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Residue currents associated with weakly
holomorphic functions

Richard Lärkäng

Abstract. We construct Coleff–Herrera products and Bochner–Martinelli type residue cur-

rents associated with a tuple f of weakly holomorphic functions, and show that these currents sat-

isfy basic properties from the (strongly) holomorphic case. This include the transformation law,

the Poincaré–Lelong formula and the equivalence of the Coleff–Herrera product and the Bochner–

Martinelli type residue current associated with f when f defines a complete intersection.

1. Introduction

The basic example of a residue current, introduced by Coleff and Herrera in [12],
is a current called the Coleff–Herrera product associated with a strongly holomor-
phic mapping f=(f1, ..., fp). The Coleff–Herrera product is defined by

(1.1)
〈

∂̄
1
f1

∧...∧∂̄
1
fp

, ϕ

〉
= lim

δ→0+

∫
Tp

j=1{z||fj(z)|=εj(δ)}

ϕ

f1...fp
,

where ϕ is a test form and ε(δ) tends to 0 along a so-called admissible path, which
means essentially that ε1(δ) tends to 0 much faster than ε2(δ) and so on, for the
precise definition see [12]. The Coleff–Herrera product was defined over an analytic
space, however, most of the work on residue currents thereafter has focused on the
case of holomorphic functions on a complex manifold. The theory of residue currents
has various applications, for example to effective versions of division problems etc.,
see for example [3], [7], [24] and the references therein.

On an analytic space Z, with structure sheaf OZ , the most common notion of
holomorphic functions are the strongly holomorphic functions, that is, sections of
the structure sheaf, or more concretely, functions which are locally the restriction
of holomorphic functions in any local embedding. In some cases, this can be a
little too restrictive, and the weakly holomorphic functions might be more natural.
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These are functions defined on Zreg, which are holomorphic on Zreg and locally
bounded at Zsing. Two reasons why these are natural are: the ring ÕZ,z of germs of
weakly holomorphic functions at z is the integral closure of OZ,z in the ring MZ,z

of germs of meromorphic functions at z, and weakly holomorphic functions corre-
spond to strongly holomorphic functions in any normal modification of (Z, OZ).
A slightly better behaved but more restrictive notion are the c-holomorphic func-
tions denoted Oc, functions which are weakly holomorphic and continuous on all
of Z. We will throughout the article assume that Z is an analytic space of pure
dimension.

In a recent article [13], Denkowski introduced a residue calculus for c-holo-
morphic functions, and showed that this calculus satisfies many of the basic prop-
erties known from the strongly holomorphic or smooth cases. It is then a natural
question to ask what happens in the case of weakly holomorphic functions. How-
ever, as in the c-holomorphic case, it is not obvious how to define the associated
residue currents.

In the strongly holomorphic case, there are various ways to define the Coleff–
Herrera product (for the equivalence of various definitions of the Coleff–Herrera
product, also in the non-complete intersection case, see for example [18]). The
definition we will use is based on analytic continuation as in [26], which was inspired
by the ideas in [6] and [9] that the principal value current 1/f of a holomorphic
function f can be defined by (|f |2λ/f)|λ=0. If f=(f1, ..., fp) is strongly holomorphic
on Z, we define the Coleff–Herrera product of f by

∂̄|f1|2λ1 ∧...∧∂̄|fp|2λp

f1...fp

∣∣∣∣
λp=0,...,λ1=0

,

where we by |λp=0,...,λ1=0 mean that we take the analytic continuation in λp to
λp=0, then in λp−1 and so on, see Section 4 for details. Recall that a modification
of an analytic space Z is a proper surjective holomorphic mapping π : Y →Z from
an analytic space Y such that there exists a nowhere dense analytic set E ⊂X

with π|Y \π−1(E) : Y \π−1(E)→X \E being a biholomorphism. It is easy to see by
analytic continuation, that if π : Y →Z is a modification of Z, then the Coleff–
Herrera product of f can be defined as the push-forward of the Coleff–Herrera
product of f ′ :=π∗f . For weakly holomorphic functions, we can use this observation
to define the Coleff–Herrera product, since the pull-back of a weakly holomorphic
function to the normalization is strongly holomorphic. If f is weakly holomorphic,
we define the Coleff–Herrera product of f by

(1.2) μf := ∂̄
1
f1

∧...∧∂̄
1
fp

:=π∗

(
∂̄

1
f ′
1

∧...∧∂̄
1
f ′

p

)
,
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where f ′ =π∗f . By the observation above, this of course coincides with the usual
definition in the case of strongly holomorphic functions, and this definition is also
consistent with the one in [13] in the case of c-holomorphic functions, see Proposi-
tion 4.4.

Because of our definition, the properties we prove for the Coleff–Herrera prod-
uct of weakly holomorphic functions can mostly be reduced (by going back to the
normalization) to the strongly holomorphic case. Thus the main part of this article
concerns giving a coherent exposition of the basic theory of residue currents in the
strongly holomorphic case. This is done based on analytic continuation of currents
and the notion of pseudomeromorphic currents as introduced in [4], which is devel-
oped on a complex manifold. We will see that this approach works well also with
strongly holomorphic functions on an analytic space, and we believe that this might
be of independent interest, although most of the results should be known.

However, even for the statement of these properties in the weakly holomorphic
case, two problems occur, namely how is multiplication of a weakly holomorphic
function with a current defined, and what is the zero set of a tuple of weakly
holomorphic functions? And hence also, what should a complete intersection mean?

With regards to defining multiplication of a weakly holomorphic function with
a current, we take a similar approach as for the definition of the Coleff–Herrera
product. Assume μ is a current on Z, and that there exists a modification π : Y →Z,
with a current μ′ on Y such that μ=π∗μ′ (the existence of such a μ′ is guaranteed
if μ is pseudomeromorphic and Y is the normalization of Z, see the introduction of
Section 5). If g is strongly holomorphic on Z, then

(1.3) gμ=π∗(π∗gμ′).

The right-hand side of (1.3) still exists if g is weakly holomorphic on Z and Y is
normal, so we take this as the definition of gμ. However, that this is well-defined
depend on the fact that we have a certain “canonical” representative of the Coleff–
Herrera product in the normalization (or any normal modification). We will see in
Section 5 that (1.3) depends on the choice of representative μ′ and can thus not
be used to define a general multiplication of weakly holomorphic functions with
currents on Z.

For the zero set of one weakly holomorphic function, all reasonable definitions
should coincide. For the zero set of a weakly holomorphic mapping f , it is natural
to take into account that the zero sets of the individual components of f can “be-
long” to different irreducible components. We introduce in Section 2 a notion of
common zero set of f , depending on f as a mapping, and not only on the individual
components, which however may differ from the intersection of the respective zero
sets.
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The Coleff–Herrera product μf in (1.2) associated with a strongly holomorphic
mapping f=(f1, ..., fp) satisfies

supp μf ⊆ Zf and ∂̄μf =0,

where Zf is the common zero set of f . In addition, if f forms a complete intersection,
the Coleff–Herrera product is alternating in the residue factors and

(1.4) (f1, ..., fp) ⊆ ann μf ,

where (f1, ..., fp) is the ideal generated by f1, ..., fp, and annμf is the annihilator
of μf , i.e., the ideal of holomorphic functions g such that gμf =0. We also have the
transformation law for residue currents (see [14]), which says that if f=(f1, ..., fp)
and g=(g1, ..., gp) define a complete intersection, and there exists a matrix A of
holomorphic functions such that g=Af , then

(det A)∂̄
1
g1

∧...∧∂̄
1
gp

= ∂̄
1
f1

∧...∧∂̄
1
fp

.

The Poincaré–Lelong formula relates the Coleff–Herrera product of f and the inte-
gration current [Zf ] on Zf (with multiplicities) and it says that

1
(2πi)p

∂̄
1
f1

∧...∧∂̄
1
fp

∧df1 ∧...∧dfp = [Zf ].

We will see that in fact all these statements still hold also in the weakly holomorphic
case. However, as mentioned above, zero sets of weakly holomorphic functions and
multiplication of currents with weakly holomorphic functions need to be interpreted
in the right way.

Remark 1.1. The inclusion (1.4) if f defines a complete intersection is one
direction of the duality theorem proven in [14] and [21], which says that on a complex
manifold, the inclusion is in fact (locally) an equality. However, in [17], we show
that on any singular variety, one can always find a tuple f of strongly holomorphic
functions such that the inclusion (1.4) is strict.

Bochner–Martinelli type residue currents were first introduced in [22] by Pas-
sare, Tsikh and Yger (on a complex manifold) as an alternative way of defining a
residue current corresponding to a tuple of holomorphic functions. In [8], Bochner–
Martinelli type residue currents were constructed on an analytic space in order
to prove a generalization of Jacobi’s residue formula, generalizing previous results
in [25] in the smooth case.
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The Bochner–Martinelli type residue currents give another reason why our
definition of Coleff–Herrera product is a natural one. In the smooth case, it was
proved in [22] that if the functions define a complete intersection, then the Coleff–
Herrera product and the Bochner–Martinelli current coincide. It is suggested in [8]
that the same statement holds in the singular case with a similar proof. We will
construct Bochner–Martinelli type residue currents associated with a tuple of weakly
holomorphic functions, and we will show that the equality between the Coleff–
Herrera product and the Bochner–Martinelli type residue current holds both in the
strongly and weakly holomorphic cases. An advantage of the Bochner–Martinelli
current, compared to the Coleff–Herrera product, in the weakly holomorphic case is
that it can be defined intrinsically on Z as the analytic continuation of an arbitrarily
smooth (depending on a parameter λ) form on Z. In contrast, the Coleff–Herrera
product is only defined as the analytic continuation of an arbitrarily smooth form
on the normalization of Z.

2. Zero sets of weakly holomorphic functions

The behavior of the currents we define will depend in a crucial way on the zero
sets of the weakly holomorphic functions, and in this section we will define the zero
set of a weakly holomorphic mapping.

Definition 2.1. Let f ∈ Õ(Z). If f is not identically zero on any irreducible
component of Z, we define the zero set of f by Zf :={z ∈Z |(1/f)z /∈ Õz }. Let Zα be
the irreducible components of Z where f is identically zero, and let Z ′ =Z \

⋃
α Zα.

Then f does not vanish identically on any of the irreducible components of Z ′, and
we define Zf as

⋃
α Zα ∪Zf |Z′ .

Remark 2.2. We have z ∈Zf if and only if there exists a sequence zj→z with
zj ∈Zreg such that f(zj)→0 (since if we cannot find such a sequence, then 1/f is
weakly holomorphic). Hence, when f is c-holomorphic, Zf coincides with the usual
zero set of f , when f is seen as a continuous function.

We will use the following characterization of the zero set of a weakly holomor-
phic function. However, since this is a special case of Proposition 2.10, we omit the
proof.

Lemma 2.3. Let π : Z ′→Z be the normalization of Z. If f ∈ Õ(Z), then Zf

is an analytic subset of Z, and Zf =π(Zπ∗f ).
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We recall that an analytic space Z is normal if OZ,z=ÕZ,z for all z ∈Z, and
that the normalization Z ′ of an analytic space Z is the unique normal space Z ′

together with a proper finite surjective holomorphic mapping π : Z ′→Z such that
π|Z′ \π−1(Zsing) : Z ′ \π−1(Zsing)→Zreg is a biholomorphism, see for example [15].

For any meromorphic function φ, there is a standard notion of zero set of φ,
that we denote by Z ′

φ, which is defined by Z ′
φ :={z ∈Z |(1/φ)z /∈ Oz }. Since weakly

holomorphic functions are meromorphic, this gives another definition of zero set if
f is a weakly holomorphic function. Clearly Zf ⊆Z ′

f , but as we see in the following
example, the inclusion is in general strict, so the two definitions do not coincide.

Example 2.4. Let Z={(z, w)|z3 −w2=0} ⊆C
2, which has normalization π(t)=

(t2, t3), and let f=1+w/z. Since π∗f=1+t3/t2=1+t, f is weakly holomorphic
on Z. As {(z, w)|π∗f(z, w)=0}={π(t)|t=−1}, we get by Lemma 2.3 that

Zf =π({t | t = −1}) = {(1, −1)}.

However,

Z ′
f =P1/f = {(z, w) ∈ Z | z+w =0} = {(t2, t3) | t2 = −t3} = {(0, 0), (1, −1)},

so Zf �Z ′
f .

To study the dimension of zero sets of weakly holomorphic functions, we will
need the following lemma, which shows that subvarieties of the normalization cor-
respond to subvarieties of Z of the same dimension, and vice versa.

Lemma 2.5. Let π : Z ′→Z be the normalization of Z. If Y ′ is a subvari-
ety of Z ′, then π(Y ′) is a subvariety of Z with dim Y ′ =dim π(Y ′), and if Y is a
subvariety of Z, then π−1(Y ) is a subvariety of Z ′ with dim Y =dim π−1(Y ).

Proof. The first part follows from Remmert’s proper mapping theorem, when
formulated as for example in [15], since π is a finite proper holomorphic mapping.
We get from the first part that dim π−1(Y )=dim π(π−1(Y ))=dim Y , where the
second equality holds since π is surjective. �

If f ∈ Õ(Z) and f �≡0 on any irreducible component of Z, then codim Zf =1
or Zf =∅. In fact, if f ′ =π∗f and Zf ′ �=∅, then f ′ is strongly holomorphic, and
Zf ′ ={z |f ′(z)=0} has codimension 1, and since Zf =π(Zf ′ ) by Lemma 2.3, Zf has
codimension 1 by Lemma 2.5. However, as is well known, in contrast to the smooth
case, subvarieties of codimension 1 cannot in general be defined as the zero set
of one single strongly holomorphic function. As we will see in the next example,
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this is the case in general for zero sets of weakly holomorphic functions, even for
c-holomorphic functions on an irreducible space.

Example 2.6. Let V ={z |z3
1 −z2

2 =z3
3 −z2

4 =0} ⊂C4. Then V has normalization
π : C

2→V , π(t1, t2)=(t21, t
3
1, t

2
2, t

3
2), and hence f=z2/z1 −z4/z3 is a c-holomorphic

function since π∗f=t1 −t2. The set Zf ={(t2, t3, t2, t3)|t∈C} has codimension 1
in Z. However, there does not exist a holomorphic function in a neighborhood of 0
such that f(t21, t

3
1, t

2
2, t

3
2)=0 exactly when t1=t2, since in that case, we could write

f(t21, t
3
1, t

2
2, t

3
2)=(t1 −t2)mu(t1, t2) for some m∈N, where u(0, 0) �=0, which is easily

seen to be impossible. Hence, Zf is not the zero set of one single strongly holomor-
phic function.

Example 2.7. Let Z=Z1 ∪Z2 ⊂C
6, where Z1=C

3 × {0} and Z2={0} ×C
3. De-

fine the functions f and g by

f(z) =
{

z1, z ∈Z1 \ {0},

1, z ∈Z2 \ {0},
and g(z) =

{
1, z ∈Z1 \ {0},

z4, z ∈Z2 \ {0}.

Then f, g ∈ Õ(Z), and Zf ={z ∈Z1 |z1=0} and Zg={z ∈Z2 |z4=0} which both have
codimension 1 in Z. However, Zf ∩Zg={0}, which has codimension 3. Hence, zero
sets of weakly holomorphic functions do not behave as well as one could hope with
respect to intersections. If we let f1=f2=f and f3=g, then Zf1 ∩Zf2 ∩Zf3 ={0} has
codimension 3, while Zf1 ∩Zf2 =Zf has codimension 1 at 0 in Z. Thus, if one defines
a complete intersection for zero sets of weakly holomorphic functions f=(f1, ..., fp)
by requiring that Zf1 ∩...∩Zfp has codimension p in Z, then it will not follow in
general that (Zf1 ∩...∩Zfk

, z) has codimension k for z ∈Zf1 ∩...∩Zfp .

Remark 2.8. Note that for c-holomorphic functions f=(f1, ..., fp), if f ′ =π∗f ,
where π : Z ′→Z is the normalization, then π(Zf ′

1
∩...∩Zf ′

p
)=Zf1 ∩...∩Zfp . Thus if

we say that f=(f1, ..., fp), where fj ∈ Oc(Z), forms a complete intersection in Z if
Zf1 ∩...∩Zfp has codimension p, then this holds if and only if f ′ forms a complete
intersection in Z ′ by Lemma 2.5.

As we see in Example 2.7, this remark does not hold for weakly holomorphic
functions, because there, Zf ∩Zg={0}, while Zf ′ ∩Zg′ =∅. Thus, the straightfor-
ward generalization of complete intersection, where the zero set Zf1 ∩...∩Zfp is
required to have codimension p, does not share the same good properties in the
weakly holomorphic case as in the strongly holomorphic (or c-holomorphic) case.
Because of this, we will use a different definition of both the common zero set of
weakly holomorphic functions and of a complete intersection. However, it coincides



142 Richard Lärkäng

with the usual definitions in the case of strongly holomorphic or c-holomorphic
functions, and with our definition the problems above disappear.

Definition 2.9. Let f=(f1, ..., fp) be weakly holomorphic. We define the com-
mon zero set of f , denoted by Zf , as the set of z ∈Z such that there exists a
sequence zj ∈Zreg with zj→z, and fk(zj)→0 for k=1, ..., p. We will see that Zf is
an analytic subset of Z, and hence we say that f forms a complete intersection if
Zf has codimension p in Z.

Note that by Remark 2.2, this definition is consistent with the definition of Zf

in the case of one function. We also see that in Example 2.7, Z(f,g)=∅, and hence,
(f, g) is not a complete intersection in our sense. Just as for one function, we can
give a characterization of the zero set with the help of the normalization.

Proposition 2.10. Let f=(f1, ..., fp) be weakly holomorphic, and let f ′ =π∗f ,
where π : Z ′→Z is the normalization. Then

(2.1) Zf =π(Zf ′
1

∩...∩Zf ′
p
),

and if Zf is nonempty, then it is an analytic subset of Z of codimension ≤p. In
general,

(2.2) Zf ⊆ Zf1 ∩...∩Zfp ,

with equality if f is c-holomorphic. In addition, f is a complete intersection if and
only if f ′ is a complete intersection in the normalization.

Proof. If z′ ∈Zf ′
1

∩...∩Zf ′
p
, then we can take a sequence z′

j→z′ such that
z′
j ∈π−1(Zreg). Thus, if we let zj =π(z′

j), we get that fk(zj)→0, and hence we
have the inclusion Zf ⊇π(Zf ′

1
∩...∩Zf ′

p
) in (2.1). For the other inclusion, if we have

a sequence zj→z such that z ∈Zf , since π is proper we can choose a convergent
subsequence z′

kj
→z′ such that π(z′

kj
)=zkj , and as z ∈Zf , we must have f ′(z′)=0,

so z=π(z′), with z′ ∈Zf ′
1

∩...∩Zf ′
p
. Now, the fact that Zf is an analytic subset

of Z follows by (2.1) and Remmert’s proper mapping theorem, since Zf ′
j

are an-
alytic subsets of Z ′. As f ′ is strongly holomorphic, Zf ′ has codimension ≤p, so
by (2.1) combined with Lemma 2.5 we get that Zf has codimension ≤p. If f is
c-holomorphic, the equality in (2.2) follows by (2.1) since for any continuous map-
ping f , Zf1 ∩...∩Zfp =π(Zπ∗f1 ∩...∩Zπ∗fp), and the general case also follows from
(2.1) as π(Zf ′

1
∩...∩Zf ′

p
)⊆π(Zf ′

1
)∩...∩π(Zf ′

p
)=Zf1 ∩...∩Zfp . Finally, the fact that

f is a complete intersection if and only if f ′ is a complete intersection follows from
(2.1) together with Lemma 2.5. �
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We note that if Zf1 ∩...∩Zfp has codimension ≥p, then either Zf =∅, or Zf has
codimension p since by Proposition 2.10, Zf ⊆Zf1 ∩...∩Zfp , and Zf has codimension
at most p. Thus, we could have taken as definition of a complete intersection, that
Zf1 ∩...∩Zfp has codimension ≥p, and our results about complete intersection would
still be true. However, it would in general give weaker statements, since it might very
well happen that Zf1 ∩...∩Zfp has codimension <p, while Zf has codimension p. In
addition, results depending on the exact zero set, like the Poincaré–Lelong formula,
Proposition 8.1, would of course not be true if one would use Zf1 ∩...∩Zfp instead
of Zf .

Note also that, if f=(f1, ..., fp) is a complete intersection and f0=(f1, ..., fk),
then (Zf0 , z) has codimension k for z ∈Zf , since if z′ ∈π−1(z), then (Zf ′

0
, z′) has

codimension k, and hence as π is a finite proper holomorphic mapping, (Zf0 , z)=⋃
z′

j ∈π−1(z) π((Zf ′
0
, z′

j)) has codimension k in Z.

3. Pseudomeromorphic currents on an analytic space

In this section we will introduce pseudomeromorphic currents on an analytic
space. Pseudomeromorphic currents on a complex manifold were introduced by
Andersson and Wulcan in [4], inspired by the fact that currents like the Coleff–
Herrera product and Bochner–Martinelli type residue currents are pseudomeromor-
phic. Two important properties of pseudomeromorphic currents in the smooth case
are the direct analogues of Propositions 3.2 and 3.3. Since these hold also in the
singular case, many properties of residue currents hold also for strongly holomorphic
functions by more or less the same argument as in the smooth case.

The pseudomeromorphic currents are intrinsic objects of the analytic space Z,
so we begin with explaining what we mean by a current on an analytic space. We
will follow the definitions used in [10] and [16]. To begin with, we assume that Z

is an analytic subvariety of Ω, for some open set Ω⊆C
n. Then we define the set of

smooth forms of bidegree (p, q) in Z by Ep,q(Z)=Ep,q(Ω)/Np,q,Z(Ω), where Ep,q(Ω)
are the smooth (p, q)-forms in Ω and Np,q,Z(Ω)⊂ Ep,q(Ω) are the smooth forms ϕ

such that i∗ϕ≡0, where i : Zreg→Ω is the inclusion map. The set of test forms
on Z, Dp,q(Z), are the forms in Ep,q(Z) with compact support. With the usual
topology on Dp,q(Ω) by uniform convergence of coefficients of differential forms to-
gether with their derivatives on compact sets, we give Dp,q(Z) the quotient topology
from the projection Dp,q(Ω)→Dp,q(Z). Then, (p, q)-currents on Z, denoted D ′

p,q ,
are the continuous linear functionals on Dk−p,k−q(Z), where k=dim Z. However,
more concretely, this just means that if μ is a (p, q)-current on Z, then i∗μ is an
(n−k+p, n−k+q)-current in the usual sense on Ω which vanishes on forms in
Nk−p,k−q,Z(Ω). Conversely, if T is an (n−k+p, n−k+q)-current on Ω, which van-
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ishes on forms in Nk−p,k−q,Z(Ω), then T defines a unique (p, q)-current T ′ on Z

such that i∗T ′ =T .
It is easy to see that the definitions of smooth forms, test forms and currents

are independent of the embedding, and hence by gluing together in the same way
as one does on a complex manifold, we can define the sheaves of smooth forms, test
forms and currents on any analytic space Z. Note in particular that by a smooth
function on Z, we mean a function which is locally the restriction of a smooth
function in the ambient space.

In C, one can define the principal value current 1/zn=|z|2λ/zn|λ=0 by analytic
continuation, where |λ=0 denotes that for Re λ
0, we take the action of |z|2λ/zn

on a test form and take the value of the analytic continuation to λ=0, which is
easily seen to exist by a Taylor expansion, or integration by parts. Thus, if α is
a smooth form on Cn and {j1, ..., jm} ⊆ {1, ..., n}, with jl disjoint, then one gets a
well-defined current

(3.1)
1

zn1
j1

...
1

znk
jk

∂̄
1

z
nk+1
jk+1

∧...∧∂̄
1

znm
jm

∧α

on C
n by taking ∂̄ in the current sense together with tensor product of currents and

multiplication of currents with smooth forms. In [4], if α has compact support, a
current of the form (3.1) is called an elementary current. The class of pseudomero-
morphic currents on a complex manifold was then introduced as currents that can
be written as a locally finite sum of push-forwards of elementary currents. We will
use the same definition on an analytic space Z.

Definition 3.1. A current μ on Z is said to be pseudomeromorphic, denoted
μ∈ P M(Z), if μ can be written as a locally finite sum

μ=
∑
α

(πα)∗τα,

where πα : Zα→Z is a family of smooth modifications of Z, and τα are elementary
currents on Zα.

Note in particular that, if π : Z̃→Z is a resolution of singularities of Z, and if
μ∈ P M(Z̃), then π∗μ∈ P M(Z). All the currents introduced in this article are pseu-
domeromorphic, as we will see directly from the proofs that the currents exist. In
[4], it is shown that if f is holomorphic on a complex manifold X , and T ∈ P M(X),
one can define the products (1/f)T and ∂̄(1/f)∧T . The same idea works equally
well for strongly holomorphic functions on an analytic space.
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Proposition 3.2. Let f be strongly holomorphic on Z such that f does not
vanish on any irreducible component of Z, and let T ∈ P M(Z). Then

1
f

T :=
|f |2λ

f
T

∣∣∣∣
λ=0

and ∂̄
1
f

∧T :=
∂̄|f |2λ

f
∧T

∣∣∣∣
λ=0

,

where the right-hand sides are defined originally for Re λ
0, have current-valued
analytic continuations to Re λ>−ε for some ε>0, and the values at λ=0 are pseu-
domeromorphic. The currents satisfy the Leibniz rule

∂̄

(
1
f

T

)
= ∂̄

1
f

∧T +
1
f

∂̄T,

and supp(∂̄(1/f)∧T )⊆Zf ∩supp T . If f �=0, then (1/f)T defined in this way coin-
cides with the usual multiplication of T with the smooth function 1/f .

Proof. If Z is smooth, this is Proposition 2.1 in [4], except for the last state-
ment. However, if f �=0, then |f(z)|2λ/f(z) is smooth in both λ and z, and analytic
in λ, so if ξ is a test form, 〈T, (|f |2λ/f)ξ〉 is analytic in λ, and hence the analytic
continuation to λ=0 coincides with the value 〈T, (1/f)ξ〉 at λ=0. The proof in
the general case goes through verbatim as in the smooth case in Proposition 2.1
in [4]. �

The crucial point in the proof of the following proposition is that for any
analytic subset W ⊆Z and any T ∈ P M(Z), there exist natural restrictions

(3.2) 1W cT := |h|2λT |λ=0 and 1W T :=T −1W cT,

where h is a tuple of holomorphic functions such that W ={z |h(z)=0}. The restric-
tions are independent of the choice of h, and are such that supp1W T ⊆W . This is
Proposition 2.2 in [4], and the proof goes through in exactly the same way when Z

is an analytic space.

Proposition 3.3. Assume that μ∈ P M(Z), and that μ has support on a va-
riety V . If IV is the ideal of holomorphic functions vanishing on V , then ĪV μ=0.
If μ is of bidegree (∗, p), and V has codimension ≥p+1 in Z, then μ=0.

In the case when Z is a complex manifold, this is Proposition 2.3 and Corol-
lary 2.4 in [4], and the proof there goes through in the same way also when Z is
an analytic space. The final step in the proof that μ=0 in the smooth case is to
prove that μ=0 on Vreg, which is proved with the help of the previous part of the
proposition, and by degree reasons, and then by induction over the dimension of
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V , μ=0. In the singular case, this is done in the same way. Since this is a local
statement, we can assume that Z ⊆Ω⊆C

n, and consider V as a subvariety of Ω.
Then, for the same reasons as in the smooth case, we get that i∗μ=0 on Vreg, and
by induction over the dimension of V that i∗μ=0, and hence μ=0.

4. Coleff–Herrera products of weakly holomorphic functions

Let f1, ..., fq+p ∈ Õ(Z). We want to define the Coleff–Herrera product

T =
1
f1

...
1
fq

∂̄
1

fq+1
∧...∧∂̄

1
fq+p

.

If f is strongly holomorphic, one way to define it is by

(4.1) T =
|f1|2λ1 ...|fq |2λq

f1...fq

∂̄|fq+1|2λq+1 ∧...∧∂̄|fq+p|2λq+p

fq+1...fq+p

∣∣∣∣
λq+p=0,...,λ1=0

,

which a priori is defined only when Reλj 
0; however, by Proposition 3.2 it has
an analytic continuation in λq+p to Re λq+p>−ε for some ε>0, and the value
at λq+p=0 is pseudomeromorphic. Again, by Proposition 3.2, it has an analytic
continuation in λq+p−1 to λq+p−1=0 and so on, and hence the value at λq+p=
0, ..., λ1=0 exists.

Note that if π : Y →Z is any modification of Z, we can define the corresponding
Coleff–Herrera product of f ′ =π∗f in Y . Taking the push-forward of this current to
Z will in fact give the Coleff–Herrera product of f on Z. To see this, let Tλ denote
the form on the right-hand side of (4.1), with Re λj 
0 fixed, and let (T ′)λ denote
the corresponding form on Y with f ′ instead of f . If Re λj 
0, then Tλ and (T ′)λ

are smooth, and π∗Tλ=(T ′)λ, so π∗(T ′)λ=Tλ, since π is a modification. Thus, by
analytic continuation, T =Tλ|λq+p=0,...,λ1=0=π∗(T ′)λ|λq+p=0,...,λ1=0=π∗T ′.

Now, if f is weakly holomorphic, let π : Z ′→Z be the normalization of Z, and
f ′ =π∗f which is strongly holomorphic on Z ′. Hence, the current

(4.2) T ′ =
1
f ′
1

...
1
f ′

q

∂̄
1

f ′
q+1

∧...∧∂̄
1

f ′
q+p

exists.

Definition 4.1. If f=(f1, ..., fq+p) is weakly holomorphic, we define the Coleff–
Herrera product

(4.3) T =
1
f1

...
1
fq

∂̄
1

fq+1
∧...∧∂̄

1
fq+p

=π∗T ′

of f as π∗T ′, where T ′ is defined by (4.2).
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If f is strongly holomorphic, this definition will be the same as the definition
in (4.1) since by the remark above, T can be defined as the push-forward from
any modification. In addition, if f is weakly holomorphic, it can be defined by the
push-forward of the corresponding current in any normal modification, since any
normal modification factors through the normalization.

We will call the factors 1/fj the principal value factors, and ∂̄(1/fj) the residue
factors.

Remark 4.2. Note that even though here the principal value factors are to the
left of the residue factors, we could equally well have the residue and principal value
factors mixed. However, changing the order will in general give a different current,
but as we will see in Theorem 4.6, if fj define a complete intersection, the current
will not depend on the order (up to change of sign).

Remark 4.3. The Coleff–Herrera product for f=(f1, ..., fp) strongly holomor-
phic is originally defined in [12] as the limit of integrals over

⋂p
j=1{z | |fj(z)|=εj(δ)}

as ε→0, where ε(δ) tends to 0 along an admissible path, cf. (1.1). When ε(δ) tends
to 0 along an admissible path, this will correspond to taking the analytic contin-
uation to λ=0 in the order as in (4.1), and in fact, for arbitrary f , the definition
in (1.1) is equal to the one in (4.3) defined by analytic continuation, see [18].

In [13] Denkowski gave a definition of the Coleff–Herrera product of f , for f

c-holomorphic, and we will see below that his definition coincides with ours in that
case. The idea in [13] was to consider the graph of f ,

Γf = {(z, f(z)) ∈ Z ×C
p
w | z ∈ Z},

and even though f is only c-holomorphic, the graph will be analytic. If (z, w)∈Γf ,
then w=f(z), and hence on the graph fj =wj is a strongly holomorphic function.
If Π is the projection from the graph to Z, since f is continuous, Π is a homeomor-
phism and in particular proper. The Coleff–Herrera product of f was then defined
by

(4.4) ∂̄
1
f1

∧...∧∂̄
1
fp

=Π∗

(
∂̄

1
w1

∧...∧∂̄
1

wp

)
,

and since fj =wj on Γf , this should be a reasonable definition of the Coleff–Herrera
product of f . The next proposition shows, as one might hope, that the definition
of Denkowski coincides with ours.

Proposition 4.4. If f=(f1, ..., fp) is c-holomorphic, then the definition of the
Coleff–Herrera product of f in (4.3) and in (4.4) coincide.
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Proof. In [13] the definition used for the Coleff–Herrera product of strongly
holomorphic functions was the one from [12]. However, by Remark 4.3 we can
assume that the definition by analytic continuation is used instead. Let π : Z ′→
Z be the normalization of Z and f ′ =π∗f . We have projections Π: Γf→Z and
Π′ : Γf ′ →Z ′, where Γf ⊆Z ×C

p
w and Γf ′ ⊆Z ′ ×C

p
w′ are the graphs of f and f ′. Thus

we have the commutative diagram

(4.5)
Γf ′

(π×Id)|Γ
f ′

−−−−−−→ Γf⏐⏐�Π′
⏐⏐�Π

Z ′ π
−−−−→ Z.

We will denote the current ∂̄(1/f ′
1)∧...∧∂̄(1/f ′

p) on Z ′ by μf ′
, and similarly for μw

and μw′
defined on Γf and Γf ′ , respectively. Then ∂̄(1/f1)∧...∧∂̄(1/fp) is defined in

(4.3) by π∗μf ′
, and in (4.4) by Π∗μw. Now, (π ×Id)|Γf ′ : Γf ′ →Γf is a modification

of Γf so we have μw=(Π×Id)∗μw′
, and since Π′ : Γf ′ →Z ′ is a biholomorphism and

w′
j =f ′

j on Γf ′ we also have μf ′
=Π′

∗μw′
. Thus both are the push-forward of the

same current in Γf ′ , and since the diagram (4.5) commutes, both will have the
same push-forward to Z. �

The next two theorems are extensions to the case of weakly holomorphic func-
tions of well-known results of the Coleff–Herrera product of strongly holomorphic
functions (in the case q=0 or q=1), see [12], or the case of holomorphic functions
on a complex manifold, see [20].

Theorem 4.5. If f=(f1, ..., fq+p) is weakly holomorphic, then T , defined by
(4.3), satisfies the Leibniz rule

∂̄T =
q∑

j=1

1
f1

...
1

fj−1
∧∂̄

1
fj

∧ 1
fj+1

...
1
fq

∂̄
1

fq+1
∧...∧∂̄

1
fq+p

,

and supp T ⊆Z(fq+1,...,fq+p).

Proof. First we assume that f is strongly holomorphic. Then the Leibniz rule
follows by analytic continuation, since if Reλ
0, we have

∂̄

(
|f |2λ

f

)
=

∂̄|f |2λ

f
and ∂̄

(
∂̄|f |2λ

f

)
=0.

The weakly holomorphic case follows by taking push-forward from the normaliza-
tion. For the last part, let T ′ be the current corresponding to T in the normalization,
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and f ′ =π∗f be the pull-back of f to the normalization. Then by Proposition 3.2,
T ′ =0 outside of Zf ′

j
, j ≥q+1, and hence supp T ⊆π(supp T ′)⊆π(Z(f ′

q+1,...,f ′
q+p))=

Z(fq+1,...,fq+p), where the last equality follows from Proposition 2.10. �

It is natural in this context to ask how to define a reasonable multiplication
of a weakly holomorphic function with a current, something which we will need in
the case when the current is a Coleff–Herrera product to be able to state the next
theorem. If g ∈ Õ(Z), and T is the Coleff–Herrera product in (4.3), we define gT by

(4.6) gT =π∗(π∗gT ′),

where π : Z ′→Z is the normalization of Z, and T ′ is the corresponding Coleff–
Herrera product of f ′ =π∗f . In the case when both f and g are c-holomorphic,
Denkowski gives a definition of multiplication of g and the Coleff–Herrera product
of f in [13], and by a similar argument as that in Proposition 4.4, one sees that our
definition coincides with the one in [13] in that case. Note however, that we do not
define a multiplication of a weakly holomorphic function with an arbitrary current,
and as we will see in Section 5, this will not be possible if we require it to satisfy
certain natural properties.

Theorem 4.6. Let f=(f1, ..., fq+p) be weakly holomorphic, such that (fq+1, ...,

fq+p) defines a complete intersection, and that (fq+1, ..., fq+p, fj) defines a complete
intersection for 1≤j ≤q. Then the principal value factors in

T =
1
f1

...
1
fq

∂̄
1

fq+1
∧...∧∂̄

1
fq+p

commute with other principal value factors and residue factors (see Remark 4.2),
and the residue factors anticommute. In addition, if 1≤k ≤q, we have

(4.7) fkT =
1
f1

...
1̂
fk

...
1
fq

∂̄
1

fq+1
∧...∧∂̄

1
fq+p

,

and if q+1≤l≤q+p, then

(4.8) flT =0.

Note that in case fj ∈ Õ(Z), then the left-hand sides of (4.7) and (4.8) are
defined by (4.6).

Remark 4.7. In the smooth case, the first part of Theorem 4.6 (about permut-
ing the factors) follows from a theorem of Samuelsson in [23], about the analyticity
of the residue integral (4.1). In fact, his theorem holds also for strongly holomorphic
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functions on an analytic space, cf. [18]. Since the proof of the first part of Theo-
rem 4.6 reduces to the strongly holomorphic case, one could thus refer to the results
of Samuelsson. However, since the proof of this deep theorem of Samuelsson is quite
involved, we still prefer to give a direct proof of the first part of Theorem 4.6, as it
can be done by much more elementary means.

Note also that in the following lemmas, which we will use to prove Theorem 4.6,
we assume that the functions are strongly holomorphic.

Lemma 4.8. Assume that f1, f2 ∈ O(Z) and that T ∈ P M(Z) is of bidegree
(∗, p). If Zf1 ∩Zf2 ∩supp T ⊆V , for some analytic set V ⊆Z of codimension ≥p+1
in Z, then

(4.9)
1
f1

1
f2

T =
1
f2

1
f1

T.

If Zf1 ∩Zf2 ∩supp T ⊆V ′, for some analytic set V ′ of codimension ≥p+2 in Z, then

(4.10)
1
f1

∂̄
1
f2

∧T = ∂̄
1
f2

∧ 1
f1

T,

and if in addition Zf1 ∩Zf2 ∩supp ∂̄T ⊆V ′ ′, for some analytic set V ′ ′ of codimension
≥p+3, then

(4.11) ∂̄
1
f1

∧∂̄
1
f2

∧T = −∂̄
1
f2

∧∂̄
1
f1

∧T.

Proof. We have by Proposition 3.2 that

(4.12)
1
f1

1
f2

T − 1
f2

1
f1

T,

is zero outside of Zf1 , since both terms are just multiplication of (1/f2)T with
the smooth function 1/f1, and similarly it is zero outside of Zf2 . Thus (4.12) is a
pseudomeromorphic current on Z of bidegree (∗, p) with support on Zf1 ∩Zf2 ∩V ,
which has codimension ≥p+1, so (4.9) follows by Proposition 3.3. Similarly outside
of Zf1 , we get that

(4.13)
1
f1

∂̄
1
f2

∧T −∂̄
1
f2

∧ 1
f1

T

is zero, so (4.13) is a pseudomeromorphic current on Z of bidegree (∗, p+1) and
has support on Zf1 ∩Zf2 ∩supp T , so (4.10) follows by Proposition 3.3. For (4.11),
we get by Theorem 4.5 and (4.10) that
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∂̄
1
f1

∧∂̄
1
f2

∧T = ∂̄

(
1
f1

∂̄
1
f2

∧T

)
+

1
f1

∂̄
1
f2

∧∂̄T

= ∂̄

(
∂̄

1
f2

∧ 1
f1

T

)
+

1
f1

∂̄
1
f2

∧∂̄T

= −∂̄
1
f2

∧∂̄
1
f1

∧T −∂̄
1
f2

∧ 1
f1

∂̄T +
1
f1

∂̄
1
f2

∧∂̄T

= −∂̄
1
f2

∧∂̄
1
f1

∧T,

where the last equality holds because of (4.10) and the assumption of the support
of ∂̄T . �

Lemma 4.9. Assume that f, g ∈ O(Z), and that f/g ∈ O(Z). If T ∈ P M(Z)
has bidegree (∗, p) and Zg ∩supp T ⊆V , for some analytic subset V of codimension
≥p+1, then

f

(
1
g
T

)
=

f

g
T.

Proof. Outside of Zg , we can see (1/g)T as multiplication by the smooth func-
tion 1/g by Proposition 3.2. Hence we have f(1/g)T =(f/g)T since their difference
is a pseudomeromorphic current with support on Zg ∩supp T , so it is 0 by Proposi-
tion 3.3. �

Proof of Theorem 4.6. First we observe that it is enough to prove the theorem
in the case when fj are strongly holomorphic, since if π : Z ′→Z is the normalization
of Z, and f ′ =π∗f , then f ′ is a complete intersection, and if the theorem holds
in Z ′, it holds in Z by taking push-forward of the corresponding currents. Hence,
we can assume that fj ∈ O(Z), and the commutativity properties will then follow
from Lemma 4.8. For example, if we want to see that 1/fj and 1/fj+1 commute,
we can apply Lemma 4.8 with

T =
1

fj+2
...

1
fq

∂̄
1

fq+1
∧...∧∂̄

1
fq+p

,

and then multiply with (1/f1)...(1/fj−1) from the left. In case some of the residue
factors, say fq+1, ..., fq+k, are to the left of the principal value factors, then
Z(fq+1,...,fq+k) has codimension p−k in a neighborhood of Zf ⊇supp T and the re-
sult follows in the same way from Lemma 4.8. The other cases follow similarly from
Lemma 4.8.

The equality (4.7) follows from Lemma 4.9 since Zf has codimension p. By
the first part of the theorem, we can assume that l=q+1 in (4.8). Then
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fq+1

(
∂̄

1
fq+1

∧...∧∂̄
1

fq+p

)
= ∂̄

(
fq+1

1
fq+1

∧∂̄
1

fq+2
∧...∧∂̄

1
fq+p

)

= ∂̄

(
∂̄

1
fq+2

∧...∧∂̄
1

fq+p

)
=0

by (4.7) and Theorem 4.5. �

5. Multiplication of currents with weakly holomorphic functions

Now, we will return to the issue of multiplication of currents with weakly holo-
morphic functions. Assume that g ∈ Õ(Z) and S ∈ P M(Z). As S ∈ P M(Z), we
have that S=

∑
α(πα)∗τα, where τα are elementary currents on the complex mani-

folds Zα. Given such a decomposition, since any normal modification of Z factors
through the normalization, that is, πα=π¨να for some να : Zα→Z ′, we get a current
S′ in the normalization Z ′ of Z such that π∗S′ =S, by taking the push-forward of τα

to Z ′, i.e., S′ =
∑

α(να)∗τα. To define multiplication of the Coleff–Herrera product
with the weakly holomorphic function g in (4.6), we defined it as the push-forward of
π∗gS′. In general, the current S′ will depend on the decomposition S=

∑
α(πα)∗τα.

However, in (4.6) we had a canonical representative in the normalization, and hence
the multiplication was well defined. The following example however shows that this
multiplication depends on this choice of representative.

Example 5.1. Let π : C
n→C

2n be defined by

π(t1, ..., tn)= (t1, ..., tn−1, t
2
1tn, ..., t2n−1tn, t2n, t5n).

Then π is proper and injective, so π(Cn)=Z is an analytic variety of dimension n.
Since (∂πl/∂zj)j,l has full rank outside of {0}, Zsing ⊆ {0}, and we will see below
that actually Zsing={0}. Let

S̃ = ∂̄
1
t1

∧...∧∂̄
1

tn−1
∧∂̄

1
t3n

and S=π∗S̃. Then, as d(tnt2j )=tj(2tn dtj +tj dtn) and dt5n=5t4n dtn, dzk ∧S=0 for
k=n, ..., 2(n−1) and dz2n ∧S=0. Hence if 〈S, ξ〉 �=0, then ξ must be of the form
ξ=ξ0 dz1 ∧...∧dzn−1 ∧dz2n−1. We have

〈S, ξ〉 = 〈S̃, ξ0 dt1 ∧...∧dtn−1 ∧2tn dtn〉

=2(2πi)n

(n−1∑
j=1

t2j
∂

∂zn−1+j
ξ0+2tn

∂

∂z2n−1
ξ0+5t4n

∂

∂z2n
ξ0

)∣∣∣∣
t=0

=0,
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and thus S=0. However,

〈tnS̃, ξ dt1 ∧...∧dt2n〉 =2(2πi)nξ(0)

so π∗(tnS̃)=π∗(π∗gS̃) �=0, where g ∈ Oc(Z) is such that π∗g=tn. Note that g is not
strongly holomorphic at 0, and hence Zsing={0}. Thus, since S=π∗S̃=0, while
π∗((π∗g)S̃)≤0, it is impossible to define a multiplication of currents with weakly
holomorphic functions in a way compatible with push-forwards, i.e., such that gS

only depends on g and S, and such that gS=π∗((π∗g)S′) if S=π∗S′.

Hence, the multiplication in (4.6) does not depend only on g and S, but also on
the functions f defining S. Recall that the pole set Pφ of a meromorphic function
φ is the set where φ is not strongly holomorphic. Recall also the definitions of the
restriction operators 1V and 1V c in (3.2). If we require that the current we get
in the multiplication has restriction 0 to Pφ, the multiplication is in fact uniquely
defined in P M(Z), as the following proposition shows. This can in some cases be
a natural condition, and in fact even automatic in some cases, see Corollary 5.3.
However, in Example 5.1, since the common zero set of the functions defining S

equals the pole set of g, we expect S and gS to have its support on Pg , and hence
the condition is not very natural then.

Proposition 5.2. Let μ∈ P M(Z) and φ∈ Õ(Z). Then, there exists a unique
current, denoted φμ, in P M(Z), such that φμ is just multiplication of the smooth
function φ with the current μ outside of Pφ, and 1Pφ

(φμ)=0. If μ=π∗μ′, where
π : Z ′→Z is the normalization of Z and μ′ ∈ P M(Z ′), then

(5.1) φμ=π∗((π∗φ)1π−1(Pφ)cμ′).

Proof. First, we prove the uniqueness. Assume that T1 and T2 are two such
currents, so that T1 −T2 has support on Pφ. Hence, 1P c

φ
(T1 −T2)=0. But then,

T1 −T2 =1P c
φ
(T1 −T2)+1Pφ

(T1 −T2)= 0,

since 1Pφ
T1=1Pφ

T2=0. Thus, we only need to prove that φμ in (5.1) satisfies
the conditions in the proposition. It is clear that the right-hand side of (5.1) is
just multiplication of φ with μ outside of Pφ. Hence, it remains to prove that
1Pφ

(φμ)=0. However,

1Pφ
(φμ) =π∗(1π−1(Pφ)(π∗φ)1π−1(Pφ)cμ′)= 0,

as 1V 1V c =1V (1−1V )=0 because 1V 1V =1V , and 1V commutes with multiplica-
tion by smooth functions. �
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Corollary 5.3. Assume that μ∈ P M(Z) is of bidegree (∗, p) and φ∈ Õ(Z)
is such that Pφ has codimension ≥p+1 in Z. Then there exists a unique current
φμ∈ P M(Z) such that φμ coincides with the usual multiplication of φ with μ outside
of Pφ. If μ=π∗μ′, where π : Z ′→Z is the normalization of Z and μ′ ∈ P M(Z ′), then

(5.2) φμ=π∗((π∗φ)μ′).

Proof. By Proposition 5.2, the only thing we need to prove is that for any
T ∈ P M(Z) and T ′ ∈ P M(Z ′) of bidegree (∗, p), we have 1Pφ

T =0 and 1π−1(Pφ)T
′ =0.

However, since Pφ has codimension ≥p+1, π−1(Pφ) has codimension ≥p+1, by
Lemma 2.5. Hence, 1Pφ

T =0 and 1π−1(Pφ)T
′ =0 by Proposition 3.3, as the currents

have support on Pφ and π−1(Pφ), respectively. �

Note, in particular, that if Zsing has codimension ≥p+1, the condition of the
codimension of Pg is automatically satisfied for any weakly holomorphic function
g ∈ Õ(Z).

Another question is whether the Coleff–Herrera product could be defined as the
analytic continuation of an integral on Z rather than Z ′. A natural way to do this
would be to try to regularize in (4.3) by factors ∂̄|Fj |2λj instead of ∂̄|fj |2λj , where
Fj is a tuple of strongly holomorphic functions such that ZFj =P1/fj

. However, the
analytic continuation to λ=0 will in general not coincide with our definition, even
if f defines a complete intersection, as the following example shows.

Example 5.4. Let

Z = {z ∈ C
3 | z3

1 = z2
2 } =V ×C,

which has normalization π(s, t)=(s2, s3, t), and let π∗f1=(1+s)t and π∗f2=s2.
Then Zf ={0}, so f is a complete intersection. Note that π∗(1/f1)=(1/t)(1−s+
O(s2)) for |s|<1, and that holomorphic functions in s at the origin correspond to
strongly holomorphic functions on V at the origin precisely when the Taylor expan-
sion at the origin contains no term s. Thus P1/f1 =π({(s, t)|s=0 or s=−1 or t=0}),
so if {z |F (z)=0} ⊇P1/f1 , then {z |F (z)=0} ⊇Zf2 . Thus (∂̄|F |2λ/f1)∧∂̄(1/f2)=0 for
Re λ
0. However, we have

〈
∂̄

1
f1

∧∂̄
1
f2

, ϕ dz1 ∧dz3

〉
=

〈
1

1+s
∂̄

1
t

∧∂̄
1
s2

, ϕ(s2, s3, t) ds2 ∧dt

〉
=4πiϕ(0),

so ∂̄(1/f1)∧∂̄(1/f2) is non-zero.
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6. Bochner–Martinelli type residue currents

We will show that we can define a Bochner–Martinelli type residue current
associated with a tuple of weakly holomorphic functions, either by using a similar
approach as for the Coleff–Herrera product with the help of the normalization, or
by defining it intrinsically on Z by means of analytic continuation. In view of Ex-
ample 5.4, it is not clear how to do this directly for the Coleff–Herrera product.
In addition, we will show that for weakly holomorphic functions defining a com-
plete intersection, the Coleff–Herrera product and the Bochner–Martinelli current
coincide, see Theorem 6.4.

Let f=(f1, ..., fp) be weakly holomorphic. We will follow the approach by
Andersson from [1], and make the identification f=

∑p
j=1 fje

∗
j , where (e1, ..., ep) is

a frame for a trivial vector bundle E over Z, and (e∗
1, ..., e

∗
p) is the dual frame. Since

we will only use the case of trivial vector bundles, this identification is not strictly
necessary. However, we use this since it greatly simplifies the notation in the proof of
Lemma 7.3. Then, on the set where f is strongly holomorphic, ∇f :=δf −∂̄ induces
a complex on currents on Z with values in

∧
E, where δf is interior multiplication

with f . To construct the Bochner–Martinelli current we define

(6.1) σ =
p∑

j=1

f̄jej

|f |2 and u =
p−1∑
k=0

σ ∧(∂̄σ)k.

Note that outside of Zf ∪Pf1 ∪...∪Pfp , both u and σ are smooth, and ∇fu=1.
Recall that a universal denominator at a germ (Z, z) is a strongly holomor-

phic function h, not vanishing on any irreducible component of (Z, z) such that
hÕZ,z ⊆ OZ,z . For each z ∈Z, there always exist a universal denominator h, such
that h is a universal denominator in a neighborhood of z, see for example [15],
Theorem Q.2.

Proposition 6.1. Assume that f=(f1, ..., fp) is weakly holomorphic on Z.
Let F be a tuple of strongly holomorphic functions, such that {z |F (z)=0} ⊇Zf ,
and such that {z |F (z)=0} does not contain any irreducible component of Z, and
let h be a universal denominator on Z. Then the forms |hF |2λu and ∂̄|hF |2λ ∧u

are arbitrarily smooth if Re λ
0, and have current-valued analytic continuations
to Re λ>−ε for some ε>0. The currents

(6.2) Uf := |hF |2λu|λ=0 and Rf := ∂̄|hF |2λ ∧u|λ=0

are independent of the choice of F and h, and if π : Y →Z is a modification of Z,
then Uf =π∗Uπ∗f and Rf =π∗Rπ∗f .



156 Richard Lärkäng

Proof. We first show that |hF |2λu and ∂̄|hF |2λ ∧u are arbitrarily smooth when
Re λ
0. Since ∂̄|hF |2λ=|hF |2(λ−1)∂̄|hF |2, it is enough to prove this for |hF |2λu.
We let gj :=hfj , where gj ∈ O(Z) since h is a universal denominator. If we differen-
tiate u outside of {z |h(z)=0} ∪Zf , we get terms of the form ξ/hk |f |2n, where ξ is
smooth, since if fj =gj/h, the terms in u are smooth except for factors h and |f |2
in the denominators. Thus, we only need to see that |hF |2λ/hk |f |2n tends to 0 on
{z |h(z)=0} ∪Zf . This is clear outside of Zf if Re λ
0, so we need to prove that
|hF |2λ/|f |2n tends to 0 on Zf . If we multiply the numerator and denominator by
|h|2n, we get

(6.3) |h|2n|hF |2λ/|hf |2n.

We note that hf is strongly holomorphic, and in fact, {z |h(z)F (z)=0} ⊇
{z |h(z)f(z)=0} because

Zhf =π(Zπ∗(hf)) =π(Zπ∗h)∪π(Zπ∗f ) =Zh ∪π(Zπ∗f ) = {z | h(z)= 0} ∪Zf ,

by Proposition 2.10 and the fact that π is surjective. Thus, (6.3) will tend to 0 on
Zf by the Nullstellensatz if Re λ
0.

Now, we assume that Z is smooth. Then we can take F =f and h≡1, and in
that case, the proposition is the existence part of Theorem 1.1 in [1], except for the
fact that Uf =π∗Uπ∗f and Rf =π∗Rπ∗f , which however easily follows by analytic
continuation. To see that the definition of Rf is independent of the choice of F ,
we see from the proof of Theorem 1.1 in [1] that ∂̄|F |2λ ∧u acting on a test form ϕ

becomes, with a suitable resolution of singularities π : X̃→X , a finite sum of terms
of the kind

(6.4)
∫

∂̄|uμ1|2λ

μ2
∧σ′ ∧π∗ϕ,

where μ1 and μ2 are monomials such that {z |μ1(z)=0} ⊇ {z |μ2(z)=0}, u is non-
zero and σ′ is smooth. Thus, it is enough to observe that the value at λ=0 of (6.4)
is independent of μ1 (where uμ1 is the pull-back of F ), as long as {z |μ1(z)=0} ⊇
{z |μ2(z)=0}. In the same way, one sees that the definition of Uf is independent of
the choice of F .

Now, if f is weakly holomorphic, and π : Z̃→Z is a resolution of singularities,
from the smooth case we know that ∂̄|π∗(hF )|2λ ∧π∗u has a current-valued analytic
continuation to λ=0 independent of the choice of hF . Hence, the weakly holomor-
phic case follows by taking push-forward, since ∂̄|hF |2λ ∧u=π∗(∂̄|π∗(hF )|2λ ∧π∗u)
for Re λ
0. �

In fact, to prove the existence of Uf and Rf , defined by (6.2), it is sufficient to
use |F |2λu and ∂̄|F |2λ ∧u, which can be seen to be integrable on Z if Re λ
0 by
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going back to the normalization. However, the addition of the universal denominator
h ensures that the forms are (arbitrarily) smooth if Re λ
0.

The following properties of the Bochner–Martinelli current Rf are well known
in the smooth case, see [1] and [22].

Proposition 6.2. Let f=(f1, ..., fp) be weakly holomorphic, and assume that
p′ =codim Zf . The current Rf has support on V =Zf , and there is a decomposition
Rf =

∑p
k=p′ Rk, where Rk ∈ P M(Z) is a (0, k)-current with values in

∧k
E. In

addition, if f is strongly holomorphic, then Rf =1− ∇fUf .

Proof. In case Z is a complex manifold, this is parts of Theorem 1.1 in [1], ex-
cept for the fact that Rk ∈ P M(Z). However, that Rk is pseudomeromorphic can, as
was noted in [4], easily be seen from the proof of Theorem 1.1 in [1]. The proposition
then follows in the case of an analytic space, by taking push-forward from a reso-
lution of singularities, except for the fact that Rf =

∑p
k=p′ Rk, where p′ =codim Zf ,

since modifications does not in general preserve codimensions of subvarieties. How-
ever, we get that Rf =

∑p
k=0 Rk, where Rk ∈ P M(Z) is a (0, k)-current, and Rk has

support on Zf . Thus, by Proposition 3.3, Rk=0 for k<codim Zf =p′. �

Remark 6.3. If the mapping f is weakly holomorphic, as we saw in Exam-
ple 5.1, we do not have a well-defined multiplication of weakly holomorphic func-
tions with pseudomeromorphic currents on Z. Hence, the formula Rf =1− ∇fUf in
the strongly holomorphic case does not necessarily have any meaning if f is weakly
holomorphic. However, one can give this multiplication meaning by Proposition 5.2.
With this definition of multiplication, one can verify that

Rf =1− ∇fUf ,

if f is weakly holomorphic. This can be seen by using that this formula holds in the
normalization, together with the fact that Uf ′

has the standard extension property,
i.e., that 1{z|h(z)=0}Uf =0 for any tuple h of strongly holomorphic functions not
vanishing on any irreducible component of Z. This follows from the fact that Uf ′

is a principal value current, i.e., when Uf ′
is written as a sum of push-forwards of

elementary currents, the elementary currents contain no residue factors, and hence
have the standard extension property.

Theorem 6.4. If f=(f1, ..., fp) is weakly holomorphic forming a complete in-
tersection and Rf =μ∧e, where e=ep ∧...∧e1, then

μ=μf := ∂̄
1
f1

∧...∧∂̄
1
fp

.
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Proof. To begin with, we will assume that f is strongly holomorphic. The
proof will follow the same idea as the proof in the smooth case in [2], Theorem 3.1.
Let

V =
1
fp

ep+
1

fp−1
∂̄

1
fp

∧ep ∧ep−1+...+
1
f1

∂̄
1
f2

∧...∧ 1
fp

∧ep ∧...∧e1.

Then, by Proposition 4.6, V satisfies

∇fV =1−∂̄
1
f1

∧...∧∂̄
1
fp

∧e.

Following the proof of Theorem 3.1 in [2], locally, assume that Z ⊆Ω⊆C
n, ω is

an arbitrary neighborhood of Zf in Ω and χ is a smooth function with support
on ω which is 1 in a neighborhood of Zf . Let i : Z→Ω be the inclusion, and let
g=i∗χ−i∗(∂̄χ)∧u. Then, since ∇fu=1 on supp ∂̄χ, ∇fg=0, and hence

∇f (g ∧(Uf −V )) = g ∧ ∇f (Uf −V ) = g0(μf −μ)∧e =(μf −μ)∧e,(6.5)

where g0=χ is the component of bidegree (0, 0) in g, which is 1 in a neighborhood
of supp(μf −μ). A current T is said to have the standard extension property with
respect to an analytic variety W if for any holomorphic function h such that h is
not identically 0 on any irreducible component of W , then |h|2λT |λ=0=T . Since μ

and μf are currents in P M(Z) of bidegree (0, p), with support on W ={z |f(z)=0},
μ and μf have the standard extension property, as if h does not vanish on any
irreducible component of W , μ− |h|2λμ|λ=0 has support on {z ∈W |h(z)=0}, which
has codimension ≥p+1, and by Proposition 3.3 it is 0. Also, μ and μf are ∂̄-closed
and are annihilated by ĪW , see Proposition 3.3, so i∗μ, i∗μf ∈CHW , where CHW

denotes ∂̄-closed (0, codim W )-currents with support on W satisfying the standard
extension property. By Lemma 3.3 in [2], we know that a ∂̄-closed current in CHW

cannot be equal to ∂̄ν, where ν can be chosen with support arbitrarily close to W ,
unless it is 0. Hence, by looking at the components of top degree in (6.5), we have
i∗(μ−μf )=0, so μ=μf .

Now, if fj are weakly holomorphic, then the current Rf will be the push-
forward of the corresponding current Rπ∗f , where π : Z ′→Z is the normalization
of Z, and the same holds for the Coleff–Herrera product μf . Thus, equality holds in
the normalization, and taking push-forward we get equality in the general case. �

7. The transformation law

With the Bochner–Martinelli type currents developed in the previous section,
we will now prove the transformation law for Coleff–Herrera products of weakly
holomorphic functions.
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Theorem 7.1. Assume that f=(f1, ..., fp) and g=(g1, ..., gp) are weakly holo-
morphic, defining complete intersections, and that there exists a matrix A of weakly
holomorphic functions such that g=Af . Then

∂̄
1
f1

∧...∧∂̄
1
fp

=(det A)∂̄
1
g1

∧...∧∂̄
1
gp

.

If A is invertible, one can prove the transformation law with the help of Theo-
rem 6.4 together with the fact that the Bochner–Martinelli current is independent
of the metric chosen to define σf (here, in (6.1), σf is defined with respect to the
trivial metric on E), see [1]. We will see that we can use a similar idea even in the
case when A is not invertible. In [13] Denkowski proved the transformation law for
c-holomorphic functions based on a more direct approach.

To begin with, we assume that f , g and A are strongly holomorphic. As in the
previous section, we will identify f and g with sections of vector bundles, however
we will here identify them with sections of two different vector bundles. Let E and
E′ be trivial holomorphic vector bundles over Z with frames e and e′, and make
the identifications f=

∑p
j=1 fje

∗
j , g=

∑p
j=1 gj(e′

j)
∗ and A∈Hom(E′, E) such that

g=fA.

Lemma 7.2. Let
∧

A :
∧

E′→
∧

E denote the linear extension of the mapping
(
∧

A)(v1 ∧...∧vk)=Av1 ∧...∧Avk. Then δf (
∧

A)=(
∧

A)δg .

Proof. Note first that δfAe′
j =gj =δge

′
j . Hence, we have

δf

(∧
A

)
(e′

j1 ∧...∧e′
jk

) = δf (Ae′
j1 ∧...∧Ae′

jk
)

=
k∑

j=1

(−1)j−1Ae′
j1 ∧...∧δf (Ae′

jj
)∧...∧Ae′

jk

=
k∑

j=1

(−1)j−1
(∧

A
)
(e′

j1 ∧...∧δge
′
jj

∧...∧e′
jk

)

=
(∧

A
)
δg(e′

j1 ∧...∧e′
jk

). �

To relate the currents μf and μg , we will first derive a relation between the
currents Uf and Ug as defined by (6.2).

Lemma 7.3. If f and g are strongly holomorphic and defining complete in-
tersections, then there exists a current R1 such that Uf −(

∧
A)Ug=∇fR1.



160 Richard Lärkäng

Proof. Let σ, u, σ′ and u′ be the forms defined by (6.1) corresponding to
f and g. Since A is holomorphic, (

∧
A)∂̄σ′ =∂̄(Aσ′) outside of {z |g(z)=0}, and

hence if we let u′
A=

∑p
k=1(Aσ′)∧(∂̄Aσ′)k−1, then ∇fu′

A=1 outside of {z |g(z)=0}
by Lemma 7.2. Thus, if Re λ
0,

(7.1) ∇f (|g|2λu′
A ∧u) = |g|2λu− |g|2λu′

A −∂̄|g|2λ ∧u′
A ∧u.

We want to see that all the terms in (7.1) have current-valued analytic continuations
to λ=0. First, we note that since {z |g(z)=0} ⊇ {z |f(z)=0}, |g|2λu|λ=0=Uf by
Proposition 6.1, and since u′

A=(
∧

A)u′ we get that |g|2λu′
A|λ=0=(

∧
A)Ug . Thus

it remains to see that the left-hand side of (7.1) has an analytic continuation to
λ=0, and that the analytic continuation of the last term vanishes at λ=0. To
see that those terms have analytic continuations to λ=0 is similar to showing the
existence of the Bochner–Martinelli currents Uf and Rf . If we recall briefly the
proof of the existence of Uf and Rf in [1], the key step was that σ ∧(∂̄σ)k−1 is
homogeneous with respect to f in the sense that if f=f0f

′, then σ ∧(∂̄σ)k−1=
(1/fk

0 )σ0 ∧(∂̄σ0)k−1, where σ0 is smooth if |f ′ | �=0. By blowing up along the ideals
(f1, ..., fp) and (g1, ..., gp) followed by a resolution of singularities, see [5], we can
assume that locally π∗f=f0h and π∗g=g0g

′, where h �=0, g′ �=0, and by a further
resolution of singularities, we can assume that locally f0 and g0 are monomials.
Since {z |g(z)=0} ⊇ {z |f(z)=0}, we get that {z |g0(z)=0} ⊇ {z |f0(z)=0}. Thus,
by the homogeneity of σ′ ∧(∂̄σ′)k−1 and σ ∧(∂̄σ)l−1 with respect to f and g, we
get, since u′

A=(
∧

A)u′, that |g|2λu′
A ∧u and ∂̄|g|2λ ∧u′

A ∧u acting on a test form ϕ

become finite sums of the form∫ |v|2λ|g0|2λ

gk
0f l

0

ξk,l ∧π∗ϕ and
∫

∂̄(|v|2λ|g0|2λ)
gk
0f l

0

∧ξk,l ∧π∗ϕ,

where ξk,l are smooth (0, k+l−2)-forms. Thus both have analytic continuations to
λ=0, and R2 :=∂̄|g|2λ ∧u′

A ∧u|λ=0 has support on {z |g(z)=0}. Since R2 ∈ P M(Z)
and it consists of terms of bidegree (0, k+l−1), where k+l≤p, with support on
{z |g(z)=0} which has codimension p, we get that R2=0 by Proposition 3.3. Thus,
if we let R1 :=|g|2λu′

A ∧u|λ=0, we get that ∇fR1=Uf −(
∧

A)Ug . �

Now we are ready to prove the transformation law.

Proof of Theorem 7.1. Assume first that f , g and A are strongly holomorphic,
and make the same identifications as after the statement of Theorem 7.1. Since
(
∧

A)Rg=(
∧

A)(1− ∇gU
g)=1− ∇f (

∧
A)Ug by Lemma 7.2, we get from Lemma 7.3

that (∧
A

)
Rg −Rf = ∇f

((∧
A

)
Ug −Uf

)
= ∇2

fR1 =0,
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so (∧
A

)
Rg =Rf .

Thus, we get by Theorem 6.4 that(∧
A

)
(μg ∧e′

p ∧...∧e′
1) =μf ∧ep ∧...∧e1,

and as the left-hand side is equal to

(det A)μg ∧ep ∧...∧e1,

the transformation law follows. Now, if f , g and A are weakly holomorphic, the
transformation law follows since equality must hold in the normalization because
the pull-backs of f and g define complete intersections in the normalization. Hence,
equality must hold also in Z by taking push-forward. �

8. The Poincaré–Lelong formula

Let f1, ..., fp be strongly holomorphic functions forming a complete intersec-
tion. The Poincaré–Lelong formula says that

(8.1)
1

(2πi)p
∂̄

1
f1

∧...∧∂̄
1
fp

∧dfp ∧...∧df1 = [Zf ] =
p∑

j=1

αj [Vj ],

where Vj are the irreducible components of Zf and [Zf ] is the integration current
on Zf with multiplicities. In case p=dim Z the multiplicity αj at a point xj ∈Zf is
given as the number of elements near xj of a generic fiber of f . In case p<dim Z

the multiplicity is given as the intersection multiplicity of Zf with L, where L is
a plane of dimension dim Z −p transversal to Zf . For a thorough discussion of the
multiplicities see [11], and for a proof of the Poincaré–Lelong formula see Section 3.6
in [12].

Now, if fj are weakly holomorphic functions defining a complete intersection,
we can give a relatively short proof that a formula similar to (8.1) holds in Z. In
the strongly holomorphic case, assuming Z ⊆Ω⊆C

n, i∗[Zf ] can be seen either as the
intersection of the holomorphic chains ZFj with Z, where Fj are some holomorphic
extensions of fj to Ω, or as a product of closed positive currents, see [11], that is

i∗[Zf ] = [ZF1 ·...·ZFp ·Z] = [ZF1 ]∧...∧[ZFp ]∧[Z].

However, these types of products are in general only defined in case ZF1 ∩...∩ZFp ∩Z

has codimension equal to codimZ+
∑p

j=1 codim ZFj . Since zero sets of weakly holo-
morphic functions are in general not zero sets of strongly holomorphic functions, as
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we saw in Example 2.6, we cannot expect to have a similar interpretation for weakly
holomorphic functions, since there are no natural counterparts to the holomorphic
(n−1)-chains ZFj or closed positive (1, 1)-currents [ZFj ].

From now on, we assume that f=(f1, ..., fp) is weakly holomorphic defining a
complete intersection. Let π : Z ′→Z be the normalization of Z, so that in particu-
lar, π is a finite proper holomorphic map. As f ′ =π∗f forms a complete intersection,
(8.1) holds for f ′ in the normalization. Note that, if Vj are the irreducible com-
ponents of Zf ′ , then Wj :=π(Vj) are irreducible in Z. If f : V →W is a branched
holomorphic cover with exceptional set E, we say that f is a *-covering if W \E

is a connected manifold. In particular, this means that the sheet-number of f is
constant outside the exceptional set. By the Andreotti–Stoll theorem, see [19], if
f : V →W is a finite proper holomorphic map, V has constant dimension and W is
irreducible, then f is a *-covering. If V ⊂Z ′ is an irreducible component of Zf ′ and
we consider π|V : V →W , where W =π(V ), it is a finite proper holomorphic map
satisfying the conditions required for the Andreotti–Stoll theorem. Hence, there ex-
ists an integer k such that π|V is a k-sheeted finite branched holomorphic covering.
Thus π∗α[V ]=kα[W ]. For f=(f1, ..., fp) a weakly holomorphic mapping forming a
complete intersection, we define the left-hand side of (8.1) as the push-forward of
the corresponding current in the normalization. Thus, since we have by (8.1) that

1
(2πi)p

∂̄
1
f1

∧...∧∂̄
1
fp

∧dfp ∧...∧df1 =π∗[Zf ′ ],

we have proved the following result.

Theorem 8.1. Let f=(f1, ..., fp) be a weakly holomorphic mapping forming a
complete intersection. Then

(8.2)
1

(2πi)p
∂̄

1
f1

∧...∧∂̄
1
fp

∧dfp ∧...∧df1 =
∑

j

βj [Wj ]

where βj ∈N and Wj are the irreducible components of W =Zf . More explicitly,
if [Zf ′ ]=

∑
j αj [Vj ] and say Vj1 , ..., Vjk

are the sets Vl such that π(Vl)=Wj , then

βj =
∑k

l=1 kjl
αjl

, where kl is the number of elements in a generic fiber of π|Vl
.

Remark 8.2. In [13] Denkowski proves the Poincaré–Lelong formula for f=
(f1, ..., fp)∈ Oc

L

p(Z) (based on his construction on Γf , however as for the Coleff–
Herrera product in Proposition 4.4 our definition coincides with his). In that case,
it gives a different interpretation of the multiplicities as the intersection cycle

1
(2πi)p

∂̄
1
fp

∧...∧∂̄
1
f1

∧df1 ∧...∧dfp =π∗([Γf ·(Z × {0})]),

where π : Z ×C
p→Z is the projection.
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Note that if f is weakly holomorphic, since f is in general not smooth on
Zsing, df is not in general defined on all of Z (although its pull-back to the nor-
malization has a smooth extension to all of Z ′) so, as for multiplication with
weakly holomorphic functions in Example 5.1, it might for example happen that
∂̄(1/f)=0 while ∂̄(1/f)∧df �=0. For example, if Z={(z, w)|z3=w2}, π(t)=(t2, t3)
and f=w/z ∈ Õ(Z), that is π∗f=t, then ∂̄(1/f)=0 while ∂̄(1/f)∧df=2πi[0], as
expected, since Zf ={0}.
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Ann. Sc. École Norm. Super. 40 (2007), 985–1007.

4. Andersson, M. and Wulcan, E., Decomposition of residue currents, J. Reine Angew.
Math. 638 (2010), 103–118.

5. Aroca, J. M., Hironaka, H. and Vicente, J. L., Desingularization Theorems,
Memorias Mat. Inst. Jorge Juan, Madrid, 1975.

6. Atiyah, M. F., Resolution of singularities and division of distributions, Comm. Pure
Appl. Math. 23 (1970), 145–150.

7. Berenstein, C. A., Gay, R., Vidras, A. and Yger, A., Residue Currents and Bézout
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2010. arXiv:1007.0139 [math.CV].

18. Lärkäng, R. and Samuelsson, H., Various approaches to products of residue cur-
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