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Abstract. Residuated fuzzy logic calculi are related to continuous t-norms,
which are used as truth functions for conjunction, and their residua as truth
functions for implication. In these logics, a negation is also definable from
the implication and the truth constant0, namely¬ϕ isϕ → 0. However, this
negation behaves quite differently depending on the t-norm. For a nilpotent
t-norm (a t-norm which is isomorphic to L´ ukasiewicz t-norm), it turns out
that¬ is an involutive negation. However, for t-norms without non-trivial
zero divisors,¬ is Gödel negation. In this paper we investigate the residu-
ated fuzzy logics arising from continuous t-norms without non-trivial zero
divisors and extended with an involutive negation.

1. Introduction

Residuated fuzzy (many-valued) logic calculi are related to continuous t-
norms which are used as truth functions for the conjunction connective,
and their residua as truth functions for the implication. Main examples are
Ĺukasiewicz (L´ ), Gödel (G) and product (Π) logics, related to L´ ukasiewicz
t-norm (x ∗ y = max(0, x + y − 1)), Gödel t-norm (x ∗ y = min(x, y))
and product t-norm (x ∗ y = x · y) respectively. In the fifties Rose and
Rosser [7] provided completeness results for L´ ukasiewicz logic and Dum-
met [2] for Gödel logic, and recently three of the authors [5] axiomatized
product logic. More recently, H́ajek [4] has proposed the axiomatic system
BL corresponding to a generic continuous t-norm and having L´ , G andΠ as
extensions.
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In all these logics, a negation is also definable from the implication and
the truth constant0, namely¬ϕ is ϕ → 0. However, this negation behaves
quite differently depending on the t-norm.

Nilpotentt-norms are continuous t-norms∗ such that each elementx ∈
(0, 1) is nilpotent, that is, there existsn ∈ N such thatx∗ n. . . ∗x = 0. It has
been shown that nilpotent t-norms are exactly those which are isomorphic
to Ĺukasiewicz t-norm. For nilpotent t-norms, it turns out that its residuum
⇒ defines an involutive negation1 n : [0, 1] → [0, 1] as

n(x) = (x ⇒ 0),

that is,n is a non-increasing involution in [0, 1]. In particular, for L´ ukasie-
wicz implication(x ⇒ 0) = 1 − x.

Among t-norms which are not nilpotent, we are interested in those which
do not havenon-trivial zero divisors, i.e., which verify:

∀x, y ∈ [0, 1], x ∗ y = 0 iff (x = 0 or y = 0).
This condition characterizes those t-norms for which the negation definable
from its residuum, i.e.n(x) = (x ⇒ 0), is not any longer a strong negation
but Gödel negation, that is:

(x ⇒ 0) =
{

1, if x = 0,
0, otherwise.

If we restrict ourselves to continuous t-norms, this is the case of the so-called
strict t-norms (i.e. those which are isomorphic to product), theminimum
t-norm, and those t-norms which are ordinal sums not having a t-norm iso-
morphic to L´ ukasiewicz t-norm in the first square around the point(0, 0)
(see the Appendix for further details). Observe that L´ ukasiewicz t-norm has
zero divisors, which it is not the case of product and minimum t-norms.

In this paper we investigate the many-valued residuated logics arising
from continuous t-norms without non-trivial zero divisors and extended with
an involutive negation. In the next section we provide the main results about
the residuated fuzzy logics BL and BL∆ needed for the paper. In Section 3
and 4, we first define SBL, the schematic extension of the basic logic BL
accounting for those logics in which the negation¬ defined above is G̈odel
negation, and afterwards we extend it with an involutive negation and present
completeness results for the resulting logic SBL∼. In Section 5 we show how
the standard completeness theorems for Gödel and product logics generalize
when both logics are extended with the involutive negation. In Section 6
predicate calculi for SBL, product and Gödel logics with involutive negation
are studied. Finally, in Section 7 we extend product and Gödel logics with
involutive negation by introducing a truth-constant for each rational of [0,
1] and we discuss Pavelka-style completeness results for both logics.

1 Also calledstrongnegation in the literature on fuzzy set connectives.
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2. Background: the basic fuzzy logics BL and BL∆

Here we summarize some important notions and facts from [4].

2.1. The basic fuzzy logic BL

The language of the basic logic BL is built in the usual way from a (countable)
set of propositional variables, a conjunction&, an implication→ and the
truth constant0. Further connectives are defined as follows:

ϕ ∧ ψ is ϕ&(ϕ → ψ),
ϕ ∨ ψ is ((ϕ → ψ) → ψ) ∧ ((ψ → ϕ) → ϕ),

¬ϕ is ϕ → 0̄,
ϕ ≡ ψ is (ϕ → ψ)&(ψ → ϕ).

The following formulas are theaxiomsof BL:
(A1) (ϕ → ψ) → ((ψ → χ) → (ϕ → χ))
(A2) (ϕ&ψ) → ϕ
(A3) (ϕ&ψ) → (ψ&ϕ)
(A4) (ϕ&(ϕ → ψ)) → (ψ&(ψ → ϕ))
(A5a) (ϕ → (ψ → χ)) → ((ϕ&ψ) → χ)
(A5b) ((ϕ&ψ) → χ) → (ϕ → (ψ → χ))
(A6) ((ϕ → ψ) → χ) → (((ψ → ϕ) → χ) → χ)
(A7) 0̄ → ϕ

Thededuction ruleof BL is modus ponens.
If one takes a continuous t-norm∗ for the truth function of& and the

corresponding residuum2 ⇒ for the truth function of→ (and evaluating0
by 0) then all the axioms of BL become 1-tautologies (have identically the
truth value 1). And since modus ponens preserves 1-tautologies, all formulas
provable in BL are 1-tautologies.

It has been shown [4] that the well-known L´ ukasiewicz logic is the ex-
tension of BL by the axiom

(Ĺ) ¬¬ϕ → ϕ,
and G̈odel logic is the extension of BL by the axiom

(G) ϕ → (ϕ&ϕ).
Finally, product logic is just the extension of BL by the following two ax-
ioms:

(Π1) ¬¬χ → (((ϕ&χ) → (ψ&χ)) → (ϕ → ψ)),
(Π2) ϕ ∧ ¬ϕ → 0̄.

2 The residuum⇒ is the binary function on [0, 1] defined as(x ⇒ y) = sup{z ∈ [0, 1] |
x ∗ z ≤ y}.
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2.2. BL-algebras and a completeness theorem

A BL -algebrais an algebra

L = (L,∩,∪, ∗,⇒, 0, 1)

with four binary operations and two constants such that

(i) (L,∩,∪, 0, 1) is a lattice with the greatest element1 and the least
element0 (with respect to the lattice ordering≤),

(ii) (L, ∗, 1) is a commutative semigroup with the unit element1, i.e.∗ is
commutative, associative and1 ∗ x = x for all x,

(iii) the following conditions hold for allx, y, z:
(1) z ≤ (x ⇒ y) iff x ∗ z ≤ y
(2) x ∩ y = x ∗ (x ⇒ y)
(3) (x ⇒ y) ∪ (y ⇒ x) = 1.

Thus, in other words, a BL-algebra is aresiduated latticesatisfying (2) and
(3). The class of all BL-algebras is a variety. Moreover, each BL-algebra
can be decomposed as a subdirect product of linearly ordered BL-algebras.

Defining¬x = (x ⇒ 0), it turns out that MV-algebrasare BL-algebras
satisfying¬¬x = x, G-algebrasare BL-algebras satisfyingx ∗ x = x, and
finally, product algebrasare BL-algebras satisfying

x ∩ ¬x = 0
(¬¬z ⇒ ((x ∗ z ⇒ y ∗ z) ⇒ (x ⇒ y))) = 1.

The logic BL is sound with respect toL -tautologies: ifϕ is provable in
BL thenϕ is anL -tautology for each BL-algebraL (i.e. has the value1L
for each evaluation of variables by elements ofL extended to all formulas
using operations ofL as truth functions).

Theorem 1. BL is complete, i.e. for each formulaϕ the following three
conditions are equivalent:

(i) ϕ is provable inBL,
(ii) for eachBL-algebraL , ϕ is anL - tautology,
(iii) for each linearly orderedBL-algebraL , ϕ is anL -tautology.

This theorem also holds if we replace BL by aschematic extension3 C of BL,
and BL-algebras by the correspondingC-algebras (BL-algebras in which all
axioms ofC are tautologies).

Note that we also getstrong completenessfor provability in theories
over BL. For completeness theorems of the three main many-valued logics
(Ĺukasiewicz, G̈odel and product) see [4].

3 A calculus which results from BL by adding some axiom schemata.
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2.3. The extended basic fuzzy logic BL∆

Now we expand the language of BL by a new unary (projection) connective
∆ whose truth function (denoted also by∆) is defined as follows:

∆x =
{

1, if x = 1
0, otherwise

Theaxiomsof the extended basic logic BL∆ (first formulated by Baaz in [1])
are those of BL plus:

(∆1) ∆ϕ ∨ ¬∆ϕ
(∆2) ∆(ϕ ∨ ψ) → (∆ϕ ∨∆ψ)
(∆3) ∆ϕ → ϕ
(∆4) ∆ϕ → ∆∆ϕ
(∆5) ∆(ϕ → ψ) → (∆ϕ → ∆ψ)

Deduction rulesof BL∆ are modus ponens andnecessitation: fromϕ derive
∆ϕ.

A ∆-algebra is a structureL = (L,∩,∪, ∗,⇒, 0, 1, ∆) which is a BL-
algebra expanded by a unary operation∆ satisfying the following condi-
tions:

∆x ∪ ¬∆x = 1
∆(x ∪ y) ≤ ∆x ∪∆y
∆x ≤ x
∆x ≤ ∆∆x
(∆x) ∗ (∆(x ⇒ y)) ≤ ∆y
∆1 = 1

The notions ofL -evaluation andL -tautology easily generalize to BL∆ and
∆-algebras. The decomposition of any BL∆ algebra as a subdirect product of
linearly ordered ones also holds. Notice that in linearly ordered∆-algebras
we have that∆1 = 1 and∆a = 0 for a 6= 1. Then the above completeness
theorem for BL extends to BL∆ as follows.

Theorem 2. BL∆ is complete, i.e. for each formulaϕ the following three
conditions are equivalent:

(i) ϕ is provable inBL∆,
(ii) for each∆-algebraL , ϕ is anL -tautology,
(iii) for each linearly ordered∆-algebraL , ϕ is anL -tautology.

A strong completenessresult for provability in theories over BL∆ is also
given in [4].

3. The basic strict fuzzy logic SBL

In this section we introduce the strict basic logic SBL, an extension of
the basic logic BL for which the linearly ordered BL-algebras that satisfy
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SBL axioms are those having Gödel negation. In the next section we shall
introduce an involutive negation over SBL.

Definition 1. Axioms of the basic strict fuzzy logic SBL are those of BL
plus the following axiom:

(STR) (ϕ&ψ → 0) → ((ϕ → 0) ∨ (ψ → 0)).

An equivalent expression of the axiom (STR) is:

¬(ϕ&ψ) → (¬ϕ ∨ ¬ψ),

where¬ϕ is ϕ → 0. Notice that (STR) is a theorem in both product and
Gödel logics. Moreover, it can be shown that SBL provesϕ ∧ ¬ϕ → 0
(cf. [4] Sect. 4.1).

Definition 2. An SBL-algebra is a BL-algebra(L,∩,∪, ∗,⇒, 0, 1) verify-
ing this further condition:

((x ∗ y) ⇒ 0) = (x ⇒ 0) ∪ (y ⇒ 0).

Note that this condition is equivalent to the seemingly weaker condition

(((x ∗ y) ⇒ 0) ⇒ ((x ⇒ 0) ∪ (y ⇒ 0))) = 1

or, equivalently,

((x ∗ y) ⇒ 0) ≤ (x ⇒ 0) ∪ (y ⇒ 0).

To show the converse inequality just observe that

(x ⇒ 0) ≤ ((x ∗ y) ⇒ 0) sincex ∗ y ≤ x,

and similarly(y ⇒ 0) ≤ ((x ∗ y) ⇒ 0).
Examples of SBL-algebras are the algebras([0, 1],max,min, ∗,⇒, 0,

1), where∗ is a t-norm without non-trivial zero divisors and⇒ its corre-
sponding residuum, and the quotient algebra SBL/≡ of provably equivalent
formulas.

In linearly ordered SBL-algebras, the above condition implies

x ∗ y = 0 iff (x = 0 or y = 0). (1)

Indeed, ifx∗y = 0 then((x∗y) ⇒ 0) = 1, thus(x ⇒ 0)∪(y ⇒ 0) = 1,
which, due to linearity, gives(x ⇒ 0) = 1 or (y ⇒ 0) = 1, i.e.x = 0 or
y = 0.

Moreover, this condition identifies linearly ordered SBL-algebras with
linearly ordered BL-algebras which have Gödel negation.

Lemma 1. A linearly orderedBL-algebra is anSBL-algebra iff it satisfies
(1), and iff the negation¬x = (x ⇒ 0) is Gödel negation.
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Proof.We have shown above that linearly ordered SBL-algebras satisfy (1).
In a linearly ordered BL-algebra satisfying (1),¬x = (x ⇒ 0) = sup{z |
x ∗ z ≤ 0} which is 1 if x = 0 and is 0 otherwise due to (1). Finally
if a linearly ordered BL-algebra has Gödel negation then we easily get the
condition of SBL-algebra. Indeed, ifx∗y = 0 then both sides in the condition
of SBL-algebras equal 1, and ifx ∗ y > 0 then both sides equal 0. ut
Theorem 3 (Completeness).The logicSBL is complete w.r.t. the class of
linearly orderedSBL-algebras.

This follows immediately from [4] 2.3.22, noticing that SBL is a
schematic extension of BL.

4. Extending SBL by an involutive negation

Now we extend SBL with a unary connective∼. Thesemanticsof ∼ is an
arbitrary strong negation function

n : [0, 1] → [0, 1]

which is a decreasing involution, i.e.n(n(x)) = x andn(x) ≤ n(y) when-
everx ≥ y. It turns out that with both negations,¬ and∼, the projection
connective∆ is definable:

∆ϕ is ¬∼ϕ
Moreover, notice that having an involutive negation in the logic enriches,
in a non-trivial way, the representational power of the logical language. For
instance, a strong disjunctionϕ∨ψ is definable now as∼(∼ϕ &∼ψ), with
truth function thet-conorm⊕ defined asx ⊕ y = n(n(x) ∗ n(y)), and a
contrapositive implicationϕ ↪→ ψ is definable as∼ϕ∨ψ, with truth function
thestrong implicationfunction

c⇒ defined as(x c⇒ y) = ∼x⊕ y. Although
these new connectives may be interesting for future development, we shall
make no further use of them in the rest of the paper.

Definition 3. Axioms ofSBL∼ are those of SBL plus
(∼1) (∼∼ϕ) ≡ ϕ (Involution)
(∼2) ¬ϕ → ∼ϕ
(∼3) ∆(ϕ → ψ) → ∆(∼ψ → ∼ϕ) (Order Reversing)
(∆1) ∆ϕ ∨ ¬∆ϕ
(∆2) ∆(ϕ ∨ ψ) → (∆ϕ ∨∆ψ)
(∆5) ∆(ϕ → ψ) → (∆ϕ → ∆ψ)

where∆ϕ is ¬∼ϕ. Deduction rules ofSBL∼ are those ofBL∆, that is,
modus ponensandnecessitationfor ∆.
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Lemma 2. SBL∼ proves
(∆3) ∆ϕ → ϕ
(∆4) ∆ϕ → ∆∆ϕ

and thusSBL∼ extendsBL∆. Moreover, inSBL∼ the following is a derived
inference rule:
(CP ) fromϕ → ψ derive∼ψ → ∼ϕ.

Proof. (∆3) is an easy consequence of the definition of the connective∆,
(∼2) and(∼1). (∆4) comes from (∼3) taking 1 forϕ andϕ for ψ. Finally,
if SBL∼ provesϕ → ψ, it also proves∆(ϕ → ψ) (necessitation), and thus
it proves∆(∼ψ → ∼ϕ) (axiom (∼3)). By (∆3), it also proves∼ψ → ∼ϕ.

ut
Lemma 3. SBL∼ proves the following De Morgan laws:
(DM1) ∼(ϕ ∧ ψ) ≡ (∼ϕ ∨ ∼ψ)
(DM2) ∼(ϕ ∨ ψ) ≡ (∼ϕ ∧ ∼ψ)

Proof.We prove (DM1). Clearly, BL provesϕ ∧ ψ → ϕ, ϕ ∧ ψ → ψ, and
by the above derived inference rule,SBL∼ proves∼ϕ → ∼(ϕ ∧ ψ) and
∼ψ → ∼(ϕ ∧ ψ), and thus it proves also(∼ϕ) ∨ (∼ψ) → ∼(ϕ ∧ ψ).

On the other direction, BL proves both∼ϕ → (∼ϕ ∨ ∼ψ) and∼ψ →
(∼ϕ ∨ ∼ψ). Applying again the above rule and(∼1), we have thatSBL∼
proves∼(∼ϕ ∨ ∼ψ) → ϕ and∼(∼ϕ ∨ ∼ψ) → ψ, and thus it proves
∼(∼ϕ∨ ∼ψ) → (ϕ∧ψ), and finally, by the inference rule again, it proves
∼(ϕ ∧ ψ) → (∼ϕ ∨ ∼ψ). This completes the proof. ut

In SBL∼ the classical deduction theorem fails, but we have the same
weaker formulation as in BL∆ (see [4] 2.4.14).

Theorem 4 (Deduction theorem).Let T be a theory overSBL∼. Then
T ∪ {ϕ} ` ψ iff T ` ∆ϕ → ψ.

Definition 4. An SBL∼-algebra is a structureL = (L,∩,∪, ∗,⇒,∼, 0, 1)
which is an SBL-algebra expanded with a unary operation∼ satisfying the
following conditions:

(A∼1) ∼∼x = x
(A∼2) ¬x ≤ ∼x
(A∼3) ∆(x ⇒ y) = ∆(∼y ⇒ ∼x)
(A∼4) ∆x ∪ ¬∆x = 1
(A∼5) ∆(x ∪ y) ≤ ∆x ∪∆y
(A∼6) ∆x ∗ (∆(x ⇒ y)) ≤ ∆y

where¬x = (x ⇒ 0) and∆x = (∼x ⇒ 0).

Examples ofSBL∼-algebras are:

– The algebras([0, 1],max,min, ∗,⇒, n, 0, 1) of the unit interval of the
real line with any strict t-norm∗, its corresponding residuated implication
⇒ and with any involutive negation functionn : [0, 1] → [0, 1].
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– The quotient algebra SBL∼/≡ of provably equivalent formulas. Indeed,
since SBL∼ is an extension of BL∆, we only need to check that≡
is a congruence w.r.t. the involutive negation∼. So, assumeϕ → ψ is
provable. Then, using the necessitation rule,∆(ϕ → ψ) is also provable,
and by axiom(∼3) we get∆(∼ψ → ∼ϕ), and finally, by(∆3) we prove
∼ψ → ∼ϕ.

Lemma 4. In anySBL∼-algebra the following properties hold:
(1) ∼0 = 1
(2) ∼1 = 0
(3) ∆1 = 1

Proof. (1) By (A∼2), ∼0 ≥ ¬0 and, by definition,¬0 = (0 ⇒ 0) = 1.
(2) Using (1),∼1 = ∼∼0, and by(A∼1), ∼∼0 = 0.
(3) By definition,∆1 = (∼1 ⇒ 0), but from (2)∼1 = 0, and thus∆1 =
(0 ⇒ 0) = 1. ut
Lemma 5. SBL∼ is sound with respect to the class ofSBL∼-algebras.

Soundness of axioms is straightforward from the definition ofSBL∼-
algebras and the soundness of the necessitation inference rule for∆ is a
consequence of (3) of previous Lemma.

Lemma 6. In anySBL∼-algebra the following properties hold:
(1) (∼x) ∩ (∼y) = ∼(x ∪ y), (∼x) ∪ (∼y) = ∼(x ∩ y)
(2) If x ≤ y, then∼y ≤ ∼x
(3) ∆(x ⇒ y) ≤ (∆x ⇒ ∆y)
(4) If x ≤ y, then∆x ≤ ∆y
(5) ∆x ≤ x
(6) ∆x ∗∆¬x = 0
(7) ∆x = ∆∆x
(8) ∆x = 1 iff x = 1
(9) ∆x ∗∆y = ∆(x ∗ y)
(10) ∆∼x = ∆¬x = ¬x

Proof. (1), (3), (5) and (7) are obvious consequences of the soundness of
SBL∼, in particular (1) follows from (DM1), (DM2), (3) follows from(∆5)
and (5) and (7) follow from∆3 and∆4 respectively.
(2): If x ≤ y then1 = (x ⇒ y) = ∆(x ⇒ y) = ∆(∼y ⇒ ∼x) ≤ (∼y ⇒
∼x), thus∼y ≤ ∼x.
(4): If x ≤ y, applying (3) we obtain1 = ∆1 = ∆(x ⇒ y) ≤ (∆x ⇒ ∆y).
Therefore∆x ≤ ∆y.
(6) is a direct consequence of (A∼6) takingy = 0.
(8) follows from (3) of Lemma 4 and (5).
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(9): It is proved in [4] 2.4.11 (4).
(10): From (A∼3), takingx = 1 andy = ∼x, we obtain∆(1 ⇒ ∼x) =
∆(∼∼x ⇒ 0) and then∆∼x = ∆¬x. The equality∆∼x = ¬x follows
immediately from the definition of∆. ut

Lemma 7. (1) In a linearly orderedSBL∼-algebra,∆x = 0 for all x 6= 1.
(2) The class ofSBL∼-algebras is a variety.

Proof.(1) Within a linearly orderedSBL∼-algebra, by (A∼4), we have that
∆x ∪ ¬∆x = max(∆x,¬∆x) = 1. Therefore either∆x = 1, which
impliesx = 1, or (∆x ⇒ 0) = 1, which implies∆x = 0.
(2) It is obvious from the definition ofSBL∼-algebras since all axioms can
be written as equations. ut

For proving the subdirect representation theorem forSBL∼-algebras we
will need some previous definitions and results.

Definition 5. A subset F of anSBL∼-algebraL is a filter if it satisfies:
(F1) If a, b ∈ F , thena ∗ b ∈ F
(F2) If a ∈ F andb ≥ a, thenb ∈ F
(F3) If (a ⇒ b) ∈ F , then(∼b ⇒ ∼a) ∈ F

F is a prime filter if it is a filter and
(F4) For all a, b ∈ L, (a ⇒ b) ∈ F or (b ⇒ a) ∈ F

Remark 1.If a ∈ F then∆a ∈ F . Indeed, by property (F3),(1 ⇒ a) =
a ∈ F implies(∼a ⇒ ∼1) = (∼a ⇒ 0) = ¬∼a = ∆a ∈ F .

Lemma 8.

(1) The relationa ≡F b iff (a ⇒ b) ∈ F and(b ⇒ a) ∈ F , is a congruence
relation over anSBL∼-algebra.

(2) The quotient ofL by≡F is anSBL∼-algebra.
(3) The quotient algebra is linearly ordered iffF is a prime filter.
(4) Linearly orderedSBL∼-algebrasL are simple, that is, the only filters

of a linearly orderedSBL∼ algebraL are{1} andL itself.

Proof.The proofs for (1), (2) and (3) are analogous to those for∆-algebras.
The proof of (4) reduces to showing that the only filters of a linearly ordered
SBL∼-algebraL are{1} and the full algebraL itself. This is true because if a
filterF has an elementa 6= 1, then, by Remark 1 and Lemma 7,∆a = 0 ∈ F
and thereforeF = L. ut

Theorem 5. AnySBL∼-algebra is a subdirect product of linearly ordered
SBL∼-algebras.
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Notice that this theorem is actually a subdirect decomposition theorem be-
cause linearly ordered algebras are simple, and so subdirectly irreducible,
which is not the case for other related algebras like BL, SBL,Π or MV
algebras. The proof of this theorem is as usual and the only critical point is
the proof of the following lemma.

Lemma 9. LetL be anSBL∼-algebra anda ∈ L. If a 6= 1, there is a prime
filter F onL not containinga.

Proof.The proof is very analogous to that forBL∆. The interesting point to
remark is that the least filter containing another filterF and an elementz is

F ′ = {u | ∃v ∈ F, u ≥ v ∗∆z}.
It can be checked thatF ′ is indeed a filter, in particular, we check that
condition (F3) is satisfied. If(x ⇒ y) ∈ F ′, it means that, for somev ∈ F ,
(x ⇒ y) ≥ v ∗ ∆z, and then(∼y ⇒ ∼x) ≥ ∆(∼y ⇒ ∼x) = ∆(x ⇒
y) ≥ ∆(v ∗∆z) = ∆v ∗∆∆z = ∆v ∗∆z, thus also(∼y ⇒ ∼x) ∈ F ′
since ifv ∈ F , then∆v ∈ F as well.

Then the sketch of the proof is as follows. LetF be a filter not containing
a (there exists at least one,F = {1}). Let x, y ∈ L such that neither
(x ⇒ y), (y ⇒ x) 6∈ F . Using the above definition, we can build thenF1
andF2 as the filters generated byF andx ⇒ y andy ⇒ x respectively.
Then one can prove that at least one of these two filters does not containa. In
this way, a sequence of nested filters not containinga can be built. Finally,
the prime filter which we are looking for is the union of that sequence of
filters. ut
Theorem 6. SBL∼ is complete w.r.t. the class ofSBL∼-algebras. In more
details, for each formulaϕ, the following are equivalent:

(i) SBL∼ ` ϕ,
(ii) ϕ is anL-tautology for eachSBL∼-algebraL,
(iii) ϕ is anL-tautology for each linearly orderedSBL∼-algebraL.

Proof. The proof is fully analogous to the proof of Theorem 2.3.19 of [4].
In particular, the implication (i)⇒ (iii) is soundness and trivial to verify;
(iii) ⇒ (ii) follows from the subdirect product representation and (ii)⇒
(i) is proved by showing that the algebra of classes of mutually provably
equivalent formulas is an SBL∼-algebra whose largest element is the class
of all SBL∼-provable formulas. ut

5. Standard completeness

In this section we turn our attention to the corresponding extensions of
product and G̈odel logics with an involutive negation. Of course both product
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and G̈odel logics are extensions of SBL, and therefore their corresponding
extensions will be extensions of SBL∼.

Definition 6. Let G∼ be G̈odel logic G extended by a new negation∼, by
axioms(∼1), (∼2), (∼3), (∆1), (∆2), (∆5) and by the necessitation for
∆ = ¬ ∼.

Similarly forΠ∼ (product logic with an involutive negation). G∼-alge-
bras andΠ∼-algebras are defined in the obvious way.

Remark 2.Since both G∼ andΠ∼ extend SBL∼, the corresponding com-
pleteness theorems are proved by the obvious modification of the complete-
ness proof for SBL∼. But note that both G andΠ satisfy corresponding stan-
dard completeness theorems, i.e. G` ϕ iff ϕ is a tautology over the standard
G-algebra[0, 1]G (i.e. the real interval[0, 1] with Gödel truth functions) and
similarly for Π and the standard product algebra. Does this generalize for
G∼ andΠ∼? We first show that the answer for G∼ is positive.

Definition 7. The standard G∼-algebra is the unit interval[0, 1] with Gödel
truth functions extended by the involutive negation∼x = 1 − x.

Theorem 7 (Standard completeness forG∼). For eachG∼-formulaϕ,
G∼ provesϕ iff ϕ is a tautology over the standardG∼-algebra.

Proof.Letϕbe a formula and letL be a linearly ordered G∼-algebra such that
for anL -evaluatione, e(ϕ) < 1L. LetX be a finite subset ofL containing
0L, 1L, the valuese(ψ) for all subformulasψ of ϕ and containing with
eacha also its involutive negation∼a. AssumeX has(k + 1) elements
0L = a0 < a1 < . . . < ak−1 < ak = 1L. Let f(ai) = i

k for i = 0, . . . , k.
Observe thatf is a partial isomorphism ofX onto{ i

k | 0 ≤ i ≤ k}; indeed,
it preserves minimum as well as truth functions of implication and of both
negations. Hence defininge′(p) = f(e(p)) for each propositional variable
p occurring inϕ, we gete′(ϕ) = f(e(ϕ)) < 1. Thusϕ is not a tautology
over the standard G∼-algebra. ut

ForΠ∼ we shall get only a weaker result.

Definition 8. A semistandardΠ∼-algebra has the form([0, 1], max, min,
∗, ⇒, n, 0, 1), where∗ is the product of real numbers restricted to[0, 1]
and⇒ is its residuum (Goguen implication);n is an arbitrary decreasing
involution on[0, 1] (i.e.x ≤ y impliesn(x) ≥ n(y) andn(n(x)) = x).

Lemma 10. Let 0 < a0 < a1 < . . . < ak < 1 be reals. Then there is a
decreasing involutionn on [0, 1] such thatn(ai) = ak−i for i = 0, . . . , k
(obvious).
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Theorem 8 (Semistandard completeness forΠ∼). For eachΠ∼-formula
ϕ, Π∼ provesϕ iff ϕ is anL-tautology for each semistandardΠ∼-algebra
L.

The proof of this theorem is by the obvious modification of the proof of
standard completeness ofΠ.

Remark 3.A natural question to pose is whether one could get standard
completeness also forΠ∼, that is, whether any 1-tautology over the stan-
dardΠ∼-algebra ([0, 1],max,min, ∗,⇒, ns, 0, 1), wherens(x) = 1 − x,
is also a 1-tautology over any semistandardΠ∼-algebra. The answer turns
out to be negative. Indeed, one can show that the formula(∼ϕ & ϕ) →
(∼(∼ϕ & ϕ))3, whereψ3 meansψ&ψ&ψ, is a 1-tautology over the stan-
dardΠ∼-algebra. However, it is not a 1-tautology for some semistandard
algebras with a strong negationn different fromns. In particular, for the
simplest piecewise linear strong negationn having its fixed point (equilib-
rium) x0 = 0.8, the antecedent gets the value 0.64, its∼-negation 0.84 and
the succedent0.843 = 0.5927 whenϕ is evaluated to the valuex0.

6. Predicate calculi

We are going to show how far the completeness theorems for fuzzy predicate
logics presented in [4], Chapter V, generalize for the present situation.

First observe that the notions of a language, its interpretations and for-
mulas generalize trivially. We recall that given an SBL∼-algebraL, anL-
interpretation of a language consisting of some predicatesP ∈ Pred and
constantsc ∈ Constis a structure

M = (M, (rP )P∈Pred, (mc)c∈Const)

whereM 6= ∅, rP : Mar(P ) → L, andmc ∈ M (for eachP ∈ Pred, c ∈
Const).

The value‖ϕ‖L
M,v of a formula (wherev(x) ∈ M for each variablex)

is defined inductively: forϕ beingP (x, . . . , c, . . .),

‖P (x, . . . , c, . . .)‖L
M,v = rP (v(x), . . . ,mc, . . .),

the value commutes with connectives (including∼), and

‖(∀x)ϕ‖L
M,v = inf{‖ϕ‖L

M,v′ | v(y) = v′(y) for all variables, exceptx}
if this infimum exists, otherwise undefined, and similarly for∃x andsup.
M is L-safeif all infs and sups needed for definition of the value of any
formula exist inL.

The axioms of H́ajek basic predicate logic BL∀ are (see [4]) the axioms
of BL plus the following set of five axioms for quantifiers:
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(∀1) (∀x)ϕ(x) → ϕ(t) (t substitutable forx in ϕ(x))
(∃1) ϕ(t) → (∃x)ϕ(x) (t substitutable forx in ϕ(x))
(∀2) (∀x)(ψ → ϕ) → (ψ → (∀x)ϕ) (x not free inψ)
(∃2) (∀x)(ψ → ϕ) → ((∃x)ψ → ϕ) (x not free inϕ)
(∀3) (∀x)(ψ ∨ ϕ) → ((∃x)ψ ∨ ϕ) (x not free inϕ)

Rules of inference are modus ponens and generalization (fromϕ infer
(∀x)ϕ).

Now, we define the predicate calculus SBL∀∼ by taking as axioms those
of SBL∼ plus the above five axioms for quantifiers, and with modus ponens,
generalization and necessitation. Obviously SBL∀∼ extends BL∀. However,
it is worth noticing that in SBL∀∼ one quantifier is definable from the other
one and the involutive negation, for instance(∃x)ϕ is ∼(∀x)(∼ϕ). Thus
the above set of axioms for quantifiers could certainly be simplified.

Theorem 9 (Completeness).LetT be a theory overSBL∀∼, ϕ a formula.
T provesϕ overSBL∀∼ iff ‖ϕ‖L

M,v = 1L for eachSBL∼-algebraL, each
L-safeL-model ofT and eachv.

Proof. Inspect the corresponding proof in [4] Chapter V and see that the
proof for SBLL∼ is similar (using the present deduction theorem). ut

Now let us turn to standard completeness. We recall that neither L´ uka-
siewicz predicate logic L´ ∀ nor product predicate logicΠ∀ have a recursive
axiom system which would be complete in the usual sense with respect to
models over the corresponding standard algebra. But Gödel predicate logic
G∀ does: the axiom system consists of the above five axioms for quantifiers
(∀1), (∀2), (∀3), (∃1), (∃2), together with the axioms of the propositional
calculus G. One can show that this system is simply complete for G∀, not
only with respect to allL-models, but also just with respect to the standard
G-algebra.

We shall show that this extends to G∀∼. When inspecting the proof for
G∀ then we see that the following two lemmas, analogous to Lemmas 5.3.1.
and 5.3.2. in [4], are sufficient to get the result.

Lemma 11. LetL be a countable linearly orderedG∼-algebra. Then there
is a countable densely linearly orderedG∼-algebraL′ such thatL ⊆ L′
and the identical embedding ofL into L′ preserves all infinite suprema and
infima existing inL. In addition we may assume thatL′ has an elementh
such that∼h = h.

Proof.Handleh first. Clearly,L has at most one elementh such that∼h = h.
Let P = {x ∈ L | x > ∼x} andN = {x ∈ L | x < ∼x}. If L has noh,
just add a new elementh with ∼h = h and definex < h for x ∈ N , h < x
for x ∈ P . It is evident that this makesL to a new G∼-algebraL+ and the
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embedding ofL into L+ preserves all sups and infs (since if a setX ⊆ N
has a sup inL the sup must lie inN ; similarly forP and inf). Thus assume
L to have anh with h = ∼h.

Now apply the technique of the proof of [4] 5.3.1. of putting a copy of
rationals from(0, 1) into each “hole”(x, y) (a pair of elements ofL such
thaty is the successor ofx). Let the copy beCx = {(x, r) | 0 < r < 1,
r rational}. Observe that(x, y) is a hole iff(∼y,∼x) is a hole; thus in the
new algebraL′ containing a copy ofL extend the operation∼ induced by
L to the new elements as follows: if(x, y) is a hole then

∼(x, r) = (∼y, 1 − r)

for r ∈ (0, 1). This makesL′ a G∼-algebra. The rest is as in [4]. ut
Lemma 12. LetL be a countable densely linearly orderedG∼-algebra with
a fixed pointh = ∼h of ∼. Then there is an isomorphismf of L onto the
G∼-algebraQ∩ [0, 1]G∼ of rationals with min, max, G̈odel implication and
the involutive negationns(x) = 1 − x.

Proof. First, definef(1L) = 1. f(0L) = 0 andf(h) = 1
2 . Then define the

values off for h ≤ x ≤ 1L makingf and order isomorphism of[h, 1L] to
[12 , 1] in the usual way. For0L ≤ x ≤ h definef(x) = 1 − f(∼x). This
makesf to an order isomorphism ofL withQ∩ [0, 1]G∼ preserving all sups
and infs and commuting with∼. Thusf is just an isomorphism of the two
G∼-algebras in question and preserves sups and infs. ut
Theorem 10 (Standard Completeness).LetT be a theory overG∀∼ (where
the language is at most countable).T ` ϕ iff ‖ϕ‖M = 1 for each[0, 1]G∼-
modelM of T .

The proof is as in [4], Theorem 5.3.3.

7. Adding truth constants

Rational Pavelka Logic (RPL) (see [3]) is an extension of L´ ukasiewicz logic
Ĺ by adding a truth constantr for each rationalr ∈ [0, 1] together with the
following two book-keeping axioms for truth constants:

(RPL1) r&s ≡ r ∗ s
(RPL2) r → s ≡ r ⇒ s

where∗ and⇒ are L´ ukasiewicz t-norm and implication respectively. An
evaluatione of propositional variables by reals from [0, 1] extends to an
evaluation of all formulas as in L´ ukasiewicz logic over the standard MV-
algebra provided thate(r) = r for each rationalr.

The following is a (Pavelka-style) form of the strong completeness of
RPL. LetT be a theory and define thetruth degreeof a formulaϕ in T as
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||ϕ||T = inf{e(ϕ) | e is a model ofT}, and theprovability degreeof ϕ over
T as|ϕ|T = sup{r | T ` r → ϕ}. Then the completeness of RPL says that
the provability degree ofϕ in T is just equal to the truth degree ofϕ over
T , that is,||ϕ||T = |ϕ|T .

Remark 4.The provability degree is a supremum, which is not necessarily
attained as a maximum; for an infiniteT , |ϕ|T = 1 does not always imply
T ` ϕ. (For finiteT it does, see [6] and [4] 3.3.14.)

As it has been noticed elsewhere (e.g. [4]), a complete analogy to RPL for
product and G̈odel logics is impossible, due to the discontinuity of Goguen
and G̈odel implication truth functions. However, we show that it is possible
to introduce truth-constants in product logic provided we also introduce one
infinitary deduction rule to overcome the discontinuity problem of Goguen
implication at the point(0, 0) of the unit square. However, the problem is
not as simple for G̈odel logic since G̈odel implication is discontinuous in all
points of the diagonal of[0, 1)×[0, 1). It must be noticed that H́ajek presents
in [4] a reformulation of Takeuti-Titani predicate logic [9], denoted TT∀,
which includes rational truth-constants and contains L´ ukasiewicz, G̈odel
and product predicate logics as its sublogics. Nevertheless we think it is
of interest to present next how propositional product logic (with involutive
negation) can be endowed with rational constants resulting a very simple
sublogic of TT∀ (when takingn(x) = 1 − x)). Finally we also discuss the
case of G̈odel logic.

7.1. Rational product logic

The language of rational product logic (RΠL) will be the same as the lan-
guage of RPL, and we take as axioms of RΠL the axioms of product logic
plus

(RΠL1) r&s ≡ r · s
(RΠL2) r → s ≡ r ⇒ s

where· is usual product of reals and⇒ is Goguen implication function.
Deductions rules are modus ponens and the following infinitary rule:

fromϕ → r, for eachr > 0, deriveϕ → 0.

A theoryT over RΠL is just a set of formulas. The setCnRΠL(T ) of all
provable formulas inT is the smallestT ′ containingT as a subset, containing
all axioms of RΠL and closed under all deduction rules. For simplicity
we shall denoteϕ ∈ CnRΠL(T ) by T ` ϕ. By definition, a theoryT is
consistentif T 6` 0. Further, a theoryT is completeif T ` (ϕ → ψ) or
T ` (ψ → ϕ) for each pairϕ,ψ. The notions of provability and truth degree
of a formulaϕ in a theoryT , denoted by|ϕ|T and||ϕ||T respectively, are
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the same as for RPL. Our purpose is to show completeness (Pavelka-style)
for RΠL. The main steps are the following.

Lemma 13. T ` 0 iff T ` r for somer < 1.

Proof. If T ` r for somer < 1, thenT ` rn for each naturaln, and thus
T ` r′ for anyr′ < 1. Then the infinitary rule does the job. ut

Next step is just to check that the following known three results for
rational Pavelka logic easily extend to rational product logic (cf. [4] 2.4.2,
3.3.7 and 3.3.8 (1) respectively).

Lemma 14.

1. Each consistent theoryT can be extended to a consistent and complete
theoryT ′.

2. If T does not prove(r → ϕ) thenT ∪ {ϕ → r} is consistent.
3. If T is complete, thensup{r | T ` r → ϕ} = inf{r | T ` ϕ → r}.

Lemma 15. If T is complete, the provability degree commutes with con-
nectives.

Proof. We have only to check that|ϕ → ψ|T = 1 when|ϕ|T = 0, since
the truth function of conjunction (product) is continuous and Goguen im-
plication⇒ is also continuous forx 6= 0. (The interested reader may check
that the corresponding proof for rational Pavelka logic in [4] 3.3.8 (2) also
applies in these cases.)

Therefore, assume|ϕ|T = 0 = inf{r | T ` ϕ → r}. This means that
T ` ϕ → r for everyr > 0, and using the infinitary rule,T provesϕ → 0.
But 0 → ψ is provable in product logic, and thusT also provesϕ → ψ, and
thus|ϕ → ψ|T = 1. ut

Finally, one can also easily check that|ϕ|T ≥ ||ϕ||T . (cf. [4] 3.3.9.). The
other inequality is just due to the soundness of RΠL. Then we may state the
following Pavelka-style completeness for rational product logic.

Theorem 11. In RΠL we have||ϕ||T = |ϕ|T , for any theoryT and any
formulaϕ.

This completeness result easily extends to product logic with an involu-
tive negation since strong negations in [0, 1] are continuous functions. For
a given strong negation functionn in [0, 1], axioms of the corresponding
RΠL∼ (rational product logic with strong negation) are those ofΠ∼ plus
the book-keeping axioms:

(RΠL1) r&s ≡ r · s,
(RΠL2) r → s ≡ r ⇒ s,
(RΠL∼) ∼r ≡ n(r)

Deduction rules are those of RΠL, i.e. modus ponens and the infinitary
rule.
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Theorem 12. In RΠL∼ we have||ϕ||T = |ϕ|T , for any theoryT and any
formulaϕ.

But now, due to the strong negation and the infinitary deduction rule in
RΠL∼, Pavelka-style completeness can be improved to completeness in
the classical sense.

Corollary 1. RΠL∼ is strongly complete, i.e., for any theoryT and any
formulaϕ, T ` ϕ iff ϕ is true in all models ofT .

Proof.It suffices to show that if|ϕ|T = 1 thenT ` ϕ. So, supposeT ` r →
ϕ for all rationalsr < 1. Applying the SBL∼ inference rule of Lemma 2,T
proves∼ϕ → n(r) for all r < 1, that is,T proves∼ϕ → r for all r > 0.
Now, using the infinitary inference rule of RΠL∼, T proves∼ϕ → 0, and
applying again the above mentioned inference rule, we getT ` ∼∼ϕ, i.e.
T ` ϕ. ut
Remark 5.An inspection of the proof of (Pavelka-style) completeness of
the rational Pavelka predicate calculus RPL∀ (see [4] 5.4.10) shows that the
above completeness extends to the case of the predicate calculi RΠL∀ and
RΠL∀∼, defined as the obvious extensions ofΠ∀ andΠ∀∼ respectively by
truth constants and the corresponding book-keeping axioms. Clearly, now
‖ϕ‖T = inf{‖ϕ‖M | M model ofT}.

Theorem 13. BothRΠL∀ andRΠL∀∼ satisfy|ϕ|T = ‖ϕ‖T for each the-
ory T and formulaϕ.

7.2. Rational G̈odel logic with involutive negation

The language of rational G̈odel logic with involutive negation (RGL∼) will
be the same as the language of RΠL∼. Then RGL∼ is the extension of G∼
with the following book-keeping axioms:

(RGL1) r&s ≡ min(r, s),
(RGL2) r → s ≡ r ⇒ s,
(RGL∼) ∼r ≡ 1 − r,

where⇒ is Gödel implication function.
As already mentioned, to get completeness, besides modus ponens and

the necessitation for∆, in this case we would need, for each realα ∈ [0, 1)
the following infinitary rule:

fromϕ → r ands → ψ, for all rationalsr, s such thatr > α > s, derive
ϕ → ψ.

Unfortunately this set of inference rules is not denumerable. The problem
remains whether it is possible to overcome the discontinuity problems of⇒
with a denumerable set of axioms and rules. Nevertheless we can show the
following completeness result (cf. Remark 4).
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Theorem 14 (Completeness).RGL∼ provesϕ iff e(ϕ) = 1 for each eval-
uatione.

Proof. (Sketch)If RGL∼ 6` ϕ then there is a countable linearly ordered G∼-
algebraMwith elements interpreting rational constantsr1, . . . , rn occurring
in ϕ and anM-evaluatione of variables such thateM(ϕ) < 1M. Using the
technique of Lemma 10, we may assumeM to to be densely linearly ordered.
Further assume12 be one of theri’s. Then we may find an isomorphism of
M onto rationals from[0, 1], respecting∼ and sending theM-interpretation
of ri to ri (i = 1, . . . , n). ut

As a direct corollary, taking into account that in Gödel logic the deduction
theorem holds, we get the following completeness result for finite theories.

Corollary 2. Let T be a finite theory overRGL∼. ThenT provesϕ iff
e(ϕ) = 1 for each evaluatione which is a model ofT .

Also here the generalization for predicate calculus is easy — check [4]
5.3.3.

Theorem 15. LetT be a finite theory overRGL∀∼, let ϕ be a formula. T
provesϕ iff ϕ is true in each model ofT .

Remark 6.Without truth constants we have a strong completeness for arbi-
trary theories (over G∀, G∀∼); here only for finitely axiomatized theories.
On the other hand, we have “classical” completeness (provable = true in all
models), not just Pavelka-style completeness.

8. Conclusions

The logic SBL∼, together with its extensionsΠ∼ and G∼ and their corre-
sponding Pavelka-like extensions RΠL∼ and RGL∼, proposed in this paper
fill an existing gap between, on one side the basic logic SBL, the extension
of the basic logic BL resulting from fixing the negation to Gödel negation,
and on the other side the strong Takeuti-Titani fuzzy logic TT∀, with three
residuated pairs of connectives, and in particular with both Gödel and an in-
volutive negations. However, it should be also noticed that L´ ∆, Ĺukasiewicz
logic extended with the projection connective∆, proposed by H́ajek in [4],
is also a fuzzy logic exhibiting both kinds of negation.

The following remains to be an open problem: is RΠL complete in the
classical sense, i.e. does it prove all[0, 1]Π -tautologies? For the correspond-
ing predicate calculus the answer is negative, as it is for L´ ukasiewicz logic
(see [4] for details).
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Appendix: Some basic notions about t-norms

This appendix only contains some necessary definitions and properties of t-
norms which are used in the paper. For more extensive surveys about t-norms
the interested reader is referred to the monograph [8].

Definition 9. A t-norm∗ is a binary operation on the real unit interval[0, 1]
which is associative, commutative, non-decreasing, and fulfils the following
boundary conditions:1 ∗ x = x and0 ∗ x = 0, for all x ∈ [0, 1].

Most well-known examples of t-norms are:
(i) Ĺukasiewicz t-norm: x ∗ y = max(0, x+ y − 1)

(ii) Product t-norm: x ∗ y = x · y
(iii) Gödel t-norm: x ∗ y = min(x, y)

These examples are important since, as the theorem below shows, any con-
tinuous t-norm is either isomorphic to one of these, or it is a combination
(ordinal sum) of them. First we introduce some more definitions:

1. An elementx ∈ [0, 1] is idempotentfor a t-norm∗ if x ∗ x = x. E(∗)
will denote the set of idempotent elements of∗.

2. An elementx ∈ [0, 1] is nilpotent for a t-norm∗ if there exists some

naturaln such that
n

x ∗ . . . ∗ x= 0.
3. A continuous t-norm isArchimedeanif it has no idempotents except 0

and 1.
4. An archimedean t-norm isstrict if it has no nilpotent elements except 0.

Otherwise it is callednilpotent.

For each continuous t-norm∗,E(∗) is a closed subset of[0, 1]. Let us denote
byEc(∗) its complement (a countable union of disjoint open intervals) and
define the following set:

I(E(∗)) = {[a, b] | a, b ∈ E(∗), a 6= b, (a, b) ⊆ Ec(∗)}.
Then the following representation theorem, due to Ling, for continuous t-
norms holds (see [4] for a proof).

Theorem 16. If ∗I denotes the restriction of a continuous t-norm∗ to I×I,
I ∈ I(E(∗)), then:
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1. For eachI ∈ I(E(∗)), ∗I is isomorphic either to the product t-norm (on
[0, 1]) or to Ĺukasiewicz t-norm (on[0, 1]).

2. If x, y ∈ [0, 1] are such that there is noI ∈ I(E(∗)) with x, y ∈ I, then
x ∗ y = min(x, y).

Basically, this theorem says that, for any continuous t-norm∗, we can iden-
tify along the diagonal of[0, 1]2 a set of smaller adjacent squares (sharing
one single point of the diagonal, which will be an idempotent) where inside
these squares we have either Gödel, product or L´ ukasiewicz t-norm (up to
isomorphisms), and outside these squares we havex ∗ y = min(x, y). Such
combinations are known asordinal sums.

Finally the next proposition characterizes continuous t-norms which have
non-trivial zero divisors.

Proposition 1. A continuous t-norm∗ has non-trivial zero divisors iff it is
an ordinal sum such that there existsI0 = [0, a] ∈ I(E(∗)) and ∗I0 is
isomorphic to L´ ukasiewicz t-norm.

Proof.Let x > 0 be an idempotent of∗. According to Theorem 16,x ∗ y =
min(x, y) for all y ∈ (0, 1]. For eachz ∈ [x, 1] we obtainz ∗ y ≥ x ∗ y ≥
min(x, y) > 0, hencez is not a zero divisor. Thus all non-trivial zero divisors
must belong to an intervalI0 = [0, a] ∈ I(E(∗)) and the problem reduces
to the discussion of an Archimedean t-norm isomorphic to∗I0 . ut

As a consequence of Proposition 1, each continuous t-norm∗ without
non-trivial zero divisors must be of one of the following forms:

1. eitherinf(E(∗) − {0}) = 0 (0 is a cluster point ofE(∗)), or
2. there is an intervalI0 = [0, a] ∈ I(E(∗)) and∗I0 is isomorphic to the

product t-norm.
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