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Abstract. Residuated fuzzy logic calculi are related to continuous t-norms,
which are used as truth functions for conjunction, and their residua as truth
functions for implication. In these logics, a negation is also definable from
the implication and the truth constahinamely—y is ¢ — 0. However, this
negation behaves quite differently depending on the t-norm. For a nilpotent
t-norm (a t-norm which is isomorphic taukasiewicz t-norm), it turns out
that— is an involutive negation. However, for t-norms without non-trivial
zero divisors;— is Godel negation. In this paper we investigate the residu-
ated fuzzy logics arising from continuous t-norms without non-trivial zero
divisors and extended with an involutive negation.

1. Introduction

Residuated fuzzy (many-valued) logic calculi are related to continuous t-
norms which are used as truth functions for the conjunction connective,
and their residua as truth functions for the implication. Main examples are
Lukasiewicz (I, Godel (G) and producti{) logics, related to ukasiewicz
t-norm @ * y = max(0,z + y — 1)), Godel t-norm { * y = min(x, y))

and product t-norma x y = z - y) respectively. In the fifties Rose and
Rosser [7] provided completeness results fakdsiewicz logic and Dum-
met [2] for Godel logic, and recently three of the authors [5] axiomatized
product logic. More recently, &ek [4] has proposed the axiomatic system
BL corresponding to a generic continuous t-norm and havjiigandi! as
extensions.
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In all these logics, a negation is also definable from the implication and
the truth constart, namely—¢ is ¢ — 0. However, this negation behaves
quite differently depending on the t-norm.

Nilpotentt-norms are continuous t-normssuch that each elementc
(0,1) is nilpotent, that is, there existse N such thatex .. xz = 0. Ithas
been shown that nilpotent t-norms are exactly those which are isomorphic
to Lukasiewicz t-norm. For nilpotent t-norms, it turns out that its residuum
= defines an involutive negatiém : [0,1] — [0, 1] as

n(z) = (¢ = 0),

that is,n is a non-increasing involution in [0, 1]. In particular, fankasie-
wicz implication(z = 0) =1 — z.

Among t-norms which are not nilpotent, we are interested in those which
do not havenon-trivial zero divisorsi.e., which verify:

Va,y € 0,1,z xy =0iff (x =00ry =0).
This condition characterizes those t-norms for which the negation definable

from its residuum, i.en(x) = (x = 0), is not any longer a strong negation
but Godel negation, that is:

1,if x =0,
(z=0)= {0, otherwise.

If we restrict ourselves to continuous t-norms, this is the case of the so-called
strict t-norms (i.e. those which are isomorphic to product), tiaimum
t-norm, and those t-norms which are ordinal sums not having a t-norm iso-
morphic to’lukasiewicz t-norm in the first square around the poino)

(see the Appendix for further details). Observe thétdsiewicz t-norm has
zero divisors, which it is not the case of product and minimum t-norms.

In this paper we investigate the many-valued residuated logics arising
from continuous t-norms without non-trivial zero divisors and extended with
an involutive negation. In the next section we provide the main results about
the residuated fuzzy logics BL and Blneeded for the paper. In Section 3
and 4, we first define SBL, the schematic extension of the basic logic BL
accounting for those logics in which the negatiedefined above is &del
negation, and afterwards we extend it with an involutive negation and present
completeness results for the resulting logic SBIn Section 5 we show how
the standard completeness theorems fad& and product logics generalize
when both logics are extended with the involutive negation. In Section 6
predicate calculi for SBL, product and@el logics with involutive negation
are studied. Finally, in Section 7 we extend product add&s logics with
involutive negation by introducing a truth-constant for each rational of [0,
1] and we discuss Pavelka-style completeness results for both logics.

1 Also calledstrongnegation in the literature on fuzzy set connectives.
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2. Background: the basic fuzzy logics BL and Bla

Here we summarize some important notions and facts from [4].

2.1. The basic fuzzy logic BL

The language ofthe basiclogic BL is builtin the usual way from a (countable)
set of propositional variables, a conjuncti&n an implication— and the
truth constan@. Further connectives are defined as follows:

e NP is p&(p — 1),

eV apis ((p = ¥) =) A (Y — ) = p),
—pisp — 0,

p=1vis (¢ = V)& = p).

The following formulas are thaxiomsof BL:
(A) (e —=¢) = (¥ = x) = (¢ = X))

(A2)  (p&y) = ¢

(A3)  (p&y) — (Y&ep)

(Ad)  (p&(p = 1)) = (W&(th = p))

(A5a) (¢ — (v = x)) = ((p&y) = x)

(ASb)  ((w&1h) = x) = (0 — (¥ = X))

(AB)  ((p—=v)—=x) = (Y —=9)—=Xx) = x)

(A7) 00—
Thededuction ruleof BL is modus ponens.
If one takes a continuous t-normfor the truth function of&; and the
corresponding residuuim=- for the truth function of— (and evaluating
by 0) then all the axioms of BL become 1-tautologies (have identically the
truth value 1). And since modus ponens preserves 1-tautologies, all formulas
provable in BL are 1-tautologies.
It has been shown [4] that the well-knownKasiewicz logic is the ex-
tension of BL by the axiom
L e =
and Gdel logic is the extension of BL by the axiom
(C) ¢ — (p&y).
Finally, product logic is just the extension of BL by the following two ax-
ioms:
(11) = x = (((p&x) = (&x)) = (¢ = ¥)),
I12) o A—p — 0.

2 The residuum= is the binary function on [0, 1] defined &8 = y) = sup{z € [0, 1] |
zxz <y}
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2.2. BL-algebras and a completeness theorem

A BL-algebrais an algebra
L= (L,NUx%=,01)
with four binary operations and two constants such that

(i) (L,n,uU,0,1) is a lattice with the greatest elemehtand the least
elemen® (with respect to the lattice ordering),

(i) (L, *,1)is a commutative semigroup with the unit elemenie. x is
commutative, associative aid ¢ = x for all =,

(i) the following conditions hold for alk, y, z:
QD) z<(z=yiff zxz<y
2 zny=xx*x(x=1y)
@) e=yUly=2) =1

Thus, in other words, a BL-algebra isesiduated latticesatisfying (2) and

(3). The class of all BL-algebras is a variety. Moreover, each BL-algebra

can be decomposed as a subdirect product of linearly ordered BL-algebras.
Defining—x = (z = 0), it turns out that MValgebrasare BL-algebras

satisfying——ax = x, G-algebrasare BL-algebras satisfying* x = x, and

finally, product algebrasre BL-algebras satisfying

xN-x =0
(z= ((zxz=yx2)=> (x=y))) =1

The logic BL is sound with respect to-tautologies: ifp is provable in
BL then is anL -tautology for each BL-algebra (i.e. has the valuéry,
for each evaluation of variables by elementd.oéxtended to all formulas
using operations df as truth functions).

Theorem 1. BL is complete, i.e. for each formula the following three
conditions are equivalent:

(i) s provable inBL,
(i) for eachBL-algebral, ¢ is anL- tautology,
(iii) for each linearly orderedBL-algebral, ¢ is anL-tautology.

This theorem also holds if we replace BL byehematic extensiéig of BL,
and BL-algebras by the correspondifi@lgebras (BL-algebras in which all
axioms ofC are tautologies).

Note that we also gettrong completened®sr provability in theories
over BL. For completeness theorems of the three main many-valued logics
(Lukasiewicz, ®@del and product) see [4].

8 A calculus which results from BL by adding some axiom schemata.
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2.3. The extended basic fuzzy logicBL

Now we expand the language of BL by a new unary (projection) connective
A whose truth function (denoted also 1) is defined as follows:

1,ifx=1
Ar = {0, otherwise

Theaxiomsof the extended basic logic Bl (first formulated by Baaz in [1])
are those of BL plus:

(A1) ApvVv-Ap

(42)  A(p V) = (ApV Ay)

(A43) Ap =

(A4) Ap — AAp

(45)  Ap = ¥) = (Ap — Ay)
Deduction ruleof BL o are modus ponens anécessitatiorfrom ¢ derive
Aep.

A A-algebrais a structurk = (L,N, U, x,=,0,1, A) which is a BL-

algebra expanded by a unary operatitrsatisfying the following condi-
tions:

Az U-Azx =1

AlzUy) < Az U Ay

Ax <z

Ax < AAzx

(Az) * (A(z = y)) < Ay
Al =1

The notions ol -evaluation and. -tautology easily generalize to BLand
A-algebras. The decomposition of any Bhlgebra as a subdirect product of
linearly ordered ones also holds. Notice that in linearly ordeteslgebras
we have thatAl = 1 andAa = 0 for a # 1. Then the above completeness
theorem for BL extends to Bh as follows.

Theorem 2. BL 4 is complete, i.e. for each formulathe following three
conditions are equivalent:

(i) ¢ is provable inBL 4,
(i) for eachA-algebral, ¢ is anL-tautology,
(i) for each linearly orderedA-algebral, ¢ is anL -tautology.

A strong completeneggsult for provability in theories over BL is also
givenin [4].
3. The basic strict fuzzy logic SBL

In this section we introduce the strict basic logic SBL, an extension of
the basic logic BL for which the linearly ordered BL-algebras that satisfy
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SBL axioms are those havingd@el negation. In the next section we shall
introduce an involutive negation over SBL.

Definition 1. Axioms of the basic strict fuzzy logic SBL are those of BL
plus the following axiom: B B
(STR) (&t = 0) = ((¢ = 0) V (¢ = 0)).

An equivalent expression of the axiom (STR) is:

~(p&tp) = (= V ),

where—y is ¢ — 0. Notice that (STR) is a theorem in both product and
Godel logics. Moreover, it can be shown that SBL proyes —¢ — 0
(cf. [4] Sect. 4.1).

Definition 2. An SBL-algebra is a BL-algebr@., N, U, x, =, 0, 1) verify-
ing this further condition:

(xxy)=0) = (z=0)U(y=0).
Note that this condition is equivalent to the seemingly weaker condition
(zxy) = 0)= (z=0)U(y=0)) =1
or, equivalently,

(x*xy)=0) < (x=0)U(y = 0).

To show the converse inequality just observe that
(x=0) < ((x*y) = 0)sincezr xy < x,

and similarly(y = 0) < ((z*y) = 0).

Examples of SBL-algebras are the algebfi@s1], max, min, , =, 0,
1), wherex is a t-norm without non-trivial zero divisors ard its corre-
sponding residuum, and the quotient algebra SBaf provably equivalent
formulas.

In linearly ordered SBL-algebras, the above condition implies

xxy=0iff (xt =0o0ry =0). 1)

Indeed, ifrxy = 0then((z*y) = 0) = 1,thus(z = 0)U(y = 0) =1,
which, due to linearity, giveéz = 0) = 1or(y = 0) = 1,i.e.x = 0 or
y = 0.

Moreover, this condition identifies linearly ordered SBL-algebras with
linearly ordered BL-algebras which havéel negation.

Lemma 1. A linearly orderedBL-algebra is anSBL-algebra iff it satisfies
(1), and iff the negatiomx = (z = 0) is Godel negation.
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Proof.We have shown above that linearly ordered SBL-algebras satisfy (1).
In a linearly ordered BL-algebra satisfying (Bz = (z = 0) = sup{z |
xxz < 0} which is 1 ifz = 0 and is 0 otherwise due to (1). Finally

if a linearly ordered BL-algebra hasi@el negation then we easily get the
condition of SBL-algebra. Indeed iy = 0then both sidesinthe condition

of SBL-algebras equal 1, andafx iy > 0 then both sides equal 0. O

Theorem 3 (Completeness)The logicSBL is complete w.r.t. the class of
linearly orderedSBL-algebras.

This follows immediately from [4] 2.3.22, noticing that SBL is a
schematic extension of BL.

4. Extending SBL by an involutive negation

Now we extend SBL with a unary connective Thesemantic®of ~ is an
arbitrary strong negation function

n 0,1 — [0,1]

which is a decreasing involution, i.e(n(z)) = z andn(z) < n(y) when-
everz > y. It turns out that with both negations,and~, the projection
connectiveA is definable:

Ap is

Moreover, notice that having an involutive negation in the logic enriches,
in a non-trivial way, the representational power of the logical language. For
instance, a strong disjunctigrnvv is definable now as-(~y &~1)), with

truth function thet-conorma defined asc © y = n(n(z) * n(y)), and a
contrapositive implicatiopp < 1) is definable as-pV1), with truth function
thestrong implicatiorfunction= defined agz = y) = ~x @ y. Although
these new connectives may be interesting for future development, we shall
make no further use of them in the rest of the paper.

Definition 3. Axioms of SBL... are those of SBL plus
(~1) (~~p) = (Involution)
(~2) =~
(~3) A(p — ) = A(~p — ~p) (Order Reversing)
(A1) ApV-Ap
(42)  A(p V) = (ApV Ay)
(45)  Alp = ¢¥) = (Ap = AY)
where Ay is —~¢. Deduction rules oBBL... are those oBL 4, that is,
modus ponenandnecessitatioffior A.

~
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Lemma 2. SBL.. proves

(A3) Ap—o

(A4) Ap — AAp
and thusSBL.. extenddBBL 5. Moreover, inSBL... the following is a derived
inference rule:

(CP) fromp — 1 derive~y) — ~o.

Proof. (A3) is an easy consequence of the definition of the connective
(~2) and(~1). (A4) comes from £3) taking 1 fory andy for ¢. Finally,
if SBL.. provesy — 1, it also provesA(y — 1) (necessitation), and thus
it provesA(~1y — ~p) (axiom (~3)). By (A3), it also provesvy — ~p.

0

Lemma 3. SBL.. proves the following De Morgan laws:

(DM1)  ~(eAy) = (~p V)

(DM2)  ~(V o) = (~p A~)
Proof. We prove (DM1). Clearly, BL proveg A v — ¢, o A — 1, and
by the above derived inference rukBL.. proves~y — ~(p A1) and
~1h) — ~(¢p A1), and thus it proves alsevy) V (~1)) — ~(@ A ).

On the other direction, BL proves bothp — (~¢ V ~) and~1) —
(~¢ V ~1)). Applying again the above rule arfet1), we have thaSBL..
proves~(~¢p V ~1)) — ¢ and~(~¢ V ~1)) — 1, and thus it proves
~(~pV ~1)) = (¢ A1), and finally, by the inference rule again, it proves
~(e A1) = (~p V ~1)). This completes the proof. 0

In SBL. the classical deduction theorem fails, but we have the same
weaker formulation as in Bk (see [4] 2.4.14).

Theorem 4 (Deduction theorem).Let T' be a theory ovelSBL... Then
TU{p}Fyiff T Ap — 1.

Definition 4. An SBL.-algebra is a structurk = (L,N, U, x,=,~,0,1)
which is an SBL-algebra expanded with a unary operati@atisfying the
following conditions:

(ALl) ~~zx ==

(ANQ) < ~x

(423) Alz = y) = A~y = ~a)
(Ad) AzU-Azx=1

(ALB) A(zUy) < Az U Ay

(A6) Azx(A(x=vy)) < Ay
where—z = (z = 0) andAz = (~x = 0).
Examples o5SBL. -algebras are:

— The algebrag[0, 1], max, min, x, =, n, 0, 1) of the unit interval of the
real line with any strict t-norm, its corresponding residuated implication
= and with any involutive negation function: [0, 1] — [0, 1].
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— The quotient algebra SBL/= of provably equivalent formulas. Indeed,
since SBL. is an extension of BL, we only need to check that
is a congruence w.r.t. the involutive negation So, assume — 1) is
provable. Then, using the necessitation rdl¢y — 1) is also provable,
and by axiom(~3) we getA(~1) — ~), and finally, by(A3) we prove
~p =~

Lemma 4. In anySBL..-algebra the following properties hold:
(1) ~0=1
(2) ~1=0
(3) Al=1

Proof. (1) By (4~.2), ~0 > =0 and, by definition;-0 = (0 = 0) = 1.

(2) Using (1),~1 = ~~0, and by(A.1), ~~0 = 0.

(3) By definition,A1 = (~1 = 0), but from (2)~1 = 0, and thusAl =
(0=0)=1. O

Lemma 5. SBL.. is sound with respect to the classSBL..-algebras.

Soundness of axioms is straightforward from the definitio$B1.. -
algebras and the soundness of the necessitation inference rufeifoa
consequence of (3) of previous Lemma.

Lemma 6. In anySBL..-algebra the following properties hold:
D) ()N (~y) = ~(@Uy), (~2) U (~y) = ~(zNy)
2) Ifz <y, then~y <~z
(3) Alr=y) < (Azr= Ay)

4) Ifz<y,thenAzx < Ay
B) Azx<z

6) ArxA-x=0

(7) Az =AAzx

8) Ax=1iffx=1

9) AzxAy=A(xxy)
(10) A~z =A-x =z

Proof. (1), (3), (5) and (7) are obvious consequences of the soundness of
SBL., in particular (1) follows from (DM1), (DM2), (3) follows froniA5)

and (5) and (7) follow fromA3 and A4 respectively.
@:lfz<ythenl=(z=y)=Alz=y) = A~y = ~z) < (~y =

~z), thus~y < ~z.

(4): If x < y, applying (3) we obtain = Al = A(zx = y) < (Az = Ay).
ThereforedAx < Ay.

(6) is a direct consequence of.(6) takingy = 0.

(8) follows from (3) of Lemma 4 and (5).



112 F. Esteva et al.

(9): Itis proved in [4] 2.4.11 (4).

(10): From A..3), takingz = 1 andy = ~x, we obtainA(1 = ~z) =
A(~r~z = 0) and thenA~z = A-z. The equalityA~z = —z follows
immediately from the definition ofl. O

Lemma 7. (1) Inalinearly orderedSBL..-algebra,Axz = 0forall z # 1.
(2) The class ofBL..-algebras is a variety.

Proof. (1) Within a linearly ordere@BL..-algebra, by 4..4), we have that
Az U =Az = max(Az,~Az) = 1. Therefore eitherAz = 1, which
impliesz = 1, or (Az = 0) = 1, which impliesAz = 0.

(2) Itis obvious from the definition #BL...-algebras since all axioms can
be written as equations. O

For proving the subdirect representation theorensfk... -algebras we
will need some previous definitions and results.

Definition 5. A subset F of asBL. -algebralL is a filter if it satisfies:
(F1) Ifa,be F,thenaxbe F
(F2) Ifa € Fandb> a,thenb € F
(F3) If (a=1b) € F,then(~b = ~a) € F
Fis a prime filter if it is a filter and
(F4) PForalla,beL,(a=b)eFor(b=a)ecF

Remark 1.1f a € F thenAa € F'. Indeed, by property (F3),l = a) =
a € Fimplies(~a = ~1) = (~a = 0) = ~~a = Aa € F.

Lemma 8.

(1) Therelationn =f biff (a = b) € Fand(b = a) € F,isacongruence
relation over arSBL. -algebra.

(2) The quotient oL by = is anSBL..-algebra.

(3) The quotient algebra is linearly ordered #f is a prime filter.

(4) Linearly orderedSBL. -algebrasL are simple, that is, the only filters
of a linearly orderedSBL... algebraL are {1} and L itself.

Proof. The proofs for (1), (2) and (3) are analogous to thoseXealgebras.
The proof of (4) reduces to showing that the only filters of a linearly ordered
SBL..-algebral are{1} and the full algebrd itself. This is true because ifa
filter F has an element # 1, then, by RemarklandLemmaZq =0 € F

and thereford” = L. O

Theorem 5. AnySBL.. -algebra is a subdirect product of linearly ordered
SBL..-algebras.
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Notice that this theorem is actually a subdirect decomposition theorem be-
cause linearly ordered algebras are simple, and so subdirectly irreducible,
which is not the case for other related algebras like BL, SBLor MV
algebras. The proof of this theorem is as usual and the only critical point is
the proof of the following lemma.

Lemma 9. LetL be anSBL..-algebraand: € L. If a # 1, there is a prime
filter F on L not containinga.

Proof. The proof is very analogous to that fBf. ». The interesting point to
remark is that the least filter containing another fikeand an element is

F'={u|3v e Fu>uvxAz}.

It can be checked that’ is indeed a filter, in particular, we check that
condition (F3) is satisfied. Ifx = y) € F’, it means that, for some e F,
(x = y) > v Az, and then~y = ~x) > A(~y = ~z) = A(z =
y) > Avx Az) = Avx AAz = Av x Az, thus alsd~y = ~x) € F’
since ifv € F', thenAv € F as well.

Then the sketch of the proof is as follows. LEebe a filter not containing
a (there exists at least on&, = {1}). Let z,y € L such that neither
(r = vy),(y = z) ¢ F. Using the above definition, we can build then
and F; as the filters generated by andx = y andy = x respectively.
Then one can prove that at least one of these two filters does not canitain
this way, a sequence of nested filters not containign be built. Finally,
the prime filter which we are looking for is the union of that sequence of
filters. O

Theorem 6. SBL.. is complete w.r.t. the class 8BL. -algebras. In more
details, for each formula, the following are equivalent:

(i) SBL. ¢,
(i) ¢ is anL-tautology for eaclSBL. -algebraL,
(i) ¢ is anL-tautology for each linearly ordere8BL...-algebraL.

Proof. The proof is fully analogous to the proof of Theorem 2.3.19 of [4].
In particular, the implication (i} (iii) is soundness and trivial to verify;
(iii) = (ii) follows from the subdirect product representation and i)

() is proved by showing that the algebra of classes of mutually provably
equivalent formulas is an SBJ-algebra whose largest element is the class
of all SBL..-provable formulas. O

5. Standard completeness

In this section we turn our attention to the corresponding extensions of
productand @del logics with an involutive negation. Of course both product
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and Gdel logics are extensions of SBL, and therefore their corresponding
extensions will be extensions of SBL

Definition 6. Let G. be Gidel logic G extended by a new negatienby
axioms (~1), (~2), (~3), (A1), (A2),(A5) and by the necessitation for
Similarly for IT... (product logic with an involutive negation)..Galge-

bras and/. -algebras are defined in the obvious way.

Remark 2.Since both G andIl. extend SBL., the corresponding com-
pleteness theorems are proved by the obvious modification of the complete-
ness proof for SBL. But note that both G anH satisfy corresponding stan-
dard completeness theorems, i.e. Giff ¢ is a tautology over the standard
G-algebrd0, 1] (i.e. the real intervald, 1] with Godel truth functions) and
similarly for /I and the standard product algebra. Does this generalize for
G. andII.? We first show that the answer for.Gs positive.

Definition 7. The standard G-algebra is the unitintervél, 1] with Godel
truth functions extended by the involutive negation = 1 — .

Theorem 7 (Standard completeness fofz..). For eachG.-formula ¢,
G.. provesy iff ¢ is a tautology over the standafd..-algebra.

Proof.Lety be aformulaand ldt be alinearly ordered G-algebra such that
for anL-evaluatiore, e(¢) < 1g,. Let X be a finite subset af containing

Op, 11, the valuese(v) for all subformulasy of ¢ and containing with
eacha also its involutive negation-a. AssumeX has(k + 1) elements

O, =ap < a1 <...<agp_1<ag=1f. Letf(ai) = %fori:O,...,k.
Observe thaf is a partial isomorphism o onto{% | 0 < i < k}; indeed,

it preserves minimum as well as truth functions of implication and of both
negations. Hence defining(p) = f(e(p)) for each propositional variable

p occurring inp, we gete’(p) = f(e(p)) < 1. Thusy is not a tautology
over the standard Galgebra. O

For IT.. we shall get only a weaker result.

Definition 8. A semistandard?..-algebra has the forrt]0, 1], max, min,

*, =, n, 0, 1), wherex is the product of real numbers restricted[@01]
and=- is its residuum (Goguen implicationy; is an arbitrary decreasing
involution on|0, 1] (i.e.z < y impliesn(x) > n(y) andn(n(x)) = x).

Lemma10. Let0 < ag < a1 < ... < a; < 1 be reals. Then there is a
decreasing involutiom on [0, 1] such thatn(a;) = ax—; fori = 0,...,k
(obvious).
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Theorem 8 (Semistandard completeness fal7.). For eachll. -formula
v, I provesy iff ¢ is anL-tautology for each semistandafd. -algebra
L.

The proof of this theorem is by the obvious madification of the proof of
standard completeness &f.

Remark 3.A natural question to pose is whether one could get standard
completeness also fdi., that is, whether any 1-tautology over the stan-
dard I1..-algebra [0, 1], max, min, *, =, ns, 0, 1), whereng(z) = 1 — =z,

is also a 1-tautology over any semistandatd-algebra. The answer turns
out to be negative. Indeed, one can show that the forwla & ¢) —
(~(~p & )3, wherey® meansp&&p, is a 1-tautology over the stan-
dard I -algebra. However, it is not a 1-tautology for some semistandard
algebras with a strong negatiendifferent fromn;. In particular, for the
simplest piecewise linear strong negatiohaving its fixed point (equilib-
rium) xo = 0.8, the antecedent gets the value 0.644itaegation 0.84 and
the succedertt.84% = 0.5927 wheny is evaluated to the valua,.

6. Predicate calculi

We are going to show how far the completeness theorems for fuzzy predicate
logics presented in [4], Chapter V, generalize for the present situation.

First observe that the notions of a language, its interpretations and for-
mulas generalize trivially. We recall that given an SBalgebraL, anL-
interpretation of a language consisting of some predic&tes Pred and
constantg € Constis a structure

M = <M7 (TP)PePreda (mc)c€C0nst,)

whereM # 0, rp : M (P) — L, andm, € M (for eachP € Pred ¢
Cons).
The valug||p||%; , of a formula (wherey(z) € M for each variable)

is defined inductively: forp being P(z, ... ¢, ...),
|P(x,...,c,.. )||IMU =rpv(x),...,me,...),
the value commutes with connectives (includinp and

1(V2)ellpy,, = nf{[[@lxg. | v(y) = '(y) for all variables, except }

if this infimum exists, otherwise undefined, and similarly far andsup.
M is L-safeif all infs and sups needed for definition of the value of any
formula exist inL.

The axioms of Hjek basic predicate logic BLare (see [4]) the axioms
of BL plus the following set of five axioms for quantifiers:



116 F. Esteva et al.

(V1) (Vx)p(z) — ¢(t) (t substitutable for: in ¢(x))

(31) () — (Fz)e(x) (¢ substitutable for: in ¢(x))

(V2)  (Yx)( — ) = (¥ — (Vz)¢) (x not free iny)

(32)  (Vx)( — ) — ((Fz) — @) (x not free iny)

(V3)  (Vx)(v V@) = ((3x)Y V @) (x not free iny)
Rules of inference are modus ponens and generalization (franfer
(Vz)p).

Now, we define the predicate calculus SBLby taking as axioms those
of SBL.. plus the above five axioms for quantifiers, and with modus ponens,
generalization and necessitation. Obviously SBlextends BIY. However,
it is worth noticing that in SBI.. one quantifier is definable from the other
one and the involutive negation, for instanGe:)y is ~(Vz)(~y). Thus
the above set of axioms for quantifiers could certainly be simplified.

Theorem 9 (Completeness) etT be a theory oveEBLY..., ¢ a formula.
T provesy overSBLY .. iff ||| %; , = 11 for eachSBL.-algebraL, each
L-safeL.-model of " and eachw.

Proof. Inspect the corresponding proof in [4] Chapter V and see that the
proof for SBLL. is similar (using the present deduction theorem). O

Now let us turn to standard completeness. We recall that neithier-L
siewicz predicate logic\L.nor product predicate logif vV have a recursive
axiom system which would be complete in the usual sense with respect to
models over the corresponding standard algebra. BdeGpredicate logic
GV does: the axiom system consists of the above five axioms for quantifiers
(V1), (v2), (¥3), (31), (32), together with the axioms of the propositional
calculus G. One can show that this system is simply complete fom@t
only with respect to all.-models, but also just with respect to the standard
G-algebra.

We shall show that this extends to/G. When inspecting the proof for
GV then we see that the following two lemmas, analogous to Lemmas 5.3.1.
and 5.3.2. in [4], are sufficient to get the result.

Lemma 11. LetL be a countable linearly ordere@..-algebra. Then there
is a countable densely linearly orderésl -algebraL’ such thatl, C L/
and the identical embedding &finto L’ preserves all infinite suprema and
infima existing inL. In addition we may assume thkt has an elemeni
such that~h = h.

Proof.Handler first. Clearly,L has at most one eleménsuch that-h = h.
LetP={xe€L|z>~z}andN = {z € L |z < ~z}. If L has noh,
just add a new elementwith ~h = h and definec < hforz € N,h < x
for z € P. Itis evident that this makek to a new G.-algebraL.™ and the
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embedding ol into L preserves all sups and infs (since if a ¥etZ N
has a sup il the sup must lie inV; similarly for P and inf). Thus assume
L to have arh with h = ~h.

Now apply the technique of the proof of [4] 5.3.1. of putting a copy of
rationals from(0, 1) into each “hole”(x, y) (a pair of elements oL such
thaty is the successor af). Let the copy be”, = {(z,r) | 0 < r < 1,

r rational;. Observe thatz, y) is a hole iff (~y, ~) is a hole; thus in the
new algebrd.’ containing a copy ol. extend the operatior induced by
L to the new elements as follows:(if, y) is a hole then

N(I‘,’I“) = (Nya 1- 7“)
for r € (0,1). This maked.’ a G._-algebra. The restis as in [4]. O

Lemma 12. LetL be a countable densely linearly order€d -algebra with
a fixed pointh = ~h of ~. Then there is an isomorphisgnof L onto the
G..-algebra@ N[0, 1] . of rationals with min, max, @del implication and
the involutive negation,(z) =1 — x.

Proof. First, definef(1r,) = 1. f(0r,) = 0 and f(h) = 1. Then define the
values off for h < z < 1, making f and order isomorphism ¢k, 11,] to
[£,1] in the usual way. Fobr, < = < h definef(z) = 1 — f(~x). This
makesf to an order isomorphism a@f with @ N[0, 1] preserving all sups
and infs and commuting witk. Thusf is just an isomorphism of the two
G..-algebras in question and preserves sups and infs. O

Theorem 10 (Standard Completeness)etT be atheory oveGV.. (where
the language is at most countabl&) ;- ¢ iff ||¢||n = 1 for each[0, 1] -
modelM of T

The proofis as in [4], Theorem 5.3.3.

7. Adding truth constants

Rational Pavelka Logic (RPL) (see [3]) is an extensionukdsiewicz logic
L by adding a truth constanmtfor each rationat € [0, 1] together with the
following two book-keeping axioms for truth constants:

(RPLY) 7&s=T7%s

(RPL2) T—>s=r=s
wherex and=- are‘lukasiewicz t-norm and implication respectively. An
evaluatione of propositional variables by reals from [0, 1] extends to an
evaluation of all formulas as inukasiewicz logic over the standard MV-
algebra provided that(7) = r for each rationat-.

The following is a (Pavelka-style) form of the strong completeness of

RPL. LetT be a theory and define thiith degreeof a formulay in T" as
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llellr = inf{e(y) | eis amodel of'}, and theprovability degreef ¢ over

T as|p|r = sup{r | T + 7 — ¢}. Then the completeness of RPL says that
the provability degree op in T is just equal to the truth degree @fover

T, thatis,||¢||7 = |¢|7-

Remark 4.The provability degree is a supremum, which is not necessarily
attained as a maximum; for an infinif¢ || = 1 does not always imply
T F . (For finiteT it does, see [6] and [4] 3.3.14.)

Asithas been noticed elsewhere (e.g. [4]), acomplete analogy to RPL for
product and @del logics is impossible, due to the discontinuity of Goguen
and Gdel implication truth functions. However, we show that it is possible
to introduce truth-constants in product logic provided we also introduce one
infinitary deduction rule to overcome the discontinuity problem of Goguen
implication at the point0, 0) of the unit square. However, the problem is
not as simple for @del logic since @del implication is discontinuous in all
points of the diagonal db, 1) x [0, 1). It must be noticed that&ek presents
in [4] a reformulation of Takeuti-Titani predicate logic [9], denotedvT T
which includes rational truth-constants and containkalsiewicz, @del
and product predicate logics as its sublogics. Nevertheless we think it is
of interest to present next how propositional product logic (with involutive
negation) can be endowed with rational constants resulting a very simple
sublogic of T (when takingn(z) = 1 — x)). Finally we also discuss the
case of @del logic.

7.1. Rational product logic

The language of rational product logic fR.) will be the same as the lan-
guage of RPL, and we take as axioms df Rthe axioms of product logic
plus

(RITLY) 7&s=7-35

(RIIL2) T—5=r=s:s
where- is usual product of reals and- is Goguen implication function.
Deductions rules are modus ponens and the following infinitary rule:

from ¢ — 7, for eachr > 0, derivey — 0.

A theoryT over RIIL is just a set of formulas. The sétng 1, (7") of all
provable formulasifi" is the smallest” containingl” as a subset, containing
all axioms of RIL and closed under all deduction rules. For simplicity
we shall denotep € Cngr1,(T) by T = . By definition, a theoryl” is
consistentf 7' I/ 0. Further, a theor{f” is completeif 7' - (¢ — ) or
T+ (¢p — ¢) for each pairp, 1. The notions of provability and truth degree
of a formulay in a theoryT’, denoted by¢|r and||¢||r respectively, are
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the same as for RPL. Our purpose is to show completeness (Pavelka-style)
for RITL. The main steps are the following.

Lemma 13. T + 0 iff T - 7 for somer < 1.

Proof. If T' - 7 for somer < 1, thenT - r™ for each naturah, and thus
T + r' for anyr’ < 1. Then the infinitary rule does the job. O

Next step is just to check that the following known three results for
rational Pavelka logic easily extend to rational product logic (cf. [4] 2.4.2,
3.3.7 and 3.3.8 (1) respectively).

Lemma 14.

1. Each consistent theoff} can be extended to a consistent and complete
theoryT".

2. If T does not provér — ¢) thenT U {¢ — T} is consistent.

3. If T'is complete, thesup{r | T =7 — ¢} =inf{r | T+ ¢ — 7}.

Lemma 15. If T" is complete, the provability degree commutes with con-
nectives.

Proof. We have only to check thay — |r = 1 when|p|r = 0, since
the truth function of conjunction (product) is continuous and Goguen im-
plication=- is also continuous far # 0. (The interested reader may check
that the corresponding proof for rational Pavelka logic in [4] 3.3.8 (2) also
applies in these cases.)
Therefore, assume|r = 0 = inf{r | T+ ¢ — 7}. This means that
T + o — 7 for everyr > 0, and using the infinitary rule’ provesy — 0.
But0 — + is provable in product logic, and thdsalso proves — v, and
thus|y — | = 1. O
Finally, one can also easily check thatr > ||¢||7. (cf. [4] 3.3.9.). The
other inequality is just due to the soundness &fIR Then we may state the
following Pavelka-style completeness for rational product logic.

Theorem 11. In RIIL we havel|p||r = |¢|r, for any theoryl” and any
formula.

This completeness result easily extends to product logic with an involu-
tive negation since strong negations in [0, 1] are continuous functions. For
a given strong negation functionin [0, 1], axioms of the corresponding
RIIL .. (rational product logic with strong negation) are thosdof plus
the book-keeping axioms:

(RIILY) 7&s=T7-5,
(RIIL2) T—oSs=r=s,
(RIIL.) ~7=n(r)

Deduction rules are those off R_, i.e. modus ponens and the infinitary

rule.
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Theorem 12. In RIIL.. we have|p||r = |¢
formulae.

7, for any theoryI" and any

But now, due to the strong negation and the infinitary deduction rule in
RIIL., Pavelka-style completeness can be improved to completeness in
the classical sense.

Corollary 1. RIIL.. is strongly complete, i.e., for any thedfyand any
formulay, T F ¢ iff ¢ is true in all models of".

Proof. It suffices to show that ifp|7 = 1thenT F ¢. So, suppos&' - 7 —
o for all rationalsr < 1. Applying the SBL. inference rule of Lemma 2,
proves~¢ — n(r) for all r < 1, that is,T" proves~¢p — 7 for all » > 0.
Now, using the infinitary inference rule of/lR..., T' proves~¢ — 0, and
applying again the above mentioned inference rule, w&get~~, i.e.
TF . O

Remark 5.An inspection of the proof of (Pavelka-style) completeness of
the rational Pavelka predicate calculus RR&ee [4] 5.4.10) shows that the
above completeness extends to the case of the predicate caléul Bnd
RITLV., defined as the obvious extensiondBf andIIV.. respectively by

truth constants and the corresponding book-keeping axioms. Clearly, now
el = inf{]|llna | M model ofT'}.

Theorem 13. BothRI7LY andRIILY .. satisfy|p|r = ||¢||r for each the-
ory T and formulay.

7.2. Rational ®del logic with involutive negation

The language of rational@lel logic with involutive negation (RGL) will
be the same as the language diR... Then RGL. is the extension of G
with the following book-keeping axioms:
(RGL1) 7&s = min(r,s),
(RGL2) T—5s5=r=s,
(RGL.) ~r=1-r,
where=> is Godel implication function.
As already mentioned, to get completeness, besides modus ponens and
the necessitation fad, in this case we would need, for each raat [0, 1)
the following infinitary rule:
from ¢ — 7 ands — 1, for all rationalsr, s such that- > « > s, derive
o=
Unfortunately this set of inference rules is not denumerable. The problem
remains whether it is possible to overcome the discontinuity probleras of
with a denumerable set of axioms and rules. Nevertheless we can show the
following completeness result (cf. Remark 4).




Residuated fuzzy logics with an involutive negation 121

Theorem 14 (CompletenessRGL... provesy iff e(¢) = 1 for each eval-
uatione.

Proof. (Sketch)f RGL .. t/ © then there is a countable linearly ordered-G
algebraVl with elements interpreting rational constants. . . , r,, occurring

in p and anM-evaluatiore of variables such thaty (@) < 1n. Using the
technique of Lemma 10, we may assuNido to be densely linearly ordered.
Further assumé be one of the;’s. Then we may find an isomorphism of
M onto rationals fronj0, 1], respecting- and sending th&/l-interpretation
ofr;tor; i =1,...,n). O

As adirect corollary, taking into account that i@l logic the deduction
theorem holds, we get the following completeness result for finite theories.

Corollary 2. Let T be a finite theory oveRGL.. ThenT provesy iff
e(¢) = 1 for each evaluatior which is a model of .

Also here the generalization for predicate calculus is easy — check [4]
5.3.3.

Theorem 15. Let T be a finite theory oveRGLYV .., let ¢ be a formula. T
provesy iff ¢ is true in each model ¢f.

Remark 6.Without truth constants we have a strong completeness for arbi-
trary theories (over & Gv..); here only for finitely axiomatized theories.
On the other hand, we have “classical” completeness (provable = true in all
models), not just Pavelka-style completeness.

8. Conclusions

The logic SBL.., together with its extensiond ... and G. and their corre-
sponding Pavelka-like extensiongR .. and RGL.., proposed in this paper

fill an existing gap between, on one side the basic logic SBL, the extension
of the basic logic BL resulting from fixing the negation tédl negation,

and on the other side the strong Takeuti-Titani fuzzy logi®/;IVith three
residuated pairs of connectives, and in particular with baibde€band an in-
volutive negations. However, it should be also noticed thatllukasiewicz
logic extended with the projection connectixe proposed by Hjek in [4],

is also a fuzzy logic exhibiting both kinds of negation.

The following remains to be an open problem: i R complete in the
classical sense, i.e. does it provel@lll] ;7-tautologies? For the correspond-
ing predicate calculus the answer is negative, as it is di@akiewicz logic
(see [4] for details).
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Appendix: Some basic notions about t-norms

This appendix only contains some necessary definitions and properties of t-
norms which are used in the paper. For more extensive surveys about t-norms
the interested reader is referred to the monograph [8].

Definition 9. At-normx is a binary operation on the real unit inter{@l1]
which is associative, commutative, non-decreasing, and fulfils the following
boundary conditionst x x = 2 and0 « z = 0, for all = € [0, 1].

Most well-known examples of t-norms are:
(i) 1ukasiewicz t-normz x y = max(0,z +y — 1)
(i) Productt-normzxxy=x-y
(i) Godel t-norm z * y = min(z, y)
These examples are important since, as the theorem below shows, any con-
tinuous t-norm is either isomorphic to one of these, or it is a combination
(ordinal sum) of them. First we introduce some more definitions:

1. An elementr € [0, 1] is idempotenfor a t-normsx if z x x = z. E(x)
will denote the set of idempotent elementskof
2. An elementr € [0, 1] is nilpotentfor a t-normx if there exists some

naturaln such thate = .. % z= 0.

3. A continuous t-norm ig\rchimedearif it has no idempotents except 0
and 1.

4. An archimedean t-norm @rict if it has no nilpotent elements except O.
Otherwise it is calledhilpotent

For each continuous t-norr) E(x) is a closed subset @, 1]. Let us denote
by E“(x) its complement (a countable union of disjoint open intervals) and
define the following set:

Z(E(x)) = {[a,b] | a,b € E(*),a # b, (a,b) C E°(x)}.

Then the following representation theorem, due to Ling, for continuous t-
norms holds (see [4] for a proof).

Theorem 16. If x; denotes the restriction of a continuous t-noto I x I,
I € Z(E(x)), then:
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1. Foreachl € Z(E(x)), *z isisomorphic either to the product t-norm (on
[0, 1]) or toLukasiewicz t-norm (of0, 1]).

2. Ifx,y € [0,1] are such that there isnb € Z(E(x)) withz,y € I, then
x xy = min(z,y).

Basically, this theorem says that, for any continuous t-nerme can iden-
tify along the diagonal of0, 1]? a set of smaller adjacent squares (sharing
one single point of the diagonal, which will be an idempotent) where inside
these squares we have eithavdgl, product or ukasiewicz t-norm (up to
isomorphisms), and outside these squares we haye= min(z, y). Such
combinations are known asdinal sums

Finally the next proposition characterizes continuous t-norms which have
non-trivial zero divisors.

Proposition 1. A continuous t-norm has non-trivial zero divisors iff it is
an ordinal sum such that there exisls = [0,a] € Z(E(x)) and %, is
isomorphic ta Lkasiewicz t-norm.

Proof.Letz > 0 be an idempotent of. According to Theorem 16; x y =
min(z,y) forally € (0, 1]. For each: € [z, 1] we obtainz xy > x xy >
min(z,y) > 0, hencez is nota zero divisor. Thus all non-trivial zero divisors
must belong to an intervdl = [0,a] € Z(E(*)) and the problem reduces
to the discussion of an Archimedean t-norm isomorphie;to ]

As a consequence of Proposition 1, each continuous t-rowithout
non-trivial zero divisors must be of one of the following forms:

1. eitherinf(E(x) — {0}) = 0 (0 is a cluster point of'(x)), or
2. there is an intervaly = [0,a] € Z(E(*)) andxp, is isomorphic to the
product t-norm.
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