 stand apart in this data since o,,, ,, 
= 0.65 and rI9  = 2.823. The statistic t , ,  = 3.607 computed from ri can 
be used to test case 19 as an outlier; the Bonferroni upper bound for the 
p-value for this test is 0.0425. 

The importance of case 19 in fitting the model can best be judged by 
deleting it and refitting the line, as summarized in Table 2.2.3. Deletion 
of the case has little effect on the estimated slope and intercept but it 
does clearly reduce the estimated variance. The role or influence of this 
case, as contrasted with cases 2 and 18, will be pursued in Chapter 3 . 0  

E X A M P L E  2.2.2, C L O U D  S E E D I N G  NO. 2. AS pointed out in 
Chapter 1, case 2 is an extremely disturbed day, and we may have prior 
interest in testing case 2 as an outlier. Because of the prior interest, the 
outlier statistic for case 2, t ,  = 1.60, can be compared to t ( n  - p '  - 1) 
to obtain significance levels. However, since 0,. , = 0.9766, the power of 
the test for this case is relatively small, and we cannot expect to detect 
anything but extreme deviations from model (1.1.3). O 
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6 0 70 80 90 I00 1 I0 

Fitted values 

Figurc 2.2.3 ri versus fitted values, adaptive score data 

Table 2.2.3 Regressiotl sunlrtlaries wit11 U I I ~  without case 19, adaptive score 
datir 

-- - 

Full data Case 19 deleted 
- 

Estklate s.e. Estinlate s.e. 
-- - -- 

intercept 109.87 5.06 109.30 3.97 
Slope -1.13 0.31 - 1.19 0.24 

df  = 19; 6' = 121.50; R2  = 0.41 df = 18; 6' = 74.45; R' = 0.57 

Accuracy of the Bonferro~zi bound for rlle outlier test 

Under the outlier test that uses the rejection rule max ( 1 ; )  > F (crln; 1, n 
- p ' -  I ) ,  the first Bonferroni upper bound for the true p-value is p- 
value I n  Pr ( F  > t i )  where F follows an F(1, n -p l -  1) distribution 
and t i  is the observed value of max (t?). Cook and Prescott (1981) 
provide a relatively simple method for assessing the accuracy of this 
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; 1 1  
I I 

upper bound. The advantage of this method is that numerical inte- 
gration is not required. 

Let pij denote the correlation between ei and ej ( i  # j ) .  

1 1  

let r,,, denote the observed value of the Studentized residual cor- 
responding to max ( t f  ) and define 

I  I 
1  I 
1  I 

dk) = { ( i , j ) I i  <J, r i  < hn-P ' )  (1 & P~,)} 
Then 

I  I 

u - /I+ - b- I p-value I u (2.2.17) I 

where 1 1  
a = n P r [ ~ > t ; ]  1 1 

B" = x Pr[F > r i (n -p ' - l ) / ( ) (n -pf ) ( l+p , , ) - r ; ) ]  
c( + ) 

I I 
and 

I I 

/3- = x Pr [F > r;(n - p' - l)/()(n (1 -pi,) - r;)] ~ 1 
c ( - )  

I 

It follows immediately from (2.2.17) that the upper bound is exact when I 1~ 

c (  +) and c (  - )  are empty, or equivalently if I i 
I I 1  

1 + max Ipij( < 2ri/(n - p') 
i < j  

This is equivalent to the sufficient conditions given by Prescott (1977), 
Stefansky (1972a,b), and Srikantan (1961). Note also that since 
ri/(n -pf)  < 1, the upper bound can never be exact if pi, = + 1 for 
some i # j. 

Calculation of the lower bound in (2.2.17) requires knowledge of the 
pijs. In many designed experiments, these will have a simple structure 
so that the lower bound can be calculated without difficulty. For 
example, in a two-way table with one observation per cell there are only 
three distinct residual correlations. Residual correlations for selected 
models of 2k designs are given by Cook and Prescott (1981). In other 
cases, the lower bound may be approximated further by replacing pij in 
/3+ and p- by max,,+,(pij) and min,(-,(pij), respectively. Our 
experience suggests that this will often be adequate. 

E X A M P L E  2.2.3. A D A P T I V E  S C O R E  DATA NO. 2. We have seen 
previously that the upper bound on the p-value for the outlier test for 
case 19 is 0.0425. While refining this value may be unnecessary from a 
hypothesis testing point of view, it may be desirable to judge the 
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accuracy of the upper bound when p-values are used to assess the 
weight of evidence against the null hypothesis. This can be done using 
the lower bound (2.2.17). 

Direct application of this bound would require evaluation of about 
420 probability statements. While it would be straightforward to wrhe 
a code to perform the required calculations, it will usually be sufficient 
to employ the further approximation, so that the number ofprobability 
statements that must be evaluated is reduced. A small number of 
evaluations can be handled easily on many hand-held calculators. 

Inspection of the residual correlations in Table 2.2.4 shows that all 
correlations are in the interval [-0.556,0.202]. A first lower bound on 
r - p+  - /I- can be obtained by replacing each pij in the expressions for 
p-  and by the lower and upper bounds, respectively. However, this 
results in negative values for the lower bound on u - fit - f l -  at 
r l g  = 2.923, so a closer approximation is required. 

A second inspection of the residual correlations reveals that one pair I 

has a correlation of -0.556, two other pairs have correlations of 
- 0.300, and of the remaining pairs 17 correlations lie in the interval 
[0.002,0.202] and 190 lie in [-  0.221, - 0.0161. A second lower bound 
on LY - /I+ - /3- can be obtained by using the four values { -  0.556, I 
-0.300, -0.016, 0.202) in combination with their respective frequen- 
cies 11. 2. 190, 17) to evaluate /It and the four values {-0.556, 
-0.300, -0.221,0.002) in combination with the same respective 
frequencies to evaluate p-.  This procedure, which requires the 

evaluation of only eight probability statements, produces +/I- 
< 0.0016. In short, the true p-value corresponding to r l g  = 2.823 is I 

between 0.0409 and 0.0425. i 

As further illustration, the lower bounds obtained by using this 
procedure for x = 0.01, 0.05, and 0.1 are 0.00997, 0.0476, and 0.086, 
respectively. Clearly, this procedure produces useful bounds in each 
case. i3 

Mltlriple cclses 

As before. let I be an m-vector of case subscripts and let el, V ,  be as 
defined previously. Multiple outlying cases can be modeled under a 
shift model by 

a.herc I) is 11 x 111 with k-th column di,  and + is an m-vector of unknown i 
parameters. The normal theory statistic r:for testing 4 = 0 is obtained 



Table 2.2.4 Residual correlations for the adaorive score data 
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in analogy to the development leading to (2.2.15) (Gentleman and Wilk, 
1975b; Cook and Weisberg, 1980), 

(eT(1- V,)- 'el) (11  - p' - m) 
1:  = 

((n - p')62 - eT(1- vl)- ' el)(m) 

The null distribution of this statistic under normality is F(m, n - 
p' - m). Critical values for the multiple case outlier test can be based on 
the Bonferroni inequality, but these critical values are likely to be very 
conservative. 

The multiple case analogue of the internally Studentized residual, 
since Var (el)  = a Z ( I  - VI), is 

The relationship between t:and r:is given by 

Computations. Computing r: can be simplified by the use of 
appropriate matrix factorization. Gentleman (1980), for example, has 
used a Choleski factorization of I - VI: There is an m x m upper 
triangular matrix R such that RT R = I - V, (for necessary software, see 
Dongarra er al., 1979). Given this factorization, the Studentized 
residual can be computed in two steps. First, solve for a in the 
triangular system RTa = el. Then, compute r:= aTa/;,. This method 
has the advantage that if I* is the subset consisting of the first m* < m 
cases included in I ,  then r:. = aT, a,/;, where a, is the first m* elements 
of a. 

Alternatively, let Vl = r A r T  be the spectral decomposition of VI, - 
with the columns of r (eigenvectors) denoted by y,, y,, . . . , y, and 
the diagonals of A denoted by A ,  I . . . I A,. Following Cook and 
Weisberg (1980), 

provided that < 1. If 2, = 1, deletion of the cases in I results in a 
rank deficit model and a test to see if I is an outlying set is not possible 
using the mean shift outlier model. 

Finding the set I of m cases most likely to be an outlying set requires 
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finding I to maximize r t  over all possible subsets of size 111. Even (;:J 
for modest n, if m is bigger than 2 or 3, this can be very expensive. This 
problem can be approached in at least two ways. First, some lineac 
models have a special structure for V (and thus also for the V l )  and this 
structure can be exploited. Gentleman (1980) has used this idea to 
obtain an algorithm for outliers in an r x c table with one observation 
per cell. She finds, for example, if t ? ~  = 2. V1 can only be one of three 
possible 2 x 2 matrices, while for nr = 5, V, will be one of 354 possible 
5 x 5 matrices. The factorization of VI or I - V1 need only be computed 
once, and then r:can be calculated for all I with a common value for V I .  
Alternatively, sequential outlier detection methods can be used. These 
methods have the disadvantage of failing to account for the signs of the 
residuals and their relative position in the observation space; the nl 

cases with the largest residuals need not be the best candidates for an nl- 

case outlier. Furthermore, residuals of opposite sign or on opposite 
sides of the observation space can mask each other so none appear as 
outliers if considered one at a time. Sequential outlier methods have a 

long history, dating at least to Pearson and Sekar (1936); see also 
Grubbs (1950) and Dixon (1950). Mickey et al. (1967) provide a 
modification of the sequential methods based on fitting models using 
stepwise regression methods that add dummy variables to delete 
outliers. The Furnival and Wilson (1974) algorithm can be used to 
perform the same function. 

E X A M P L E  2.2.4. A D A P T I V E  S C O R E  D A T A  NO.  3 The eight pairs 
of cases with largest r:or t :  are listed in Table 2.2.5. All these pairs 

Table 2.2.5 Eight largest r t f o r  the 11duprit.e 
score data 
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include case 19; in fact, the subsets with the 20 largest rfall include case 
19. However, since the critical value for the m = 2 outlier test at level 
0.05 based on the Bonferroni bound is 14.18, none of the pairs would be 
declared as an outlying pair by this conservative test. Clearly little is 
gained here by considering cases in pairs. Case 19 is found to be an 
outlier by itself, and we should not be surprised to find that it remains 
an outlier when considered with other cases. In problems where the 
cases have a natural relationship, perhaps in space or in time, pairs of 
cases that include individual outliers may well be of interest. This is not 
so in this example. 

Orller otrtlier models 
The mean shift outlier model is not the only plausible model for Y 

outliers. As might be expected, alternative formulations can lead to 
different procedures. For example, Cook, Holschuh, and Weisberg 
(1982) consider a variance-shift model in which the homoscedastic b 

model (2.1.1) holds for all but one unknown case with variance 
wa2, \rl > 1 .  Assuming normality and maximum likelihood estimation 
for (w, B; u2), the case selected as the most likely outlier need not be the 
case with largest ei or r,, and thus at least the maximum likelihood 
procedure based on this model is not equivalent to the mean-shift 
model. However, if the case with the largest Studentized residual ri also 
has the largest ordinary residual e,, then that case will be identified as 
the most likely outlier under both the mean and variance shift models. 

Another outlier model assumes that data is sampled from a mixture 
q(x1 = ?l; (x )  + (1  - nu2 (x), with mixing parameter 7c. This formu- I 

lation can include both location and scale shift models by appropriate 
choice of J; and f2 .  Aitkin and Wilson (1980) consider maximum 
likelihood estimation of n and the parameters o f f ,  and f, assuming 
that the densities are normal. Marks and Rao (1979) present a similar 
example with n assumed known. Since for this problem the likelihood 
function is often multimodal, the solution obtained, necessarily by an 
iterative method, will be sensitive to choice of starting values. Such 
mixture models have also been considered in a Bayesian framework 
(Box and Tiao. 1968: Box. 1980). 

All of these methods differ from the outlier procedure based on the ! 
maximum Studentized residual in the philosophy of handling outliers < .  

since they are designed to accommodate outliers in the process of 
making inferences about the other parameters. Our approach is to 
identify outliers for further study. The action to be taken as a result of 

I 
1 ,  
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finding an outlier, such as case deletion or downweighting, will depend 
on the context of the problem at hand. This approach is more 
consistent with the overall goal of identifying interesting cases. 

The outlier problem has recently received more detailed treatment by 
Barnett and Lewis (1978) and Hawkins (1980). 

The ordinary and Studentized residuals are based on a fit to all the data. 
In contrast, the i-th predicted residual e(i, is based on a fit to the data 
with the i-th case excluded. Let Bdenote the least squares estimate of /I 
based on the full data and let be the corresponding estimate with the 

Y i-th case excluded. Then, the i-th predicted residual is 

e ( , ) = y i - x T ~ ( , , ,  i = 1 , 2  , . . . ,  n (2.2.22) 

b Each e(i, has several interpretations. First, one may think of i t  as a 
prediction error, since the data on the i-th case is not used in obtaining 
its fitted value. Anderson, Allen, and Cady (1972) and Allen (1974) use 
PRESS = Ce;, (the predicted residual sum of squares) as a criterion for 

- model selection, better models corresponding to relatively small values 
of PRESS. Much the same motivation, except from a Bayesian- 
predictivist point of view, is provided by Lee and Geisser (1972, 1975). 
Stone (1974) and Mosteller and Tukey (1977) discuss the related ideas 
of cross validation in which the data are split into two or more subsets, 
and parameters estimated on one subset are used to obtain fitted values 
for the other subsets to validate the model. A limit of this process, which 
gives rise to e(i,, is obtained by dividing the data into n subsets, each 
consisting of a single case. 

A relationship between e,i, and ei is easily obtained using the 
formulae in Appendix A.2, 

which is identical to the estimate of $(2.2.14) under the mean shift 
model. Deleting case i and predicting at xi is therefore equivalent to 
adding a dummy variable di to the model and estimating a coefficient. 
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Moreover, the i-th predicted residual divided by the least squares 
estimate of the standard error of prediction based on the reduced data 
is equal to the i-th externally Studentized residual, 

where X,i, is obtained from X by deleting the i-th row xT. 

I t  is clear that the e,,, are normally distributed (if the ti are normally 
distributed] with mean zero and variance cr2/(l - vii), and have the same 
correlation structure as the e i .  Use of the p ~ d i c t e d  residuals in place of 
the ordinary residuals in case analysis will tend to emphasize cases with 
large while use of ei tends to emphasize cases with small v i i .  Using 
PRESS as a criterion for model selection will result in preference for 
models that fit relatively well at remote rows of X.  To correct for this, 
Studentized versions of the predicted residuals and of PRESS can be 
suggested. Not unexpectedly, these will get us back to ri and t i :  

Alternative versions of PRESS may be defined as ~ r f  or Ctf in the same 
spirit as the weighted jackknife suggested by Hinkley (1977). See 

I 

Geisser and Eddy (1979) and Picard (1981) for other uses of these 
residuals in model selection. 

While the Studentized residuals do correct the residuals for equal 
variance, the correlation structure of the residuals is not changed. 
Clearly. e can be transformed to have a different correlation structure. 
Since the distribution of e is singular, the obvious goal of transforming 
so that the elements of the resulting vector are uncorrelated can be met 
only if we are satisfied with a lower-dimensional vector. This, in turn, 
has the serious drawback that the identification of residuals with cases 
becomes blurred, and interpretation of these transformed residuals as 
case statistics is generally not possible. However, for some special 
purposes, such as formal tests for normality, change points, or 
nonconstant variance, transformation to uncorrelated residuals has a 
certain intuitive appeal. 
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Suppose that an n x (n - p') matrix C defines a linear transformation 
6 = CTY. We will call G a vector of linear unbiased scalar (or LUS) 
residuals if 

E ( P )  = 0 (unbiased condition) (2.2.27) 

Var ( 6 )  = u21 (scalar covariance matrix condition)(2.2.28) 

These conditions require only that CTX = 0 and CTC = I. The two 
common methods of choosing C both require that p' cases be 
nominated to have zero residuals. The choice of the nominated cases 
may be arbitrary, so that the definition of the uncorrelated residuals is 
not unique. 

Suppose we partition eT = (e:, e:), XT = (X:, X:), CT = (C:, C : )  
such that the subscript 1 corresponds to the p' cases nominated to have 
zero residuals, and subscript 2 corresponds to the remaining n - p '  

cases. We assume X, to be nonsingular. It follows from (2.2.27) and 
Appendix A.2 that C2 must satisfy 

C, can be chosen to be any factorization of the matrix in square 
brackets in (2.2.29). C, is then determined uniquely from C: = 

- c:x2 x; '. 

BLUS residuals 
Theil (1965) added the requirement of best, to get BLUS residuals, by 
requiring ii to minimize E [ (Z: - e2 )T(T: - e2)]. Theil(1968) showed that 
this is equivalent to using a spectral decomposition to find C , .  
Computational methods are given by Theil (1968) and Farebrother 
(1976a). 

Using the BLUS residuals, Theil proposed a competitor to the 
Durbin-Watson (1950, 1951) test for serial correlation; critical values 
of Theil's test are given by Koerts and Abrahamse (1968, 1969). These 
two tests have been compared in several studies (Abrahamse and 
Koerts, 1969; Smith, 1976; Durbin and Watson, 1971) and are generally 
comparable in power, although the Durbin-Watson statistic has 
superior theoretical properties. Variants of Theil's method are given by 

Durbin (1970), Abrahamse and Louter (1971), Abrahamse and Koerts 
(1971), and Sims (1975). 

Huang and Bloch (1974) used G in place of e in testing for normality. 
They point out that the independence of the BLUS residuals holds if 
and only if the errors are normally distributed, and thus, under a non- 
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normal distribution for 8,  the apparent advantages of using the BLUS 
residuals disappears. Furthermore, they point out that the indepen- 
dence of the BLUS residuals is lost if heteroscedasticity is present. 
Thus, i t  should be no surprise that e appears to be more useful in 
normality tests than G. Hedayat, Raktoe, and Telwar (1977) use the 
BLUS residuals in a test for nonconstant variance. 

Recursire residuals 
To construct the recursive residuals (Brown, Durbin, and Evans, 1975) 
it is necessary to first order the cases, typically by time. With the cases . 
ordered, the k-th recursive residual %, is defined as 

where Pk-, and Xk- , are computed using the first k - 1 cases only. 

The term recursive is applied because Bk can be computed from - , by 
use of an updating formula. Under (2.1.1) and normality, it is 
straightforward to show that the Fk for k > p' are independent and 
N (0, a'). Equivalent versions of (2.2.30) have been proposed as early as 
Pizetti (1891). Algorithms for their construction are given by Brown et 
al. and Farebrother (1976b). 

The recursive residuals, which correspond to using a Choleski 
factorization to choose C2 (Fisk, 1975), are appropriate for examining 
assumptions that depend on the order of the cases. Brown et al. 
(1975) consider two tests for a change point in the parameter vector bas 
a function of k via cumulative sums of recursive residuals. Phillips and 
Harvey (1974) use the recursive residuals in developing a test for serial 
correlation. Tests for heteroscedasticity using recursive residuals are 
discussed by Hedayat and Robson (1970) and Harvey and Phillips 
(1974). 

2.3 Plotting methods 

Residuals can be used in a variety of graphical and nongraphical 
summaries to identify inappropriate assumptions. Generally, a 
number of different plots will be required to extract the available 
information. 
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Standard residual plots are those in which the ri or ei are plotted against 
fitted values i i  or other functions of X that are approximately 
orthogonal to ri (exactly orthogonal to the ei). Anscombe (1973) gives 
an interesting discussion of the motivation for these graphical pro- 
cedures. The plots are commonly used to diagnose nonlinearity and 
nonconstant error variance. Patterns, such as those in Fig. 2.3.l(b)--(d). 
are indicative of these problems, since under a correctly specified model 
the plots will appear haphazard, as in Fig. 2.3.1 (a). 

Figure 2.3.1 Residual plots. (a) Null plot. (b) Nonconstant variance. 
(c) Nonlinearity. (d) Nonlinearity. Source: Weisberg (1980a) 

Historically, the ordinary residuals have been used most frequently 
in standard residual plots. Recently, however, a number of authors. 
including Andrews and Pregibon (1978), have indicated a preference 
for the Studentized residuals. The patterns in plots using the ri will not 
be complicated by the nonconstant residual variances and will 
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generally be more revealing than those using ei. It is possible, for 
example, for a plot using the e, to show a pattern similar to that in 
Fig. 2.3.l(b) simply because the uii are not constant. 

In simple regression, the plot of residuals against ji provides the 
relevant information about the fit of the model that is available without 
use of extra information such as time or spatial ordering of the cases. 
In multiple regression, the proper choice of horizontal axis for this 
plot is more problematic, as the two-dimensional plot is used to 

' 

represent a model in a p'-dimensional space. In essence, a 
vector in p'-dimensional space is chosen and the data points are 
projected onto that single vector. For example, in the fitted model j = 3 
+ 2 s ,  + 4s2, a plot of ri against x, will plot all points with the same 
value of x, (regardless of x,) at the same position of the abscissa, while 
a plot of ri versus ji treats all cases with the same value of 3 f 2x, + 4x2 
as equivalent. The first of these two plots may be used to find model 
inadequacies that are a function of x i  alone, such as the need to add xf 
to a model, or nonconstant variances of the form var (6,) = xlic2,  i 
= 1, 2, . . . , n, but will be inadequate for detecting an interaction 
between x ,  and x2. Similarly, the plot of the residuals versus ji will be 
useful in finding model inadequacies in the direction of the fitted values, 
such as a variance pattern that is a monotonic function of the response. 

For any n-vector 2, the vector VZ is in the column space of X. The 
equivalence class of points plotted at the same place on the abscissa 
consists of a (p - 1)-dimensional flat. The plot of residuals 
against VZ will be most useful if the model acts in the same way 
on all points in the equivalence class. The common choices for the 
abscissa are VY = P, and, if Xj is the j-th column of X, VXj = Xi. Less 
common, but equally useful, are plots against principal component 
score vectors, which, except for a scale factor, are the columns of 
the n x p matrix of left singular vectors in the singular value de- 
composition of d The use of these corresponds to plotting in the 
direction of the eigenvectors of 97 Z. 

E X A M P L E  2.3.1. C L O U D S E E D I N G  NO. 3. Figure 2.3.2isa plot ofr, 
versus ji for the cloud seeding data. This plot is clearly indicative of 
some problem, since cases 1 and 15 are well separated from the others, 
predicted rainfall is negative for two cases, and the general pattern of 
the residuals appears to decrease as ji increases. It may show the need to 
transform Y to correct possible nonlinearity and perhaps to eliminate 
negative predicted rainfalls, or it may suggest other remedies such as 
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Figure 2.3.2 ri versus fitted values, cloud seeding data 

transforming predictors, or giving special attention to the cases that are 
separated from the rest of the data. 

Figure 2.3.3, a plot of r., versus S - N e ,  suggests that the variance is a 
decreasing function of S- N e  since most of the large residuals 
correspond to small values of S - Ne. In combination. the two plots 
clearly suggest that the original model is inadequate. but the approprl- 
ate remedial action is not clear. 

Plots of residuals against VZ are often difficult to interpret because 
informative patterns can be masked by the general scatter of points. As 
an aid to using these plots for relatively large data sets, Cleveland and 
Kleiner 11975) suggest superimposing robust reference lines. Let the 
values plotted on the abscissa be denoted by a,, k = 1,2, . . . , n. with 
the a, ordered from the smallest to largest, and let a,,. . . . . a,, be the 
1 values of a with the smallest absolute deviation from a,. Let h,,. 
j = 1, . . . , I ,  be the corresponding values of the ordinate (usually the 
residuals or Studentized residuals). For each k,  robust estimates of the 
0.25, 0.50, and 0.75 quantiles of b,,, j = 1, . . . . 1 are plotted against a 
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Figure 2.3.3 ri versus S - Ne, cloud seeding data 

robust estimate of the median of the akj (computer code is given by 
Gentleman, 1978; see also Cleveland, 198 1). The window length I must 
be chosen to balance resolution and stability, and is often chosen by 
trial and error. 

E X A M P L E  2.3.2. O L D  F A I T H F U L  G E Y S E R .  A geyser is a hot spring 
that occasionally becomes unstable and erupts hot water and steam 
into the air. One particular geyser, Old Faithful in Yellowstone 
National Park, is particularly well known and is one of the major 
tourist attractions in the United States. It erupts at an interval ofabout 
40-100 min, with eruptions lasting from 1-6 min, to heights of near 
35 m. National Park personnel predict eruption times based on the 
length of the last eruption. Their predictions are based on the empirical 
linear equation (minutes to the next eruption) = 30 + 10 x (duratiori of 
current eruption in minutes). Because the physical mechanisms that 
govern eruptions of the geyser are unknown, the prediction problem is 
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one of statistical modeling based on observed values of intervals and 
durations only. 

Figure 2.3.4 contains a scatter plot of y = interval versus 
x = duration for 272 eruptions of Old Faithful in October, 1980. These 
data were provided by Roderick A. Hutchinson, the Yellowstone Park 
geologist. Following standard park procedure, intervals are measured 
from the beginning of one eruption to the beginning of the next. The 
figure indicates that a simple regression model is at least plausible for 
this prediction problem, although the clustering of points into two 
groups is clearly evident. Figure 2.3.5 gives a plot of r, versus x,. While 
the clustering is clear, there is no obvious problem. However, if the 
robust reference lines are superimposed, as in Fig. 2.3.6 (with 1 = 30), 
slight curvature in the plot becomes apparent: extreme durations lead, 
on the average, to predictions that are too long. With the reference lines 
superimposed we recognize the possible need for a transformation of 
this data. 

Figure 2.3.4 y (interval to next eruption in minutes) versus x (duration of 
current eruption to the nearest 0.1 min) for 272 eruptions of Old Faithful 
Geyser, October, 1980. Source: Roderick A. Hutchinson, Yellowstone National 
Park 
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Figure 2.3.6 Enhanced residual plot, Old Faithful data, window width = 30 
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E X A M P L E  2.3.3.  RESIDUAL.^ I N  P L A C E .  When the cases in a data 
set have identifiable physical locations, useful information about a 
model may be obtained by a semigraphical display obtained by plotting 
the residuals in their physical locations. An example of this is given by 
Daniel (1976) who discusses a classic 2' experiment on beans reported 
by Yates (1937). The experiment was carried out in blocks of 8. with two 
3-factor and one 4-factor interaction confounded with blocks. Fitting a 
model including one block elTect, four main effects and one 2-factor 
interaction, Daniel obtained residuals, and plotted then1 in their 
locations in the field (for a balanced design, all the rii are equal. so a plot 
of the residuals is equivalent to a plot of the Studentized residuals), as 
reproduced in Fig. 2.3.7. This plot indicates a region of apparent high 
fertility that extends into all four blocks, and is therefore not removed 
by the blocking effects. Daniel reanalyzed the data, using only blocks I 

and I11 and found that the estimated residual variation is reduced by a 
factor of 3. 

Figure 2.3.7 Residuals in place. Source: Daniel (1976). reprinted with 

permission 

When a constant term is not included in a model, plots of residuals 
versus VZare complicated by the fact that the simple regression of e on 
VZ is nonzero. If C, j, and ? are, respectively, the average of the 
residuals, the ys, and the vector of averages of the xs, then 2 = .f - i T B  
must be zero only if the constant is in the model. The slope of the 
regression of e on VZ is 

Thus, even a null plot will exhibit systematic features, especially if i is 
far from zero. 
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2.3.2 ADDED V A R I A B L E  PLOTS 

For models with a constant, the standard plot of e versus VZ exploits 
the orthogonality (or near orthogonality if the ti are used) between 
plotted variables. Systematic nonlinear features of such plots suggest 
model inadequacies, and may be useful when specific alternative 
models are not available. However, they do suffer from the visual 
difficulty that is often apparent in attempting to detect systematic 
features of a swarm of points. This difficulty can be overcome by using 
plots in which a systematic linear feature indicates an incorrect model. 
To obtain these plots, we must choose a specific alternative for the 
fitted model. From the alternative, a plot, and usually a test, can be 
derived that compares the two models. These plots are often easy to 
interpret and can be very useful. 

Consider first an alternative model that differs from (2.1.1) by the 
inclusion of a new explanatory variable Z. We hypothesize as an 
alternative to (2.1.1) the model 

An appropriate test comparing (2.3.2) to (2.1.1) is the F-test for $ = 0. 
An equivalent plot is derived as follows. Defining as usual 
V = X(XTX)-'XT, multiply both sides of (2.3.2) by I - V, to get 

The left side of (2.3.3) is just the residual vector e for the model (2.1.1). 
The first term on the right side is exactly zero. Taking expectations over 
e in (2.3.3) gives 

which suggests that a plot of e versus (I - V)Z will be linear, through 
the origin. We call the plot of e versus (I - V)Z an added variable plot, 
since it is designed to measure the effect of adding a variable to a model. 
These plots have been discussed or illustrated by Draper and Smith 
(1966, 1981), Anscombe (1967), Mosteller and Tukey (1977), Belsley, 
Kuh and Welsch (1980), and Weisberg (1980a). 

In the regression of e on (I-V)Z, the estimated slope is 

and the intercept is 0 if there is a constant in the model. 

By the conditions given in Kruskal(1968), the correct generalized least 
squares estimate obtained using the covariance matrix implied in (2.3.3) 
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1 
is identical to the ordinary least squares estimate given by (2.3.5). Using 

I the results near (2.1.5), it can be shown that 6 is identical to the least 
squares estimate of 4 obtained from the regression of Y on both X and 
Z. From this it follows immediately that the residuals in the added 
variable plot are the same as the residuals for the regression of Y on 
both X and Z. 

Added variable plots are very useful for studying the role of a 
variable Z if it enters linearly into a model. The general scatter of the 
points gives an overall impression of the strength of the relationship. 
Individual points that are well separated from the rest of the data give 
heuristic information about the effects of outlying points on individual 
coefficients, and may suggest cases for special study. 

The added variable Z can represent either a constructed variable that 
is defined by a specific alternative model, as will be discussed later in this 
chapter, or one of the variables in the model. If U, is the projection 
matrix on all the columns of X except X,, then the k added variable 
plots of (I - Uk)Y versus (I - Uk)X, have been advocated by Belsley et 
al. (1980), who call them partial leverage regression plots. 

Non-null behavior 
When the appropriate model for the relationship between Y and (X, 2) 
is more complicated than model (2.3.2), the usefulness of the added 
variable plot depends on V. To see this, consider the model 

Y = X/?+9Z'"+& 

where Z") has i-th element 

Power transformations are used in several places in this chapter, and 
provide a rich and interesting class of nonlinear functions. Using a 
linear Taylor series expansion about I = 1, z)" = zi + (I - l)z,log (z,), 
so the model (2.3.6) is approximately 

where L is an n-vector with i-th element zi log (zi). Multiplying by 
(I - V )  and taking expectations, 
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Thus the regression of e on (I - V ) Z  may have any shape if V is chosen 
appropriately and 4 # 0, 1 # 1.  Similar results are obtained if Y is a 
nonlinear function of X. 

Cotnputatio~u. The added variable plots for each X, are potentially 
expensive to compute since for each plot two sets of residuals must be 
computed. However, Mosteller and Tukey (1977) and Velleman and 
Welsch (1981) outline a method to obtain these plots in a relatively 
simple way. For the variable X, Equation (2.3.5) implies that 

where A, = (I - Uk)Xk/X:(I - Uk) Xk  is the k-th column of an n x 
p' matrix A. In matrix form, (2.3.10) is simply B = ATY. But, 
since )=  (XTX)- 'XTY,  i t  follows that AT = (XTX)-'XT, the 
Moore--Penrose generalized inverse of X. Except for a scale factor, 
( I  - U,)X, is the k-th column of A: If aij is the (i, j)-th element of A, 
the i-th element of (I - U,)X, is aik/C,ai .  Given ( I -  U,)X, and 
e = (1 - V)Y,  the vector (I - U k ) Y  is computed from the identity 

which is proved by writing V as a sum of projections, V = U, + T,, 
where Tk is the orthogonal projection on (I - U,)X,,. Then (I - U , )  
Y = ( 1  - V ) Y  +TkY, which upon simplifying gives (2.3.11). 

As long as sufficient computer storage is available, the 
Moore-Penrose inverse can be computed to obtain added variable 
plots. However, if X is illconditioned, the Moore-Penrose inverse can 
be numerically unstable. G. W. Stewart (personal communication, 
1981) suggests that a stable algorithm can be based on the QR 
decomposition (Stewart, 1973). If X,, is the last column of X, Q,, is the 
corresponding column of Q ,  and r,.,, is the indicated element of R, then 
(I - U,.)X,. = rP.,.Qp.. (I  - Uk)Xk can be computed for other columns 
by using routines SQRDC, SQRSL, and SCHEX in LINPACK 
(Dongarra et al., 1979). 

E X A M P L E  2.3.4. J E T  F I G H T E R S  NO. 1. Stanley and Miller, in a 
1979 RAND Corporation technical report, have attempted to build a 
descriptive model of the role of various design and performance factors 
in modeling technological innovation in jet fighter aircraft. Using data 
on American jet fighters built since 1940, they used the date of the first 
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flight as a stand-in for a measure of technology; presunlably. the level of 
technology is increasing with time. In some of their work. they 
considered the following variables: 

FFD = first flight date, in months after January 1940: 

S P R  = specific power, proportional to power per unit weight; 
RGF = flight range factor; 
PLF = payload as a fraction of gross weight of aircraft; 
SLF = sustained load factor; 
C A R  = 1 if aircraft can land on a carrier; 0 otherwise. 

Exact definitions of all these quantities can be found in Stanley and 
Miller (1979). Between 1940 and 1979, 39 American jet fighters were 
flown. Of these, 14 aircraft were modifications of earlier aircraft, and 
for three others, the F-14A, F-15A, and F-16A, data are not available. 
Data on the 22 remaining planes are given in Table 2.3.1. Following 
Stanley and Miller we will fit models with FFD (or transformations of 
it) as a linear function of the other variables. 

Table 2.3.1 Jetf ighter datn. Source: S ta t~ ley  and Miller ( 1 9 7 9 )  

Case  I D  F F D  S P R  RGF PLF SLF C A R  

FH- 1 
FJ-1 
F-86A 
F9F-2 
F-94A 
F3D-1 
F-89A 
XFlOF-1 
F9F-6 
F- 100A 
F4D- 1 
FllF-1 
F-1OlA 
F3H-2 
F- 102A 
F-8A 
F- 104A 
F-105B 
YF-lO7A 
F- 106A 
F-4B 
F-111A 
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An issue in building a model for these data is the choice of appro- 
priate scaling for the response and for the explanatory variables. The 
use of F F D  as the response suggests the unlikely assumption that 
technological innovation is constant over time. It is perhaps Inore 
reasonable to transform F F D  so that the rate of change decreases with 
time. since we are measuring innovation in one general technology. A 
possible alternative scaling is the logarithm of F F D  as a response, but 
the value of log ( F F D )  will depend on the choice of origin for FFD. If 
F F D  is measured in months after January 1, 1900, then log ( F F D )  for 
the range of first flight dates in the data would represent rates ofchange 
that are nearly constant, while using January 1, 1940 as an origin will 
allow greater variation. Following Miller and Stanley, we tentatively 
adopt this as an origin both to allow for greater variation in the rate of 
change and because 1940 represents a reasonable origin for the jet age. 
In this example, we will define L F F D  = log ( F F D ) ,  and use natural 
logarithms. We return to the problem of scaling F F D  later. 

The regression of L F F D  on the five predictors is summarized in 
Table 2.3.2. Three of the five variables are associated with large 
1-values, and the coefficients for C A R  and P L F  are negative, indicating 
that the ability to land on carriers, and the payload size adjusted for the 
other variables, are negatively related to LFFD.  The aircraft with the 
largest vi i  is the F-1 1 1A with v,,, ,, = 0.496, although several of the vii 

are of comparable magnitude. The F-111A also has the largest 
Studentized residual, rZ2  = 2.337, with corresponding t , ,  = 2.77. 

The added variable plots for S P R ,  RGF, and S L F  are given as 
Figs. 2.3.8-2.3.10. The apparent linear trends in the first two of these 

Table 2.3.2 Fitted models for jet .fighter data 

Variable 
- - 

Intercept 
S P R  
RGF 
PLF 
S L F  
C A R  

Full data Case 22 (F-1 I 1  A)  deleted 

Estimate t-value Estimate I-value 
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Figure 2.3.8 Added variable plot for SPR, jet fighter data 
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Figure 2.3.9 Added variable plot for RGF, jet fighter data 
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Figure 2.3.10 Added variable plot for SLF, jet fighter data 

figures suggest the usefulness of these variables as predictors, although 
in each plot our attention is drawn to one case, the F-86A for SPR and 

I 

the F-1 11A for RGF. These cases may have an important role in 
determining the corresponding coefficients. 

I 

Figure 2.3.10, the added variable plot for SLF, shows only a slight 
linear trend, as reflected in the corresponding t S L ~  = 1.82 in Table 2.3.2. 
However, the F-86A and F-1 1 1A are quite far from the trend line and 
may indicate that the presence of these two aircraft actually suppresses 
the usefulness of S L F . 0  

Partial residual plots have been suggested as cornputationally con- 
venient substitutes for the added variable plots. Recall that an added 
variable plot is a plot of ( I  - U,)Y = e -I- ( I  - u,)x,,!?~ versus 
(1 - U, )X,. The first component e of the ordinate is orthogonal to the 
abscissa and represents scatter. The second component represents the 
systematic part of an added variable plot. 
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Computationally, the most difficult part of an added variable plot is 
obtaining U,. If this matrix is replaced by zero the result is a partial 
residual plot of e + x,F, versus X,. Ezekiel (1924) used such a plot to 
diagnose the need to transform an explanatory variable. As with the 
added variable plot, the two terms that make up the ordinate are 
orthogonal, the first term representing scatter and the second giving the 
systemmatic component. Again, the slope of the regression in this plot 
is /I,, and the residuals from the regression line are given by the 
elements of e. This plot was called a partial residual plot by Larsen and 
McCleary (1972), and a residual plus component plot by Wood (1973). 

Although both the added variable plot and the partial residual plot 
have the same slope and the same residuals, their appearance can be 
markedly different. In the added variable plot, for example, the 
estimated variance of the slope is 

where R: is the square of the multiple correlation between X, and XI, 
the matrix containing the other Xs. Apart from the multiplier 
(n - pl) / (n - 2), the apparent estimated variance of /j, in the added 
variable plot is the same as the estimated variance of D, from the full 
regression. In the partial residual plot the apparent variance of /j, is 

which ignores any effect due to fitting the other variables. I f  R: is large, 
then (2.3.13) can be much smaller than (2.3.12), and the partial 
residual plot will present an incorrect image of the strength of the 
relationship between Y and X, (conditional on the other Xs). In fact, it  
can be seen that the partial residual plot is a hybrid, reflecting the 
systematic trend of X, adjusted for XI, but the scatter of X, 
ignoring X,. 

E X A M P L E  2.3.5. J E T  F I G H T E R S  NO. 2. The partial residual 
plots corresponding to the added variable plots for SPR, RGF, and 



Figure 2.3.1 1 Partial residual plot for SPR, jet fighter data 

Figure 2.3.12 Partial residual plot for RGF, jet fighter data 
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4 Figure 2.3.13 Partial residual plot for SLF, jet fighter data 

SLF given previously are shown as Figs. 2.3.11-2.3.13. The two plots 

I for SPR (Figs. 2.3.8 and 2.3.1 1) are not too different, although the 

i overall impression of the partial residual plot is of a stronger 
relationship than is shown in Fig. 2.3.8, and the F-86A is no longer an 

? extreme point. The two plots for RGF are very similar, and would lead 
to the same conclusions. The two plots for SLF, however, are quite 
different. In particular neither the F-111A nor the F-86A stand apart 
from the rest of the data in Fig. 2.3.13, and the general swarm of points 
is shifted right.0 

Let y,, y,, . . . , y, denote n independent, univariate observations and 
let F denote a cdf from a location/scale invariant family with mean 11 

and variance at. Under the hypothesis that the yis are an identically 
distributed sample from F, the regression of the vector of observed 
order statistics uT = (u,, u2, . . . , u,), U, = max (yi), on the vector of 
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expected order statistics from the cdfF, of the standardized variate 
( y  -ii)/cr is linear (Lloyd, 1952), 

where the i-th element of the n-vector a is cri = E((i~~,- / i ) / r~) .  This 
implies that a plot of u versus a can be used to check the appropriate- 
ness of the hypothesized cdfF, with a substantially nonlinear plot 
indicating an incorrect choice. Such plots are called probability plots 
and have been in use since at least 1934 (Bliss, 1934). 

When the hypothesized distribution does not correspond to the 
actual sampling distribution, the shape of the probability plot depends 
on the 'difference' between the sampling distribution and the hypo- 
thesized distribution. If the actual sampling distribution has relatively 
short tails, then the probability plot will tend to be S-shapedLA long 
tailed sampling distribution leads to/shaped plots. Relatively skewed 
sampling distributions result in J-shaped/or inverted J-shapedf 
plots. depending on the direction of the skew. 

Probability plots can also be used as devices to find a few elements ofa 
sample that differ from the others. For example, Daniel ( 1  959; see also 
Zahn, 1975a, b) suggested using probability plots to assess the signifi- 
cance of efTects in unreplicated factorial designs with all factors at two 
levels. I f  the absolute values of the usual contrasts are plotled against 
half-normal order statistics then the large or significant contrasts will 
be plotted near the upper right corner of the plot, while the smaller or 
nonsignificant contrasts will more or less fall on a line; see Zahn (1975a) 
for details. The identical method can be used to detect outliers in 
general: outlying elements of a sample will tend to fall toward the 
extremes ofthe plot, while most of the points will fall on a line that does 
not point toward the apparent outliers. 

In general judging the adequacy of a probability plot requires 
experience. For the normal distribution, Daniel and Wood (1980) and 
Daniel (1976) provide many pages of training plots that may help the 
analyst gain the necessary experience. 

The construction of probability plots may be hindered by the 
unavailability of exact values for expected order statistics. However, 
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adequate approximations can usually be constructed from F - '. For the 
standard normal cdf 0, for example, ai = 0-  ' ( ( i  - 3/8)/01+ 114)) 
provides an excellent approximation for n 2 5 (Blom, 1958). 

1 Approximations for the half-normal distribution are given by Sparks 
(1970), and for the gamma distribution by Roy, Gnanadesikan and 
Srivastava (1971, pp. 286-98). Wilk and Gnanadesikan (1968) coined 
the term Q-Q plot (for quantile versus quantile) for these probability 
plots to reflect the practical manner in which they are constructed. 

I 
In some problems, it may be useful to have a summary statistic for a 

probability plot. An intuitively reasonable summary for symmetric 
families is the squared correlation between the plotted quantities, 

Small values of W' would give evidence against the assumed 
distribution. 

The statistic W' was suggested as a test for normality by Shapiro and 
Francia (1972, see also Weisberg and Bingham, 1975); a similar statistic 
was suggested by Filliben (1975). W' was originally suggested as an 
approximation to the Shapiro and Wilk (1965) Wstatistic, 

where 0 is the variance-covariance matrix of the order statistics from 
the standard distribution (a is given for n S 50 for the normal by 
Tietjen, Kahaner and Beckman, 1977). Weisberg (1974) pointed out 
that for the normal distribution W and W' are essentially identical. 
Both statistics have reasonable power against a wide class ofalternat- 
ives. Critical values for the normal distribution are given by Shapiro 
and Wilk (1965) and Shapiro and Francia (1972), and have been widely 
reprinted elsewhere. Prescott (1976) has studied the behavior of If' in 
the presence of one or two outliers. Shapiro, Wilk and Chen (1968)and 
Pearson, D'Agostino and Bowman (1977) compare various tests for 
normality. 

In regression, the probability plot and W (or W') are usually applied 
to e or to the ri since E is unobservable. For example, normal plots of 
residuals or Studentized residuals are a standard feature of most 
regression packages. Unfortunately, normal plots and the correspond- 
ing tests may not be effective when applied to residuals. Recall from 
Equation (2.1.4) that ei = ~ ~ - C ~ v ~ ~ s ~ .  As long as the sjs have finite 
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1 
r 
4 

variance, ZJt l ,J~J will tend toward normality and in some cases may 
dominate E,. Thus, the el or the r, may exhibit a supernormality property 

E 
F 

(Gentleman and Wilk, 1975a; Gnanadesikan, 1977) and behave more 
2. 

i 
like a normal sample than would the E,. In small samples, the usefulness 
of normal plots is unclear, and depends on n, p', and on V (Weisberg, 
1980b). In larger samples, however, if max (u,,) -t 0 (as required for 

i 
if 

asymptotic normality) W and W' applied to residuals is the same as 
applying them to the unobserved errors (Pierce and Kopecky, 1979). In 
such cases, a normal plot of residuals may be interpreted in a way 

I 
equivalent to a normal plot of a univariate sample. 

'I 
Y 

Atklnson (1981), following Gentleman and Wilk (1975a, b), suggests 1 
a method of interpreting probability plots of residuals, even in small . $ 

samples. The technique presented here is a straightforward extension of 8 p 
At kinson's basic idea. 1 4  

M 
For a problem with (I - V) fixed, rn pseudo-random n-vectors ? 

. . . , E, are generated from F (usually, F will be taken as standard ,I 
normal). The pseudo residuals e, = (I - V)E,, k = 1,2, . . . , m, are then ' :! 
computed. Let the ordered elements of e, be denoted by e,,,, and, for f 
each i, let e:,,, 0 < q c 1, denote the q x 100 percentile of the empirical 

i2 

distribution of {e,,,,, k = 1,2, . . . , m). Simultaneous probability plots 
a 
'1 

of the two n-vectors with elements (e;"i(") and (e:,;"'") describe an P 
'r 

envelope. roughly like a (1 -2a) x 100% simultaneous confidence 1 

region. The probability plot of the data is then plotted along with the "s 

corresponding envelope. If the observed residuals fall beyond or near $1  
the boundary of the envelope, the assumption that E is sampled from F I 
1s called into doubt. If it is desired to use the envelope as an exact test, .j 
further simulation may be necessary to determine the size. Atkinson 5 

8 
(198 1) uses a transformation of residuals in this plot, and chooses to use 
F = half-normal distribution, but the ideas are the same regardless of 
the transformation and choice of F. 4 

E X A M P L E  2.3.6 C L O U D  S E E D I N G  NO. 4. Toillustrate probability 
plots, we again use the cloud seeding data. Figures 2.3.14 and 2.3.15 are 
normal probability plots for the variables S - Ne and P, respectively. 
These plots are included for illustration only, since the sampling plan 
outlined in Chapter 1 would not lead us to expect the predictors to 
behave as a normally distributed sample. However, the plot for S - Ne 8 

is approximately linear, as one would obtain from a normal sample. 1 

The value of W' = 0.972 is well above the 10% point of its distribution 
given normality. The plot for P is clearly not straight, indicating , 
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Figure 2.3.14 Normal probability plot for S - Ne. cloud seeding data 

-2 - 1  0 I 

Normol quontile 

Figure 2.3.15 Normal probability plot for P, cloud seeding data 
j 
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Figure 2.3.16 Normal probability plot with simulated envelope for r i ,  cloud 
seeding data 

positive skew by its shape. The value of W' = 0.757 is much less than 
the 1 2; point of its distribution given normality. 

Figure 2.3.16 is a normal plot of Studentized residuals for the model 
( 1.1.3). With so many parameters and only 24 cases, we cannot expect 
this plot to exhibit non-normal behavior; the simulated envelope 
in the plot can be expected to be useful here. Since the observed 
plot is generally within the envelope, we have no evidence against 
normality. 

2.4 Transformations 

The situations in which a transformation of the data might prove 
worthwhile can be conveniently arranged in three classes. In the first, 
the responses yi are independent and come from a known non-normal 
family of distributions. A transformation is selected so that the 
distribution of the transformed responses is sufficiently close to normal 
to allow application of the appropriate normal theory methods. The 
arcsin and square root variance stabilizing transformations for the 
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binomial and Poisson distributions are typical examples. The import- 
ant point here is that the selection of the transformation is based on the 
known distribution of the response variables. 

In the second class, the expected responses Ey, are related to the 
explanatory variables x,, . . . , x, by a known nonlinear function of the 
parameters. A transformation is selected to linearize the response 
function. If the distribution of the errors is sufficiently well behaved, the 
transformed data can be analyzed using standard linear least squares. 
For example, if theory suggests the relationship E y  = Po exp (/.I, .u). 

then it is reasonable to expect an approximately linear relationship 
between log ( y )  and (x) ,  log (Y) = log (Po) +PI x. I t  will, of course. be 
important to perform various diagnostic checks on the transformed 
model since there is no guarantee that the standard least squares 
methods will be appropriate. If, for example, the errors E in the original 
model have mean zero, constant variance, and are such that 
y = /loexp(/llx)(l +E) then the centered errors in the transformed 
model will also have mean zero and constant variance, yi = [log ( P o )  

+ E log (I + c)] + /l, x + [log ( 1  + c) - E log (1 + E )  1. On !he other 
hand, if the errors in the original model are additive, p = /lo exp (/?, x) 

+c, then the error variances in the transformed model will depend 
on Ey.  

In the final class, neither the distribution of the errors nor the 
functional form of the relationship between Ey and the explanatory 
variables is known precisely. This situation is perhaps the most dimcult 
to handle since a specific single rationale for choosing a transforn~ation 
is lacking. Generally, we would like a transformation to result in a 
model with constant error variance, approximately normal errors, and 
an easily interpreted and scientifically meaningful structure. One 
method of proceeding in this situation is to specify a family p"' of 
transformations indexed by a possibly vector-valued parameter i. and 
then use the data to select a specific transformation that may result in a 
model that has all the desirable properties. 

Methods ofselectinga transformation in situations falling in the first 
or second class are well known and good discussions can be found in 
many standard references. For example, Scheffk (1959. Section 10.7) 
discusses a general method of choosing variance stabilizing transform- 
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ations. Daniel and Wood (1980, Chapter 3) give plots of a variety of 
nonlinear forms that can be transformed to linear forms. In this section, 
we concentrate on the third class of situations. We first present a 
number of families of transformations and sketch a method of analysis 
based on likelihood considerations. Several related graphical and 
approximate methods are discussed later. 

For a positive response variable y > 0, Box and Cox (1964) studied a 
slight generalization of the family of monotonic power trattsformations 

used earlier by Tukey (1957), 

This family contains the usual log, square root, and inverse transform- 
ations as special cases and is scaled to be continuous at I = 0. y(4 is 
convex in y for A 2 1 and concave in y for 1 I 1, and is increasing in 
both y and A. I t  will be useful for inducingapproximate symmetry when 
the response is skewed. One effect of the log transformation, for 
example, is to lighten one tail of the distribution. Generally, (2.4.1) will 
be sensible in situations where the origin occurs naturally and the 
response is skewed and positive. Since most robust methods of 
estimation are dependent on symmetry, (2.4.1) might be used prior to 
the application of such methods. 

I f  the origin is artificial or negative responses occur, added flexibility 
is provided by the extended power family, 

Here, y + i., > 0. In some situations, i t  may be sufficient to substitute a 
convenient value for A, and then proceed using (2.4.1) in combination 
with the shifted response y + A,. 

John and Draper (1980) propose the family of modul~ts 
rrtlri.~fi~rt?~ntiotls 
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for obtaining approximate normality from symmetric long-tailed 
distributions. This family is monotonic, continuous at i. = 0, and 
applicable in the presence of negative responses. When the responses 
are all positive the modulus family reduces to a special case of the 
extended power family (2.4.2). Basically, (2.4.3) applies the same power 
transformation to both tails of a distribution symmetric about zero. I f  
desirable, an arbitrary point of symmetry can be included by adding a 
parameter A, as in (2.4.2). If A < 0, then y(jJ is restricted to the interval 
[A-', -1-'1. 

The family of power transformations can be applied in any problem 
with positive responses. As mentioned before, however, this family will 
be most useful for removing skewness and, thus, may not work well 
when the response is bounded above as well as below. For responses 
constrained to the interval [0, b] some improvement might be realized 
by using the family of folded-porver transjbr~nations (Mosteller and 
Tukey, 1977, p. 92; Atkinson, 1982) 

which contains the usual logit transformation (A = 0) as a special case. 
If the responsesare concentrated near 0 orb, this family will behave like 
the power family. 

2.4.2 SELECTING A TRANSFORMATION 

In their original paper, Box and Cox (1964) discuss both likelihood and 
Bayesian methods for selecting a particular transformation from the 
chosen family. Following this account, the development of the specific 
methods for any of the transformations families discussed above is 
straightforward. Here we consider only likelihood based methods. 

It isassumed that for each A,y(")isa monotonic function ofgand that 
for some unknown A the vector of transformed responses Y ''J = (jj"') 

can be written as 

where thequantitites on the right are consistent with previous notation 
and, in addition, the elements of E are independent and (approximately) 
normally distributed with mean zero and constant variance a'. The 
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probability density of the untransformed observations is 

where J is the Jacobian of the transformation 

For fixed E., (2.4.6) is the standard normal likelihood and thus the log 
likelihood maximized over /l and a', apart from an unimportant 
constant, is 

L,,, ( A )  = - f n log [RSS (A; Y )/n] + log ( J ) (2.4.7) 

where RSS denotes the residual sum of squares from a fit using the 
transformed responses, 

Equivalently, the maximized log likelihood can be written as 

L,,, ( A )  = - $ 1 1  log [RSS ( A ,  Z)/n] (2.4.8) 

where the n-vector Z has elements 

In this latter form, the correction for change of scale is apparent. If 
more than one model is to be considered, the analyses are conveniently 
studied using the normalized transformation zj", so the residual sum of 
squares for each A are on the same scale and can thus be compared. The 
normalized transformation should also provide better computational 
accuracy, particularly for large A. 

For an arbitrary collection of n positive scalars a , ,  a,, . . . , a,, let 
g(a)  denote the geometric mean function 

g(a) = ( f i  a,)'"' 
i=  l 

The normalized transformation for the extenkd power family is then 
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which gives the corresponding transformation for the power family by 
setting 1, = 0. The normalized transformations for the modulus and 
folded-power families are 

s i g n ( ~ i ) ~ ( l ~ l +  l ) l og (~y i l+  I ) ,  j. = o 
and 

( h - ' g [ ~ ( b - ~ ) l l o g [ ~ i / ( b - ~ i ) l ,  j. = 0 
respectively. 

The maximum likelihood estimate of 13. can be obtained by maximiz- 
ing (2.4.7) or (2.4.8), or by finding the solution to dLma,(i)/di. = 0. 
Alternatively, when I is a scalar, Box and Cox suggest reading X from a 
plot of Lma,(R) against 13. for a few selected values of 2. Unless special 
software is available, such plots will require one regression for each 
value of 1 chosen. The accuracy of the estimate of i. obtained in this way 
will usually be acceptable since in practice i t  is desirable to round 3. to a 
convenient or theoretically justifiable value. 

An approximate (1 -a) x 100':; confidence region for i. is given by 
the set of all A* satisfying 

where X2(a, V )  is the (1 -a)  x 100 percentile of a chi-squared distri- I 1 
bution with degrees of freedom ,$equal to the number ofcomponents in 
A. When 13. is a scalar such confidence regions are easily construcled 1 I 

from the plot of Lma,(E.) against i .  
' I 
I 

Invariance 
Before turning to examples, a few general comments may remove some 
of the concerns about this procedure that are likely to arise in practice. 
We first comment on invariance under rescaling the responses and then 
briefly discuss normality, the choice of a model, and methods of 
inference. 

From (2.4.11) it is easily seen that for the family of folded-power 
transformations the estimate lwill be unchanged under rescaling of the 
responses, yi S cyi ,  c  > 0. Thus, without loss of generality. the 
responses may be scaled so that b = 1. If X contains a column of Is, the 
extended power family will be invariant under rescaling in the sense 
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that (;., ,;,) $ ( A , ,  ~ 2 , ) .  If X does not contain a column of Is, this 
family is not invariant under rescaling when 1, # 0. Schlesselman 
(1971) discusses this problem and suggests modifications of the power 
family that yield scale invariant estimates when regression is through 
the origin. The transformations obtained from the modulus farnily are 
not invariant under resealing, a characteristic that is likely to be 
annoying in practice. However, Shih (1981) suggests a generalized two- 
parameter modulus transformation that is scale invariant. 

Normality 
The Box-Cox procedure for choosing a transformation is based on the 
assumption that Y '"is normally distributed. It isclear, however, that in 
general this assumption cannot be true, although i t  may hold in certain 
special cases (i. = 0 in the power family). Hernandez and Johnson 
( 1980) investigate the consequences of this inconsistency for the power 
farnily. Their results suggest that asympotically A and the least squares 
estimates of /?and aZ based on the transformed data arechosen to make 
the distribution of the transformed data as closeas possible to a normal 

' 

distribution, as measured by Kullback-Leibler divergence. They 
emphasize that appropriate diagnostic checks should always be applied 
to the transformed data since an adequate approximation to normality 
is not guaranteed by this procedure. 

Choice of model and scaling the predictors 
The role of X in selecting a transformation for Y can be crucial since the 

I 

likelihood procedure tries to achieve EY'" = X/l in addition to 
normality and constant variance. The indicated transformation for one 
S-structure may not be the same as that for another and the selection of 
S niay well be the rnost important step. Generally, X should be selected 
so that the resulting model can be interpreted without great difficulty, is 
flexible enough to describe important possibilities, and is scientifically 
meaningful. 

Box and Cox suggest the following technique as an aid to under- 
standing the importance of selected columns of X in determining a 
transformation. Partition PT = (/?I,/?:) where /I2 isq x 1 and for fixed I 
let l.,,,,(i.1~, = 0) denote the maximized log likelihood for the model 
with /3* = 0. Then 
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where F ( A ;  Z )  is the usual F-ratio for H: 8, = 0 in terms of the 
normalized response zlA'. If both Lma,(l / 8, = 0) and Lma,(i.) are 
plotted against A  on the same graph then the difference between the 
heights of the two curves at a selected value of E. is a monotonic function 
of F ( I ;  Z). Large differences indicate that inclusion of B, may yield an 
improved fit. If the maxima of the likelihoods occur at substantially 
different values of I then the transformation under B2 = 0 may be 
attempting to compensate for inadequacies in the reduced model. 

Inference 

Once an appropriate transformation has been selected, the analyst 
must choose between conditional and unconditional methods of 
inference for the transformed data. In the conditional approach the fact 
that the data are used to select a transformation is ignored and the 
analysis proceeds as if the appropriate scale were known a priori. In 
contrast, unconditional methods include 1 as an unknown parameter 
and allow for the appropriate modification of confidence statements. 

Historically, conditional methods of inference seem to dominate the 
literature on transformations. Bickel and Doksum (1981) provide a 
comprehensive account of the unconditional approach and demon- 
strate that the unconditional variances of parameter estimates can be 
much larger than those from the conditional approach. If. for example, 
the power family is used to select a transformation of a simple random 
sample and A  = 0, then (Hinkley, 1975) 

The second term on the right is the amount that the variance is inflated 
due to estimation of A. Hinkley and Runger (1980) provide a number of 
compelling arguments in favor of the conditional approach. They 
comment that unconditional confidence statements must logically take 
a rather useless form. For example, an unconditional confidence state- 
ment based on the average of a transformed simple random sample 
might read: 'On some unknown scale 1, which is probably around ;, a 
95 "/, confidence interval for E Y ' ~ '  is j(I'+ a.' Such statements relate to 
unknown parameters in unknown scales and cannot be very helpful. 

Carroll and Ruppert (1981) investigate the variance inflation due to 
estimating A when prediction of future observations is the primary goal 
and the data are back-transformed so that the predictions are always 
made in the original scale. They conclude that, while there is some 
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inflation in this problem, it is generally not severe or important. For 
further discussion, see Box and Cox (1982). 

In this monograph we adopt the conditional approach. 

E X A M P L E  2.4.1. T R E E D A T A N O .  1. Toprovideafirstillustration 
of the use of the Box-Cox procedure, we use the power family in 
combination with the tree data from the Minitab Student Hundbook 
(Ryan. Joiner and Ryan, 1976, p. 278). The data, given in Table 2.4.1, 
consist of measurements on the volume Vol, height H, and diameter D 

Table 2.4.1 7 r e e  datu. Source: Ryan et al. (1976) 

D = Diameter H = Height Y o /  = V o l u n ~ e  
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at 4.5 ft above ground level for a sample of 3l'black cherry trees in the 
Allegheny National Forest, Pennsylvania. The data were collected to 
provide a basis for determiningan easy way ofestimating the volume of 
a tree (and eventually the amount of timber in a specified area of the 
forest) using its height and diameter. Since the volume of a cone or 
cylinder is not a linear function of diameter, a transformation of I'ol is 
likely to result in a fit superior to that provided by the untransformed 
data. 

Generally, a straightforward method of proceeding is to consider the 
simple additive model for the transformed response, here (I.'ol)(') on D 
and ?I. For illustration, we consider also a second model (I'ol)'" on H 
and D ~ ,  since i t  is not unreasonable to suppose that the area of a cross 
section of the tree rather than its diameter was reported. As a common 
reference for these two models, we include the third and final model 
(Val)") on H, Dl and D2 which was investigated by Ryan et al. (1976. 
p. 279). We refer to these as Models 1, 2, and 3, respectively. 

With 1 = 1, a preliminary inspection of the plots of the Studentized 
residuals ri against the fitted values, H and D for each of the three 

Figure 2.4.1 ri versus D for Model 1, tree data 
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Figure 2.4.2 ri versus H for Model 3, tree data 
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models confirms that transformation is likely to be worthwhile. For 
Model 1 the plot of ri versus D given in Fig. 2.4.1 shows a clear 
nonlinear trend, while for Model 3 the plot of ri versus H given in 
Fig. 2.4.2 strongly suggests that the variability increases with H. Other 
plots yield similar conclusions, although some are a bit ambiguous. 

Plots of L,,,(I) against 1 and the approximate 95 > confidence 
intervals from (2.4.12) for each of the three models are given in 
Fig. 2.4.3. The maximum likelihood estimate of i. indicates a different 
transformation for each model. (Maximum likelihood estimates were 
determined by golden section search; see Kennedy and Gentle, 1980. 
p. 432.) For Model 3, = -0.066 and the suggested transformation is 
(Val)''' = log (Vol), while the suggested transformations for Models 1 
and 2 are 2 = 113 and 213, respectively. Comparing Models 1 and 3 we 
see that the transformation 1 = 113 is compatible with both likeli- 
hoods. Also, if 1 = 113 is used to transform Vol in Model 3, then the 
term in D' is unnecessary and if A = 0 is used to transform Model 3, 
then  doesco contribute to the fit. (From (2.4.13), the F-statistics for D~ 
are F ( 0 ;  2) = 11.9 and F (113; Z) = 0.03.) Based on this analysis. there 
is little reason to prefer Model 3 over the simpler ( ~01)" '~ '  on D and H. 
It is reassuring that the variables in the latter model are dimensionally 
compatible, a condition often overlooked in practice. 

A comparison between Models 2 and 3 can be carried out in a 
manner analogous to that given above. The essential difference is that 
the transformation suggested by Model 2 does not seem compatible 
with the likelihood for Model 3. In this comparison, Model 3 may be 
preferable. 

The residual mean squares in terms of Z'" for Model 1 with i = 113, 
Model 2 with 1 = 213, and Model 3 with 1 = 0 are 4.84,5.62, and 4.68, 
respectively. Based on this and the previous analysis, Model 1 with 
1 = 113 is our preference fromamong thoseconsidered. Unfortunately. 
this transformation does not seem to correct all of the deficiencies 
noted earlier. The transformation successfully induces additivity, and 
the scatterplot of ri versus H  given in Fig. 2.4.4 indicates that the 
variance structure has been improved,although case 31 now stands out. 

This example is intended to illustrate the use of the Box-Cox 
procedure and the kinds of results that can be expected. Certainly, 
other reasonable models can be formulated. For example. the relation 
between the volume, height, and diameter of a cylinder or cone, 
Vol cc D Z H ,  suggests an additive model with all variables replaced by 
their logarithms. Transformations of the explanatory variables will be 
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Figure 2.4.4 r i  versus H. for Model 1 with I = 1/3, tree data 

considered later in this section. For further discussion of transform- 
ations in this data set, see Atkinson (1982).0 

2.4.3 D I A G N O S T I C  METHODS f 
Andrews (197la) demonstrates that the likelihood method for choos- I 

ing a transformation is sensitive to outlying responses. Since the scale is b 
3 

subject to question prior to the application of this methodology, 
diagnostic procedures applied to the untransformed data may not yield f 
reliable conclusions. An outlier in the untransformed data, for example, 
may be brought into line by a transformation. Carroll (1980) proposed 

It 

a robust method obtained by replacing the likelihood function by an 8. 
objective function that is less sensitive to outlying responses. Although 'I 

Carroll's method is superior to the likelihood method in terms of 
$ robustness properties, it is still sensitive to outliers. Diagnostic support il 

for the likelihood method is clearly important. 1 
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In this section we discuss two additional methods for assessing the 
1 need to transform the responses. These methods, due to Atkinson 
! (1973, 1982) and Andrews (1971a), can be based on new explanatory 
i I 

variables constructed from the original data and have graphical 
counterparts that are useful for identifying anomalies. Because of this 
diagnostic ability and ease of calculation, these methods should prove 
valuable by themselves or as support for a likelihood analysis. 

Atkinson's method 
Atkinson's method is based on the score statistic rD(i.,) for the 
hypothesis A = A,. The score statistic does not require iteration and can 
be obtained using standard regression routines. To see how this is done. 
let Z(Lo) = (zF)) and 

where Z'" may correspond to any of the single parameter transform- 
ation families discussed previously. Apart from an unimportant sign 
change, the score statistic is equal to the usual t-statistic for the 
hypothesis 4 = 0 in the model 

Asymptotically, the null distribution of tD(Ro) is standard normal. but 
its distribution in small samples is intractable since both Z("@l and GPO' 
are random variables with nonstandard distributions. 

In this approach to the calculation of r ,  (A,), Gi'.'J is regarded as a new 
explanatory variable which Box (1980) terms a constructed variable. 
The corresponding model (2.4.14) can be viewed as an approximation 
obtained by expanding Z'" in a Taylor series about i., (Atkinson. 1982). 

In this expansion, the coefficient of the constructed variable 
4 = A, -?and thus the least squares estimate 4 of cf, provides a quick 
estimate A of A, 

x = / i , - $  (2.4.15) 



7 2 RESIDUALS A N D  I N F L U E N C E  IN REGRESSION 

Estimates obtained in this way will often be good approximations to 2, 
but Atkinson (1 982) demonstrates by example that adequate agreement 
cannot be guaranteed in general. Nonetheless, in the absence of special 
software 2 may prove useful. 

Another adjunct to this method is the added variable plot for the 
constructed variable G$' Ideally, this plot should show a consistent 
and clear linear trend, indicating that the evidence for the transform- 
ation is spread evenly throughout the data. Outliers in an added 
variable plot may correspond to cases which are distorting the evidence 
for a transformation and thus require special attention. Substantial 
curvature may be an indication that a modification of the transform- 
ation family would permit a closer representation. Suppose, for 
example. that the folded power transformation family (2.4.4) yields a 
plot with a strong and consistent linear trend. The added variable plot 
for the power family (2.4.1) will likely show strong curvature since the 
constructed variables for the power and folded-power families are not 
linearly related. 

Alldrews' rt~ethod 

Like Atkinson's method, Andrews' method is based on a test of the 
hypothesis I = A,. The test statistic is constructed by expanding YcA) 
about E.,. 

where 

Since I"'.'= X ~ + E ,  

This model is similar to the model (2.4.14) used in the construction of 
the score statistic. However, (2.4.14) is based on the normalized 
transformed responses z?) whereas (2.4.16) is based on yjAo). In effect, 
Andrews' approach ignores the Jacobian of the transformation. 

The statistic for Andrews' test is equal to the t-statistic for the 
hypothesis i., - 1, = 0 in the model 

where ~i!~"is equal to G!?e)evaluated at the fitted values from the null 
model Y'"' = X ~ + E .  I t  follows immediately from the work of 
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Milliken and Graybill (1970) that the ?-statistic has a standard 
t-distribution with n - p' - 1 degrees of freedom. That is, Andrews' test 
is exact. 

As in Atkinson's method, the least squares estimate of i., - i. from 
(2.4.17) can be used to obtain a quick estimate of i. and the added 
variable plot for the constructed variable G~!o) should be inspected for 
unusual features. 

Applicatiorr to the power family 
It is informative to  compare the constructed variables for the Andrews 
and Atkinson procedures for the power family in combination with the 
hypothesis of no transformation (1, = I) .  In this situation i t  is easily 
verified that 

G:" = [ji log (fi) - ji + 11, 

where $i is the i-th fitted value from Y = X ~ + E ,  and 

The associated test statistics depend on these constructed variables 
only through the residuals (I - V)GU1 from the regression of G"' on 
X. If X contains a constant column, ( I  - V)l  = 0 and the constructed 
variables simplify to 

G? = [ji log ( f i )  I (2.4.18) 
and 

~ ( 1 )  = (h log Cyi/g (Y)] - J'i) (2.4.19) 

Since (I - V) 9 = 0, it is clear that the approximation of GI1' obtained 
by substituting Gi for yi is equivalent to G:'. Thus, in this situation G;) 
may be regarded as an approximate version of Gk'). 

Although Andrews'method yields an exact test, there is evidence that 
this method has some loss of power relative to Atkinson's method 
(Atkinson, 1973). Andrews' method also has certain robustness pro- 
perties that are not shared by Atkinson's method. With replication. for 
example, all cases in a single cell will have the same fitted value and 
consequently methods based on 9 will be less sensitive to a single 
outlier than those based on Y (Atkinson, 1982). 

TukeyS test 
Tukey's well-known single degree of freedom for nonadditivity is 
obtained using the constructed variable G = (.$) obtained under the 
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hypothesis of no transformation (I, = 1). Andrews (1971a,b) and 
Atkinson (1982)discuss the relationship between Tukey's test and their 
respective methods. A discussion of Tukey's test applied to two-way 
tables is given in Section 2.5. 

E X A M P L E  2.4.2. T R E E  DATA NO. 2. The score statistics t,(l) and 
the corresponding quick estimates 1 for each of the three models used 
for the tree data of Example 2.4.1 are given in Table 2.4.2. For 
comparison, the likelihood estimates are also given. In each situation, 
the need for a transformation is indicated by the score statistic and the 

agreement between 2 and 1 seems adequate. 

Table 2.4.2 Trat~sj'orn~atiot~ statistics, tree data 

Full data Case 31 deleted 

Model t o (1 )  i n  ̂ t ~ ( l )  i 1 

Figure 2.4.5 contains added variable plots for the constructed 
variables (2.4.19) in each model. In the plotscorresponding to Models 1 
and 2, case 31 stands out as a possible outlier and thus may be havingan 
undue effect on the analysis. In the plot for Model 3, case 31 is not as 
noticeable. The effects of case 31 can be seen by removing it from the 
data and recomputing 2, 2, and t D ( l ) .  These values are also given in 
Table 2.4.2. For each model the agreement between 1 and 2 is still quite 
good and the score statistics indicate that transformations are still 
needed. Without case 31, however, the suggested transformations can 
change. For model 2, the suggested transformation is 1 = 213 for the 
full data and 1 = 112 for the reduced data. Either transformation may 
yield an adequate model since, as further analysis will show, they are 
compatible with the likelihood based on the full and reduced data.0 

E X A M P L E  2.4.3. J E T  F I G H T E R S  NO. 3. In Example 2.3.4, rescaling 
of FFD to log ( F F D ) ,  with F F D  measured in months after January 1940 
was done on logical grounds. We now consider the choice of scale for 
F F D  more systematically. 

Figure 2.4.6 gives a scatter plot of ri versus fitted values for the 
regression of F F D  on the other variables in addition to a constant. This 
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figure is a paragon of ambiguity. It allows a variety of interpretations, 
spread increasing to the right, a slight downward bow in the plot, an 
outlier in the F-1 l lA, or no problem at all, depending on the skill and 
the preconceptions of the investigator. Finding a pattern in a scatter of 
points may be a difficult task, and often renders plots such as this one 
nearly useless. 

The solid curve in Figure 2.4.7 is a plot of L,,, (A) versus A for the 
family of power transformations. The likelihood estimate of A is 
>. = -0.024 and the asymptotic 95% confidence interval excludes 
i. = 1; the log transformation is clearly suggested. A scatterplot of ri 
versus fitted values for the log transformed data is given in Fig. 2.4.8. As 
before, this plot does not provide a clear indication of a deficiency in the 
model, although the F-11 1A still stands out. 

The score statistic for the hypothesis A, = 1 confirms the need to 
transform, t,(l) = -3.88, although the quick estimate of A seems 
unacceptably far from X , X  = - 0.54. The added variable plot for C'," is 
given in Fig. 2.4.9. In this plot, one case, the F-111 A, is well separated 
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Figure 2.4.6 ri versus fitted values, jet fighter data, response = FFD 

from the rest arid it appears that our conclusions may change if it  were 
deleted. Figure 2.4.10 is the constructed variable plot for GI" after 
deletion of the F-111A. The linear feature of Fig. 2.4.9 is now 
completely absent, and the need to transform is less clear. Without 
the F-111 A, t,(l)  = -0.05. Inferences based on the likelihood method 
are also very sensitive to the presence of this case. As shown by the 
dashed curve in Fig. 2.4.7, 2 is close to 1 when the F-11lA is deleted. 

Although the evidence for the need to transform F F D  is weak and 
depends heavily on the F-111 A, the log transformation may be sensible 
for two reasons. First, as previously stated, F F D  is a stand-in for 
technological level and L F F D  is more palatable than F F D .  Second, 
while the F-111A does seem to be different, it is the most recent aircraft 
in the data, and for that reason we may wish to modify a model to 
provide a better fit to it than we would for a plane developed 20 years 
earlier. 
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Figure 2.4.7 L,,, (I) versus I, jet fighter data 

Box and Tidwell (1962) suggest a general procedure to aid in the 
selection of transfor~nations for the explanatory variables. A useful 
version of their procedure begins with the assumption that the response 
yi can be written as 

where xe'denotes the transformation of the j-th explanatory variable 
and the cis are (approximately) normal with zero mean and constant 
variance 0'. Any of the single parameter transformation families 
discussed previously in this section may be used for x!?'. (Extensions to 
multiple parameter transformation families are immediate.) Of course, 
we may also have x!?' = xij, i = 1, 2, . . . , n, for selected j. 

As an alternative to the use of nonlinear methods, inferences about 
the i j s  can be based on an approximation to (2.4.20) obtained by 
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Figure 2.4.8 r i  versus fitted values, jet fighter data, response = LFFD 

expanding x f y )  about the hypothesized values Aoj ,  j =. 1,2, . . . . p, 

where 

In this model, the transformation parameter A j  is related to the slope of 
the added variable plot for the constructed variable gl jo~ ' .  A linear trend 
in such a plot may be taken as an indication that # iOj; the absence of 
a linear trend indicates that either Aj  = A,, or 11, = 0. As before. these 
plots can also be used to identify outlying cases that may be distorting 
the evidence for a transformation. 

The approximate model (2.4.21) is still nonlinear in the parameters, 
but a quick estimate 2, of A j  is 
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where Jj is the least squares estimate of pj(Aj - LOj) from (2.4.21) and Bj 
is the least squares estimate of /lj from the null model 

yi = Po + C/?jxpJ '+&i  
j 

Further iteration using the Ijs as starting values may be used to find 
estimates which further reduce the residual sum of squares for the 
original model (2.4.20). The quick estimate in combination with the 
added variable plot will usually suffice for diagnosing the need to 
transform. For the method to be effective, however, Bj must have a 
relatively small standard error. Substantial collinearity among the 
columns of X, for example, can result in unreasonable results. 
particularly for the quick estimates. 

For illustration, consider the family of power transformations 
(2.4:l). The constructed variable is 

g l A ~ )  = lo [x" log (x)] - [xAo - 11 
A; 

which is equivalent to 

y ( l ~ l  = xAo log (x) 

An 

since the projection of (g(A,)) onto the orthogonal complement of the 
space spanned by the remaining columns (variables) of X is all that 
matters. When the hypothesis is that of no transformation (Ao = 1) the 
constructed variable is simply g'l' = x log (x) which can be easily 
computed with nearly any regression program. 

EXAMPLE 2.4.4. TREE DATA NO.  3. We use the tree data de- 
scribed in Example 2.4.1 to illustrate the use of the Box-Tidwell 
procedure. Figure 2.4.11 gives the added variable plots for the 
constructed variables D log (D) and H log (H). The estimated coef- 
ficients with their estimated standard errors for the regressions of Vol 

on (D, H )  and on (D, H, D log (D), H log (H)) are given in Table 2.4.3. 
The plot for D log (D) in Fig. 2.4.1 1 shows a clear linear trend and 

thus indicates the need to transform diameter. From Table 2.4.3, the 
corresponding quick estimate of the power is ID = 1 + 7.20414.708 
= 2.53. In contrast, the plot for H log(H) shows no linear trend and 
thus a transformation of H is probably unnecessary. The suggested 
model, Vol on D'.' and H, is not far from the model Vol on D2 and H 
that was used in Example 2.4.1. In fact, the latter model might be 

preferred based on ease of interpretation. Recall from Example 2.4.1, 
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Table 2.4.3 Regressiot~ s~rnltnariesjbr two n~odels, tree dirri~ 

E s t i n ~ a t ~  S.Y. Estin~arr s.e. 

Intercept - 57.987 8.638 65.567 124.718 
D 4.708 0.264 - 21.463 5.065 
H 0.339 0.130 - 1.757 9.363 

D 1% (D) 7.204 1.394 
H log ( H )  0.405 1.762 

however, that Vol on D~ and H can be refined further by transforming 
Vol.  However, for Vol on DZe5 and H, the score statistic r,(l) = - 1.44 
suggests that a transformation of Yo1 may not provide much 
improvement. 

In some problems, iteration may provide substantially improved 
estimates of the Ljs for those variables requiring a transformation. In 
this example, the iterated estimate of 1, remains close to 2.5. 

Finally, the Box-Tidwell procedure applied to the model ( V 0 1 ) l ' ~  on 
D and H that was suggested in Example 2.4.1 may be used to argue that 
transformations of D and H after Vol are not likely to result in much 
additional improvement. Such sequential procedures should not be 
confused with methods for the simultaneous estimation of transform- 
ations for the response and explanatory variables. 0 

E X A M P L E  2.4.5. CLOUD S E E D I N G  NO. 5. In the Box-Cox 
method of selecting a transformation for the responses, the scales of the 
explanatory variables are held fixed. This may not be appropriate for 
the cloud seeding data since the response Yand prewetness P are both 
measures of amount of rainfall. It seems sensible that these variables 
should be measured in the same scale. 

To investigate the need for transforming Yand P simultaneously, we 
use the power family in combination with the model, 

'where X ,  is the 24 x 9 matrix of explanatory variables excluding 
prewetness and action x prewetness, P'" is the 24-vector of trans- 

I formed prewetness values, A is a 24 x 24 diagonal matrix with i-th 
I 
I diagonal element equal to 1 if the i-th day was seeded and 0 otherwise, 
I and E is N(0,a21). Following the discussion in Section 2.4.2. the log 

likelihood maximized over p and a2 for fixed I is 

n 
L,,, (A) = - - log {Z'aT [I - V'"] Z'"/ll] 

2 
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where V'" is the usual projection matrix for model (2.4.23). The 
maximum likelihood estimate 1 of A can be read from a plot of L,,,(A) 
versus i. for a few selected values of A. For each plotted point a new 
value of P"' and thus a new value of V'" has to be computed. 

Figure 2.4.12 gives a plot of L,,, (A) versus A along with the 
associated 95 "/, asymptotic confidence interval. The maximum likeli- 
hood estimate is 2 = 0.401 and A = 1 is well outside the confidence 
interval. Since Yand P are both measures of the volume of rainfall, the 
cube root transformation seems a sensible choice. 

Figure 2.4.1 2 L,,, ( A )  versus A, cloud seeding data 

A diagnostic plot for this procedure can be obtained by using model 
(2.4.14) in combination with the Box-Tidwell method. Model (2.4.14) 
with i,, = 1 can be rewritten as 

Z"'= X,/Y1 +P5P'A)++15AP'*)+(1 -A)GJ1)+& 

Next, expanding PtA) about A '= 1 as in (2.4.21) and rearranging terms 
leads to 

Z'" = XB + (1. - 1 )  [/ I5 Gbl' + /I1 AG,"' - G'" z I+& 
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where X is the matrix containing all untransformed explanatory 
variables and 

This form suggests that an added variable plot for the constructed 
variable 

where f i5 and f i ,  are the least squares estimates of p5 and p, , from the 
regression of Z") on X, may be a useful diagnostic. 

Figure 2.4.13 gives the added variable plot for the constructed 
variable G.  There seems to be a strong linear trend in this plot, but cases 
1 and 15 clearly stand apart and may be controlling our impression of 
the plot in addition to the results of the likelihood analysis. The least 
squares slope of the added variable plot is - 0.762 which is an estimate 
of I - 1. Thus a quick estimate of 1, is 2 = 1 - 0.762 = 0.238 which is 
not too far from the cube root transformation suggested previously. 

-6 - 4 -2 0 2 4 

I Constructed variable 

1 Figure 2.4.13 Added variable plot for (2.4.24), cloud seeding data 
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When cases 1 and 15 are removed, the evidence for a transformation 
disappears. The dashed curve in Fig. 2.4.12 is a plot of L,, (A) versus I 
for the reduced data. The maximum likelihood estimate is now 1 = 1.24 
and A = 1 is well within the 95 % asymptotic confidence interval. In the 
absence of additional information, the results of any analysis of these 
data, regardless of the transformation used, should be interpreted with 
caution. In future examples using the cloud seeding data, we will use the 
cube root transformation. 

2.5 Residual analysis in two-way tables 

The linear model for the unreplicated two-way table is an example of 
the kind of model that could be studied using the diagnostic methods 
discussed earlier in this chapter. However, since the appearance of 
Tukey's (1949) one degree of freedom test of additivity, a body of 
methods that take advantage of the special structure of two-way tables 
has developed. These methods, which can often be generalized to 
higher-dimensional layouts, merit special study as examples of the ways 
in which additional information can be used in diagnostic methods. We 
survey some of these methods here. 

Let yij denote the response in row i and column j of an r x c table, and 
let pij = Eyij, p = ji.., ui = pi. - ji.. and Pj = jiaj - ji... Then the usual 
additive model can be written as 

where the errors elj are uncorrelated and have mean zero and constant 
variance a'. Methods for detecting outliers relative to this model have 
been investigated by Gentleman and Wilk (1975a,b), Daniel (1978), 
Draper and John (1980), Gentleman (1980), and Galpin and Hawkins 
(1981) among others. Barnett and Lewis (1978) give an informative 
discussion. Generally, the residuals eij = (yij - Jia - J a j  + Ye.) from a fit 
of the additive model are reliable indicators of a single outlying cell. If, 
for example, a single outlying value of magnitude 8 occurs in cell (1,l) 
then 

Eell = 8(r - 1) (c - l)/rc, 
E l - 8 - ) / c  j 2 2  
Eeil=-8(c-l)/rc, i 2 2  (2.5.2) 
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and 
Eeij = Blrc, otherwise 

Thus, the residual corresponding to the outlying cell will have the 
largest absolute expectation provided r 2 3, c 2 3. Since the residual 
variances are constant for this model, there is no essential distinction to 
be made between the ordinary residuals and the Studentized residuals. 
A formal, normal theory test for a single outlier can be based on the 
maximum normed residual 

This statistic is equivalent to maxi(til obtained from the mean shift 
outlier model described in Section 2.2.2. The 1 %, 5 % and 10 % points 
of M N R  for r = 3(1)10, c = 3(1)10, from Galpin and Hawkins (1981), 
are reproduced in Table 2.5.1. 

When two or more outlying values are present the residuals will often 
lack noticeable peculiarities since the effects of multiple outliers can 
filter through the entire table of residuals in complicated ways 
(Gentleman and Wilk, 1975a; Daniel, 1978). Gentleman (1980) dis- 
cusses methods for finding the k most likely outliers; that is, the k 
observations whose removal provides the greatest reduction in the 
residual sum of squares. This is equivalent to finding the k observations 
that maximize the multiple case Studentized residual. 

When nonadditivity is suspected, a useful initial representation of the 
response is 

where ,u, g, fij, and cij are as previously defined and yij = ,uij - pi. - p.j 
$. p., . Of course, the usual additive model is obtained if yi j  = 0 for all i 
and j. An equivalent condition for additivity is that all two-by-two 
contrasts of the form pij - pilj - pij, f piIr be equal to zero. Johnson 
and Graybill (1972a) exploit this fact to develop a method for 
estimating a2 in the presence of partial nonadditivity. 

A variety of models and tests for nonadditivity can be obtained by 
imposing additional structure on the interaction terms yij. The model 
associated with Tukey's test (1949) is perhaps the best known and is 



Table 2.5.1 Critical values for M N R  = maximum normed residual in two-way tables. Starred values are exact. Source: Galpin and 
Hawkins (1981), reprinted with permission 
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obtained by setting 

Y i j  = 4ailJj (2.5.5) 

for all i and j. This model may be viewed as a way of modeling a linear- 
by-linear interaction in latent variables associated with rows and, 
columns and is sometimes called Tukey's concurrence model. Tukey's 
I df test of additivity is obtained using a standard procedure for 
converting a nonlinear model to a linear model (Milliken and Graybill, 
1970): Replace ai and / I j  in y i j  with their least squares estimates 12, and I S j  
from the additive model (2.5.1) and then construct the usual F-statistic 
F ,  for the hypothesis 4 = 0. Under the null hypothesis and normality, 
this statistic has an F-distribution with 1 and (r - 1) (c - 1) - 1 df. 
Graphical aids useful in interpreting this test can be constructed using 
the methodology of'Section 2.3. The power of Tukey's test and its 
robustness in non-normal situations have been investigated by Ghosh 
and Sharma (1963) and Yates (1972). 

Mandel (1961) suggested two alternative structures for the inter- 
action terms: 

7.. = 0.b 
11 1 J (2.5.6) 

and 
y i j  = aibj (2.5.7) 

for all i and j. The models associated with (2.5.6) and (2.5.7) are called 
the row and column regression models, respectively. These models can 
also be motivated by appealing to the noti n of latent variables 9 
associated with rows (2.5.7)gr columns (2.5.6) and, relative to (2.5.5), 
are more flexible approaches to nonadditivity. In the row model, a test 
of additivity is obtained by replacing P j  in (2.5.6) with its least squares 
estimate from (2.5.1) and then constructing the usual F-statistic F,,, 
for the hypothesis a ,  = a, = . . . = a, = 0. Under the null hypothesis 
and normality, this statistic has an F-distribution with r -  1 and 
(r  - 1 )  (c - 2) df. The analogous test for the column model is con- 
structed in the same way. 

I t  is important to remember that these tests for nonadditivity are 
obtained by approximating a nonlinear model with a linear model that 
can be handled using standard techniques. Under the alternative 
hypotheses. the statistics F, and F,,, do not have noncentral 
I;-distributions, as would usually be the case in standard applications. 
In the presence of nonadditivity, the residual mean square resulting 
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from a fit of the linearized version of the model is positively biased. This 
bias can be severe if 4 or XciZ is large. Hence, these methods should not 
be regarded as being more than relatively straightforward ways of 
detecting nonadditivity. If nonadditivity is found. i t  may be wise to 
abandon the linearized version of the model in favor of more 
appropriate methods of analysis. For example, the data might be 
transformed to restore additivity. 

In theapproaches ofTukey and Mandel, i t  is necessary to assume the 
presence of main effects (ai # 0. /Ij $I 0) for the interactions to be 
present. This and the specific structures assumed for yij  place an often 
unwarranted limitation on the types of nonadditivity that will be 

detected by these techniques. Johnson and Graybill (1972b)  proposed 
setting 

7. .  = &.u.  
1 1  1 1  (2.5.8) 

where C i w i  = C j u j  = 0 and C  w f  = C  uf = 1 ,  as a more general 
structure for detecting nonadditivity. Essentially, this assumes that the 
interaction yi j  is a quadratic function of latent variables that need not 
be related to the main effects. This form would be appropriate if the 
interactions do not occur systematically across the entire table. but do 
occur systematically in a subset of the full table or in only an isolated 
cell. For example, a single outlier in cell ( 1 ,  1 )  corresponds to 
W T = ( w i ) = k , ( r - 1 , - I , - 1  , . . . ,  - 1 )  and U T = ( u i ) = k , ( c - 1 ,  

- 1, - 1, . . . , - 1) (see Equation (2.5.2)), where k ,  and k ,  are con- 
stants chosen to insure that W T W  = U T U  = 1 .  As a second illustra- 
tion, consider a nonadditive table in which the subtables formed by the 
firsts I r  - 1 rowsand the last r  -srowsareadditive. the nonadditivity 
being due solely to the difference between the subtables. Let j ~ , ~ ,  = pij  
for i =  1 , 2 , .  . . , s , j =  1 , 2 , .  . . , c a n d  p z i j  = p i j  for i = s +  I . .  . . , r  
and j = 1 , 2 ,  . . . , c. Then rvi = k , ( r  - s )  for i = 1, 2. . . . . s and wi = 

-k,s  for i = s + l ,  . . . ,  r,  and U T = k , ( p l , j - ~ i l , , - f i z , j + f i z , , ) .  
Generally, (2.5.8) can model any alternative situation in which the 
matrix with elements Eeij  is of rank 1. 

Since the interaction terms are not functions of the main elTects, the 
method used previously for constructing an easy test of additivity (6 
= 0) does not apply. Instead, Johnson and Graybill derive the 
maximum likelihood estimators under the assumption of normality. 
Let E = ( e i j )  be the r  x c matrix of residuals from the additive model. 
Then the maximum likelihood estimators of the parameters in the 



92 R E S I D U A L S  A N D  I N F L U E N C E  IN REGRESSION 

Johnson-Graybill model are 

jc = ,S.. 
S i  = yi.-y.,  
p .  = .F.,-j,. .' 
b Z  = largest eigenvalue of ETE 
\^V = normalized eigenvector of EET associated with ( T 2  

fi = normalized eigenvector of ETE associated with (T2 

and 

The likelihood ratio test statistic for H: 6 = 0 is a monotonic function 
of 

Large values of A furnish evidence against additivity. Johnson and 
Graybill (1972b) give the upper 1 "/,, 5 % ,  and 10% points of the null 
distribution of A. These are reproduced in Table 2.5.2. 

In addition to providing a reasonably flexible test, the 
Johnson-Graybill approach provides a useful method for diagnosing 
more specific forms of nonadditivity. Plots of Gi versus i i  or l i j  versus 
P j  may suggest that the column or row regression models respectively, 
or perhaps Tukey's model, is appropriate. If w and fi each contain a 
single relatively large value then this may be taken as an indication ofan 
outlier in the cell corresponding to the coordinates of the large values. 
The signs of the elements of w serve to identify a decomposition by 
rows of the full table into two subtables that may be more nearly 
additive. If the elements of the same sign are of the same order of 
magnitude then this might be taken as an indication that the subtables 
are additive. At the very least, such subtables require further inspection 
when nonadditivity is present. Similar comments apply to 0. 

For further discussion of the Johnson-Graybill approach and 
extentions to situations in which the rank of the matrix of the expected 
residuals is greater than 1, see Hegemann and Johnson (1976a) and 
Mandel ( 197 1). Bradu and Gabriel (1978) present a graphical technique 
as an aid to determining an appropriate model. Hegemann and 
Johnson (1976b) compare the power of Tukey's test to that based on 
the Johnson-Graybill model. Their general conclusion is that if the row 
and column effects are large and the structure y i j  = q5aiPj is appropri- 
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ate then Tukey's test will have the greater power. Otherwise, the 
Johnson-Graybill test is preferred. 

E X A M P L E  2.5.1 A G R I C U L T U R A L  E X P E R I M E N T .  We illustrate the 
methods suggested in this section using data on a two-way classifi- 
cation design from Carter, Collier, and Davis (1951). This data set was 
used by Johnson and Graybill (1972b) to illustrate the use of their test. 
The data, which are part of a larger experiment to determine the 

effectiveness of blast furnace slags as agricultural liming materials on 
three soil types, are presented in Table 2.5.3(a). The response is yield of 
corn in bushels per acre. 

As a base, we first consider the fit obtained from the additive 
model (2.5.1). The ANOVA table and the normed residuals. 
eij/(Ci Cje$)li2, are presented in Tables 2.5.3(c) and 2.5.3(b). respect- 
ively. The results in Table 2.5.3(c) suggest that the average soil effects 
are significant while the average treatment effects are not. The usual 
estimate of a2 from the additive model is 79.0. The pattern of the signs 
of the normed residuals in Table 2.5.3(b) might be taken as an 
indication that the additive   nod el is not appropriate. The MNR occurs 
in cell (5.3) and has the value 0.603 which has a p-value less than 0.05. 
Evidently, there is reason to suspect that the observat~nn in cell (5 .3 )  
does not conform to the assumed model; that is, either the model or thc 
observation is wrong. 

We next fit the Johnson-Graybill model. The maximum likelihood 
estimates of the interaction parameters are 

J2 = 943.02 
wT = (-0.476, -0.337, 0.086, 0.040, 0.767, - 0.212. 0.131) 

and 
fjT = ( -  0.206, - 0.581, 0.787) 

The maximum likelihood estimate of n2 is 0.21. This is a biased estimate 
of a2. Johnson and Graybill proposed an alternative estimator 8' of a 2  

that will be unbiased when additivity holds, 

where the expectation is taken under the hypothesis 5 = 0. Tables of 
~ ( $ ~ / a ~ ) a r e a v a i l a b l e  from Mandel(1971). If6 # 0 then theestimate is 
no longer unbiased. For the problem at hand E ( ~ ~ / u ' )  = 8.94 and 



Table 2.5.2 Upper pcrcentuye poinrsjbr null disrriburion of'A (Equation (2.5.9) ). Sturr~.d vulur.s are exucf.  Source: Johnson und 
Grujhill ( 1973). reprinted with permission 
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Table 2.5.3 Agricultural data.  Source: Carter et al. (1951). (a) Data. 
(b) Normed residuals. (c) Analysis of variance 

- - -- 

( a )  Dutu (h) Normed residual.~ 
-- - - -- - - - 

Soil Soil 

7 rrarment 1 2 3 1 2 3 

( c )  Analysis of variance 

Source df SS M S  F 

Treatments 6 731.1 121.8 0.88 
Soils 2 5696.3 2848.2 20.61 
Residual 12 947.4 79.0 

6' = 1.43. Both estimates of a' are considerably smaller than that 
obtained from the additive model. The likelihood ratio test statistic for 
6 = 0 has the value A = 0.9954, with the corresponding p-value less 
than 0.01. 

In an effort to understand the precise nature of the nonadditivity, we 
turn to an inspection of w and U. First, plots of Gi versus 2i and Gj 
versus f i j  do not display a clear linear trend and thus neither Tukey's 
model nor the two versions of Mandel'sapproach is likely to providean 
adequate explanation. The corresponding F-tests confirm this obser- 
vation. as the three F-statistics are all less than 1. Second, an inspection 
of VV reveals that treatments a, b, and f seem to form an additive 
subtable; the elements of w corresponding to these treatments are all 
negative and of the same order of magnitude. However, the remaining 
positive elements are not of the same order of magnitude; the element 
corresponding to treatment e is 19 times as large as the element 
corresponding to treatment d. The interpretation is that, while the 
subset formed by treatments c, d, e, and g may be more nearly additive 
than [he full table, i t  does not seem to form an additive subset. 
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Similarly, inspection of u suggests that the first two columns form an 
additive subtable. Inspecting both vectors simultaneously with a view 
towards detecting a single outlier isolates treatment e in the third 
column as a possible outlying cell. This again implicates cell (5.3). 

At this point a number of options for further analysis are available. 
One might, for example, replace the suspected outlier with a pseudo- 
value and reanalyze the data. However, this as well as many other 
techniques requires the specification of a model and at this point an 
appropriate model is unknown. A more useful procedure is to delete 
treatment e entirely and reanalyze the data for additivity. 

With treatment e deleted, the estimate of u2 based on the additive 
model is 30.0 and the F-tests corresponding to the interactive 
components in the Tukey and Mandel models are again nonsignificant. 
Fitting the Johnson-Graybill model to the reduced data set yields the 
following estimates 

Both estimates of 0' have increased, and A still has a p-value of less than 
0.01 indicating that some nonadditivity remains. Inspection of w 
reveals that treatments a, b, and f again form an additive subtable and 
that treatments c, d, and g form a subtable that is more nearly additive 
than when treatment e was included. The interpretation of u is the 
same as previously given. In short, it appears that the nonadditivity 
present in the reduced data set is due to the difference between the sets 
of treatment {a, b, f j  and {c, d, g ) in the third column. In retrospect. 
much the same conclusions might have been reached from an 
inspection of a plot of the data such as that given in Fig. 2.5.1. The 
response lines for treatments a, b, and fare nearly parallel as are those 
for (c, d, g}, while the response line for treatment e is anomalous. Of 
course, hindsight is usually more accurate than foresight and such 
visual inspections become difficult in larger tables. 

A separate analysis of each set of treatments suggests that the data 
within a set are additive: for both treatment sets the tests of 6 = 0 have 
corresponding p-values greater than 0.05. Further, under the additive 
model, the estimates of u2 from the treatment sets {a, b, f }  and {c, d, g} 
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1 2 3 

Soil type 

Figure 2.5.1 Agricultural data 

are 9.23 and 1.01, respectively. These estimates are, of course, much 
smaller than the original estimate from the additive model. The ratio of 
the estimates, each being based on 4 df is 9.14 and this is approximately 
the 2.5 % point of the appropriate F-distribution. This suggests that 
either nonadditivity is still present in treatment set {a, b, f )  or the 
variances of the treatment sets are different. 

To this point, the analysis suggests that the nonadditivity in the data 
is due primarily to the differences between the treatment subtables 
{a, b, f}, {c, d, g}, and {e). Depending on interest, the analysis of the 
treatment effects could be carried on in a variety of ways. 

In addition to this analysis of the Johnson-Graybill model, a 
transformation to induce additivity could prove useful. Indeed, the 
entire Johnson-Graybill approach might have been overlooked in 
favor of the transformation methods of Section 2.4. As illustrated 
below, however, this may often be unwise since not all nonadditivity 
can be removed by a transformation. 

A plot of L,,,(A) for the power family is given as Fig. 2.5.2. The 
maximum likelihood estimate is 1 = 0.497 and ,I = 1 (no transform- 
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Figure 2.5.2 L,,,(l) versus 1, agricultural data 

ation) is near one end of the asymptotic 95 % confidence interval. There 
is only mild evidence of the need to transform. The score statistic is 
t,(l) = 1.64 and the corresponding quick estimate is = 0.087 which 
suggests the log transformation. (In this example. the agreement 
between ): and does not seem adequate.) Based on the transformed 
data with 1 = 0.497, MNR = 0.582 for cell (5, 3) with a p-value near 
0.05, and A = 0.9828 which has a p-value of less than 0.01. 

While the transformed data are still nonadditive, i t  is possible that 

the results of the likelihood analysis are being distorted by the outlying 

cell. This suspicion is reinforced by the added variable plots for the 
score statistic given in Fig. 2.5.3. Another application of the likelihood 
method, this time without treatment e, gives i^ = 0.397 which is 
consistent with the cube root transformation. For cube root trans- 
formed data without treatment e, A = 0.9680. Again. substantial 
nonadditivity remains. 

The exploratory approach used in the previous example can, if 
necessary, be formalized. Marasinghe and Johnson (1981a, b) provide 
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-. 8 - 6 - 4 -2 0 2 4 6 8 

Constructed variable 

Figure 2.5.3 Added variable plot for the score statistic, agricultural data 

likelihood ratio test statistics and associated critical values for the 
hypothesesHW =O,GU = 0,andHW = GU = OwhereHandGare 
full rank matrices of contrasts. Besides providing formal tests, this 
material can help avoid the problems of overinterpretation that are 
inherent in any exploratory analysis. 
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Assessment of influence 

'To arrive inductively at laws of this kind, where one quantity depends on or 
varies with another, all that is required is a series ofcareful and exact measures 
in every different state of the dat~rm and quaesirum. Here, however, the 
mathematical form of the law being of the highest importance, the greatest 
attention must be given to the extreme cases as well as to all those points where 
the one quantity changes rapidly with a small change of the other.' 

HERSCHEL. Op. ~ j l .  

The diagnostic methods presented in the last chapter are useful for 
finding general inadequacies in a model. A related question that cannot 
be easily addressed by those methods is that of stability, or the study of 
thevariation in the results ofan analysis when the problem formulation 
(see Fig. 1.2.1) is modified. Ifa case is deleted, for example, results based 
on the reduced data set can be quite different from those based on the 
complete data, as was suggested by many of the examples in Chapter 2. 
We call the study of the dependence of conclusions and inferences on 
various aspects of a problem formulation the study of influence. 

The basic idea in influence analysis is quite simple. We introduce 
small perturbations in the problem formulation, and then monitor how 
the perturbations change the outcome of the analysis. The important 
questions in designing methods for influence analysis are the choices of 
the perturbation scheme, the particular aspect of an analysis to 
monitor, and the method of measurement. The possible answers for 
these separate questions can lead to a variety of different diagnostics. 
For example, diagnostics resulting from perturbation schemes applied 
to the data case by case can be quite different from those resulting from 
perturbation schemes applied to assumptions such as normality of 
errors. 

In this chapter, we consider only one perturbation scheme in which 
the data are modified by deletion of cases, either one at a time or in 
groups. Case deletion diagnostics have found the greatest acceptance. 
and have been applied in many problems besides linear least squares 
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regression. We will also limit our study to aspects of the analysis that 

can be summarized by the sample influence curve, to be described here 
at some length. Other approaches to the study of influence are 
described in later chapters. 

3.1 Motivation 

Not all cases in a set of data play an equal role in determiningestimates, 
tests, and other statistics. For linear least squares, the results of the last 
chapter suggest that cases with vi i  near I or with large Studentized 
residuals will play a larger role. In some problems, the character of the 
regression may be determined by only a few cases while most of the 
data is essentially ignored. An extreme example of this is given in 
Fig. 3.1.1 for simple regression. If the one point separated from the 
others is moved, downweighted, or completely removed from the data, 
the resulting analysis may change substantially, as illustrated by the 
two regression lines computed with and without the separated point. 
While the change in the line can be anticipated from inspection of the 

Figure 3.1.1 A simple regression scatter plot. - regression of y on x, all 
data. R 2  = 0.90. - - - - regression with the separated case removed, R2 < 0.01 
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scatterplot, the change in other summaries such as R' can be startling. 
For the complete data in Fig. 3.1.1, R Z  = 0.90, while if the one 
separated case is removed R Z  is less than 0.01 (see Weisberg, 1980a. 
Example 3.3, for a discussion of the dependence of RZ on the spread of 
the independent variables). 

Table 3.1.1 contains a further example of a somewhat different 
character. In fitting the model E y  = 8, + / l , x ,  + /j,sz,case 4 may be 
considered an outlier because of its large Studentized residual, but i t  

will have only modest influence on the estimates of the ps. Deletion of 
case 6, with v,, = 1, will result in a rank deficient model. so this case has 
a large influence. This example is deceptively simple, but the same 
conditions can occur in much larger problems if the role of case 6 is 
taken over by a small set of cases, and if the structure of x ,  and .u, is 
made less obvious by a nonsingular linear transformation. 

Table 3.1.1 A hypotheticc~l e.uartiple 

Case Ti 
-- - - 

- 0.3886 
-0.3714 
- 0.3826 

2.0000 
- 0.4689 

Undefined 
- 0.7878 

- 0.34 
- 0.33 
- 0.34 

x! 
- 0.42 

Undefined 
- 0.74 

The ability to find influential cases can benefit the analyst in at least 
two ways. First, the study of influence yields information concerning 
reliability of conclusions and their dependence on the assumed model. 
For example, the usefulness of the complete data regression in Fig. 3.1.1 
is highly dependent on the validity of the separated case. Alternatively. 
if deletion of an influential case from a data set changes the sign of an 
estimated parameter, relevant inference concerning that parameter 
may be in doubt. Second, we shall see that cases in the p-dimensional 
observation space that are far removed from other cases will tend to 
have, on the average, a relatively large influence on the analysis. This, in 
turn, may indicate areas in the observation space with inadequate 
coverage for reliable estimation and prediction. 
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The techniques developed here are not intended to provide rules for 
the rejection of data, as influential cases are not necessarily undesirable. 
Often. in fact, they can provide more important information than most 
other cases. 

The emphasis in this chapter is on detecting influential cases rather 
than on how to deal with them once they are found, since final 
judgments must necessarily depend on context, making global recom- 
mendations impossible. Some of the possible actions can be given, 
however. If the influential cases correspond to gross measurement 
errors. recording or keypunching errors, or inappropriate experimental 
conditions, then they should be deleted or, if possible, corrected. If an 
influential case cannot be traced to conditions that justify its removal 
and the model is known to be approximately correct, a formal outlier 
test might be useful, although such tests cannot be expected to be 
powerful. Collecting more data or reporting the results of separate 
analyses with and without the cases in question are two additional 
possibilities that are often appropriate. Finally, in situations where 
predictions are important it may be possible to circumvent partially the 
effects of influential cases by isolating stable regions, or regions where 
the influence is minimal and unimportant. 

In the next three sections of this chapter we review some of the results 
concerning the influence curve. Sample versions of the influence curve 
provide justification for the basic tools used for finding influential 
cases. 

3.2 The influence curve 

Let T, be a vector-valued statistic of length k based on an independent 
and identically distributed sample z, , z,, . . . , z, from the cdf F defined 
on Rm. Of interest is the assessment of the change in T,, when some , 

specific aspect of the problem is slightly changed. A first step in such an 
assessment is to find a statistical functional Tthat maps (a subset of)  the 
set of all cdf's onto Rk such that, if E is the empirical cdf based on 
z,.  z,, . . . . z,, then 7'(F) = T,. If such a functional exists, then we can 
study the properties of 7, by examining the behavior of T(F)  or T(P) 
when F or E is perturbed. 

As a simple example, consider In = k = 1 and T,, = n- ' Czi = L The 
corresponding statistical functional is 
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so clearly T ( F )  = SzdG = f. This estimator would be called robust 
if 'small' changes in F or do not produce wild fluctuations in I (F1 
or 7'(E). 

To aid in our study, we make use pf the influence curve (Hampel, 
1968, 1974; nearly parallel work appears in Tukey, 1970, and Andrews, 
Bickel, Hampel, Huber, Rogers and Tukey, 1972). and. in particular. 
various finite sample versions derived from it. For the most part, our 
approach to the influence curve is heuristic; for rigorous treatments. 
interested readers are urged to consult recent books by Huber (1981) 
and Serfling (198 1). 

Let 6, denote the cdf giving mass 1 to z in Rm. The kector-valued 
influence curve I C I , F ( ~ )  of 7' at F is defined pointwise by 

T[(1 - E)F + ~ 8 , ]  - 7'(F) 
IC,.,(z) = lim -. (3.2.1) 

E - 0 ,  E 

provided the limit exists for all z in Rm. Thus, the influence curve is just 
the ordinary right-hand derivative, evaluated at E = 0. of ] ' [ ( I  - E )  

F + ES,]. It gives a measure of the influence on the statistical functional 
Tofadding an observationat zas 11 + a. For notational simplicity. the 
dependence of the influence curve on F and Twill be supressed when n o  
confusion is likely to result. 

The original use of the influence curve and related notions exploited 
by von Mises (1947,1964) and expanded upon by Reeds (1976) is in 
determining asymptotic properties of an estimator. Hampel(1968) and 

, Andrews et al. (1972) use influence curves to compare estimators and to 
suggest robust modifications of existing estimation techniques. For 
example, M-estimators are modified versions of maximum likelihood 
estimates that have desirable properties for the corresponding 
influence curves. The main use in this work is anticipated by Devlin. 
Gnanadesikan and Kettenring (1  975). Pregibon ( 1  979. 198 I ) .  Cook 
and Weisberg (1980),and Hinkley (1977): The influencecurve is used to 

monitor the influence of individual cases on estimates. 
The following introductory example illustrates the use of the 

influence curve and suggests specific procedures for special purposes. 

E X A M P L E  3.2.1. THE S A M P L E  A V E R A G E .  The influence curve for 
/L = 7'(F) = jzdF(with k = rn = 1) can be computed directly from 
(3.2.11 to be 

(1  - ~ ) j i + ~ z - j l  
IC (2) = lim - - - z - j l  ( 3 . 2 2 )  

E'O E 
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An undesirable property of the sample average is that its influence 
curve is unbounded; that is, small changes in F can produce large 
changes in the estimator. 

The influence curve can also be used in a number of ways to see how 
individual cases affect the sample average. Suppose that a single 
additional case z were added, giving a sample of size n + 1 and'the new 
sample cdf F, = nF/(n  + 1 )  + ( l / ( n  + I ) )&.  It easily follows that 

where 2, = T(F, ). For a fixed sample size n, 2, - Z increases linearly 
as z deviates from i; This gives the influence of a single future case on 
the current sample average Z and only indirectly reflects the influence of 
zi. i = 1 ,  2, . . . , n on 2. Equation (3.2.3) is related to the sensitivity 
curves suggested by Tukey (1970). 

The influence of the i-th case zi on Z may be determined by removing 
zi from the sample and proceeding as before, 

where f(i, denotes the sample average computed without the i-th case. 
This describes a collection of n influence curves obtained by deleting 
each case in turn. The influence of zi  on 5 is obtained by evaluating the 
i-th curve at z = z i .  This results in the n case statistics 

which can be expressed more informatively by writing ( z i  - .T(i,) in terms 
of the full sample average, 

- - 
z - zci, = ( z i  - q / ( n  - 1) (3.2.4) 

Thus, the influence of a single case depends on the sample size and the 
full sample residuals. Any case with a sufficiently large residual will be , 

influential for the sample average. 

3.3 The influence curve in the linear model 

The first step in finding the influence curve for the least squares 
estimator of /3 in model (2.1.1) is to construct the appropriate 
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functional T. Following Hinkley (1977) ,  let the (p' + I)-vector ( x T ,  1,) 

have a joint cdf F with 

By allowing x to havedesign measure (3 .3 .1)  will also describe problems 
with X fixed. The functional corresponding to the least squares 
estimator of f i  is 

7 ' ( F )  = C- ' ( F ) y  ( F )  (3.3.2) 

assuming, ofcourse, that Cis nonsingular. Next, let 6 ,  = b,,.,., be thecdf 
that places mass 1 at (xT, y). The p'-dimensional influence curve as a 
function of ( x T ,  y) is defined pointwise by (3.2.1).  An explicit formula is 
obtained by writing 

& 
C((1 - E ) F + E B , )  = ( 1  - E ) ( C ( F ) + - x x T )  

1 - &  (3 .3 .3)  

~ ( ( 1  - E ) F  + ~ 6 , )  = ( 1  - & ) y ( F ) + ~ y x  

From (3.3.3) updating C- ' (F) to C-' ( ( 1  - E)F + ~ 6 , )  is equivalent to 
adding a new case at x with weight ~ / ( 1  - 6 ) .  Using Appendix A.2, 

Substituting for T ( ( 1 -  E)F + & 6 , )  in the definition of the influence 
curve, simplifying, and taking the limit gives 

If interest centers on a set of q independent linear combinations 
of the elements of f i ,  then it is more appropriate to consider the 
influence curve for these combinations. Let I) = ZB, where Z is a 
q x p' rank q matrix. It is easily shown that the influence curve for 
JI = Z / l =  Z T ( F )  is 

As with the influence curve for the sample average, the influence 
curve for linear least squares regression is unbounded in each 
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component as - x T T ( F )  becomes large. This observation has led to 
the development of robust regression methods that generally bound 
influence by downweighting cases with large residuals. In addition, 
however. the componentwise influence can grow large, even if 
- xT7'(F) is small, if x is far from E F ( x )  and substantially in a direction 

of an eigenvector corresponding to a small eigenvalue of C(F).'Robust 
regression methods may also be highly influenced by such cases, as 
discussed in Chapter 5 .  

For the influence curve to provide a useful diagnostic procedure in 
regression, (3 .3 .6)  must be modified by replacing ( x ,  y) by ( x i ,  y i ) ,  

i = 1, 2. . . . , 11, and by replacing parameters by statistics. Although 
(3.3.6) is a useful theoretical diagnostic, as Hampel (1974),  Mallows 
(1975) .  and others have pointed out, it describes an estimation 
technique with respect to a theoretical sampling population F. In any 
finite sample situation, more information relevant to the specific 
problem can be obtained by removing dependence upon F and using an 
asymptotically equivalent finite sample version, like those in 
Example 3.2.1, that corresponds directly to the observed data. 

3.4 Sample versions of the influence curve 

Several finite sample versions of the influence curve that depend on an 
observed sample have been suggested. Two of these, which shall be 
called the empirical influence curve ( E I C )  and the sample influence 
curve ( S I C ) ,  have received the greatest attention, and will be discussed 
most completely here; both are discussed by Mallows (1975). They will 
be presented as a continuation of the previous section on least squares 
estimation of p, but the ideas are general and the application to other 
situations should be clear. 

In general, the EIC is obtained by substituting the sample cdf for F 
in the influence curve. For linear models, using (3.3.5) and setting 
B = T ( P )  gives 

E I C ( x ,  y )  = n(XTX)-  ' x ( y  - x T b )  (3.4.1) 
and 

EICi = E I C ( x i ,  y,) = , ~ ( X ~ X ) - l x ~ e ~  (3.4.2) 

where, as usual, e i  = y,  - xf 8.  The EIC is appealing on several grounds, 
as i t  appears to be an exact analogy to the influence curve. It measures 
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the effects of an infinitesimal perturbation o f f  at x i ,  and corresponds 
to the infinitesimal jackknife method of Jaeckel (1972: see also Miller. 
1974). The EIC pretends that an infinitely large sample has been used to 
obtain P, and it measures the instantaneous rate of change in the 
estimator as a single case at x is added to the data. 

A second sample version of the influence curve can be constructed to 
display the influence of the i-th case on the computed estimate of /I. The 
general idea is to substitute the sample cdf with the i-th case deleted for 
F in the influence curve and then evaluate the resulting EIC at the i-th 
case. This is analogous to the treatment in Example 3.2.1.  

Let E,,, denote the sample cdf with the i-th case deleted. For least 
squares estimators of 8,  substitution of F,i ,  for F in (3 .3 .5 )  yields an 
empirical influence curve with the i-th case deleted, 

EIC( i ) (x ,  Y )  = ( n  - l ) ( X ; ) x ( i ) ) - '  X ( Y  - xT&il ) (3 .4 .3 )  

where = T ( E , ~ , )  and 

X$,X , , , / (n  - 1 )  = ~ x x ~ ~ F , ~ ,  

This represents n EICs, one for each i = 1 , 2 .  . . . , n. The influence of 
the i-th case is determined by evaluating (3 .4 .3)  at ( x i ,  yi), 

Using the relationships in Appendix A.2, this can be more informatively 
expressed in terms of the full sample, 

The interpretation of EIC,, ,  is analogous to that for EIC. It should be 
remembered, however, that EIC,, ,  is the result of the evaluation of n 

separate influence curves. 

Both the EIC and EIC(, ,  are constructed under the fiction that 

infinitely large samples have been used to obtain and E,i, .  
i = 1,2, . . . , n. The sample size n in (3.4.2) and (3 .4 .5)  appears as a 
result of the covariance structure and does not necessarily reflect the 
effects of a finite sample. When investigating the influence of individual 
cases on computed statistics, a more explicit dependence on 11 is 
desirable, or else important finite sample characteristics can be 
obscured. A more desirable sample version of the influence curve can be 
obtained by setting F = and taking E = - l / ( n  - 1 )  in the definition 
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of the influence curve (3.2.1). Evaluating at z: = (x?, y,)and E = - l/(n 
- I ) ,  we find (1 - E)C + 126, = 17'(,,. The sample influence curve is then 

SIC, = - (n - 1) (T(F(~)) - ~ ( p ) )  
= (n- 1) (B- Dl,)) (3.4.6) 

- - (n - 1) (XTX)- 'xiei 

1 - vi, 

which is proportional to the change in the estimate of/? when a case is 
deleted. 

The essential difference between these three sample versions of the 
influence curve appears in the power of the (1 -uii) term in the 
denominators, while the numerators are essentially the same when 
evaluated at the sample points. Recall that remote rows of X will tend to 
have 1 - vii small. The EICli) will be most sensitive to cases with v,, large, 
while ElC will be least sensitive. The SIC lies between these versions in 
terms of relative weight given to vii. 

Any of these sample versions of the influence curve for /? may be 
transformed to a sample influence curve for II. = Z/l by multiplying on 
the left by Z; see (3.3.6). 

An alternative and perhaps more immediately revealing derivation of 
EICi, EIC,,,, and SIC, can be obtained from a related perturbation 
scheme (Pregibon, 1979, 1981; Belsley et al., 1980). Let all cases have 
error variance a2,  except for case i with var (e i )  = 02/wi, wi > 0. Then, 
using Appendix A.2, the weighted least squares estimator of /? as a 
function of wi can be written as 

Differentiating (3.4.7) with respect to wi yields 

The EIC,, apart from the multiplier n, is found by evaluating A@(w,) at 
\ci = I and thus describes the rate of change in the estimator as wi 
deviates from 1. Similarly, the EIC,,, is found by evaluating A/?(wi) as 
wi + 0. and it  measures the rate of change in the estimator as the i-th 
case is deleted. The SIC is a compromise between ElC and EIC,,, since 

Jo 

is the average gradient over the whole interval. 
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E X A M P L E  3.4.1. C L O U D  S E E D I N G  NO. 6. Figure 3.4.1 contains a 
graph of the estimate of/I,, from the cloud seeding model (2.4.23) with 
A = 113 as the weight for case 2 is varied from 0 to 1. The comments 
made above concerning the three empirical influence curves are clear. 
The EIC corresponds to the derivative at \vi = I ,  which seems too small. 
while EIC,,,, the derivative as ,tii + 0, seems too large. The SIC, which 
corresponds to the slope of the line joining j ( O )  and $(I), appears to 
provide a more satisfactory summary of this curve.0 

Figure 3.4.1 jj14(\i!2) versus \r2. cloud seeding data. Note: s.e. f i?,& ( I  j j  = 
0.177, s.e. (j,, (0)) = 0.324 

E X A M P L E  3.4.2. P A R T I A L  I;-TESTS. Partial F-tests for the hypoth- 
esis that the individual coefficients of pare zero are commonly used to 
simplify a linear model. When using this procedure, it is not uncommon 
to find that retention of a particular coefficient depends on the presence 
of a single case. This behavior seems particularly prevalent when the 
model contains polynomial terms. The influence of individual cases on 
the partial F-tests can be seen from the SIC for the associated F- 
statistics (Cook, 1979). 
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Let Pk denote the k-th component of band  define 

z k  = f i k l c i  J(bk) 

where bk is the k-th diagonal element of (XTX)-'. The partial 
F-statistic for the hypothesis that fik = 0 is Fk = s:. Further, let fikci,, 
T,,,,, b,,,,, ci,f.,, and F,,,, denote the analogous quantities based on the 
data set without the i-th case. 

Characteristics of the SICi = (n- 1) [Fk - F,,,,] are most easily seen 
by expressing F,,,,. as a function of Fk. We consider the three 
components compr~sing F,,,, separately: using Appendix A.2, 

and 
6;) = [ ( n  - p1)c3* - e;/(1 - vii)]/(n - p' - 1) 

where 
Cki = d:(XTX)-'xi 

and dk is a unit vector of length p' with 1 in the k-th position. After 
substituting these three forms into 

a little algebra will verify that 

[; - ,, ( 3 L ) l i 2  p 
(,I - p l -  1)rf 1 - vii 

F . -  (3.4.10) ' - n - p - r )  [l + p2vii/(l - vii)] 

where p denotes the correlation between fik and xTb, and ri is the i-th 
Studentized residual. 

Recall that vil/(l - vii) will be relatively large for remote points. The 
term (n  - p' - 1)rf/(11- p' - r f )  = t f  will be large when the i-th case is 
an outlier, and under the null hypothesis it has an F(1, n-p'- 1) 
distribution. 

I t  seems clear from inspection of Equation (3.4.10) that aln~ost 
anything can happen to the partial F-statistics when a case is removed. 
Two general observations seem particularly interesting, however: 
Suppose that the deleted case appears to be an outlier (r? is large) and 
that 11(1.~,;( I - r i i ) ) ' IZ is negligible; empirical investigations indicate 
that typically p is not negligible by itself. Then, 
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Deleting a case with rf > 1 in a dense region will tend to increase all 
partial F-statistics. 

Next, consider the deletion of a point that fits the model quite well 
(r? I 1). Then, 

and we can generally expect all partial F-statistics greater than one to 
decrease when a conforming point which has vii large is deleted.0 

3.5 Applications of the sample influence curve 

The sample influence curve defined at (3.4.6) has natural appeal as the 
basis for diagnostic techniques that locate influential cases. We recall 
again its basic properties: It is computed from observed data and apart 
from constants it is interpreted as the change in a statistic when a case is 
deleted. Also, for many problems including linear least squares 
regression, the SIC, or approximations thereof, can be easily computed. 
We shall see that the sample influence curve has other desirable 
properties derived from geometrical considerations and from exten- 
sions to the study of the influence of groups of cases. 

In the remainder of this chapter, methods for finding influential cases 
are developed from the sample influence curve; methods based on the 
EIC or EIC(,, can be developed similarly. To be most useful, such 
methods should allow the cases to be ordered on the basis of influence. 
For linear least squares, the SIC for j? is a p'-dimensional vector and 
there is no natural ordering of multidimensional vectors. Even in the 
case p' = 2 where a scatterplot of the SIC can be constructed and 
inspected, there is no natural way to construct a complete ordering of 
the points on the basis of influence. I t  is necessary. therefore. to use a 
norm to characterize influence and order cases. A norm may be 
regarded asa function which maps the SIC into R1. Ofcourse, there is a 
natural ordering (less than) for points in R ' .  The choice of a norm to 
characterize the SIC is a crucial part of the study of influence. 

Norms can be usefully defined from properties of a model. We call 
such norms rxternc~l. Alternatively, they can be defined without 
reference to the model by considering the t~ values of the sample 
influence curve as a multivariate sample,and applying an intrrrll~l norm. 
After a study of characterizing norms for the influence of a single case. 
we turn to multiple case influence measures, which are straightforward 
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generalizations of the one-at-a-time statistics. Other norms for in- 
fluence are discussed in Chapters 4 and 5. 

In linear least squares regression, the sample influence curve for /? is 
given by 

(n - 1)- SICi = @ - &, (3.5.1) 

Since SIC, is a p'-vector, it is useful to consider norms D,(M, c) 
determined by a symmetric, positive (semi-)definite p' x p' matrix M 
and a positive scale factor c: 

Contours of constant Di(M, c) are ellipsoids of dimension equal to the 
rank of M. The contours may be viewed as being centered at $ or &,, 
both interpretations being used in what follows. 

This general norm has a useful interpretation in terms of linear 
combinations of the elements of 8. Let z denote an arbitrary p' x 1 
vector, k = ((n - 1 ) 2 ~ ) - 1  and, assuming that M is positive definite, let 

As a function of z, the SIC for zT/3 is 

SIC, (z) = (n - l)zT(@ - &,) 
and 

max [S1Ci(z)12 = D, (M, c) 
2.28 

The maximum is attained in the direction of M()- &,).Thus, Di(M, c) 
can be interpreted as the maximum over z of the squared sample 
influence curves for zTjY when z is constrained to lie within the ellipsoid 
B. Of course, the ordering over i of these maxima will not change if 
k > 0 is allowed to be arbitrary, but independent of i. 

Clearly, the character of Di(M, c)  is determined by M and c, which 
may be chosen to reflect specific concerns. In what follows, we discuss 
both internal and external norms. The inner-product matrix M is 
nonstochastic for external norms in linear least squares. For internal 
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norms, which are developed in Section 3.5.2. M is stochastic even for 
linear least squares. 

A form of Di(M, c) that reveals the effects of varying M and c is 
obtained by using Appendix A.2 to express &, in terms of the full 
sample, 

eixT(XTX)-' M(XTX)-' xiei 
Di(M, c) = 

c(1 - Vii)2 

where ri is the i-th Studentized residual and Pi(M) is defined implicitly 
in this expression. By the nature of the regression problem, M and c 
should be chosen to make Di(M, c) invariant under changes of scale and 
nonsingular linear transformations of the rows of X. In particular, c 
should be chosen so that S2/c is scale free. While there are many ways to 
achieve this, two stand out as obvious candidates: Choose c = kc?2 or 
kc?:,, where k > 0 is a known constant that does not depend on X.The 
former choice was suggested by Cook (1977a, 1979) and Cook and 
Weisberg (1980), while the latter choice has been suggested by Belsley et 
al. (1980) and Atkinson (1981,1982). If c = then r,2e2/c = rf/k. 
On the other hand, when c = kc?;, i t  follows from (2.2.8) that r,2c?2/c 
= t f l k  where, as before, t: is the i-th externally Studentized residual. 

For either of these choices for c, the stochastic part of Di(M, c) 
depends only on r;. Since the null distribution of rf does not depend on 
X, or on the actual values of the parameters, it is reasonable to ask how 
the influence of the i-th case can be altered when the fit,  as measured at 
the i-th case by r;, is fixed. With rf fixed, it is clear from (3.5.3) that 
influence is a monotonicallj increasing function of Pi(M). If Pi(M) is 
large, the observed value of r? must be small for the case to be 
uninfluential. However, Er? = 1 under a correct model and thus cases 
with large Pi(M) will typically be influential. 

If M is nonstochastic, then so is Pi(M), and its magnitude depends on 
the location of x: relative to the distance measures determined by the 
inner-product matrices (XTX)- ' M ( x T X ) -  ' and (XTX)-  '. It can be 
expected that cases with large vii will have Pi(M) large also. However. 
this need not necessarily follow since by choice of M the numerator of 
Pi(M) can be small even if vii is large. 

We view Pi(M) as the potential, relative to M, for the i-th case to be 
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influential. Potential is important since i t  can be used to describe and 
detect configurations of the rows of X that are likely to produce highly 
irillucntial cases. 

M = XTX, r = p'G2 
Although the class of invariant norms is large, one stands out by appeal 
to usual confidence ellipsoid arguments. A (1 -a)  x 100% confi- 
dence ellipsoid for based on B is given by the set of all such that 

(/I* - f iT(XTx)  (,?* - B) 
I F ( I  - a; p: 11 - p') (3.5.4) 

p'd2 

This ellipsoid is centered at 8, with contours determined by the 
eipenvalues and eigenvectors of (XTX); is a scale factor used to 
assign proper values to contours. Reference to (3.5.4) suggests setting 
M = XTX and c - ~ ' 8 ~  in (3.5.2), to give 

This measure, first proposed by Cook (1977a), gives the squared 
distance from 8 to &, relative to the fixed geometry of XTX. By 
exploiting the similarity to (3.5.4), values of Di(XTX, p'G2) can be 
converted to a familiar probability scale by comparing computed 
values to the F(p', n - p') distribution. For example, if Di(XTX, p'b2) 
equals the 0.50 value of the corresponding F distribution, then deletion 
of the i-th case would move the estimate of ,? to the edge of a 50% 
confidence ellipsoid relative to B. However, Di(XTX, p'S2) is not 

distributed as F; this comparison is used only for converting Di to a 
familiar scale (Cook, 1977b). 

Figure 3.5.1 illustrates the measure Di(XTX, ~ ' 8 ~ )  for a problem with 
p' = 2 and no intercept. The figure is derived from a linear approxi- 
mation to a nonlinear problem to be discussed in Example 5.1.1. The 
elliptical contours correspond to Di(XTX, ~ ' 8 ' )  = constant. Although 
contours of constant influence are elliptical, the (fllcn, flzci,) often tend 
to have nonelliptical scatter. In the figure, they generally fall along a 
curve, with the exception of the one clearly influential case in the lower- 
left corner. 

Alternatively. Di can be rewritten as 
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Figure 3.5.1 fi,(i, in a model with no intercept. + indicates the full 
data estimate (B, ,  P 2 ) .  Ellipses are contours of constant Di with values shown 

where P(,, = x&,. For problems where prediction is of more interest 
than estimation, Di may be viewed as the usual Euclidean distance 
between and P(,,. Clearly, any norm in the p'-dimensional estimation 
space may be regarded as a norm in the n-dimensional observation 
space providcd that M is of the form M = XTBX. 

A computationally convenient and revealing form for Di is obtained 
by substituting M = XTX into (3.5.3) (Cook, 1977a) 

Apart from the constant p', Di is the product of a random term r f  and 
the potential Pi(XTX) = vii/(l - vii), which is a monotonic function of 
oii. For linear least squares, computation and examination of the tii, has 
become common practice (see, for example, Hoaglin and Welsch, 1978). 
and this is sensible if M = XTX is used to define a norm. ?'he potential 
itself can be given several interesting interpretations. Cook (1977a) 
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noted that vii/(l - uii) = var (ji)/var (e,). Weisberg (1980a) pointedlout 
that 

so the potential is a distance relative to the ellipsoids defined by 
(X;,X,,,)-'. Huber (1981) noted the relationship ji = ( l ' - ~ ~ ~ ) x : & ~ ,  

+ riiyi so that potential can be interpreted as a function of the relative 
weight of yi in determining ii. Finally, oii/(l - uii) is proportional to the 
total change in the variance of prediction at x,, . . . , x, when xi is 
deleted, 

The i-th case will be called influential ifDi is large; the exact definition 
of large will depend on the problem, but Di greater than I ,  correspond- 
ing to distances between f i  and &, beyond a 50% confidence region, 
usually provides a basis for comparison. 

E X A M P L E  3.5.1. coMsrNATroNs OF r!, uii. Suppose that in a 
data set with p' = 3 and ti  = 100, four pairs of (el, vii) occur as given in 
Table 3.5.1. For each of these four cases Di = 3.0, so deletion-ofany one 
of the four would move the estimate of to the edge of a 95% 
confidence region about fi, and each would be called highly influential. 
However, the reasons for the influence in the four cases are not the 
same. Cases 3 and 4appear to be outliers given the extreme values for ri, 
while for the other two cases the influence is apparent because of the 
potential; the large values of oii indicate that these cases are relatively 
far removed from the bulk of the data .0 

E X A M P L E  3.5.2. R A T  DATA.  In an experiment to investigate 
the amount of a drug retained in the liver of a rat, 19 rats were 

Table 3.5.1 Residuals and vii  for jolcr hypothetical cases 

ei uii r i Di 
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randomly selected, weighed, placed under light ether anesthesia and 
given an oral dose of the drug. The dose an animal received was 
determined as approximately 40 mg of the drug per kilogram of body 
weight, since liver weight is known to be strongly related to body 
weight and i t  was felt that large livers would absorb more of a given 
dose than smaller livers. After a fixed length of time each rat was 
sacrificed, the liver weighed, and the percent of the dose in the liver 
determined. 

The experimental hypothesis was that, for the method of determin- 
ing the dose, there is no relationship between the percentage of the dose 
in the liver (Y) and the body weight (X ,), liver weight (X,), and relative 
dose (X,). 

The data and sample correlations are given in Tables 3.5.2 and 
3.5.3(a). As had been expected, the sample correlations between the 
response and the explanatory variables are all small, and none of the 
simple regressions of dose on any of the explanatory variables is 
significant, all having t-values less than 1 as shown in Table 3.5.3(b). 
However, the regression of Yon X,. X , ,  and X 3  gives a different and 

Table 3.5.2 Rat data. Source: IVeisherg (1980~) 

X,-Body weight X2-Liver weight X,-Relafire dose 1' 

(Y) (9) 
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Table 3.5.3 Rat doto. (u) Sunlple correlrrfions. 

S, -Body weight (g) 1 .OOO 
S , - L i v e r  weight (g) 0.500 1 .OW 
S,-Relative dose 0.990 0.490 1 .OOO 
t' 0.151 0.203 0.338 1.000 

Body weight Liver weight Dose Y 

Table 3.5.3 Rot dufu. ( h )  Krqrrssiott ,sirnlt,litry, 1-rrulues in pr~ret~rhese.~ 

Model including 

Coeficietlr X I X z X3 (XI Xzr X3) 
- 

Intercept 0.196 0.220 0.1 33 0.266 
(0.89) (1.64) (0.63) (1.37) 

/I, ( ra t  weight) 0.0008 - 0.02 12 
(0.63) ( - 2.67) 

[I, (liver weight) 0.0 147 0.0 143 
(0.86) (0.83) 

/I3 (dose) 0.235 4.178 
(0.96) (2.74) 

contradictory result: two of the explanatory variables, X ,  and X 3 ,  have 
significant t-tests, with p < 0.05 in both cases, indicating that the two 
measurements combined are apparently useful indicators of I: If X ,  is 
dropped from the model, the same phenomenon appears. The analysis 
so far might lead to the conclusion that a combination of dose and rat 
weight is associated with the response. 

Figure 3.5.2 gives plots of r ,  vi,, and Di against case number for the 
model Yon X I ,  X,. X,. The r i  do not display any unusual features as 
they are all less than 2, without obvious trends or patterns. However, 
inspecting the D,, we locate a possible cause: case 3 has D 3  = 0.93; no 
other case has Di bigger than 0.27, suggesting that case 3 alone may have 
large enough influence to induce the anomaly. The value of u3, = 0.85 , 
indicates that the problem with thiscase is that the vector x 3  is different 
from the others. 

When case 3 is deleted, and the model is refit, the t-values for the 
coefficients of X,, X , ,  and X 3  are all substantially less than 1 in 
absolute value, so the anomalous result of a significant pair of 
regressors can be attributed to case 3 alone. Of course, this could have 
been anticipated from the discussion given in Example 3.4.2. 
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The reason for the influence of case 3 must now be studied. 
Inspection of the data indicates that this rat,with weight 190g, was re- 
ported to have received a full dose of 1.00,which was a larger dose than 
i t  should have received according to the rule for assigning doses (for 
example, rat 8 with a weight of 195 g received a lower dose of 0.98). A 

number of causes for the result found in the first analysis are possible: 
( I )  the dose or weight recorded for case 3 is in error or (2) the 
regression fit in the second analysis is not appropriate except in the 

0  5 10 15 20 

(a) Case number 

v. .  
/ I  

0 . 8  

0 5 10 15 20 

(b l  Case number 

Figure 3.5.2. Rat data: plots against case number. (a)  r i .  (b) rii (cont'd 
overleaf) 
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1 . O O  1- I 

0 5 10 15 20 

(c) Case number 

Figure 3.5.2 Rat data: plot against case number. (c)  Di 

region defined by the 18 points excluding case 3. This has many 
implications concerning the experiment. It is possible that the combi- 
nation of dose and rat weight chosen was fortuitous, and that the lack 
of relationship found would not persist for any other combinations of 
them, since inclusion of a data point apparently taken under different 
conditions leads to a different conclusion. This suggests the need for 
collection of additional data, with dose determined by some rule other 
than a constant proportion of weight.0 

Alterr~ativefull rank choices for M, c 
The choice of (M, c) determines the geometric character of the norm. 
The class of (M, c) for which Di(M, c) is invariant under linear 
transformations is large, but the examples considered in Fig. 3.5.3 
depict four obvious choices corresponding to pf-dimensional elliptical 
contours. 

Figure 3.5.3(a) shows the measure Di = Di(XTX, ~ ' 6 ' )  that has been 
previously considered. All points on the ellipsoid drawn have the same 
value for the characterizing norm. Measures using M = X;,X,,, 
(Figs. 3.5.3(b) and (c)) can be usefully viewed as corresponding to 
measuring the distance from to f l  relative to the ellipsoid defined 
without the i-th case and centered at As illustrated, the resulting 
ellipsoids need not all be of the same shape, and thus direct comparison 
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Figure 3.5.3 Graphical comparison of four norms: (a) Di(XTX, ~ '6 ' ) .  (b)  
Di(X$, XX,~,, ~'3 ' ) .  (4 Di(X$,Xti,, p'ci;,). (d) Di(XTX, p ' s ; , )  

of the norm from case-to-case is questionable. From Fig. 3.5.3(b), for 
example, deletion of case 2 appears to lead to more nearly circular 
contours than did deletion of case 1 and, while D,(XTX, p'Z2) 
= D, (XTX, p'b2), the relationship between Dl (X:, , X,,,, p'ZZ) and 
D, (X,T,,X,,l, p'b2) is uncertain, as either may be larger. 

In Fig. 3.5.3(b), c = p'b2 while c = p'Z;, in Fig. 3.5.3(c). These two 
figures look alike and they have the same contours of constant value. 
but the values assigned to the contours are different, as the scale factors 
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are different in each figure. This, too, has the effect of making 
comparisons between cases more difficult. 

The fourth measure, graphed in Fig. 3.5.3(d), can be viewed again as 
the distance from to Busing ellipsoids determined by the full sample 
M = XTX, but applying different scale factors for each i, so compar- 
ability of the values of the norm is again unclear. The measure 
D , ( X T X ,  6;,) has been called (DFFIW)' by Belsley et a/. (1980). 
Atkinson (1981) discusses [Di(XTX, p'$i,/(n - p'))]"'. 

Other differences between these norms can be seen by examining 

their algebraic forms, as listed in Table 3.5.4. Atkinson suggests using 
6;) in place of ciZ since this will give more emphasis to outlying cases 
(1 :  > r: when r: > 1). Belsley et a/.  replace 5' with 6;) in order to make 
the denominator statistically independent of the numerator under 
normal theory. We prefer measures based on a fixed geometry where M 
and c- do not depend on i since such measures provide an unambiguous 
ordering of cases. In addition, 2' could be replaced by a robust 
estimator in order to reduce the effects of outlying cases on the 
est~mated scale. 

Table 3.5.4 Nortned itlfluetlce nleclsures. Source: Cook ond kveishrrg (1980) 

bl c Reduced jbrm 

Lower-dimetrsional norms 
If M i s  chosen to have rank q < p', contours of constant Di(M,  c) are 
q-dimensional ellipsoids. In particular, if Z is a q x p' rank q matrix such 
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that * = Z/l is of interest, then the norm with 

is an invariant norm corresponding to q-dimensional ellipsoidal 
confidence contours for * based on 4 = z#. 

Suppose a subset of the elements of b, say the last q, is of interest. 
Partition X = (XI ,  X,), where X, is n x q. If Z = (0, I,), 

Substituting this choice of M into the general form (3.5.3) for Di(M,  c)  
and simplifying yields 

where U = X,  (X:Xl)- ' X:, and W* = V - U projects onto the 
columns of (I - U)X2.  The uii can be obtained from the projection 
matrix for XI, and the w z  obtained by subtraction. The potential Pi(M) 
for this measure is w:/(l - vii) which will tend to be relatively small if 
the i-th row of (I - U ) X 2  is sufficiently close to zero or to the sample 
average if the constant is not in X I .  

Two special cases of lower-dimensional norms are of some interest. 
If we set q = 1, then the measure concentrates on a single coefficient of 
the parameter vector. If c = 6;, is used to replace c = t2, the resulting 
measure is called DFBETASij by Belsley el a/ .  (1980). The potential 
when q = 1 will be small if the i-th residual from the regression of X, on 
X1 is small. In the general situation with q = 1, suppose $ = zTfl. If 
c = 6', the norm becomes (Cook, 1977a) 

Di(M, c) = p ' ~ i p 2  (X'S, zT#) (3.5.1 1) 

where p ( . , . )  is the correlation. The maximum plDi of this norm for 

fixed i occurs at z = xi. 
If  q = p, c = p6', and the intercept is excluded, then 

and 



126 R E S I D U A L S  A N D  I N F L U E N C E  IN REGRESSION 

When the intercept is not of interest, this last measure may be 
preferable to the more usual Di = Di(XTX, p'r?'). We will continue to 
use Di since modification of results for (3.5.13) is straightforward. 
When xi = 8, uii = l/n, and measure (3.5.13) is zero. Relative to this 
measure, observations at X have no influence. 

I 

E X A M P L E  3.5.3. C L O U D  S E E D I N G  NO. 7. For the cloud seeding 

data, the coefficients for the seeding effect and interactions are of 
primary interest, so the choice of 

is suggested. The distance measure based on ellipsoids for @, can be 
computed from (3.5.10). For the data using Y"I3' and PU'j',  the values 
of Di and Dr are given in Table 3.5.5 (the other columns in this table 
refer to a later example). The ordering of cases on influence is similar for 
the two measures. Case 2 is the most influential, but D, is over three 
times the size of ~ r . 0  

i 
i 

Predictions 
The diagnostics considered thus far measure the influence of individual 
cases in terms of their effects on the estimation of selected linear 
combinations of the elements of 8. The general measure Di(M, c), 
however, is applicable in situations where prediction rather than 
estimation is the primary goal. 

Let X, be a q x p' matrix and suppose we wish to predict the q-vector 
of future values 

I 
YJ = XfP+s ,  (3.5.14) 

where s f  is independent of the vector of errors E in (2.1.1) and 
Var ( E , )  = 0'1. A point prediction for Yf is = X,S, and 

~ a r ( E ,  - Y,) = O ~ X , ( X ~ X ) - ' X :  + aZ1  (3.5.15) 
I 

A (1 -a) x 100% normal theory prediction region for Y, is given by 
the collection of all q-vectors Y* such that i 
(E, - Y * ) T [ ~ f  ( x T x ) -  Ix; + I]  - (PI - Y*) 

I F(l -a;q ,n-p' )  
qc? 

The sample influence curve for the point prediction 9, is propor- 
tional to (2 ,  - q,,i,) = XI ( p  - &,).This in combination with (3.5.16) 



Table 3.5.5 Injuence statistics, cloud seeding data 

Case e i  Ti V i i  i  Di 0' '5: 6: Ji 
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suggests the norm D i ( M ,  c )  with c = q62 and I 
If a single prediction is of interest then y = 1, X, = x J  and I 

where o, = x J  ( X T X ) -  ' x and p2 is defined following (3.5.1 1). Thus, 
the norm of the sample influence curve for a single prediction is simply 
the analogous norm (3.5.1 1 )  for estimation, reduced by the factor 
i1 / (  1 + o, ). Clearly, pJDi provides an upper bound for predictive as well 
as estimative influence. 

A drawback to the use of D i ( M ,  c)  for prediction is the requirement 
that X, be specified a priori. If a model is to be used primarily for 
prediction. X, may not be known during thedevelopment of the model. 
A possible solution to this problem is to construct X, by choosing 
points that in some sense cover the region of interest. Coverage could 
be reflected both in terms of the location of the points and their density. 
From this point of view, a useful default is the choice X , = X; that is, 
consider the predictions at the cases used to construct the model. Then, 

M =  X T I I + V ] - ' X  = f ( X T X )  

since [ I  + V] - ' = 1 - V. When X, = X, 

P' 
Di ( M ,  C) = - Di (3.5.19) 

2n 

A  second possible solution to the problem of an unspecified XI is to 
set q = 1 and, for each i, choose x, to maximize (3.5.18). Let 

I 
v j i  = x T ( X " X ) - ' x ,  and rewrite (3.5.18) as 

r; 
Di ( M ,  C) = 

(1 - V i i )  (1 + v l )  

Thus. maximizing D i ( M ,  c)  by choice of x, is equivalent to maximizing 
o;,/(l + r , )  (see Appendix A.3). It follows that 1 

and therefore 
v . .  - l/(n + 1) 

max IDi (M, c)] = r: " (3.5.21) 
X~ 

1 - vii 

For large ti, this is essentially plDi. 
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In the linear least squares problem, use of an external norm that 
corresponds to using confidence contours to order the values of the 
sample influence curve is straightforward and appealing. These norms 
are based on fixed metrics that do not depend on the observed behavior 
of the sample versions of the influence curve. Of course. they do depend 
on the expected behavior of the data in so far as ( X T X ) -  ' or the related 
inner-product matrices accurately reflect the variance of B. In contrast, 
internal norms are based on a matrix that derives from the observed 
values of the appropriate sample version of the influence curve. Internal 
norms may be constructed to be robust with respect tB variations in the 
model or methods of analysis that would necessitate different external 
norms. If, for example, the model were altered to have Var(e) 
= a2W- ', where W is known, then to be consistent with previous 
rationale the inner-product matrix X T X  for an external norm should be 

changed to X T  WX. 
We present two methods for internal scaling. In the first. the 11 values 

B-&, are treated as an unstructured p'-dimensional sample. and a 
multivariate outlier technique is used to order the values. Other 
methods for ordering a multivariate sample are given in Andrews 
(1972), Gnanadesikan (1977), and Barnett and Lewis (1978, Chapter 6). 
In the second, we consider the norms Di(M, c), where M, and c are 
chosen through use of the jackknife method. 

Ordering trsing a multioariate outlier statistic 
One method that is particularly well suited for study of the n values of 
the SIC is Wilks' (1963) criterion for detecting a single outlier in a 
multivariate sample. Let b, ,  b,, . . . , b, be p'-vectors, and define 
6 = n-' C bi and A = C (bi - 6 )  (bi - 6)T. Wilks'criterion selects bi as a 
possible outlier if i mitlimizes 

Since 16) is proportional to the square of the volume of a 
p'-dimensional ellipsoid, minimizing this ratio is equivalent to choosing 
bi to minimize the volume remaining after bi is deleted, so in some sense 
bi must be far from the other vectors b,, j # i. 

The results on determinants in Appendix A.2 can be used to simplify 
the ratio (3.5.22). One finds that minimizing (3.5.22) is equivalent to 
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maximizing the distance 

over i = 1,2, . . . , n. For linear least squares, explicit formulae for the 
6, can be obtained for any of the empirical versions of the influence 
function discussed earlier in this chapter. It is useful here to discbss the 
EIC and the SIC separately. 

For the empirical influence curve (3.4.2), it is sufficient to take 
bi = ( X T X ) -  'xiei  and thus 6 = 0. The inner product matrix, say A,, is 
then 

The quantity (n/(n -pl ) )Ao is a robust estimate of Var (B) obtained 
using the weighted jackknife method proposed by Hinkley (1977). 
Substituting into (3.5.23), the corresponding normed measure is 

The statistic 64 can be computed by first defining W to be an n x n 
diagonal matrix with diagonals e?, j = 1, . . . , n. The 64 are then the 
diagonal elements of W1lZX(XTWX)-lXTW1lZ,  the projection on the 
columns of WIiZX. 

For the sample influence curve defined at (3.4.6), we can take 
b, = (XTX)- 'xiei/(l - qi). Since 6 is not zero, the form (3.5.23) does 
not simplify. The cross product matrix, say A,,  is 

where nf = Cxjej/(l - ojj). The matrix (n - l )Al/n is the estimate of 
Var ( f l )  obtained from the usual, unweighted jackknife (Miller, 1974). 
Although the corresponding internally scaled measure 6 f  can be 
computed exactly, some desirable algebraic simplification is possible if 
the usually small correction for the center Z is neglected. Setting Z = 0,,1~\ 
and substituting into (3.5.23), the resulting measure is 



A S S E S S M E N T  OF I N F L U E N C E  131 

As with the EIC, this measure can be computed as the diagonal 
elements of the projection on the columns of W 1 1 2 X ,  where the t~ x n 

diagonal matrix W has diagonal elements eFl(1 - t ~ ~ , ) ~ .  

J a c k k n f e  method 

I The jackknife can be used to provide an alternative internal scaling 
method for empirical influence curves. In the most frequently used 
version of the jackknife, estimates are obtained by averaging n analyses, 
each obtained by deleting one case at a time from the data (Miller, 1974, 
provides a review). In many problems, jackknife estimates of 
parameters and variances have desirable properties. For example, 
Hinkley (1977) suggests n A , / ( n  - p ' )  as an alternative estimator of 
~ a r ( 8 )  that is robust against nonconstant error variances. This. in 
turn, suggests the use of J i  E D i ( A ,  ', p ln / (n  - p ' ) )  as an alternative 
to Di = D i ( X T X ,  ~ ' 6 ~ ) .  The interpretation of J i  is the same as that of 
Dl ,  except that the metric should now be more robust. The statistic J,, 
for i = 1 , 2 ,  . . . , n,  is given by 

n - p ' e f x : [ C e f  x j x j T ] - ' x i  
J i  = D i ( A ;  I ,  p ln / (n  - p') )  = -- 

nP ( 1  - vii12 

n - p' 6: 
= - --- 

np' ( 1  - vii12 

J i  provides an interesting compromise between 6: and 6:. In addition, 
the interpretation of J i  as a robust version of Di has some appeal. A 
drawback of J , ,  at least for linear least squares. is that its computation 
will generally requirea second pass through thedata to obtain (if, while 
Di is computed directly from ri  and tiii. 

EXAMPLE 3.5.4. C L O U D  S E E D I N G  NO. 8 .  Table 3.5.5 lists the 
values of SP, S f ,  and J i ,  as well as Di and D r  as discussed in Example 
3.5.3 for the cloud seeding data in the cube root scale. The statistics 
show reasonable agreement, although J ,  = 62.189 and 6: = 1.000 are 
remarkably large, stressing the role of case 2 more clearly. Also. J , ,  
= 2.326 suggests further interest in case 18. The EIC measure 6: pays 
less attention to the vi i ,  and the ii: are large for cases with large r z .  

The study of influence can be augmented by a number of graphical 
displays. The most elementary are plots of the statistics r i ,  v i i ,  and 



132 R E S I D U A L S  AN[> I N F L U E N C E  I N  R E G R E S S I O N  

D, ( M ,  c )  against case number. As illustrated earlier in Example 3.5.2, 
these plots provide a quick method of finding cases with large residuals, 
high potential, and high influence. They will be especially effective if the 
sample size is too large to make examination of lists of statistics useful, 
or if the ordering of cases is meaningful. 

Atkinson (198 1) has suggested that influence for an entire sample can 
be assessed by a display of the [Di(M, c ) ] ' ' ~  in a half-normal plot, with 
a simulated envelope added as described in Section 2.3.4. High 
influence cases will appear as isolated points at the far right of the 
graph. If no cases are influential this plot should be approximately 
straight. If part of the plot falls outside the simulated envelope, then 
some evidence is given that the assumptions used to compute the 
envelope. usually normality, independence, and constant variance, do 
not apply. 

A third graphical aid for the assessment of influence is the added 
variable plot discussed in Section 2.3.2. Using the notation of that 
section, the added variable plot is a graph of the residuals obtained 
when X, is deleted from the model, ( I  - U,)Y, against the residuals 
from the regression of Xk on the other Xs, (I - U,)X,. In some ways 
these plots can be interpreted as a plot of y versus x in simple linear 
regression. Individual or groups of cases that stand apart from the rest 
of the cases should be investigated further. Their influence on the 
coefficient in question can be determined by deleting them, either 
individually or in groups, and recomputing the regression. Often, it will 
be found that such cases are influential. 

While these plots are undoubtedly useful in trying to understand 
influence, they must be interpreted and used with some care since their 
use does not correspond to any standard case-by-case diagnostic 
method. When any case is omitted from the data, the projection matrix 
U, changes and the entire character of the plot can change. In addition, 
these plots can fail to identify highly influential cases. If the i-th 
diagonal element of U, is large, the corresponding elements of (I 
- Uk)Y and (I - U,)X, will tend to be small and thus the plotted point 
may not exhibit unusual characteristics, while the corresponding case 
could substantially influence fl,. 

E X A M P L E  3.5.5. C L O U D  S E E D I N G  NO. 9. Figure 3.5.4(a) is a half 
normal plot of Df l 2  for the cloud seeding data in the cube root scale. 
The relatively wide envelope at the right of the plot suggests that an 
influential case is very likely given the particular array of Xs in this data; 
one such influential case is observed. Aside from this one point, the plot 



(a) Half-normal quantile 

0.0 0 . 5  I . 0  1 . 5  2 . 0  2.5 

(b) Half-normal quantile 

Figure 3.5.4 Half-normal plot of D!I2 ,  cloud seeding data. (a) Y, P, A P  
transformed via cube root transformation. (b) Untransformed data 

. 
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is essentially straight, suggesting that the model may be adequate. In 
contrast, the plot given in Fig. 3.5.4(b) for the untransformed cloud 
seeding data is generally curved. Atkinson (1982) would take this as 
evidence of the need to transform the data. I-J 

E X A M P L E  3.5.6. JET F I G H T E R S  NO. 4. Added variable plots for 

the jet fighter data are given in Figs. 2.3.8-2.3.10. In the plot for S L F ,  

Fig. 2.3.10. it appears that the F-l 1 IA suppresses the usefulness of this 
variable since, if this case were deleted, the remaining cases would 
appear to show a slight systematic trend. When the point correspond- 
ing to the F-1 I 1A is removed from the data in Fig. 2.3.10, but the 
residuals are not recomputed, the slope increases from 0.0837 to 0.1 156. 
Figure 3.5.5 is the correct added variable plot for S L F ,  with the 
residuals recomputed after the F-1 1 1A is deleted from the original data. 
The slope fitted here is 0.1386, so just deleting the F-11 I A  from 
Fig. 2.3.10 results in an underestimate of the slope. Furthermore, the 
spread in Fig. 3.5.5 and 2.3.10 is markedly different, and the two plots 

- 3 - 2 -I 0 I 2 

Residuals o f  SLF on SPR RGF PLF CAR 

Figure 3.5.5 Added variable plot for S L F  computed without the F-1 1 IA, jet 
fighter data 
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suggest different conclusions concerning SLF. From Fig. 3.5.5. SLF is 
more clearly important. 

3.6 Multiple cases 

Both the derivation of the influence curves. and the diagnostic 
procedures developed from them, have concentrated on the effects of 
individual cases on estimates. For theoretical use of influence curves to 

study estimators, it can be expected that a study of pointwise influence 

will suffice. Additionally, in many practical data analytic problems. 
consideration of cases one at a time will provide the analyst with most 
of the information needed concerning the influence of cases on the 
fitted model. However, i t  can happen that a group of cases will be 
influential en bloc, but this influence can go undetected when cases are 
examined individually. This is illustrated with Fig. 3.6.1. If point C or D 
is deleted, the fitted regression will change very little. If both are deleted. 
the estimates of parameters may be very different. Conversely. if A or B 
is deleted the fitted line will change but if both are deleted. the fitted line 
will stay about the same. 

x* 
~ i & r e  3.6.1 Illustration of joint 
influence. Source: Cook and 

X Weisberg (1980) 

The generalization of the influence curve and its empirical versions to 
multiple case problems is straightforward. Let I be an m-vector of 
indices of selected cases, IT = (i , ,  i,, . . . , i,), 1 2 i, 5 n, and continue 
the earlier notation so that the subscript ' (I) '  means 'with the m cases 
indexed by I deleted,' while ' I '  without parentheses will mean that only 
the cases indexed by I are remaining. For linear least squares. one 
obvious generalization of the sample influence curve is 
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There are (1) possible sets of cases at which the sample influence curve 

can be evaluated. 
The (externally) normed measure Dl (XTX, p'8') is 

as given by Cook and Weisberg (1980). The other externally normed 
measures discussed in the last section are similarly defined for multiple 
cases. The geometric interpretation of these measures is identical to 
that for m = 1. An influential subset for estimating f i  will correspond 
to a large Dl. 

As might be expected Dl can be expressed in multidimensional 
analogues of the ri and vii. The results are obtained by first expressing 
b(,, as a function of b. Following Bingham (1977), 

The inverse in (3.6.2) is computed using the basic formula in Appendix 
A.2 to give 

jo, = [(xTX)-I +(XTX)-' X:(I-VI)-' XI(XTX)-'][XTY -X;ryl] 

= B-(XTX)-I X : [ - ( I - V I ) - l ~ I ~ + ( I + ( I - V I ) - l  VI)Yl] 
(3.6.3) 

Since (I  - V1)- ' = 1 + (I  - Vl)- V,, 

Finally, substituting into (3.6.1) leads to the form 

This result can be better understood by using the spectral de- 
composition V, = T A P ,  where r, with columns y,, is an m x m 
orthogonal matrix of eigenvectors, and A  is an m x m diagonal matrix 
of eigenvalues, 0 I 1, S . . . I A, I 1: 
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If A, = 1, the inverse in (3.6.6) does not exist, the data remaining after 
the cases indexed by I are removed are rank deficient, and a unique 
estimator ),I,does not exist. When A, = 1, we set Dl = + a. IfA, < l ,a  
scalar version of (3.6.6) is given by 

where, for 1 = l ,2, .  . . , m 

h: = 
 el)^ 
(1 - A,) 

Under normality, the h: are identically distributed. The form (3.6.7) for 
Dl is directly comparable to Di, except Dl is given as a sum over m 
orthogonal directions of squared residuals times fixed components, 
while for Di, m = 1. 

Other norms 
The other choices for norms discussed in Section 3.5.1 can also be 
generalized to the case m > 1 with little difficulty. In particular, if a 
lower-dimensional norm corresponding to t,b = Z/l is of interest, then 
Dr r Dl (M, c), with M, c defined by (3.5.8), provides the appropriate 
norm. One can show that qDf < p'D, for all I and @, so if Dl is 
negligible, so is Dr. In the special case where Z = (0, I,), and ( X I ,  X,) is 
the conforming partition of X, Df becomes 

q t 2  @ = eT(1- Vl)- ' (V, - U1)(I - V,)- ' el (3.6.9) 

where U, is the appropriate principal minor of X1 (X:X1)-' XI. 
The internally scaled norm for SIC, can be obtained by following the 

derivation in Section 3.5.2. In practice, computation of this norm for 
m > 1 is likely to be impractical because of the need to compute 
(I - V1)-' (or its eigenvalues) for all possible subsets of size m. 

Form = 1, potential has been defined as esserltially the fixed part of the 
characterizing measure Di(M, c). Since each of the fixed parts of the 
measures given in Table 3.5.4 is a monotonic function of uii, these 
norms provide equivalent information on potential and oii is a 
reasonable summary. When m > 1, the notion of potential is more 
elusive since Dl(M, c) will not conveniently factor into fixed and 
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random parts. However, useful insights can be obtained from an 
investigation of Dl. 

Dividing and multiplying the right side of expression (3.6.7) for Dl by 
X h i  gives 

This form can be simplified in two ways. First, by definition 

which is the generalization of rf given at (2.2.19). Next, define 
q: = hf/Ch,2. Under normality, each q,? follows a Beta distribution 
with parameters 112 and (m - 1)/2; their joint distribution is Dirichlet. 
We can therefore write 

where Q, = CqfIl / ( l  -I,). This form corresponds closely to that for 
m = 1, since Dl is factored into r:, which measures the degree to which 
( Y I ,  XI) is an outlying set, and a potential-like term that has random 
components that are independent of the parameters in the model. 

Several observations concerning QI can be made by simultaneously 
considering {q:} and the eigenvalues of V1. First, 

This interval is nonstochastic. If Am is small, the cases indexed by I will 
have little potential regardless of the observed values of {qf}. For 
example, if each vii, i E I, is small, it follows that QI must be small since 
L, I tr (V,) = Xuii. On the other hand, if I, is large, the cases must 
have high potential. Since 1, I min (vii), a necessary condition for I, to 
be large is all vii must be large; that is, each case individually must have 
high potential. 

For example, suppose m = 2 and I = ( i ,  j), with v = vii = vjj(xi and 

sj lie on the same elliptical contour). If, in addition, vij = 0, then 
Vl = [:I, ),, = A,  = v and Dl = Di + Dj. In this very special example, 
the potential for this pair is large or small according to the size of v. 

If 1r1 > p'. at most p' of the eigenvalues of VI are nonzero since V, has 
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rank of at most p'. Hence, for m 2 p', we may write 

and the potential interval (3.6.13) has a lower bound of zero. 
In situations where A ,  is small but A,  is large, Ql depends on the 

values of (q:}. When m = 2, qf is distributed as Beta (4, f), which has a 
U-shaped density with most of its probability massed near 0 and 1. Q ,  

will therefore tend to fall near one of the extremes of (3.6.13), and el will 
tend to fall along one of the eigenvectors of V l .  When m > 2, the density 
of each q; is reverse J-shaped, with mode at zero. Thus when 
m > p', Q1 will tend to be small since each qf will be small on the 
average. 

For any m 2 2 and under a correctly specified linear model, the 
expected potential is 

When the cases indexed by I form an outlying set under the shift 
model Y = XP + Dc$ + E ,  22r:/02 has a noncentral chi-squared distri- 
bution with noncentrality parameter 

One can show that, under this model, the joint distribution of ( q f }  
depends on u = o - ' ( I  -A)'l2TTc$. With m = 2, one can show that 

Clearly, outliers can occur in ways which force the potential to be large 
or small. 

E X A M P L E  3.6.1. m = 2. For illustration, consider the situation in 

which m = 2 and oii = v for i~ I. Let p denote the correlation between 
the residuals indexed by r.Then A ,  = o - (1 - v)lp(, 1,  = r + (1 - a) lp l  
and the associated eigenvectors are (1, sign ( p ) ) /  J 2  and 
(1, -sign ( p ) ) /  J2, respectively. If I p l  or (1 - 11) is small, the potential 
will be essentially deterministic and equal to v/(l - o), which may be 
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large if the points in question are remote. This situation is illustrated 
for p = p' = 2 by points x, and x, in Fig. 3.6.2. The points x, and x, 

lie along the axes of the ellipse xT(XTX)- ' X  = v and thus I p )  = 0. A 
configuration for which 1 / 1 1  may be large is illustrated by points x, 
and x3 = - x , .  For these points, p = v/(l - u)  and thus Ll = 0 and 
i, = 21: and QI depends on the orientation of e ,  relative' to the 
eigenvectors (1, I ) /  J2 and (1 ,  - I)/ J2. If the elements of e, are of 
opposite sign and approximately equal in absolute value, QI will be near 
its maximum, 20/(1- 2v). On the other hand, if the elements of el are 
approximately equal, Q, will be near zero. Similar comments apply to a 
replicated pair where p = - v/(l - v). El 

Figure 3.6.2 Contour of constant v , ~  

Clearly, for potential to be large the maximum eigenvalue of V, must 
be large. As illustrated in Example 3.6.1, this will occur form = 2 if the 
residual correlation (Appendix A.3) between the two cases is large in 
absolute value. However, the associated interpretation depends on the 
sign of this correlation as well as its absolute value. If the correlation is 
large and negative, then the two cases are probably near each other and 
may be judged simultaneously. If the correlation is large and positive, 
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the cases will lie on opposite edges of the sampled region and 
simultaneous judgments of such cases may not be desirable. 

A complete characterization of potential relative to Dl requires 
knowing I,/(1 -A,), I = 1,2, . . . , m. However Dl depends on 
1 , / ( 1  -I,) only through Q, which is statistically independent of &lr:.  

Therearea variety of ways to summarize this information on potential. 
The interval [A,/(l -A1), ).,/(I -).,)I, the expected potential (3.6.14) 
and the tnaximum potrtitiul ),,/(I -i,) (or just i.,) are reasonable 
candidates. We believe that the maximum potential is the most 
desirable single number summary since i t  characterizes configurations 
of the rows of X that can lead to highly influential groups of cases for 
reasons that are independent of the fit. 

Using (3.6.4), the multiple case norm DI(M, c) can be written in a 
form which allows a general definition of maximum potential: 

= r : $ Q l ( ~ )  (3.6.17) 

where 
ef ( I -V, ) - 'X, (XTX)-I  M(XTX)-I  X:(I--VI)-lel 

QI  (MI  = 
e:(I - V1)-'el  

(3.6.18) 

As in the case when m = 1, we consider only two choices for c: Choose 
c = kG2 or kG;, where k > 0 is a constant that does not depend on X or 
Y. With M fixed and c chosen as above, we define the maximum 
potential relative to M as max,,[Q,(M)]. From the definition of 
Q, (M), it follows that 

maxe1[QI(M)] = Imax[ ( I  - VI) -112XI (XTX)-  I M (XTX) I x 

where I,,, [A] denotes the maximum eigenvalue of the matrix A. For 
M = XTX, this reduces to ,4,/(1 - I,) as before. For the measure with 
M = X:,X(I,, the maximum potential is I,. Thus. the choices 
M = XTX and M = X:,X,I, provide essentially the same information 
about the maximum potential of a particular configuration of the rows 
of X to be influential. 

Alternative measures of potetrt ill1 
A fixed measure of potential can be defined by appealing to the volume 
argument analogous to that used for Wilks' statistic (3.5.22). In this 
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formulation, the potential at XI is measured by 

High potential or remote sets are indicated by small values of this 
measure, which is based on the internal dispersion of the xiTs in much 
the same way as the internal norms are based on the dispersion of the 
sample versions of the influence curve. 

The measure (3.6.20) appears in a factorization of a statistic for 
detecting influential cases by Andrews and Pregibon (1978) (see 
Chapter 4). I t  was advocated as a generalized 'leverage' measure by 
Draper and John (1981). 

The type of potential being measured by (3.6.20) seems to differ 
fundamentally from that measured by the expected or maximum 
potential. These latter measures judge the potential of a set of cases in 
the determination of @, while (3.6.20) measures the degree to which XI is 
isolated from the remaining rows of X in the p'-dimensional space 
defined by the explanatory variables. As pointed out by Draper and 
John (1981), cases which have high potential according to (3.6.20) need 
not have high potential in theestimation ofp. In reference to thesecond 
situation in Example 3.6.1, for example, I I - V, ( = (1 - Al)(l - A,) 
= ( 1  - 0)(1 - 21.) = 1 - 211. If o is large the pair of points will be judged 
to have high potential according to (3.6.20). However, if e : ~  (1, 1 )  the 
points will have no potential and thus no influence on 8. 

Although (3.6.20) is not directly relevant to an investigation of the 
cases that influence ), the information it provides may be useful in 
other phases of an analysis. If, for example, i t  were possible to design 
for the collection of additional data, knowing which of the present 
points are remote in the factor space would certainly be helpful. 

E S A M P L E  3.6.2. A D A P T I V E S C O R E D A T A N O . ~ .  Toillustratesome 
of the previous commeilts on potential we consider two pairs of cases 
from the data given by Mickey er rr l .  (1967). The model is simple linear 
regression and the 11 = 21 cases are plotted in Fig. 2.2.1. As indicated in 
the plot. cases 2. 18, and 19 are in question. 

Table 3.6.1 gives the case statistics Di,  r:, and oii for i = 2, 18, and 19. 
Case 19 appears to be an outlier from the assumed model. As shown in 
Example 2.2.3, the p-value associated with case 19 is between 0.0409 
and 0.0425. Although case 19 appears as an outlier, i t  has relatively little 
influence. Removal of this observation would move f l  to the edge of a 
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Table 3.6.1 Selecred case stmtistics, aduprille score darc~ 

Case, i r: Lt.. D i 

20 "/,confidence ellipse. Case 18, on the other hand, fits the model quite 
well, but is influential because of the associated high potential L.,,,,, 

= 0.652. Removal of this observation would move B to the edge of a 
48 'j/, confidence ellipse. Case 2, as well as the remaining cases in the 
data, would probably go unnoticed when inspecting individual case 
statistics. 

Consider next the highly influential pair (2, 18). D,, . , , ,  = 6.37. 
Removal of this pair would move B to the edge of a 99.2 ?, confidence 
ellipse. However, this does not appear to be an outlying pair since 

2 t ( , , , , ,  = 2.01. This pair must, therefore, be influential because of the 
associated potential. In fact, QI = 3.50, which lies near one end of the 
interval [0.012,3.85] computed from (3.6.13). Q l  depends on the 
eigenvalues (A, = 0.012 and A ,  = 0.794) of V, , . , , ,  and on the chance 
orientation of ec2 , , , ,  relative to the associated eigenvectors. The 
observed value of Q l  is large for this pair since e:,, ,,, = (-9.57, 
- 5.54) is in the direction of the eigenvector associated with i.,, ( -  9.57. 
-4.53). However, since the lower endpoint of the potential range is 
small, Q, for this pair does not necessarily have to be large. If e, and 
had been of opposite sign. Q I  might have been small enough to make the 
pair uninfluential. The fact that e2 and e 1 8  have the same sign and thus 
lie on the same side of the fitted model could be an indication that the 
model is incorrect; possibly there are outliers present or a quadratic 
term is needed. 

In contrast to the previous situation, the pair ( 1  8, 19) is uninfluential. 
D( ,,,,,, = 0.15, but may be outlying, t :18 ,19 )  = 6.30. Of course. the 
possibility that this is an outlying pair is due in part to the presence of 
case 19. The observed Q, = 0.037 is very near the lower end of the 
potential range [0.036, 2.0251. This value is small because e:,,. 19,  = 

( -  5.54, 30.28) lies in the direction of the eigenvector corresponding to 
A , ,  ( -  5.54, 33.77). 

Four possible summary measures of potential are given in 
Table 3.6.2 for three pairs of cases. From the information in the first 
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Table 3.6.2 Meustires ojporet~tial, m = 2, adaplive score data 

Pair  t t r [V, ( I  - V,)- '1 +tr[V,] I  - v ~ / ( 1  -a) 
-- 

(2, 18) 1.93 0.4 1 0.20 3.85 
(18, 19) 1.03 0.35 0.32 2.02 
(11, 18) 1.07 0.37 0.30 2.07 i 

T. 
i 

three columns of this table, it may be difficult to form firm judgments 
about the potential of the new pair (1 1, 18). 

3.6.2 C O M P U T I N G  D l  I 
One goal in examining subsets of m > 1 cases is to find groups of cases 
that, while not individually influential, are influential en bloc. Finding 

I 
influential subsets which include smaller influential subsets may add i 
little information because the observed influence of the subset will be 
due. in part, to the influence of the smaller subset. Conversely, finding 
an uninfluential subset that includes one or more cases that are singly or 
jointly influential would not decrease the interest in those cases. Thus, 
good candidates for inclusion in subsets will have small distance values 
for m = 1,  but they may well have relatively large values of v i i  or r; .  

Alternatively, i t  may be desirable to consider the possibility that the 
individual cases in an influential subset are related (for example, by time 
or location). In this situation, good candidates for inclusion in subsets i 

\ 
will include influential cases. 

E X A M P L E  3.6.3. C L O U D S E E D I N G  NO. 10. Theaboveremarkscan i 
be illustrated by reference to Fig. 3.6.3, which contains a semigraphical ! 
summary of A,,,, t:, and D, for nt = 2 in combination with thecube root 1 

model for the cloud seeding data. In the display, rows and columns 
D 
j 

correspond to case indices; thus, for example, the symbol in row 5, i 
column 8 represents the values of the statistics for the pair I = (5, 8). 
The computed values have been divided into groups so that the more 
ink used in printing the symbol, the larger the value. The displays 
illustrate that: (1 )  subsets with high potential consist of case 2 and any 
other case, case 18 and any other case and the pair (3,20); 
(2)  pairs for which t :  is largecontain cases 7 or 24;and (3) the influential 
pairs consist ofcase 2 and most others, (3, 20) and (7, 18). It is clear that 
case 2 should be considered as being highly influential, and little is 
gained by viewing i t  as one of a pair. 
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Figure 3.6.3 Semigraphical display of i.,,,, t:.and Dl.  cloud seed~ng  data 

Among the pairs whose removal does not result In a rank defic~ent 
model, the most likely outlying pair is (7, 15) with t:,, ,,, = 13.82. the 
most influential pair is (2, 5) with D,,,,, = 16.48, and the pairs with the 
highest potential are (2, 15) and (2, 5) with A,,, equal to 0.9834 and 
0.9822, respectively. 

The only additional information obtained by an examination of all 
pairs is for (3,20). For this pair, i,,,,, = I .  and its deletlon leads to a rank 
deficient model. These cases require special handling. and. to accorn- 
modate them, deletion ofa variable ( E A )  from the model is deslrable.0 

Form = 2 and n not too large, semigraphical displays like Fig. 3.6.3 
can be used to present the information about pairs ofcases. However. ~f 
m > 2 or n is large, this summary becomes impractical. and better 
computational and display methods are needed. 

Ifsufficient computer memory is available to store the res~dual vector 
and all of the elements of V, an eficient algorithm for finding mult~ple 
case outliers can be based on the Furnival and Wilson (1974) method 
for subset selection. However, an equivalent algor~thrn for finding 

subsets with large Dl is not immediately apparent. since altering a 
subset by addition, deletion, or substitution of a case can result in 
substantial changes in the eigenstructure of Vl. and hence in the ~ a l u e  
of D,. Even so, complete storage of V is usually impractical and real~st~c 
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techniques for finding influential subsets should use only the izsiduals 
and the diagonal entries of V. Using only these, upper bounds for Dl 
can be derived, and only if these are sufficiently large must D, be 
computed exactly. 

For the first upper bound, since A,/(l - 2 A1/(l - A,)z, 1 = 1, 
2, . . . , m, D, can be bounded by I 

= - ----- " e,'TT1el (3.6.21) 
p ' t 2  (1 - A r n )  

or. since T TT = I ,  

For this to be useful, A, must be replaced by an approximation that 
can be computed without forming V1. Assuming tr (VI )  = trace of VI 
to be less than one, the simplest approximation is A, I tr (VI).  Thus, 

or equivalently, 

iel 

The upper bound in (3.6.23) depends only on the single case statistics 
and provides a potentially different upper bound for each I. For any 
subset with tr (VI) 2 1, a better approximation to A, is required, which 
requires forming VI. If m is small (2 or 3) exact computation of Dl is 
probably as efficient as approximating A,. 

For fixed m, let T = maxl(CiEl vii) and RZ = max,(C,,,e~), where I 

i 
varies over all subsets of size m under consideration. Two upper bounds 
for the right side of (3.6.23) are then 
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and, if T < 1, 

These last two may be combined to give 

Clearly, (3.6.23) 1 (3.6.24) 1 (3.6.26), and (3.6.23) 1 (3.6.25) 1 (3.6.26). 
An algorithm for finding all relevant subsets with fixed m can be 

based on these approximations. First, influential subsets of size smaller 
than m may be eliminated if desired. Then, the remaining trii and ef are 
ordered, largest to smallest. The four inequalities can then be applied to 
subsets with tr (V, )  < 1 in the order (3.6.26), then (3.6.24), or (3.6.25), 
and finally (3.6.23). Exact computation is required if (3.6.23) is too big. 
By considering subsets according to the ordered lists of oii and e f ,  the 
subsets that are more likely to be influential are considered first, and 
once one of the bounds is sufficiently small, no further subsets made up 
of cases lower in the lists need to be considered. Generally, this method 
will be useful in data sets with n large relative to p', where tr (V, )  will 
usually be less than 1. In smaller data sets, relatively more subsets must 
be considered. Cook and Weisberg (1980) discuss examples, for m = 2 
and m = 3, and for two data sets, one with 11 = 21, p = 8 and the other 
with n = 125, p = 4. The results of a simple algorithm are summarized 
in Table 3.6.3. The number of subsets is less than the total number of 
possible subsets because cases influential in subsets of a smaller size 
were not considered as m was increased. While in data set 1 little is 

Table 3.6.3 Computations using bounds. Source: Cook and Weisberg (1980) 

Data set 1 Data set 2 
n = 2 1 , p = 8  n =  1 2 5 , p = 4  

m = 2: 
number of subsets considered 155 7 503 
number of applications of inequalities 153 65 1 
number of D, computed 74 5 

m = 3: 
number of subsets considered 560 302 62 1 
number of applications of inequalities 560 74 802 
number of D, computed 520 727 
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gained by use of the inequalities, in data set 2, with large n, substantial 
decrease in computation is apparent. 

EXAMPLE 3.6.4. DRILL DATA. In this example, we consider a data 
set obtained from an experiment to characterize the performance of a 
certain type of drill bit over a range of drilling conditions. For each 
experimental run, the work piece and drill were placed at opposite ends 
of a .lathe and the values of the following design variables were set: 

S = speed of rotation of the work piece in surface feet per minute; 
F = feed rate in inches per revolution (rate at which the drill passes 

through the work piece); 
D = diameter of the drill bit. 

The rate of rotation of the drill bit was held constant throughout the 
experiment. The response variable Y is the axial load (thrust) on the 
drill bit during the drilling process. 

The experimental runs were originally arranged in a completely 
randomized composite design, but the experiment was prematurely 
terminated for reasons that are unimportant in this analysis. The data, 
as provided by M. R. Delozier of Kennametal, Inc., Latrobe, 
Pennsylvania, are given in Table 3.6.4. The coarseness of the responses 
is due to rounding in the measurement technique; the responses for 
each combination of S, F and D are from replicate runs. The portion 
of the design that was completed is shown graphically in Fig. 3.6.4. The 
size of each point is proportional to the number of replicates at that 
point. 

Since the possibility that the response is a nonlinear function of the 
explanatory variables cannot be discounted, we tentatively adopt the 
second-order response surface model 

Figure 3.6.5 gives plots of L,,,(I) versus I for the power family of 
transformations for the second-order model (3.6.27) and for the first- 
order subset model Y = B,  + /3, S + p2 F + B3 D + &. Evidently a trans- 
formation can improve the fit of the second-order model, but will not 
result in a significantly improved fit for the subset model. The 
magnitude of differences between the ordinates of the two curves shows 
that including the cross product and quadratic terms does improve the 
fit regardless of the transformation selected. While the likelihood 
analysis clearly suggests that some transformation is necessary, it 
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Table 3.6.4 Drill .data. Source: M .  R. Delozier 

Case S F D Y 

provides little help for deciding on a particular choice since the 
asymptotic 95% confidence interval contains most of the power 
transformations used in practice. In this analysis we use the logarithmic 
transformation LY, since it is near the maximum likelihood estimate 
and has been found to be appropriate in past analyses of similar data. 
Transformations of the design variables will not be considered in this 
example. 

The mean squares for lack of fit and pure error from the second- 
order model using LY are 0.0779 and 0.0114, respectively, and the 



Figure 3.6.4 Design for the drill data; locations of selected cases are indicated 

I---- 
full model: h = -0.314 

-2 - 1  0 I 2 
h 

3.6.5 L,,,(l).versus i., drill data 
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corresponding F-statistic is equal to 6.8 with 5 and 16 df. Even with 
the logarithmic transformation, the fit of the model does not seem 
adequate. Similar results are found for other transformations con- 
tained in the 95 % confidence interval given in Fig. 3.6.5. Rather than 
attempting to build a more complicated model, we next consider 
various diagnostics applied to the second-order model. 

The added variable plot of the constructed variable for the power 
family is given in Fig. 3.6.6. No single case seems to be greatly 
influencing the transformation, although cases 5,  9, and 31 form a 
group in the upper-left corner and may be jointly influential. Figure 
3.6.7 gives a scatter plot of the Studentized residuals for the data with 
LYas response versus the fitted values. Aside from showing that 
cases 5,9,28, and 31 have absolute Studentized residuals larger than 2. 

this plot is of little help. Case 9 has the largest Studentized residual. and 
t ,  = 3.36; the Bonferroni p-value is 0.097. When the mean square for 
pureerror is used to estimate IS', r ,  = 4.26. With this substitution, r ,  

has a nominal t(l6)-distribution since case 9 is not replicated. The 
corresponding p-value using the Bonferroni inequality is 0.019. 

-60 - 4 0  -20 0 20 4  0 

Constructed variable 

Figure 3.6.6 Added variable plot for the score statistic, drill data 
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Fitted value 

Figure 3.6.7 ri versus fitted values, drill data 

Index plots of uii and Di are given in Fig. 3.6.8. Cases 9 and 31 
have the largest potential and the largest influence, v,, , = 0.663, 

v 3  3 1  = 0.550, D9 = 1.49 and D 3 ,  = 0.63. In view of the relative 
positions of cases 9 and 31 in Fig. 3.6.4, the high potential for these 
cases should not be surprising. A probability plot of the Studentized 
residuals gives no reason to doubt the assumption of normality. 

At this point we delete case 9, examine the case statistics for the 
reduced data, delete the most influential case, and continue sequentially 
in this manner until the least squares fit seems well behaved. A summary 
of this process, which ended with the deletion of cases 6,9, and 28, is 
given in Table 3.6.5. From Fig. 3.6.4, cases 6 and 9 lie on the F axis on 
opposite sides of the origin. Evidently, the second-order model is 
unable to describe the observed thrust along this axis, particularly 
outside of the central cube. Case 28 is one of two replicates on the 
upper, back, right corner of the cube. The response for case 28 is 
apparently much too small, judging from the fit of the model and the 
response at the second replicate. 
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Figure 3.6.8 Index plots, drill data. (a) vii. (b) Di 

As a check on the above sequential procedure, we computed t :and D, 
for all possible I with m = 2 and 3. Table 3.6.6 gives the four largest 
values of ttand D, for m = 2 and m = 3. The most likely outlying triplet 
contains cases 6, 9, and 28, as identified previously. The agreement 
between sequential and simultaneous methods cannot, of course. be 
guaranteed in general. The Bonferroni p-value for I = (6.9.28) is 0.003. 
The most influential triplet is I =  (9, 12, 31) with D,,. ,,.,,, = 10.84. 



Table 3.6.5 Drill data. (a) Regression summaries 

All data Case 9 deleted Cases 9, 28 deleted Cases 6, 9, 28 deleted Cases 9, 12, 31 deleted 

Estimate f Estimate t Estimate t Estimate f Esrimare t 

Intercept - 6.7 
S 0.017 
F 2.68 
D 1.92 
S 2  -0.000021 
F 2  -0.27 
D 2  -0.38 
SF 0.000 15 
SD -0.00068 
FD 0.11 

u A 0.165 
RZ 0.90 
F 6.85 
df 21 

* F for lack of fit (see Weisberg, 1980, Sec. 4.3) 
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Table 3.6.5 Drill data. (b)  Case statistics 

Statistic All data Case 9 deleted Cases 9. 28 deleted 

* df for nominal t ,  using available orthogonal pure error. 

Table 3.6.6 Selected case statistics for m = 2 and m = 3, 
drill data 

Subset D, ? 

Removal of this triplet will displace to the edge of a 99.9997 % 
confidence region. The least squares fit of the second-order model 
without this influential triplet is summarized in the final columns of 
Table 3.6.5 (a). 

Of the five points identified in this analysis, four (6.9, 12, 31) are 
single replicates on the D and F axes and two (6,9) of these four are 
contained in the outlying triplet. Any analysis of these data will be 
strongly dependent on the validity of these four cases and, unless the 



156 R E S I D U A L S  A N D  I N F L U E N C E  I N  R E G R E S S I O N  

precise form of the model is known, conclusions will be tentative at 
best. At this point, little can be gained by further analysis of these data, 
since conclusions must depend so heavily on the four unreplicated 
points. Useful statements concerning the relationships between the 
variables will require more experimental runs. 

Box and Draper (1975) proposeadesign criterion that wiil help avoid 
the ambiguity inherent in this analysis: To minimize the effects of a 
small proportion of outlying responses on the fitted values, choose a 
design to minimize the dispersion of the viis, Z (vii - O)'/n. For fixed n 
and p', this is equivalent to choosing a design to minimize C oiZi since 
C = p ' / t ~  is fixed. The design points in this example give min(vii) 
= 0.104. max (oii) = 0.663, fi = 0.323 and C (vii - 0)~/11  = 0.0247. One 
way that this design can be improved is to move 6 of the 9 center points 
to replicate the previously unreplicated points, giving min ( v i i )  = 0.190, 
max ( t s i i )  = 0.382, O = 0.323 and C (vii - O)'/n = 0.003. Generally, it is 
necessary to replicate the remote points in a composite design to gain 
some robustness against out1iers.O 



C H A P T E R  4 

Alternative approaches to 
influence 

'The path by which we rise to knowledge must be made smooth and beaten in 
its lower steps, and often ascended and descended. before we can scale our \ray 

to any eminence. much less climb to the summit.' 
~ ~ E R S C I ~ F L . .  np. cir. 

The diagnostic statistics presented in the last chapter share a common 
heritage: they all depend on the same perturbation scheme. namely case 
deletion, and they all use a sample influence curve to monitor changes 
in the resulting analysis. These methods seem to have found wide 
acceptance because of their intuitive appeal and computational simp- 
licity. Other approaches to the problem of assessing influence can be 
developed by altering either the method of perturbation, or by 
changing the aspect of the analysis that is monitored. In this chapter we 
look at several methods that do not depend directly on the influence 
curve, but do use case deletion perturbation schemes. There are both 
advantages and perils in these other approaches. A principal danger is 
the possibility of designinga measure that has no firm theoretical basis; 
a useful measure must refer to some specific part of the analysis and the 
values of the derived statistics must be monotonic measures of what is 
meant by influence. The main advantage in other approaches is the 
possibility of monitoring factors other than changes in the location 
estimates. The methods based on the sample influence curve. for 
example, are largely insensitive to changes in estimated scale; other 
methods can take an alternate view. 

We consider three approaches to influence that generally meet the 
requirements of the last paragraph. The first of these compares the 
volume of confidence ellipsoids based on full and reduced samples, 
thereby directly including changes in estimated scale in the measure. 
The second related measure is due to Andrews and Pregibon ( 1  978) and 
can be thought of as a general omnibus diagnostic. although i t  is 
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weakly dependent on the structure of the regression problem. We then 
turn to a Bayesian predictivist procedure in which predictive distri- 
butions of future observations are compared. This method is more 
comprehensive than the others, corllbining several aspects of the 
analysis into a single measure. After a comparison of influence 
measures, we briefly discuss methods that can be used to calibrate the 
various influence measures. 

4.1 Volume of confidence ellipsoids 

One possible measure of the uncertainty in estimating a vector of 
parameters is the volume of a corresponding confidence ellipsoid 
(Cook and Weisberg, 1980). This volume is also related to various 
measures of design optimality with smaller volumes corresponding to 
more informative designs. A reasonable measure of influence that 
responds to this uncertainty or information is the change in volume 
when a subset of cases is removed. Computation of this measure is 
straightforward, since the volume of an ellipsoid is proportional to the 
inverse square root of the determinant of the appropriate cross product 
matrix. 

To obtain a general measure, reorder X so that the last q l p' 
columns of X correspond to the coefficients of interest and partition 
X = (XI ,  X,) with X, n x q. Similarly, define C = (0, I,), so JI = Cj? is 
the coefficient vector of interest. A ( I  - a) x 100 ';/, confidence ellipsoid 
for + based on 6 = CP is 

If a subset of nl cases indexed by I is deleted, then the corresponding 
ellipsoid based on G I , ,  = c$,,, is 

The volumes of the two ellipsoids are 

I /ol ( l  (+)) K ( ~ C ? ~ F , ) ~ ' ~ I C ( X ~ X ) -  'CTI 'I2 (4.1.3) 

and 

l,'ol(cP,,,(+)) a (q6:,,~y)q121C (X&X(I,)- CTIIi2 (4.1.4) 

where we adopt the shorthand F, = F ( 1  -a ;  q, n - p') and F; = 
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F(l -cr;q,n -p' -m). The logarithm of the ratio of (4.1.4) to (4.1.3) is 

= f log 
IC(XJ,X,I,)- ' CTI - G 2  Fm 

.- 

IC(X%)-'CTI (4.1.5) 

The results in Appendix A.2 can be used to simplify (4.1.5); G:,,/G2 = 

(n - p l -  r : ) / (n  -p' - m)and the ratio ofdeterminants can be shown to 
equal 

11 - UII 
11-VII 

where U = XI (X:Xl ) -  ' X:is the projection on the columns of X that 
are not of direct interest, and U, and V, are m x m submatrices of U and 
V, respectively. Combining these results into (4.1.5) and simplifying 
gives 

V R , ( J I )  = -4log)l - ~ , ] + $ l ~ g \ l - U , )  

I 

i For m = 1, two choices for q are of general interest. First, if q = pi. 

I then C = I, 11-V,I = 1 -vii, 11-U,I = 1 and (4.1.6) becomes 

I (4.1.7) 
I Apart from the ratio of F-values, this is equivalent to the statistic 

COVRATIO given in Belsley et al. (1980). Alternatively, if the intercept 
is ignored then C = (0, I,), 1 I - V, 1 = 1 - vii, )I - U, ) = 1 - 1 / 1 1 ,  and 
(4.1.6) becomes 

This form is recommended for general use in situations when the origin 
lies well outside the region of applicability of the model. This will 
happen often when the explanatory variables are not centered. 
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The log volume measure can be positive or negative. A negative 
measure means that deletion of the cases indexed by I decreases volume 
and hence increases precision. This will occur form = 1 if r;  is large but 
vii is small. A positive value of this ratio implies a larger volume for the 
reduced data, and less precision. This will occur in general for m = 1 
whenever oii is large. The volume measure seems to balance the effects 
of the residual and the potential, and these in turn pull the measure in 
opposite directions. 

4.2 The Andrews and Pregibon diagnostic 

A distinct alternative method for detecting influential cases in linear 
regression was suggested by Andrews and Pregibon (1978). Initially, 
consider the effects of an outlier in Y and an outlying row of X 
separately. First, the deletion ofa case corresponding to an outlier in Y 
will tend to result in a marked reduction in the residual sum of squares. 
The residual sum of squares, therefore, is a diagnostic for detecting 
influential cases arising because of an outlier in Y. Second, as seen in 
Section 4.1, the influence ofa row of X is at least in part reflected by the 
change in IXTXI when the row is deleted. IS IX'XI changes substantially 
when xi isdeleted, then thecorresponding case (y,, x:) will have a large 
influence on ) or, minimally, ~ a r ( ) ) .  

Andrews and Pregibon suggest that these separate diagnostics based 
on change in the residual sum of squares and I X T X  I be combined into a 
single diagnostic based on the change in (n - p ' ) ~ ? ~  x I X T X  I resulting 
from the deletion of one or more cases. Specifically, they suggest the 
ratio 

as a measure of the collective influence of the cases indexed by I. 

A form for R ,  which allows additional insight into its behavior can be 
obtained as follows. Let X *  = (X ,  Y), the matrix of explanatory 
variables augmented with Y. From Appendix A.2, 

IX*TX*I = IXTXIIYTY-YTX(XTX)-'XTYI 

= ( n  - P')C?~JX'XJ (4.2.2) 
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'Thus, (4.2.1) can be represented as 

Several immediate observations can be made from this form. First, R, is 
a unitless measure. Second, R; 'IZ - 1 corresponds to the proportional 
change in the volume of an ellipsoid generated by X*T X* when the 
cases indexed by I are deleted. Small values of R,  correspond to 
influential cases. Finally, R, is invariant under permutations of the 
columns of X* and thus the vector of responses Y is not given special 
recognition. For this reason, R,does not make full use of the structure 
ofthe regression problem. If there is interest in particular aspects of the 
problem, then it may be desirable to use other measures that reflect 
those interests directly. On the other hand, R ,  may serve effectively as 
an omnibus measure of influence. 

Under normality, (n -p'  - m)e; , / (n  - P ' ) & ~  follows a Beta distri- 
bution with parameters (n - p' - m)/2  and 4 2 ,  so R ,  is proportional 
to a Beta random variable and reference values based on moments can 
be easily calculated. 

For comparative purposes, it is convenient to take minus one half the 
logarithm of R,, which is 

AP, = -$log(R,) = -4loglI-V,I+$log (4.2.4) 

This statistic will now be large for influential cases, and can be 
compared to the analogous volume ratio based on a p'-dimensional 
ellipsoid (4.1.7). The two statistics differ primarily by signs and relative 
weights of the two terms, and by a factor of - l / (n - p' - r:)  in the 
second logarithm. If (n - p') is large enough to ignore this last factor, 
these statistics use the same information but combine it differently. 

The determination of R I  for all subsets of m cases can be a 
formidable computational task. Andrews and Pregibon ( 1  978) discuss 
strategies for approaching this problem. 

4.3 Predictive influence 

In this section, we present a Bayesian method for assessing the influence 
of cases on the prediction of future observations. The method, 
developed by Johnson and Geisser (1979,1980), uses Kullback-Leibler 
divergences to measure the difference between predictive densities 
based on full and reduced data sets. The discussion here is restricted to 
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the linear model (2.1.1), although the technique is quite general and 
applicable in many other situations. We first assume that a2 is known 
and later extend the methodology to the more common situation in 
which a 2  is unknown. The former situation is easier to study since the 
corresponding analytic details are relatively uncomplicated. 

4.3.1 K U L L B A C K - L E I B L E R  D I V E R G E N C E S  A N D  P R E D I C T I V E  

DENSlTlES  W I T H  fJ2 K N O W N  

Let Y denote an 11-vector of random variables that can be represented 
by the linear model (2.1.1) and assume that the errors E follow an 
rt-dimensional normal distribution with mean 0 and covariance 
0'1. N, (O ,  a21). Given the observed value y of Y, we suppose that the 
goal is to predict a q-dimensional vector Y, of future observations that 
are represented by the linear model 

where E, is Nq (0, u2 I ), XJ is a q x p' known matrix of explanatory 
variables and /? is the same as that in (2.1.1). 

The predictive density for Y, given y, X, X,, and a2, is a standard 
Bayesian tool for inference about Y, (Aitchison and Dunsmore, 1975; 
Geisser. 1965. 1971). Predictive densities are free of unknown para- 
meters by construction. The mean and median of the predictive density 
are obvious choices for point predictions while the spread and shape of 
the predictive density reflect the uncertainty of prediction. To obtain 
the predictive density, it is first necessary to find the posterior density of 
the unknown parameter p. 

Let f ( . lp ,  C) denote the density for a N,(p, C) random vector. 
Following Johnson and Geisser, we assume the improper prior p ( j ) d j  
x d p  for p. The posterior density p(j?ly) for p given Y  = y is 

The corresponding predictive density for Y, given y, X, X,, and a 2  is 

As implied by the notation, this predictive density is N,(X,),CT~[I 
+ X , ( X T X ) -  ' X j ] )  and is obtained by averaging the sampling density 
of the future observations with respect to the posterior distribution of 
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/I. A useful property of the predictive density (4.3.2) is that it  will 
converge almost surely to the sampling density of Y, (Johnson and 
Geisser, 1979). 

The influence of a collection of cases I on prediction can be 
determined by comparing the predictive density based on the full data 
to the corresponding density obtained after removing the cases in 
question. From (4.3.2), the predictive density for the reduced data is 

N,(x/ )(I,, aZII + Xf (X~ ,X , , , ) -  'XJ]). Influence is reflected by chan- 
ges in both the location and shape of the predictive density. Of course, 
one way to compare these densities and thus assess influence is to 
compare the locations and scales separately. This quite naturally leads 
to developments similar to those in Chapter 3 and Section 4.1. 

A comprehensive method for comparing predictive densities can be 
based on the Kullback-Leibler measure of divergence, defined as 
follows. Let g,, i = 1,2, be densities and let E,  be the expectation 
operator with respect to yi. The Kullback-Leibler divergence measure 
d(gl, g,) is defined by 

d(g1, g,) = El Clog(ll1 lg,)l = J log(y,lg,)8, (.u)dx (4.3.3) 

This measure will be positive if 8 ,  and y, are different and will equal 
zeroifg, = g,. I f f ,  = N,(p,,  C,)and f, = N,(p2, C2),assumingthat 
C1, C, are positive definite, it  is not hard to verify that 

The first term on the right of (4.3.4) corresponds to the distance 
between centers of f, andj; relative to contours ofconstant density for 
S,. The second term compares the volumes of ellipsoids based on the 
two distributions and it will be zero only if the volumes are equal. The 
third term, tr(C, C; I), may be conveniently viewed as a 'remainder' 
that compares theeigenstructure ofC,  to that of C,. For example. if X, 
and C, commute and thus have the same eigenvectors, then t r (  C, C; ' ) 
is simply the sum of the ratios of the eigenvalues of C, to the 
corresponding eigenvalues of C,. 

The predictive distributions for the full and reduced data sets 
are! = N,(x ,~ ,  aZII + X,(XTX)-' X:]) and j',,, = N, (x ,  B ,,,, a2[I 
+ Xf (X;,X,,,)-' XJ]), respectively. The Kullback-Leibler divergence 
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measure can be computed in two ways, depending on which of these 
distributions is associated with j; and which with f, in (4.3.3). From 
(4.3.4), we see that distance between centers is computed relative to &, 
which suggests associating S, with the full data predictive density. We 
adopt this idea and, following Johnson and Geisser, we call d(j;,,, f )  a 
predictive influence function (PIF). 

E X A M P L E  4.3.1. P R E D I C T I V E  I N F L U E N C E  W H E N  q = 1, ni = 1,a2 
K N O W N .  Let x; = X,,vf = xT(XTX)-'x, and uif = xT(XTX)-'xi. 

The predictive density / based on the full data for a single future 
prediction at x, is N (x; j, a2(1 + v , ) )  and the corresponding density 

Ai, based on the reduced data is N {xj: a2[1 + vr + v$/(l - vii)]}. 
Using (4.3.4) and after a little algebra, the PIF  d (  f(i,,f; x,) for a 

single prediction at xf can be written as 

where p$ = u$/uiiuf is the squared correlation between x:#and xjp.  
Thus, the behavior of this PIF  depends on Di(XTX, a'), p$, u,, and uii. 
With a 2  replaced by c2, the first term on the right of (4.3.5) is the same 
as that obtained from a comparison of point predictions in the 
frequentist approach discussed in Section 3.5; see (3.5.18) and the 
subsequent discussion. 

The second and third terms on the right of (4.3.5) depend only on 
1 + pj, t~~~~ l , / [ ( l  + 0,) ( 1  - uii)], the ratio of the variance associated with 
hi, to that 0f.f Since this ratio is always 2 1, the variance of the 
predictive distribution cannot decrease when a case is deleted and a2 is 
known. The change in variance will tend to be large when vii is large and 
X I  = xi.O 

To use a PIF, i t  is first necessary to specify X,, the matrix containing 
the points in the factor space that correspond to future predictions. 
This is clearly a disadvantage since X, will not normally be known 
during the development of the model. To overcome this problem and 
thus make the PIFs more available for use as routine diagnostics, 
Johnson and Geisser (1980) suggest using X in place of Xf. When 
X = X,, we will write d, for d$,,, f )  where f,,, = N,(x~,, , ,  
u2[1 + X(X;,X,,,)-'XT]) and f = N,(Xjl, a2(I  + V)). 
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To obtain a relatively simple form for dl ,  we substitute into (4.3.4) 
term by term. First, the change in centers is 

Thus, the distance between p l  and p2 is measured by a member of the 
class of norms of the SIC, D,(M, c), with a2 in place of 5*. Also, this 
form is closely related to the influence curve for prediction obtained as 
a result of a frequentist approach. 

Next, the change in volume is measured by 

Since V is a rank p' symmetric, idempotent matrix, the eigenvalues of 
I  + V are 2 with multiplicity p' and 1 with multiplicity II -p' and 
11 + VI = 2P'. Next, using Appendix A.2 to evaluate the partitioned 
form of II+X(X$,X, , , ) - 'XTI that results from the partition XT 
= (X:,, X a ,  it follows that 

JI+X(X; ,X(I ) ) - lXTI  = 2 p ' I I + + V I ( I - V I ) - 1 1  

Combining terms, the change in volume can be obtained from the 
determinant of a single m x m matrix, 

that depends only on the eigenvalues of V,.  
The final term of dl is 

tr [I:, C;'] = tr [(I + X ( X ~ , X I I , ) - '  X T )  (I + V ) - ' 1  

= tr [ ( I  + X(X$,X, , , ) - '  XT)  ( I  - $ V ) ]  

which again depends on the eigenvalues of V, .  Finally, combining the 
last three results, dl can be expressed as 

dl = D,(XTX,4a2)-$logII+$V,(I-Vl)-'I+$ t r [ V , ( I - V , ) - ' 1  

(4.3.9) 
The P I F d ,  depends on only el and V,. The predictive approach. 
therefore, utilizes the same building blocks as the previous approaches. 
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The main difference is in how the predictive approach combines this 
information to produce one overall measure of influence. 

The form for dl given in (4.3.9) is perhaps the most useful for the 
purposes of computation since all quantities are calculated from the 
full data. For interpretation, however, the identity 

is useful: tr [VI(I - VI)- '1  is proportional to the sum of the variances 
oft he estimated values, based on the reduced data, at the cases indexed 
by I.  In addition, under a correct linear model, 

E [DI(XTX, 4a2)] = $ tr [V,(I  - VI)-'1 

which is the average squared distance between the centers of the 
ellipsoids associated with the predictive densities based on the full and 
reduced data and is proportional to the expected potential discussed in 
Section 3.6.1. 

4.3.3 PREDICTIVE I N F L U E N C E  FUNCTIONS, c2 U N K N O W N  

When a 2  is unknown, the predictive densities are multivariate Student 
densities rather than multivariate normal. Let S,(v, p, X) denote an 
n-dimensional Student density with v degrees of freedom, location 
parameter p and dispersion matrix Z. Assuming the joint prior 
p(8, 02)djldo2 cc o-2  djlda2 and setting XJ = X, the predictive 
densities based on the full and reduced data sets are 

~ , ( n - p ' ,  x ) , ~ ~ ( I + v ) )  
and 

s,(n - P' - m, xB,~), &:I)(] i- X(X;,X{~))-' xT) ) ,  

respectively. Unfortunately, the PIFs based on these densities are 
complicated and difficult to study. Johnson and Geisser (1980) use 
normal densities to approximate the predictive Student densities, and 
then develop the corresponding approximate PIFs along the lines 
indicated above. 

For v > 2, the covariance matrix for a multivariate Student random 
variahle is [r/(v - 2)] C. I t  is reasonable to use 

Nn(X$, ( ~ 5 ) 6 ~  [I - pi - 2 (I + V)) 
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and 
n-m-p' 

n-m-p'-2 

densities to approximate the predictive densities based on the full and 
reduced data, respectively. The approximate PIF 2, can now be 
developed by following the steps in the a2 known case. The terms that 
measure the change in volume and eigenstructure depend on the ratio 
d$,/d2 and thus on r:. The approximate P I F  may be written as 

where 

Apart from constants, the difference between dl and d l  is in the 
presence of k ,  in the former measure. Since k l  is a decreasing function of 
r:, it will be small when the cases indexed by I do not conforn~ to the 
assumed model. 

The special case m = 1 is informative, 

Thus, di depends only on n, p', r;, and vii, and is a monotonically 
increasing function of uii when n, p', and r: are fixed. With a, pl.oii fixed. 
2, is a convex function of r:, and, if vii is small, the minimum of 4 can 
occur with r ;  > 0. As a practical matter, the fact that di is not always 
monotonic in r; may not be important, since the minimum will occur 
for a very small value of ri. 

If the Kullback-Leibler divergence is computed with the roles of the 
full and reduced densities interchanged, the resulting measure is 
somewhat morecomplicated. In particular, the part of the measure that 
compares centers uses a metric that is different for each choice of i, and 
thus is not directly comparable from case to case; see Johnson and 
Geisser (1979) for further details. 
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An alternative to choosing X, = X 
In Example 4.3.1, we discussed the PIF for a single prediction at xr 

when m = l and aZ is assumed known. Here, we discuss the cor- 
responding results for a2 unknown. Notation, unless otherwise 
defined, follows that in Example 4.3.1. The predictive densities for the 
full and reduced data sets are Student densities which may be ap- 
proximated by normal densities as before. Let a i ( x , )  be the approxi- 
mate P I F  obtained using the normal approximation. 

Using (4.3.4) and the result of Example 4.3.1, it can be verified that 

p l (n -p '  - 2 )  
2di ( x ,  ) = Dip$-  v /  + k i p $ - -  

Vii  V /  

n - p i  1 + v f  1 - v i i  1 + v ,  

where 

as before. The difference between (4.3.12) and the analogous expression 
in Example 4.3.1 is in the presence of ki. 

As indicated previously, the usefulness of a i ( x , )  as a routine 
diagnostic is limited because of the requirement that x ,  be specified a 
priori. Indeed, this limitation was the motivation behind Johnson and 
Geisser's suggestion to use X, = X for routine checking. A potential 
problem with this approach, however, is that a i ( x , )  may be large for 
some points X r  that are not adequately reflected by the diagnostic 
resulting from setting X ,  = X .  This can be overcome by using 
(7: = max [ d i ( x ,  )] with the maximum taken over all possible values of 
xf. so that, for each i, the P l F  is evaluated at the point x /*  where the 
influence is maximized. This is the same as one of the approaches 
used in the discussion of the frequentist approach to prediction given in 
Section 3.5. If d r  is small then i t  can safely be concluded that the i-th 
case is uninfluential for any single prediction. The same conclusion 
does not necessarily follow when ai is small, since there may exist points 
for which d i ( x ,  ) is relatively large. 1f is large then predictions around 
x ;  will be seriously influenced by the i-th case. Further investigation 
may be necessary to determine the stability of predictions in other 
regions. 

I t  is easily verified that a i ( x f )  is monotonically increasing in 
pj, [1' , /(1 + v , ) ]  and that i t  depends on x ,  only through this term. 
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Thus, to maximize d i ( x J )  by choice of xJ i t  is sufficient to maximize 
P$ [ v r / ( i  + v / ) ] .  From Appendix A.3 it follows that 

max p&- = -  u , , - -  
X~ ( 1 , )  n : l ]  (4 .3 '13)  

Substitution into (4.3.12) yields 

[vii - l / ( n  + I ) ]  

] + ki - log ( k , )  - 1 
1 - vii  

(4.3.14) 

The first term, which measures location differences, is proportional to 
(3.5.21), the analogous measure from the frequentist approach. The 
remaining terms are similar to those in di, but are adjusted to give 
differential weights to the various components. For example, each of 
the final three terms of d: is l / n  times the corresponding term in 2,. 
Each of the remaining terms in d: can be obtained from the 
corresponding term in di by replacing i [ v i i / ( l  - u i i ) ]  with Loii - 1/ 
(n+  1)]/(1 - vi i ) .  These relationships suggest that di may be relatively 
more sensitive to the removal of cases with large values of r,? while d: 
will be more sensitive to cases with large v i i .  

4.4 A comparison of influence measures 

Thus far, we have considered no less than four distinct types of 
diagnostic statistics to assess influence, each with many variations. A 
comparison of the various.measures can be useful. As representatives of 
the normed influence curves, we will consider for m = I ,  
D, = D i ( X T X ,  ~ ' 6 ~ )  and D: = Di(XTX, pi$;,). To represent the volume 
ratios, we use V R :  defined by (4.1.7) and the logarithm of the 
Andrews-Pregibon measure AP, defined by (4.2.4). Finally, two 
measures based on the Bayesian predictivist approach, di defined by 
(4.3.11) and 2: defined by (4.3.14), will be compared. The major 
omissions from this list are the measures that require specification of a 
set of combinations of coefficients of interest for study and the 
internally scaled measures. These latter measures may have different 
behavior than the overall measures, depending on the structure of a 
specific problem. 

When cases are considered one at a time, all of these influence 
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measures are functions of r;, vii, and the constants, n, p', and, for the 
volume ratio, a ratio of percentage points of F. Thus, all the statistics 
use the same building blocks but combine the information differently. 
The behavior of these statistics can be studied by comparing them for 
various combinations of 11,  p', vii, and r : .  Figure 4.4.1 contains plots of 
all six measures versus rii for 11 = 50, p' = 5, and a different value of rf 
in each plot, r: = 0, 1 ,  4, and 9, respectively. Since the statistics have 
different calibrations, we compare the qualitative shapes of the curves 

rather than their vi~lues. 
When r f  = 0, $- &, = 0, and both Di and D: are exactly 0 for all 

values of oii. The other measures do not have this property, and all 
become larger for vi i  large. The Andrews-Pregibon measure and the 
volume measures behave like a constant times log (1 - uii), while the 
predictive measures respond only to much.larger values of uii. For 
r l  = 1. the two distance measures Di and D: are identical and require 
moderately large values of oii to exhibit influence. The volume and 
Andrews-Pregibon measures are not sensitive to the increase from 
r,' = O to riz = 1 and exhibit essentially the same behavior as in 



0.0 0.2 0.4 0.6 0.8 l.O 
(b) v.. I I  
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Figure 4.4.1 Several influence measures. (a) r; = 0 (b) r: = 1 (c) r: = 4 
(d)  r: = 9 

Fig. 4.4.1 (a). The predictive measures di* and di are quite similar to the 
distance measure Di. 

As ri increases from 1, the qualitative judgements made when r: = 1 
continue to be valid but are more clearly displayed in Fig. 4.4.l(c). The 
measures (I,*, di, Di. and D; all behave like Di, while the volume measure 
and the Andrews-Pregibon measure behave similarly. For the volume 
measures in Fig. 4.4.1 (c) and (d), if oii is sufficiently small V R ;  is negative, 
and i t  becomes positive as rrii increases. For example, V R ;  is about - 0.5 
at llii = 0.02 in Fig. 4.4.l(d), and increases to 0 at about vii = 0.65 and 
then becomes positive. In this figure the trade-off between r? and vii in 
the volume measure is clear. 

In summary, for m = 1 ,  the measures form two classes: those that 
respond to rf and tlii essentially as Di does (Di, Di,di, d,*),and those that 
are relatively insensitive to vii(APi, V R ; ) .  The former measures appear 
to provide an appropriate balance between potential and residuals. At 
least for ttt = 1 ,  Di, the easiest of these to compute and to interpret, 
seems preferable. 
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I 

For m > 1, the comparison between the ~nfluence measures 1s much I 

more complicated, but some general comments are in order. Flrst. the 1 
volume measures V R ;  and AP, depend only on (11 - p' - r:)/(11 - p ' ) ,  the 
eigenvalues of V,, and constants. If 11 - p' is large. these measures are 
relatively insensitive to r:. The measures Dl. D',, dl,and df" all hate a lead 
term like D, and hence they behave similarly. These depend not only on 
rfand the eigenvalues of V,, but also on the orientation of the vector el 
ofresiduals in an appropriate geometry. Thus, two groups of cases wlth 
identical r:and eigenvalues of V1 need not have the same influence as 
measured by Dl. For these measures, then, the notion of an influential 
subset is more complicated, and the discussion of potent~al in 
Section 3.6.1 is relevant. 

Draper and John (1981) conducted a detailed exarninatlon of the 
relative merits of APl and Dl. In addition to showing that A P l  may 
isolate cases that are not outliers or influential for parameter estim- 
ation, they show by example that the reverse may also happen: The 
Andrews-Pregibon statistic cannot be guaranteed to locate outliers or 
cases that are influential for B. They recommend the study of rf 
(essentially their Q,), 11 - VII. and Dl. In the larger class of statistics 
discussed here, it is clear that their advice is sound, although thelr 
choice of potential measures I I - V,I may be replaced by one of those 
discussed in Section 3.6.1. 

E X A M P L E  4.4.1. C L O U D  S E E D I N G  NO. 11. Table 4.4.1 lists 
several of the influence statistics discussed in this chapter for the cloud 
seeding data; see also Table 3.5.5. The subset IC/ is chosen as in 
Example 3.5.3. The important observation from this table is that the 
ordering of cases on influence is different for the various statistics. 
Computation of them all can lead to confusing conclusions. A more 
reasonable approach is to adopt one of the measures - possibly Di - as 
the standard and use additional measures as called for by specltic 
concerns.O 

Calibration I 

The various influence measures discussed in this and the previous 1 

chapter each provide a way of ordering individual or groups of cases I 
I 

based on their impact on a selected characteristic of the analysis. 1 

Experience with a given measure will provide additional insight that 
can be useful for an understanding of the importance of its magnitude. I 

Beyond this, however, there are only a few methods of calibration I 
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Table 4.4.1 More i~lfilrrrli-e ~~ te t~s t i res ,  clotit1 seetlirlg d i ~ r c ~  

available. As mentioned previously, many of the measures of the form 
D , ( M ,  c) can be monotonically transformed to a more familiar scale 
that does not depend on 11 and p' by comparing DI(M, c) to the 
percentage points of the appropriate F-distribution. For example, the 
knowledge that the removal of' case 1 would move the least squares 
estimate of /I to the edge of a 95 0/, confidence region while the removal 
of case 2 would move the same estimate to the edge of a 5 "/, region is 
surely more useful than just knowing that case 1 is more influential 
than case 2. In addition, half-normal plots with a simulated envelope 
(see Sections 2.3.4 and 3.5.3) can be used in combination with any of the 
influence measures to help avoid problems of overinterpretation. These 
techniques are intended as aids to interpretation and not as found- 
ations for accept-reject rules or p-values. 

Dempster and Gasko-Green (1981) suggest methods for sequen- 
tially removing individual cases and determining conditional p-values 
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that can be used to formulate stopping criteria. Their methods are 
based on the repeated application of a selection rule to determine the 
most discrepant case at each stage. The class of available selection rules 
is large and includes many of the influence measures discussed 
previously. Belsley et ul.  (1980) discuss other methods such as the use of 
gaps for determining the cases that require further attention. 



C H A P T E R  5 

Assessment of influence in other 
problems 

' In the study of nature. we must not, therefore, be scrupulous as to how we 
reach to a knowledge of such general facts: provided only we vcrify them 
carefully when once detected. we must be content to seize them wherever they 
are to be found.' 

l1ERSCIIEL,  Op. c ~ I .  

Most of the methods for the analysis of influence presented in earlier 
chapters depend on the elegance of the linear least squares regression 
problem. The use of the sample influence curve to measure influence is 
aided by the algebraic updating formulae in Appendix A.2 that allow 
computations to be done from full sample statistics; interpretation of 
normed influence measures is made clear by appeal to elliptical 
contidence regions that characterize linear least squares regression. 

As mentioned in Section 3.4, the extension of the sample versions of 
the influence curve to other problems is conceptually straightforward. 
As a practical matter, however, the use of these ideas can be expensive 
since exact updating formulae are generally lacking. To compute 
the A sample influence curve for a parameter 8, for example, values of 
B,i , ,  i = l ,2,  . . . , n, in addition to the complete data estimate are 
needed, and each of these may require iteration. In addition, the 
definition of a residual and the choice of a norm can be troubling. 
Norms of the sample influence curve based on elliptical contours will 
not always be appropriate. 

In this chapter we discuss ways in which diagnostics for linear least 
squares regression might be extended to more complex situations. In 
the next section we present a general definition of residuals and suggest 
an extended version of the viis. A general approach to influence, 
including likelihood-based measures, is discussed in Section 5.2. A 
relatively inexpensive approximation of the sample influence curve is 
suggested and this in turn leads to the problem ofjudging the accuracy 
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of the approximations. Sections 5.3-5.5 contain discussions of non- 
linear least squares, logistic regression and robust regression, respect- 
ively. We comment briefly on several other problems in Section 5.6. 

The general purpose of this chapter is to suggest ideas rather than 
specific diagnostics. Except perhaps for logistic regression. the specific 
methods presented have not been studied in great detail and more work 
is required before definite recommendations can be given. 

5.1 A general definition of residuals 

Cox and Snell(1968) define residuals for a fairly general class of models 
and suggest a method for determining their first two moments. This in 
turn leads to a generalization of some of the diagnostics for linear least 
squares regression to more complex models. 

Assume that the i-th response yi is a known function g, of an 
unknown parameter vector 0 and an unobservable error ci. 

The errors ci are assumed to be continuous, independent and identically 
distributed with acompletely known distribution, so location and scale 
parameters are not distinguished. This formulation excludes some 
standard models such as time series and components of variance 
problems where the response may depend on the errors in a more 
complicated way. 

Assuming a unique solution for E ~ ,  (5.1.1) may be re-expressed in the 
form 

t i=hi(yi ,O),  i = 1 , 2  , . . . ,  11 (5.1.2) 

Cox and Snell define the i-th residual ii by 

I where 8is the maximum likelihood estimate of 0. We call E ,  a rrlarimu,n 
likelihood residual (Cox and Snell call it a crude residual). 

Suppose, for example, that (5.1.1) is the usual linear model written as 
yi = X : ~ + U E ~ ,  where the are independent, identically distributed 
normal random variables with E(ti) = 0 and var (E,) = 1. If 

eT = (PT, 4, 
then 

ti = ()li - xTj ) /& 

= ei/(Cef / t l ) ' I 2  
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and ii is a standardized version of the ordinary residual e,. (In this 
chapter, 22 is the maximum likelihood estimator of oZ.) 

In general, moments of the maximum likelihood residuals cannot be 
obtained explicitly. Useful approximations to E(ii) and E(i;) can, 
however, be obtained from a quadratic expansion of (5.1.3) about 0, 

ii 2 ci + ( 6  - o ) ~ H ~ ( o )  + 4 (8 - o ) ~ H ~ ( o )  (6 - 0) (5.1.4) 

where Gi(0) is a q-vector with elements ahi(yi, O)/aOj, and ~ ~ ( 0 )  is a 
q x q matrix with elements d2hi(yi, O)/aOjaOk, both evaluated at 0. 
Expressions for EPi, var (Pi), and cov ($ Pj) in terms of ki(e),  Hi(0), the 
expected information matrix, the score vector and the second-order 
bias of the M L  estimator 8 are given by Cox and Snell; see also Cox and 
Hinkley (1974, Chapter 9). These expressions take the form 

E(.$) = E(ci)+ai 

var (ii) = var (ci) - cii (5.1.5) 

cov (i,, ij) = cij 

In all but the simplest situations, the determination of the ais and cijs 
will require a considerable amount of tedious algebra. 

In the usual linear regression model, the expressions in (5.1.5) are 
exact. One finds that E(q) = ai = 0, var (ci) = 1, cii = n(vii - pl/n)/ 
(n - p') and cij = - nvij/(n - p'), i # j. Generally, we expect that the cijs 
can be viewed as extensions of the oijs and used as diagnostics in an 
analogous manner. 

Using (5.1.5) a Studentized version 6: of the ML residuals can be 
defined so that E(&f) = E(ci) and var (6:) = var (ci) to order l/n. The 
motivation for this is analogous to that for the ris in linear regression: 
The E:S provide a better reflection of the cis and plots can be interpreted 
without the complications caused by nonconstant means and variances. 

E X A M P L E  5.1.1. L E U K E M I A  DATA NO.  1. Leukemia is a type of 
cancer characterized by an excess of white blood cells. At diagnosis, the 
count of white blood cells provides a useful measure of the patient's 
initial condition, more severe conditions being reflected by higher 
counts. Feigl and Zelen (1965) discuss the use of the white blood cell 
count as an explanatory variable in models to predict survival time after 
diagnosis. 

Feigl and Zelen (1965) report the survival times in weeks and the 
white blood cell counts for a sample of 33 patients who died of acute 
leukemia. In addition, each patient was classified as AG positive or AG 



Table 5.1.1 Leukeniia data, y = survival time in weeks, W C  = white blood cell count, and related staristics for 17 parients 
diagnosed as AG positive. Source: Feigl and Zelen (1965) 

Case W C  Yi ai Cii 8 6: LDi Cii Fi D! ( X T ~ ~ X ,  p')  



180 R E S I D U A L S  A N D  I N F L U E N C E  I N  R E G R E S S I O N  

negative, indicating the presence or absence of a certain morphologic 
characteristic in the white cells. The data for the 17 patients classified 
A G  positive are given in Table 5.1 . l ;  data for the AG negatives are given 
in a later example. To develop a prediction equation based on the AG 
positive cases, we use a model mentioned by Fiegl and Zelen and 
expanded upon by Cox and Snell (1968), 

where yi is the survival time for the i-th patient, ei, . . . . E, are 
independent, standard exponential random variables, and if xi is the 
(base 10) logarithm of the i-th white blood cell count, xi = xi - f'. 

The log likelihood L(O,, 02) is easily found to be 

L ( ~ I ,  02) = - n log (0,) - x y i  exp(- 02xi)/U, (5.1.7) 

and the expected information matrix is 

Selecled contours of constant L(O,,  U2) are plotted in Fig. 5.1.1 (the 
points plotted in this figure will be discussed later). The maximum 
likelihood estimates 6, = 51.109 and 6, = - 1 . 1  10 were determined 
using Newton's method. 

The M L  residuals defined by 

= yi exp ( -  6,xi)/0, (5.1.8) 

are given in Table 5.1.1. Case 17 has the largest residual, 2,  , = 3.47. If 
the ii are treated as a sample from a standard exponential distribution, 
the residual for case 17 is not large, since the probability that the largest 
order statistic exceeds 3.47 is 0.42. Of course, the M L  residuals do not 
have constant expectation or variance, and i t  is possible that a 
Studentized version would be more revealing. 

For the M L  residuals defined by (5.1.8) Cox and Snell provide the 
approximate moments. 

1 
E(&) = 1 +-++(xi  C.Y~ - x,? Cxf )/(x,xf )" (5.1.9) 

211 

= I + a i  
and 

1 
var ( i i )  = 1 - -- + ( x i C . ~ 3  - 3.: ) / ( C X ~ ) ~  

I 1  
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25.00 33.00 41 00 49 00 57 00 65 00 

01 
I 

Figure 5.1.1 Likelihood coltours for leukernla data '+ '  lndlqtes 1 
OT = (51.109, - 1.1 10) with L(O)= - 8 3  88.' x '  ~nd~cate  el,, '1.' ~nd~catesO,',-, I 

I 
I 

With the summations fixed, both E ( i , )  and var(i,) are quadratlc I 
functions of x, with maxima occurring at the values of u, that are closest I 

to Cx:/2Cxf and Cx:/6Cx;,  respectively The values of u, and c,, are 1 
given in Table 5.1.1. As expected, the values of c,, are largest at the I 

extremes with c,, = 0.77 the maximum. In analogy with linear I 
regression, case 2 may have a substantial influence on the M L  estimates. 1 

Cox and Snell construct a Studentized version E: of the M L  residuals I 

by using (5.1.9) and (5.1.10) in combination with the transformatlons 
I 
I 

E: = {i,/(l - - l , ) ) '+k~.  Assuming that 6: has a standard exponent~al I 

distribution, it can be shown that appropriate transformat~ons are I 
. g i v e n b y l , = - 0 . 2 1 c , i - 1 . 4 3 a , a n d k , = ~ ( 2 a , + c , , ) , r = 1 . 2  , . . . ,  11. 

The values of ci* are also given in Table 5.1.1. The largest difference 
I 

between 2, and E: occurs at case 17, cr,  = 4.18. The chance that 4.18 I 

would be exceeded in a sample of 17 from a standard exponent~al 
distribution is 0.23 so that there is still no reason to suspect case 17 as an 

i 

outlier. 
I I 
I I 



The plots of the Studentized M L  residuals versus the expected order 
statistics from a standard exponential distribution and the plot of E: 

versus xi give no reason to question distributional assumptions, or to 
diagnose general failure of tile model. Overall, the solution seems well 
behaved to this point.0 

5.2 A general approach to influence 

For ease of presentation, we shall continue to use the model described 
at (5.1.1), although the ideas to be discussed in this section 
are applicable to other paradigms as well. In particular, it  is no 
longer necessary that the errors be expressible in the form given 
at (5.1.2). 

Measures of the influenceofthe i-th case on the MLestimate 6can be 
based on the sample influence curve SICi cc 6 - 6(i,, where 4,) denotes 
the ML estimate of Ocomputed without the i-th case. While this idea is 
straightforward, it  may be computationally expensive to implement 
since n + 1 ML estimates are needed, each of which may require 
iteration. When faced with this expense, it may be useful to consider a 
quadratic approximation of L,,,, the log likelihood obtained after 
deleting the i-th case: 

L(,)  (0) L ( ~ )  (6) + (0 - ~ ) T L ( , )  ( 6 )  4- +(o  - ~ ) T L ( ~ )  (6) (0 - a)  
(5.2.1) 

rC 

where L,, , (O^) is the gradient vector with j-th element aL,,(0)/aOj 
evaluated at 0 = 6 and Lfi,(6) has u, k)-th element a2L(,,(0)/aOj aO,, 
evaluated at 0 = 6. If - ~ ( ~ ~ ( 6 )  is positive definite, the quadratic 
approxin~ation is n~aximized at 

We refer to 6:i, as a one-step approximation to 6,,, since i t  is the sameas 
would be obtained by a single step of Newton's method using Ô  as 
starting values to maximize L,,,(O) (see Kennedy and Gentle, 1980, 

Chapter 10). 
I f  8,,, is not too different from 6, and L,,,(O) is locally quadratic, the 

one-step estimator should be close to the fully iterated value. For cases 
that are influential, 6- 6,i, is 'large', the accuracy of the one-step 
estimator is likely to be lower, but an accurateapproximation to 6,[) will 
not he needed as long as 6 - b:,, is sufficiently 'large' to draw our 
attention for [t~rttler consideration. 



A S S E S S M E N T  O F  I N F L U E N C E  I N  OTHER PROBLEhZS 183 

In the linear least squares problem, elliptical norms of the sample 
influence curve provide a sufficiently rich class of rnetrics for ordering 
cases on influence. In more general problems, this class can be overly 
restrictive, especially if elliptical confidence contours are not appropri- 
ate. If we let t ( 0 )  be a function of the q-vector 0,  then a general measure 
can be viewed as any function m(r ( e ) ,  t(8, , , ) )  that maps into the 
positive real line. Most of the alternative methods for assessing 
influence given in Chapter 4, for example, can be expressed as members 
of this general class. However, since m ( t ( 8 ) ,  t ( b ( , , ) )  is not in general a 
function of the sample influence curve, the theoretical foundations for 
influence measures derived from the influence curve may be lacking. 
Before any alternative measure is to be adopted. its logical foundation 
must be carefully studied. 

An important example of the general measure is derived from the use 
of contours of the log likelihood function to order cases based on 
influence. Let L ( 0 )  be the log likelihood based on the complete data. We 
define a likelihood d i s t a ~ ~ c e  LD, as 

or, using the one-step estimator, 

This is easily seen to be in the general class with t  ( 0 )  = L(8) ,  and LDi is 
not necessarily a function of just the sample influence curve for 9. 

The measures LDi and LD! may also be interpreted in terms of the 
asymptotic confidence region (see Cox and Hinkley, 1974, Chapter 9) 

where xZ(a; q )  is the upper a point of the chi-squared distribution with 
q  df, and q  is the dimension of 0.  LDi can therefore be calibrated by 
comparison to the z 2 ( q )  distribution. 

lfthe log likelihood contours are approximately elliptical, LD, can be 
usefully approximated by Taylor expansion of L ( 8 , , , )  around 8. 

h 

~ ( 6 ( , , )  z ~ ( 6 )  + ( O ( , )  - 8 ) T L ( 8 )  + i(8(,) - 8 ) T ( ~ ( 8 ) )  ( 8 ( , )  - b )  
-- - 

and, since t ( 8 )  = 0, 

LDi 2 (aci, - 8)T ( - ~ ( 8 ) )  (8( i )  - 8 )  (5.2.5)  

A different approximation can be obtained by replacing the observed 
information - ~ ( 8 )  in (5.2.5) by the expected information matrix. 
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evaluated at 6. Either of these approximations, however, can be 
seriously misleading if contours of L(8)  are markedly nonelliptical. 

The likelihood distance can be easily modified to accommodate 
situations in which a subset 8 ,  of 8 is of special interest. Let 
OT = (O:,  8:) and 8?;, = (a:,, , ,  8:,i)). An asymptotic confidence region 
for 8 ,  is given by 

where 9 ,  is tlie dimension of 8 ,  and 

denotes the log likelihood maximized over the parameter space for 8 ,  
with 8 ,  fixed (Cox and Hinkley, 1974, Chapter 9). The asymptotic 
confidence region measure of the displacement of 8; when the i-th case 
is deleted is now 

LDi(91l92) = 2 [ ~ ( 8 ) -  ~ ( f i , , i ) ,  82(8;, i))) l  

= 2 ( ; ~ ( 8 )  - max [ ~ ( 8 , , , , ,  8 , ) ]  j (5.2.6) 
01 

with a similar measure obtained if one-step estimators replace fully 
iterated ones. This measure is compared to the x 2 ( q 1 )  distribution for 
calibration. 

As an illustration, consider again the usual linear model Y = XB 
+ as ,  with the ei assumed independent, identically distributed N ( 0 ,  1). 
If a = a, is known, it is easy to verify that 

If a 2  is unknown but is of special interest, (5.2.6) provides the desired 
measure with 8 ,  = 8 ,  0, = a'. One finds 

and 
n n 

L((B, a2  ((B)) = - - log [27ra2 (B)]  - - 
2 2 

where a 2 ( 8 )  = C ( y j  - xf B)'/n. Setting B = &,, 
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Since LDi(Bla2) is a monotonically increasing function of D, it is 
equivalent to Di. Finally, the likelihood distance for (/I, a2) is found to 
be 
LDi(/I, a 2 )  = n log (i?$,/C2) + ( y i  - x T & ~ ) ) ~ / ~ $ )  - 1 

Interestingly, this expression is guaranteed to be monotonically 
increasing in tf only if the model contains a constant. For fixed n, p', and 
v i i ,  LDi(B, a )  is minimized at tf  = (n - p' - 1 )  ( 1  - nvii)/(n - 1 )  which 
may be positive if regression is through the origin. 

E X A M P L E  5.2.1. L E U K E M I A  DATA N O .  2. The individual points 
plotted in Fig. 5.1.1 represent 0;) = (8,(i),  &)), i = 1 ,  2, . . . , 17, for 
the leukemia data discussed in Example 5.1.1. Only case 17 deviates far 
from the full sample M L  estimate: 6:, ,, = (41.920, - 2.184), while the 
full sample ML estimates are 8, = 51.109 and 8, = - 1 . 1  10. The 
likelihood distance measure for case 17 is L D , ,  = 9.89. Comparing this 
value to the percentage points of a x2(2) distribution indicates that the 
removal of case 17 will displace 8 to the edge of a 99 % asymptotic 
confidence region. 

The values of LD,, i = 1, 2, . . . , 17, are given in Table 5.1.1. The 
second largest value of L D ,  LD, ,  = LD, ,  = 0.35, indicates minimal 
movement so that case 17 is the only individually influential case. 

Recall from Example 5.1.1 that case 17 has the largest ML residual, 
but there was insufficient evidence to reject it as an outlier. The 
influence of case 17 seems to be due to its large ML residual in 
combination with the relatively large value of cii. An inspection of the 
original data reveals that case 17 corresponds to a patient with a very 
large white blood cell count (100000) who survived for a relatively long 
time. Feigl and Zelen (1965) mention that high white blood cell counts 
are unreliable so a measurement error in x,, may be contributing to the 
influence of case 17. In any event, conclusions based on such data 
should be viewed skeptically. 

In the preceding discussion, the fully iterated estimates 8(i) were used, 
but the one-step estimates computed from (5.2.2) would have served as 
well. When superimposed on Fig. 5.1.1, the one-step estimates for i 

= 1,2,  . . . , 16 are nearly indistinguishable from the cloud of points 
around the maximum of the log likelihood. The only noticeable 
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disagreement occurs at case 17. The one-step estimate 8:, ,, falls at the 
point indicated by a 'star' in the lower left-hand corner of Fig. 5.1.1. 
Since 6: , , ,  is farther from 8 than 6( , , , ,  L D f ,  would still be large. 

Finally, the quadratic approximation to LDi given at (5.2.5) would 
probably work well in this example since the log likelihood contours 
are nearly elliptical; the approximating elliptical contouk and the one- 
step estimators were given in Fig. 3.5.1. However, the elliptical 
approximation is not always applicable since even in this example it is 
possible to transform the parameters to get clearly nonelliptical 
contours for the log likelihood function.[ll 

5.3 Nonlinear least squares 

The nonlinear regression model is given by 

where , / ' (xi ,  0 )  is a scalar-valued function that is nonlinear in the 
q-vector of unknown parameters 0 ,  and the cj are independent and 
identically distributed N(0, 1). For this problem, the maximum like- 
lihood estimate 8 of 0 can be obtained by minimizing the residual sum 
of squares, 

n 

The problem of determining 8 can be treated as a special case of the 
general unconstrained maximization problem, although special 
methods that use the fact that G (0) is quadratic are often appropriate; 
see Kennedy and Gentle (1980, Section 10.3). 

The problem of assessing influence in the nonlinear least squares 
problem can be approached using the general methods outlined earlier 
in Sections 5.1 and 5.2. In particular, one-step estimators 8;i, of the 
vectors 8,,,  that minimize the objective functions 

G,,,(O) = ( y j -  f ' (x j ,  i = 1 2  . . I (5.3.3) 
j # i  

can be found by application of the result given by Equation (5.2.2). 
However. particularly interesting results can be obtained if we allow a 
further approximation. We suppose that, in a neighborhood about 8, 
, l ' ( s , .  0) is approximately linear, 

f ( x j .  0 )  z . f ( x j ,  0) + iT(0  - 6 )  (5.3.4) 



where 2; is the j-th row of the t~ x q Jacobian matrix Z. 

If theapproximation (5.3.4)issubstituted into G,i, (0 )  defined by (5.3.31. 
the resulting objective function is minimized at 

where e is the )I-vector with elements e, = yj-j'(xj. 8). This form 
corresponds to that obtained by using a single step of the 
Gauss-Newton method (see Kennedy and Gentle. 1980. Chapter 10). 
The last equation is simplified, with the aid of Appendix A.2 and the 
fact that z T e  = 0 to give a more usual form. Defining i.,, 
=if (zTz)-lii, we find (Fox, Hinkley and Larntz. 1980) 

When this particular algorithm is used to produce the one-step 
estimators, the nonlinear least squares problem is essentially replaced 
by a linear one, with the role of X taken by Z. Most of the diagnostics 
and residual analyses for linear least squares may be expected to apply 
at least approximately in nonlinear least squares. In particular. an 
approximate Studentized residual is 

where G2 = G ( 8 ) l n .  An elliptical norm of the sample influence curve is 

oi(zT2, qr?2) = (6 - 6 ( i , ) T ( ~ T ~ )  (8 - 8(i,)/(162 

When 6(,, is replaced by the one-step approximation 8,'i,. this norm 
becomes 

In this and the following two sections, we continue to use Di(.. . )  to 
denote an elliptical norm. The parameter under consideration should 
be clear from context. One step versions will be denoted by Df (.. . I .  

The use of elliptical norms for influence, whether based on one-step 
or fully iterated estimates, may be inappropriate for some nonlinear 
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problems if G(0) has markedly nonelliptical contours. In many 
problems, elliptical confidence regions can be badly biased (Beale, 
1960). and the bias may depend on the parameterization chosen for the 
model (Ratesand Watts, 1980,1981; Hamilton, Wattsand Bates, 1982). 
The problem of choosing a parameterization can have important 
emects on the analysis of influence. 

Alternative norms for 6 - 6,',, or f? - f?(,, that are less dependent on 
the shape of contours of G(0) can be suggested, but these will require 
considerably more computation. The first of these norms is derived 
from the form for IIi given by (3.5.6) as a norm of the change in the 
vector of fitted values. For the nonlinear regression problem, this 
becomes 

1 " 
FD; = .3 ( j (x j ,  6) -J(x~,  6;,,)1~ (5.3.9) 

qC' j = l  

When j'(xj, 0) is exactly linear in 0, Di and FD! are proportional; 
otherwise, they may be quite different. When the parameterization of 
the model is at issue, FD! may be the preferred statistic since it depends 
on the parameterization only through approximation of &,,,. If i$, is . 
used in place of 8/,,, FD, is invariant under choice of parameterization. 

Finally, we consider measures derived directly from log likelihood 
displacement. With reference to the (q + 1)-dimensional contours for 
(0. u2). the measure is 

= n log [ 
where G,,,(O) = G(0) - (y,  -/(xi, 0))'. When 0 alone is considered, the 
resulting measure from (5.2.6) is 

LD ! (0 1 u2) = n log [G (&:,,)/G (@I (5.3.1 1) 

As with FD!, computation of either likelihood norm requires a pass 
through the data for each i, so these will be useful generally only if n is 
not too large. 

E X A M P L E  5.3.1. D U N C A N ' S  DATA. Duncan (1978) discusses a set 
of artificial data with t~ = 24, and for which the appropriate model is 

0,  
~ 1 .  = - [exp ( -  02xj) - exp(- 0 ,  xi)] + asj  
' 0 , - 0 *  
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The data are given in Columns 2 and 3 of Table 5.3.1. The rernalning 1 
columns of the table give ei, ?,, Ci,, D~(z'z, 2?), FDli, and the two I 

likelihood distances computed from one-step estimates given the 1 

maximum likelihood estimate bT = (0.1989.0.4454). From these statls- 
tics, case 9 appears as a candidate for a possible outlier, and 11 is clearly I 

influential in this problem by any of the measures, assunllng that the 
one-step approximation is adequate. To explore the adequacy of the I 

approximation, we have computed the fully iterated estin~ators 0,,, for I 

each i, using the modified Gauss-Newton algorithms with 6 as the I 
starting value. No more than three iterations were required to obta~n I 

about four-digit accuracy on 8,,,. The correspondence between 8,,, and 
I 

fi:,, was very good, with the largest deviation occurring for case 9. I 

Figure 5.3.1 is a contour plot of G(0) for this problem, with the fully 
I 

I 
iterated 6(i, added to the plot. In addition 8:,) is indicated. I 

Figure 5.3.1 Contour plot of ), Duncan's data. '+' indicates b r  = 
(0.1989,0.4454), where G(0) = 0. 79. The points plotted are B,i , .  The point 
at the '*' is 8&) 



Table 5.3.1 Duncan's data and related statistics. Source: Duncan (1978) 

Case xi  yi Fi u.. D! FDf LD) (8, oZ) LD! (8102) 8&i) ,. 
ei 

* Given as 0.25610 by Duncan 
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At least for this one problem, we have found that the one-step 
influence measures provide the same qualitative information as the 
fully iterated ones and an influential case is clearly identified. In some 
problems where the G(0) surface is less well behaved, we should expect 
that the one-step procedures will not work as well. Further research 
and experience with these methods is required.0 

5.4 Logistic regression and generalized linear models 

Although the logistic regression model does not fall in the general 
framework for residuals given in Section 5.1, the results for the 
assessment of influence given in Section 5.2 can be applied. We first 
consider influence assessment, and then present several alternatives for 
defining residuals. 

Consider a sample yT = ( y , ,  y 2 ,  . . . , y,,) of independent random 
variables such that y j  is binomially distributed B ( n j ,  p j )  with nj known 
and pi unknown. The logistic regression model specifies the 

. relationship 

q j  = logit ( p j )  = log [ p j / ( l  - p j ) ]  = xf 8, j = 1 2  . . . , n  (5.4.1) 

where x ,  , x , ,  . . . , x,  are p'-vectors of explanatory variables and 8 is an 
unknown parameter vector. In such models, estimation of Pis typically 
a major concern. 

The log likelihood for 11 = X/? is 
n 

L( t t )  = L ( X B )  = C [~ jx jTB-a j (x jTB)  + b j ( y j ) l  (5.4.2) 
j= 1 

where a j ( z )  = nj log [ l  + exp ( z ) ]  and b j ( z )  = log 

likelihood estimate /? of /? is often found using ~ e k t o n ' s  method. 
Once )is obtained, a one-step estimator &,of $ti, can be found using 

the general results of Section 5.2. Following Pregibon (1981), but using 
different notation, define $j = exp ( x f ' P ) / [ l  -I- exp ( x J P ) ]  and let w be 
an n  x n  diagonal matrix with j-th diagonal n j j j  ( 1  - C j ) .  Also, let 5 be an 
n-vector with j-th element ij = y j  - n j j j .  One can show that 

L ( )  = x 5 ; L,,) (6) = - (x; w ( ~ )  x,,, ) (5.4.3) 

so that, using (5.2.2) and Appendix A.2, 

Bti) = B + ( X B ~  ~ ( i )  x(i))- ' XTo)5(i) 



192 R E S I D U A L S  A N D  I N F L U E N C E  I N  R E G R E S S I O N  

where 6 is the i-th diagonal element of q =  W ' I ~ X  

(XT w x)- I xr\i/ l12. Pregibon (1981) discusses the accuracy of this 
one-step approximation and concludes that componentwise the ap- 
proximation tends to underestimate the fully iterated value, but that 
this may be unimportant for identifying influential cases. 

Measures for the differences b -  B,,! or B -  Bi, can be derived using 
elliptical approximations, likelihood displacement, or changes in fitted- 
value vectors as discussed in the last two sections. Following Pregibon 
(1981), however, we will consider only the first of these, 

*2 
1 [ - "i A ] ;it D! ( X T W X ,  p') = - (5.4.5) 
p' }lipi (1 -pi) ( I  - vii)2 

to characterize influence for logistic regression (Pregibon's measure c! 

differs from (5.4.5) only by the factor p' in the denominator). 
Comparison of (5.4.5) to Di suggests that i;/[nifii(l - fii)(l - ;,,)I and 
ijii may be interpreted and used in the same way as r: and vii in linear 
regression. 

Residuals for logistic regression can be defined in many ways. 
Equation (5.4.5) and the analogy with linear least squares suggests the 
quantities 

xi = &/[niji(l  -pi)] ' I 2  (5.4.6) 

Landwehr, Pregibon and Shoemaker (1980) and Pregibon (1981) use 
an alternative set of residuals based on individual components 
of the log likelihood ratio or deviance statistic, dev = -~[L(xB)  
- L(logit (yipi))], where L (logit (yi/ni)) is the log likelihood obtained 
when each rli is estimated by logit (yi/ni). The deviance has an 
asymptotic x2 ( , I  - p') distribution. Components of deviance are de- 
fined as 

dev, = 3- ,/2[li(logit (yi/ni)) - li(x7 fi)lii2 (5.4.7) 

where li (q) = yiq - ai (q) + bi (yi) is the log likelihood based on the i-th 
case only, and the plus sign is used if logit(yi/n) > x f B  and the minus 
sign is used otherwise. Clearly, dev = ~ d e u f .  Landwehr et al. (1980) 
advocate the use of deoi in graphical procedures. 

Finally. Cox and Snell (1968) suggest a somewhat more complicated 
set of residuals based on a transformation to normality proposed by 
Blom (1954). Let 

+ ( ~ ) = J ~ f - ' / ~ ( l - t ) - " ~ d t ,  0 5 ~ 5 1  

The quantity b(u)/#(i) is the incomplete beta function 1,(2/3,2/3). The 
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i-th residual is then 

Cox and Snell state that this set of residuals has essentially normal 
behavior, even for ni as small as 5 and pi = 0.04. Estimates of the 
variances of these residuals are given by Cox and Snell. 

E X A M P L E  5.4.1. LEUKEMIA DATA NO.  3. The data for all 2 3  
patients are given in Table 5.4.1 in a form appropriate for fitting logistic 

Table 5.4.1 Leiiket~liu tltrto$)r logistic regression. Sot~rce:  Feigl 
arid Zeler~ (1965) 

- 

Cuse C A(; J' I I  
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models. We take the response y to be the number of patients surviving 
at least 52 weeks for each combination of WBC = white blood cell 
count, and AG = 1 for AG positive patients and AG = 0 for AG 
negative patients. The five patients with WBC = 100000 are collapsed 
into two groups, one (case 15) consisting of the three AG positives (with 
one survivor) and one (case 30) consisting of two AG negatives (with no 
survivors), 

The usual summary statistics obtained from fitting the model 

logit ( p j )  = Po + P,  WBC + /I2 AG (5.4.8) 

are given in Table 5.4.2(a). The deviance has the value 27.24 with 27 df. 
There is no indication from this summary that the model is grossly 
inadequate. 

Table 5.4.2 Logistic regressiotl summaries, Leukemia data 

( (1 )  F ~ l l l  dura (b)  Otle cnse removed 

Estimare Asymp. s.e. Esrimare Asymp, s.e. 

Intercept - 1.307 0.8 14 0.212 1.083 
ItBC -0.318 x 0.186 x -0.235 x 0.315 x 

AG 2.261 0.952 2.558 1.234 

d f 27 
Deviance 27.24 

Index plots of the xi, the diagonal elements of and D! (XTWX, p') 
are given in Figs. 5.4.1-5.4.3, respectively. Clearly, case 15 is unusual 
and may be seriously influencing the fit. From Fig. 5.4.1, x 1 5  is not 
unusually large and thus the influence of case 15 is apparently due to its 
relative position in the factor space. Case 15 consists of the results for 
t ~ , ,  = 3 AG positive patients with WBC = 100000. The fact that one of 
these patients survived for a relatively long time is surely contributing 
to the influence of this case. 

To understand the role of case 15, we could refit the model after 
removing either all three patients in case 15 or just the suspect patient 
(patient 17 in Table 5.1.1). For these data, both alternatives lead to 
essentially the same revised fit. Table 5.4.2(b) summarizes the fitted 
model after the removal of patient 17 or, equivaiently, modifying case 
15 hy setting y ,  = 0 and t l l  = 2. The summaries for the full and 
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0 5 10 15 20 25 30 

Case number 

Figure 5.4.1 xi versus case number, leukemia data 

0 5 I0 15 20 25 30 

Case num bet 

Figure 5.4.2 Cii versus case number. leukemia data 

reduced data in Table 5.4.2. are clearly quite different. This difference is 
further illustrated in Fig. 5.4.4 which gives plots of the fitted survival 
probabilities versus W'BC and AG for the full and reduced data. 
Surprisingly, the removal of patient 17 increases the estimated 
probability of survival for patients with small values of WBC. The 
influence of case 15 is certainly overwhelming. 



0 5 I0 15 20 25 30 

Case number 

Figure 5.4.3 D! ( X T  w X, p') versus case number, leukemia data 

WBC 

Figure 5.4.4 The fitted probability of survival as a function of AG and WBC, 
leukemia data 
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The influence of patient 17 is of course dependent on the assumed 
form of the model. One reasonable alternative to model (5.4.8) is 
obtained by adding the interaction variable WBC x AG to allow for the 
possibility that the slopes for the AG positive and AG negative groups 
may differ. For these data, however, theaddition of the interaction term 
does not lead to a significantly improved fit. For the full data the 
asymptotic t-value for WBC x AG is 0.88 and case 15 is still the only 
influential case. After the removal of case 15, the 1-value is 0.38 and no 
single case is seriously influential. 

As another alternative, we could transform WBC via a log transforrn- 
ation, as was done in Example 5.1.1. When this alternative is pursued, 
the importance of case 15 is lessened. For example, D:, (XT WX, p' ) 

= 0.47, and the fitted models with and without patient 17 are not as 
different, as illustrated in Fig. 5.4.5. This reiterates the lesson that the 
influence of a case can be changed by transforrnation.0 

- 

- 

- *.. '. -- '. -. '. 
' 8 .  '. 

- 
Solid lines: All data 

- 
Dashed lines: Case 15 modified 

I I 1  1 1 1 1  1  I 1 1 1 1 1  

o3 
2 3 4 5 6 7 8 9  

10' 
2 3 4 5 6 7 8 9  

I0 15 

WBC 

Figure 5.4.5 The fitted probability of survival as a function of II'BC, using 
I 

log ( WBC) as a predictor, leukemia data I 
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Logistic regression is one member of the class of generalized linear 
models described by Nelder and Wedderburn (1972); see also 
Wedderburn (1974,1976). With the appropriate modifications, many of 
the results for the logistic model can be applied in the larger class. 

Let Y, , Y2, . . . . . Yn denote tr independent random variables such that 
1: has density 

h03; zi) = exp[yai-ai(ai)+bi(y)] (5.4.9) 

Further, assume that a one-to-one function k can be specified such that 

where xi is a p'-vector of observable variables, and pis an unobservable 
parameter vector. For logistic regression, ai = log [pi/(l -pi)], 
k(z) = z ,  and the other quantities are defined after (5.4.2). The function 
k is called a link fur~ctiot~ since it provides the link between the 
parameters ai and the linear regression function. I t  is often useful to 
formulate the link function in terms of E(J.~). 

The log likelihood for qi = xfB based on the i-th case only is simply 

where A i ( i l i )  = (li(k(rli)). The corresponding score and observed in- 
formation are 

s, (qi) = ii(tli) = yiL(tli) - ~ ~ ( 4 ' ~ )  (5.4.1 I )  
arid 

\vi(tli) = - i;(qi) = - yik(qi) + ~ ~ ( 4 ' ~ )  (5.4.12) 

respectively. For logistic regression, si = yi - !tipi and wi = 11,p,.(l -pi), 
i =  1.2 , . . . .  11. 

The log likelihood for p based on all 11 cases is 

and the corresponding maximum likelihood estimate gof psatisfies the 
system of equations 

X T i  = 0 

where S is the tr-vector with elements Si = .si(x:B) defined at (5.4.1 1). 
Methods of inference, computations and the uniqueness of the 
estimators are discussed in Nelder and Wedderburn (1972) and 
Wedderburn (1974, 1976). Here, we assume that the maximum 
likelihood estimate is unique. 
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in general, the diagnostic methods developed for logistic regression 
also can be used for generalized linear models characterized by 
(5.4.9) and (5.4.10). In particular, (5.4.4) and (5.4.5) apply with 
w = diag [wi(x~$)], and i = ( s i (x~$ ) ) ,  where \vi and si are defined at 
(5.4.12) and (5.4.1 I ) ,  respectively. One possible general extension of the 
Studentized residual r f  suggested by this procedure is F: = 

s*?/Gi(l - Cii). 
The i? arise also in connection with an extension of the normal 

theory mean shift outlier model, as outlined in Section 2.2.2, when 
applied to generalized linear models. One way to describe the 
possibility that the i-th case is an outlier is to let 

where d j  = 1 i f j  = i and 0 otherwise. This form might be appropriate 
for the leukemia data, for example, because high white blood cell 
counts are unreliable. I t  is easily verified that the maximum likelihood 
estimator of B under (5.4.13) is equal to &,, the maximum likelihood 
estimator of f i  obtained from the original model after deletion of the i- 
th case. The maximum likelihood estimator of q5 will satisfy si(x:&, 

+ q5) = 0. 
In general, r*: is a modified version of the score test statistic (Cox and 

Hinkley, 1974, p. 324) for the hypothesis 4 = 0 obtained by substitut- 
ing the observed information matrix for the expected information 
matrix. For models with k(qi) = 0, the observed and expected inform- 
ation matrices are the same, and i2 is the score test statistic. This 
happens, for example, in logistic regression. 

E X A M P L E  5.4.2. L E U K E M I A  D A T A  NO. 4. The log likelihood 
based on the i-th case for the AG positive cases in the leukemia data can 
be written as 

li (qi) = - yiexp [ - log (0, ) - 0, .xi] - [log (0, ) + O 2  .xi] 

which is of the form given at (5.4.10) with k(qi) = - exp ( - qi), A i ( t l i )  

= qi, bi(yi) = 0, and qi = xf with pT = [log (0, ), O,]. The cor- 
responding score and observed information are 

and 

Thus, w = diag[yiexp ( -  x ~ j ) ] ,  and ii = yiexp ( - x:]) - 1. Values 
of D!(X~WX, p'), Gii and ii are given in the last three columns of 
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Table 5.1.1 for the AG positive cases. The information contained in 
these three statistics is similar to that given by the E,? and cii obtained in 
Section 5.1, and the fully iterated influence measure LDi obtained in 
Section 5.2 (values for these statistics are also given in Table 5.1.1). The 
two distance measures LD, and D! ( x ~ w x , ~ ' )  show very good 
agreement, both clearly identifying case 17 as influential:simi1arly, the 
ci* and the ti are closely related, with large c,? corresponding to large ti 
and small c: corresponding to large negative Fi.Theagreement between 
the c i i  and the Cii is not as strong as between the other statistics. Thus, 
the cii and the Cii do not appear to contain the same information.0 

5.5 Robust regression 

In the usual linear regression model Y = X j? + E ,  a robust estimate pof 
/? is obtained by minimizing 

n 

C P [ - X' B 1/51 (5.5.1) 
i =  1 

with respect to /I, where p is a suitably selected loss function and 8 is a 
robust scale estimate that may be determined previously or simul- 
taneously to achieve scale invariance. Estimators that minimize (5.5.1) 
are called M-estimators, a shorthand for maximum likelihood type 
estimators. For a discussion of robust regression methods see, for 
example, Huber (1977, 1981) and Hogg (1979). 

Robust regression is designed to reduce or bound the influence of 
outlying responses that often occur when sampling from a symmetric 
long-tailed distribution. A number of authors, including Huber (1977), 
caution that robust regression may be ineffective in the presence of 
remote points in the factor space. Robust estimates can be as sensitive 
as least squares estimates to such points and it is for this reason that 
measures of case influence are needed in robust regression. 

Many of the methods discussed in Chapter 3 for measuring the 
influence of the i-th case can be applied to robust regression without 
change. For example, let all cases have error variance a2 except for case i 
which has var ( c i )  = ( T ~ / M ~ , ,  \vi > 0, and let W = diag(wj), wj = 1 for all 
,i # i. Then the influence of case i can be assessed by applying (5.5.1) to 
the transformed model 

and monitoring the behavior of the corresponding robust estimates 
(byi ) as \$ti is varied. 
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E X A M P L E  5.5.1. C L O U D  S E E D I N G  NO.  12. In this example, we 
illustrate the preceding remarks by using the loss function (Huber, 
1964, 19731, 

I I 
1 1  

l z l  I c 
I 

I I 
P ( z )  = ( 5 . 5 . 3 )  1 I 

> c 
I I 

with c = 1.345 to fit model (2.4.23) modified according to (5.5.2) with 
i = 2, to the cloud seeding data. The robust estimates B ( r c 1 2  ). 0 < by2 

I 1, were obtained via an iterative algorithm based on Newton's 
method as described in Huber (1977, p. 38) and Holland and Welsch 
(1977). The value of w 2  was stepped from w2 = 1 to 0; at each step the 
last value of ( f l ,6 )  was used as starting value. 

Figure 5.5.1 contains a plot of the p l4(w2)  component of j ( w 2 )  

against w,. The diagonal line is added for reference; the approximate 

I I 

Figure 5.5.1 p,4(w2) versus bc,, cloud seeding data. Standard error at ,s, = 1 1 1 
I I 

is approximately 0.07 
I I 
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standard error at w, = 1 is about 0.07. Clearly, P14 ( w ,  ) is insensitive to 
perturbations near w, = 1, but is highly sensitive to perturbations as 
\\I, -+ 0. This plot should be compared to the corresponding plot for 

least squares estimation given in Fig. 3.4.1. In this example the behavior 
of the least squares and robust estimators are remarkably, similar. 

The sample influence curve (3.4.6) for robust regression is 

where p,,, = $(wl -+ 0) is the robust estimate of /?computed without 
the i-th case. Various useful norms of the sample influence curve can be 
obtained by following the rationale used in the linear least squares 
problem. One possible norm of the sample influence curve is 
Di ( X T  X, p'k) where k is a scalar chosen so that k (XTX)-  corresponds 
to an estimate of the asymptotic covariance matrix of $ (see Hogg, 
1979; Huber, 1981, Chapter 7). 

A second norm can be based on the iteratively reweighted least 
squares approach to computation of 8. Let Ci = ( y i - x T P ) / 3 ,  $ ( z )  

= dp(z)/dz and let = diag {$(4)/4}. The norm is then given by 
Dl (XT $% X, p'G2) .  Generally, it is difficult to recommend a specific 
norm of this type since the best way to estimate thecovariance matrix of 

is apparently unknown. 
As indicated previously in this chapter, computation of the sample 

influence curve will most likely be expensive. We consider again the 
possibility of using a one-step estimate &, in place of &,. Let 
$' = d$ (z)/dz, 0 = diag (q',) where cji = (I' (Ci) and let ci = qi xT 

( X T Q  X ) -  x,. Then a single step of Newton's method using the fully 
iterated, complete data estimates ($,8) for starting values gives 

provided, of course. that the relevant quantities are well defined (for 
example, Cii f. 1). For linear least squares, the one-step estimator is 
exact and reduces to 

as shown at (3.4.6). The correspondence between least squares and 
robust estimators should be clear from a comparison of (5.5.5) and 
(5.5.6). In particular, the residuals ei in (5.5.6) have been replaced by the 
Winsorized residuals cS$(Ci) and oii has been replaced by Cii. 
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A precise characterization of the accuracy of this one-step approxi- 
mation (5.5.5) is unavailable, but the following observations may help. 
First, for estimators with redescending $-functions, such as Andrews' 
(1974) sine estimator, (XT Q,,) X(i,) need not be positive definite and 
the one-step 'estimator f,'i, cannot be guaranteed to decrease the 
objective function. The one-step estimators can be expected to be more 
satisfactory for monotone $-functions. 

Second, i t  is not difficult to verify that if $ is piecewise linear (for 
example, the t+h function corresponding to (5.5.3)) and if the classifi- 
cation of Zj according to the pieces of $ is the same as the classification 
of the one-step residuals c?; = (yj - xf ):,,)/8 for all j # i. then p,',, 
= &,,. More generally, the accuracy of the one-step approximation 
seems to depend on the differences 1 Cj - e'f 1. 

Assuming a sufficiently accurate one-step approximation. the effects 
of remote points in the factor space on robust estimators can be 
illustrated by using Huber's loss function: 

1, 1 6 ? i l l c  @, = 
0, otherwise 

x T ( x T Q x ) - l x i ,  5 c 

0, otherwise 

and 

( ~ ( x T Q x ) - ~  xic .  e', > c 

If - c 5 2, I c, the influence of the i-th case can be greater than that for 
least squares since vii I Cii, i = 1, 2, . . . , n. Similarly when 16?,1 > c  the 
influence of the i-th case will generally be less than that for least squares. 
Consider, for example, the situation in which ti = 0 but qj = 1 for all 
j + i. If i?, > c, then 

(XTX) - I  xi 
( n - l ) C P - P : i ) l  = (n-1) 

1 - V i i  
( 6 ~ )  

which is the SIC, for least squares reduced by the factor c/e',. Also, 
f o r j f  i 
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E X A M P L E  5.5.2. C L O U D S E E D I N G  NO. 13. Toillustratetheuseof 
the one-step approximation, we use the cloud seeding data. The full 
sample estimate for Huber's method was obtained with the least 
squares estimate as starting values, with Huber's (1977) proposal 2 as 
the iterative computing method, and using 8 = median absolute 
residua1/0.6745 to estimate scale. Fifteen iterations were required to get 
a solution such that the maximum proportional change in any 
coeficient from the last iteration was less than 0.01.One-step measures 
D: (xT%x, p'bZ) and 'fully iterated' Di(XT%x, ~ ' 8 ~ )  based on 10 
iterations were then computed. 

Table 5.5.1 lists the two measures for the five cases with the largest 
values of D i ( X T  w X, With theexception of the clearly influential 
case 2. agreement between the two measures is adequate, and even case 
2 is clearly identified by the one-step measure. Overall, 9 of 24 cases are 
underestimated using the one-step estimate, but none seriously. 

Table 5.5.1 Fioe lurgesr i t~ue t rce  measures, i.loud 
seedir~g dnrn 

Case D! (XTW X, p ' d 2 )  D ~ ( X T W X ,  p ' d 2 )  

2 20.2 1 9.03 
4 0.42 0.49 
7 0.34 0.38 

17 0.92 0.85 
24 0.51 0.37 

This analysis has been repeated for Andrews' (1974) sine estimator 
and for several other data sets. While the results for the sine estimate 
applied to these data generally agree with the results for the Huber 
estimate, in other problems we have found the agreement to be much 
worse. More work is needed to understand the one-step distance 
measures and their usefulness when applied to the robust estimators.0 

5.6 Other problems 

In  this section we give brief accounts of some of the other problems for 
which influence has been studied, including the correlation coeficient, 
ciiscriniinant analysis, and linear regression with incomplete data. 
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Suppose that X I ,  X, are normal random variables with means / 1 , ,  11,. 

variances a:, a:, and covariance ( T , Z  The influence curve for the 
correlation coefficient p = a12/cilrr2 was given by Mallows (1975) as 

where gj = (xi - pj)/aj, j = 1.2. The empirical influence curve for a 

sample ( x , ~ ,  xZi),  i = 1,2, . . . , )I, is obtained by substituting the 
corresponding sample cdf in place of F, 

where Aj = (xj- Sj)/sj, Sj = Xi.uji/,~ and s3 = Xi (xji - . T ~ ) ~ / , I ,  j = 1 ,  2, 
and jj is the usual estimator of p. The sample influence curve is given by 

Both sample versions of the influence curve for p can provide useful 
information on the effects of single cases in determining 6. In small 
samples, however, where efficient calculation and methods of display 
are not a serious issue, the SIC seems preferable, as it has a 
straightforward interpretation and is perhaps the most directly rele- 
vant. Devlin et a/. (1975) suggest the SIC for use in detecting outliers that 
substantially affect b. 

For the usual estimator b, the SIC can be studied by expressing b,,, as 
a function of i, and other full sample statistics. One finds 

where rji = (xji - Zi)/[sj(l - 1/tl)"2] is the i-th Studentized residual. 
i = 1.2, . . . , 11, for the j-th marginal sample, j = 1. 2. Since rji is a 
monotonic function of the normal theory test that the i-th case is a 
marginal outlier under the mean-shift model, the denominator of 
(5.6.4) will be small if either x l i  or xz i  appears to be an outlier when 
judged against the respective marginal samples. A marginal outlier will 
have a substantial influence on 6. 

The numerator in (5.6.4) measures the joint effect of ( x , ~ ,  x Z i )  and 



206 R E S I D U A L S  A N D  I N F L U E N C E  I N  R E G R E S S I O N  

depends on the location of (.uri, x,;) relative to (.f,, 2,) .  If, for example. 
j, > 0 and .u, ; < ?(, and x Z i  > i2 (or x i ,  > 2 ,  and x i ,  < 2 , )  then 
jl - j l ( i ,  < 0 .  

In large samples, an approximation to the sample influence curve 
nray be sufficient. As a first-order approximation, expand the denomi- 
nator of (5 .6 .4)  in ( r : i / n ,  r i i / n )  in a linear Taylor expansion*about (0 ,O) .  
For large 11, (5 .6 .3)  becomes 

which is essentially the empirical influence curve evaluated at ( x l i ,  x Z i ) .  
Devlin et 01. (1975)  suggest a graphical technique based on this 
approximation. Let 

and 

so that 

EIC(.u,, .u2) = ( 1  - f i2)u,  U ,  (5 .6 .6)  

The advantage of this form is that the contours of constant influence 
are hyperbolae. Devlin et (11. (1975)  suggest superimposing selected 
contours of the EIC on scatter plots of (u , ,  u , )  and, then reading the 
approximate influence directly from the plot. . 

As seen previously, procedures based on'. the EIC should be 
reasonable approximations to the SIC as long as n is large and the r i  are 
small to moderate. If rji is large (the case is well removed from the 
centroid), Devlin et nl. (1975)  suggested that the EIC will usually 
underestimate the SIC. For this reason, their graphical procedure is 
perhaps best used as an initial screen. If a case is found to be influential 
i t  may be necessary to conduct a more precise investigation using the 
SIC. 

Campbell (1978)  has considered the use of the influence curve as an aid 
in detecting outliers in two population normal discriminant analysis. 
He derives the theoretical and sample influence curves for the usual 
summary statistics, namely the Mahalanobis D2, the vector of dis- 
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criminant means, and the vector of discriminant coefficients (see 
Lachenbruch, 1975, for precise definiti~ns). Assuminga perturbation in 
the first population, the influencecurve for D2 evaluated at a point x is a 
quadratic function of the difference between the discriminant scores at 
x and at the mean of the first population. The sample influence curve, in 
which estimates replace parameters, corresponds to a [),,-like measure. 
since there is no component of the influence curve to correspond to a 
residual. Thus, influential cases for D2 are those that are more distant 
(in an appropriate metric) from the mean of the other population. 
Campbell also discusses a function of the influence curve for D2 and the 
other statistics that can be useful in graphical methods for the study of 
outlying cases. 

5.6.3 L I N E A R  REGRESSION W I T H  I N C O M P L E T E  D A T A  

Suppose we wish to fit a linear model of the type discussed earlier in this 
monograph but values for some of the variables are not observed. We 
call this a regression problem with incomplete data. Many writers have 
addressed the problem of estimation of parameters with incomplete 
data, often assuming that the unobserved data are 'missing at random' 
(Rubin, 1976), and that the observed data follow a multivariate normal 
distribution (see, for example, Little, 1979). Computational methods to 
find the maximum likelihood estimates of parameters of the con- 
ditional distribution of the response, given the predictors, have been 
given by Orchard and Woodbury (1972), Dempster, Laird and Rubin 
(1977) and Hocking and Marx (1979), among others. 

In all of this literature, little or no attention has been paid to the 
problem of analyzing residuals and assessing influence. Shih (1981) has 
made first steps in this direction. He defines residuals by essentially 
using the general approach of Cox and Snell outlined in Section 5.1. I f  
the EM-algorithm of Dempster er al. is used for the computations a 
very elegant result is obtained. At convergence of the algorithm, fill-in 
values for unobserved values are estimated, and the residuals can then 
be computed in the usual way based on the filled-in data. Studentized 
residuals, however, are not as easy to obtain, as the likelihood function, 
which is needed for the methods of Cox and Snell, is relatively 
complicated. Shih has also considered the use of one-step estimators. 
also using the EM algorithm, of the sample influence curve. 

Generally, the maximum likelihood residuals seem to be superior to 
the competitors, such as the residuals computed only from the fully 
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observed cases. However, much more experience with these residuals is 
required for them to be well understood. 

For influence analysis, one can show that incomplete cases will 
generally not be influential. In addition, the extent to which one-step 
approximations are useful seems to depend on the covariance structure 
of the data, and the pattern of the incomplete data. 

. 



Appendix 

I 

I 

I I 

I 

A.l  Weighted least squares I 
I 

I I 
The weighted least squares model is given by 

I 
Y = X B + E  A l l )  

I ~ 
where all quantities are as defined near (2.1.1), except that Var (6) ! I 

= a 2 W -  and W isa known n x 11 diagonal matrix with wii > O.The w,, 

are often called case weights. Although weighted least squares esti- 
! I  

mators can be computed directly, i t  is usual to transform to an I I 

unweighted least squares problem, and solve this simpler version. 1 1  
Multiplying both sides of (A.l.l) on the left by W'I2, I ~ 

I I 
l 

or, if Y* = WLi2Y, X* = W112X, and E* = W1I2e, 
I 

1  I 

Y* = X*/?+E* (A. 1.2) 1 I 

Since Var(&*) = c21, it follows immediately that fi = (X*TX*)-lX*TY*. 
Computationally, then, 8 can be obtained by multiplying j., 

and each element of x i ,  including the constant, by w ~ , ' , ' ~ ,  and solving 
the resulting unweighted least squares problem. Using this 
transformation, the residuals are e* = Y* - ~ * f i  = w1I2 (Y - ~ g ) .  1 1  

while the correct residuals for the model (A.l.l) are e = Y - xP. The I 

elements of e* are sometimes called weighted residuals, and of course e 1 1  

= W-'I2e*. Studentized residuals are identical under either formu- I 

lation. Distance measures are also the same under both formulations. I 

provided, of course, that the correct norm is used. For model (A.l.l). 
the appropriate norm is Di(XTWX, p'c?2), which is equivalent to I 

Di(X*'X*, PI&'), the correct norm for (A.1.2). I 

I I  
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A.2 Updating formulae 

Let A be a p' x p' rank p' symmetric matrix, and suppose that a 
and b are q x p' rank q matrices. Then, provided that the inverses 
exist, 

This remarkable formula shows how to modify the inverse of the 
corrected cross product matrix when one or more rows of a matrix are 
deleted or added. The most important special case is that of deleting a 
single row xT from X. Setting A = XTX, a = - xT, b = x:, 

A version of this formula was given by Gauss (1821), and in several 
papers about 1950 (Bartlett, 195 1; Plackett, 1950; Sherman and 
Morrison, 1949; Woodbury, 1950). Bingham (1977) used this basic 
formula in a wide variety of applications in regression. A discussion of 
the history of this type of updating, and generalizations of it, is given by 
Henderson and Searle (1981). 

A closely related result concerns the determinant of a partitioned 
q x q matrix Z, where 

and A and D are nonsingular. Then, 

This result is attributed to J. Schur by Henderson and Searle (1981). It 
can be used to establish several useful updating and downdating 
formulae. For example, let A = XTX, B = Xf, C = X,, and D = I,, 
where the use of I as a subscript is as in Section 3.6. Then 
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A.3 Residual correlations 

Let v i j  = x : ( X T X ) - ' x j  be the (i, j)-th element of V and define pi, to be 

the correlation between the i-th and the j-th residuals, 

If x i  = x j ,  then 
p = - v. . / ( l  - v..) 

11 (A.3.2) 

The residual correlation for replicated rows of X is thus always negative 
and will be large only if the corresponding vi i  is large. However, 

where c > 1 is the number of replicates of xi.  For replicated points, 
therefore, large negative correlations ( p i ]  < - 3) can occur only if x i  is 
replicated twice. 

To investigate the general causes of a large value for p:, we shall f i x  x j  
and choose x i  to maximize p$ (Cook. 1979). The required calculations 
are facilitated by first writing p$ in terms of explicit quadratic forms in 
xi. Let 

V k l ( i )  = x:(x ; )  X( i )  ) -  'x, 

Using (A.2.1), 

v k ~  = vk l ( i )  - ~ki( i)vI i ( i ) /( l  + vii(i)). (A.3.3) 
and 

vkl(i) = Vkl  + vkivli/(l - vii). (A.3.4) 

These expressions show how to update and downdate the elements 
of V: 

V i j  = vi j ( i ) / ( l  + vii(i)) (A.3.5) 

0..  = 0.. . -v2. . / (1  + t  ) JJ I J ( I )  I J ( ~ )  ' i i ( i )  (A.3.6) 
and 

V i i  = vii(i) / ( I  + vii(i)). (A.3.7) 

Finally, p$ may be expressed as, 
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This form is convenient since vii( i ,  and v ; , ~ ,  are quadratic forms in xi and 
the corresponding inner product matrix (X$ ,X( , , ) -  ' does not depend on 
xi by construction. Since x j  is to be held fixed, ujjci) is a constant. Thus, to 
maximize p$ by choice of xi i t  is sufficient to maximize 

If the model contains a constant term, as will usually be the case, the 
first term of xi is constrained to be 1 and the maximum of f ( x i )  must be 
taken with respect to the last p components of xi. Assume that the 
independent variables are measured around the sample averages in the 
reduced data set, and let x: = (1, x:) and 

and (A.3.9) can be usefully re-expressed as 

The largest possible value for p:j will obviously depend on the subset 
of R P  over which the maximum is taken. If the model contains 
functionally related terms (for example, x and x 2 )  the appropriate 
subset may be complex and will depend on the model. Here, we 
consider the unconstrained maximum over RP by first considering 
subsets of the form G ( k )  = { ~ ~ l x : ( % , X ( ~ ) ) -  ' x i  = k ,  k > 0) and then 
maximizing over k. The effect of this is that for some models the derived 
maximum may not be attainable. 

Using the Cauchy-Schwarz inequality, i t  can be verified that 

max [j'(xi)] = +(x:(%) ?qij)- ' x ~ ) " ~  
C ( k )  

(A.3.11) 
which is attained at 

xi = x j k ' / ( x J  ( X i ) q i , ) - ' x j ) '  

The global maximum can now be obtained by finding the value of k  
which maximizes (A.3.11). This value is k* = t l 2 x T ( G ,  Xti,)- ' x )  
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Substituting k* into (A.3.1 I )  and the resulting expression into (A.2.81 
and simplifying yields the final result, 

I 1  1 
max (pi:.) = tljjci,-- - -- 

xi n - 1  t l - 1  

which is attained at x i  = n x j .  

These results show that for pc to be large either xi  or x, must he a 
remote point. Otherwise, v j j , i ,  and thus (A.3.12) will be small. A second 
requirement for a high correlation is that one point must be (ap- 
proximately) a positive scalar multiple of the other, x i  Z d x j  where 

d > 0. With x j  fixed, the value of x i  which maximizes p$ is x i  = 11.r~. 

Moreover, since the right side of (A.3.1 I )  is monotonically increasing in 
k for k I k*, in any fixed data set the correlation between a remote pair 
of points which are (approximate) replicates will tend to be large. 
Finally, when n is large, high correlations will also occur when 
xi  r - dx j .  When xi  = - x j  the cases lie on the opposite edges of the 
sampled region and pi, > 0. 
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