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0. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

The main objects of the present article are vector partition functions, defined as
follows. Let F be a real vector space of finite dimension d, endowed with a lattice
A. Let A = (aq,...,an) be a sequence of elements of A, all lying in an open
half-space. Then, for A € A, the equation

N
E T = A
k=1

has a finite number of solutions in non-negative integers x1,... ,xy. Denote this
number by Pa(A), and call Pa the vector partition function associated to A.

We begin by discussing our main results (announced in [5] and [6]), their motiva-
tions, and their relation to earlier work, in an informal way; precise statements will
be given at the end of this introduction. Clearly, the function Pa vanishes outside
the closed convex cone C(A) C E generated by A. We define a subdivision of this
cone into closed polyhedral cones. The interiors of maximal cones of this subdivi-
sion are called chambers. We obtain a closed formula for restriction of Pa to the
closure of each chamber, which displays the periodic polynomial behaviour of this
function and its remarkable “continuity” properties under changing of chamber;
this refines the result of [20]. More generally, we determine the function

pr(%)\) _ E e TIY1 = TEINYN
Tiar+ o FrNaN=A

on the closure of each chamber, where y = (y1,...,yn) is in RY, and where
T1,...,2xN in the summation are non-negative integers.
Set

N
V= {(z1,...,2n) € RV | Zxkak =0}

k=1

and denote by n the dimension of V. For h € E, set

N
V(h):={(21,... ,2n) € RN | Y zpa = b} and Pa(h) := V(h) N (Rxo)"
k=1
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798 MICHEL BRION AND MICHELE VERGNE

Then each V(h) is an affine space with direction V', and Pa(h) is a convex poly-
tope in V(h). Clearly, Pa(h) is not empty if and only if h € C(A). The family
(Pa(h))nec(a) is called the family of partition polytopes defined by A. When £ is
in a chamber, the polytope Pa(h) is n-dimensional and simple, that is, there are
only n edges through each vertex. However, when h moves to the boundary of a
chamber, some vertices tend to a single vertex, and Pa(h) degenerates.

Observe that

Pa(y,\) = Z e~ TIYI— T TTNYN

(z1,..., &N )EPA(N)NZN

We define a continuous version of the function A € C(A)NA — Pa(y, ) as follows.
We normalize the Lebesgue measure on E so that the volume of E/A is 1, and
we consider the standard Lebesgue measure on RY. These choices determine a
Lebesgue measure ds on each V(h). For any linear form y on RV, we set

Va(y,h) = / e~ {9 gs.
Pa(h)

In particular, Va(0,h) := Va(h) is the volume of Pa(h).

We obtain closed formulae for Pa(y, A) and Va(y, h) for A and h in the closure
of a chamber. We deduce an expression of Pa(y, A) in terms of values at A of the
function h — Va(y, h) and of its partial derivatives, as an Euler-MacLaurin formula
for vector partition functions. Such a formula has also been obtained by Guillemin,
see [12].

Consider now a rational convex polytope P in an n-dimensional real vector space
V endowed with a lattice. Then P can be identified in a canonical way with a
polytope Pa(A), so that the family (Pa(h)) is obtained from P by independent
parallel motions of its facets; see 4.1 below. So our Euler-MacLaurin formula for
vector partition functions translates into a universal formula for the number of
lattice points (or more generally, for the sum of values of a polynomial function
at all lattice points) in a family of rational polytopes with parallel faces. Such
a formula was first obtained by Khovanskii and Pukhlikov [17] for certain simple
lattice polytopes, and then extended to other classes of lattice polytopes in [15],
[7], [3], [11] and [8]. Our formula will be stated at the end of this introduction; it
can be seen as a generalization of a result announced in [8].

Back to partition functions, let z be a linear form on E which takes positive

values on aq, ... ,ayn. Consider the generating function
N 1
(z,A\) _
> PA(y, Ne N = e
AeCc(A)N k=1

We obtain a residue formula for this function of z, i.e., we decompose it as a sum of
“simple terms”, each of which is expressed in a set of d = dim(F) linearly indepen-
dent variables (z, a;), multiplied by a residue which depends only on y1,... ,yn.
So it is easy to expand each simple term into a power series in z; this leads to our
formula for Pa.

Similarly, we compute Va(y, h) by considering

Valy, h)e= =M dh =
/C(A) ( H (2, k)
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and decomposing the latter into “simple fractions” in z, multiplied by the corre-
sponding residue in y.

We deduce both residue formulae from a geometric result: a decomposition of
the standard cone (R>0)" into “simple cones” for which the intersection with each
V(h) is easily described. This decomposition of the “generating cone” (R>o)™
leads to a simultaneous decomposition for the family of partition polytopes Pa (h),
regardless of the way they degenerate when h moves to the boundary of a chamber.

Our detour via convex geometry could be avoided, but it provides a conceptual
explanation for some rather complicated formulae. In fact, we have tried to give
an elementary and self-contained exposition of our results in their various aspects:
convex geometric, algebraic (formal series and their sums) and analytic (Fourier
and Laplace transforms), at the risk of being heavy and repetitive.

Although our methods are very direct, the Atiyah-Bott fixed point formula,
together with the Kawasaki-Riemann-Roch formula for the index, are underlying
our explicit formulae. In the case where all vertices of Pa()\) are integral, there is
an n-dimensional projective algebraic variety M () with an effective action of an
n-dimensional algebraic torus, such that the polytope Pa()) is the image of M())
under the moment map, the vertices of Pa(\) being the images of fixed points.
Furthermore, Pa(y, A) is the character of the space of holomorphic sections of the
line bundle over M (), and the higher cohomology groups vanish. So Pa(y, A) is
the equivariant index, and, at least for regular A\, our formula is a special case of
[1], [16], [21]. This approach to the problem of counting lattice points in convex
polytopes via the geometry of toric varieties is pursued in [7], [11], [12], [4] and [§].

However, we feel it is worthwhile, in the spirit of Khovanskii and Pukhlikov [17],
to present an elementary proof in the context of polytopes. The use of generating
functions simplifies further our approach in [3] where the case of simple polytopes
with integral vertices was treated, based on the Euler relation for the number of
faces of polytopes. The Riemann-Roch formula for toric varieties boils down to
counting homogeneous monomials for various gradings on the algebra of polyno-
mial functions in NV variables. This is what we achieve here in a direct way, and
simultaneously for all gradings, by decomposing the generating function of Pa (y, \)
into simple fractions. This approach is inspired by Jeffrey and Kirwan’s proof of
the Guillemin-Sternberg conjecture [14], based on iterated residues.

To state our main results in a precise way, we consider the vector space W := RY
with standard basis (w1,...,wy), and the standard cone C in W generated by
wi, ... ,wy. For any subset A of W, we denote by [A] its characteristic function,
i.e., the function with value 1 on A and 0 outside A.

Define a surjective linear map p : W — E by p(wg) = ay, for 1 < k < N; then
the kernel of p is V. A subset o of {1,..., N} is called a basis of A if the sequence
(aj)jeo is a basis of E. The set of bases of A is denoted by B(A). For o € B(A),
we have a decomposition W =V & (@,c, Rw;) and we denote by p, : W — V
the corresponding projection. Then p,(C) is a closed convex cone, generated by
the basis (po(wk))rgos of V. Moreover, we have for any k ¢ o: po(wi) = wi —
ZjeU ¢;rw; where the real numbers ¢;;, are defined by ay = Ejea

Choose a point « € C such that p(z) does not lie on any hyperplane generated
by some of the ay; then x is called regular (in the case where dim(E) = 1, any
non-zero x is regular). For any basis o, we can write p(z) = > .. %o jo; with non-

CikQy.

jECT
zero coordinates . ;. Let €, ; be the sign of z, ;, and let |o_(z)| be the number
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of j € o such that e, ; = —1. Finally, let C7 be the closed convex cone generated
by the e, ;w; (j € o).

Theorem (decomposition into simple cones). The function
[C1= Y (=D)I@NCT + p,(C)]
oceB(A)

is a linear combination of characteristic functions of closed convex cones which
contain lines.

This result is proved in 1.2. It implies an exact formula for [C] as a signed sum
of characteristic functions of locally closed cones, see 1.4. By integrating over C' the
exponential of a complex linear form on W, our decomposition implies the following
formula.

Corollary (decomposition into simple fractions). For a generic complex linear

form z on E, and for generic complex numbers vy, ... ,yn, we have
N
1 1 1
——— = ( )N )

This can be considered as a residue formula for the rational function z —
TTo, (y + (2, ax))™'. A direct proof of this formula is given in section 1.1, by
a simple induction on N.

Actually, the assumption that a1, ... ,ay are contained in a lattice in E is not
needed for either of the two results above; but it will play a role in the next one,
a residue formula for the periodic function ngl (1 — e¥rH(=a)) =1 Indeed, this
assumption implies that the numbers c;; are rational, so that we can choose a
common denominator g. For o € B(A), denote by G(o, ¢) the finite abelian group

(Z/q2)” = {9 = (95)ieo | 95 € Z/qL}
endowed with characters g — €27 95 (j € o) and g — €2 Xieo 49 (k ¢ o).

Theorem (decomposition into simple fractions, the periodic case). Let © € C be
regular. For any basis o of A, write p(x) =3, Tqj0; and set €qj 1= sgn(To,;).
Then, for a generic complex linear form z on E, and for generic complex numbers
Y1,--- YN, the product

N
H _eyk+ zak>

k=1
is equal to

> Y i 1
PR J(ng; +y;i+{z,a5)) i 1_ eyk_zjeg cjr(y;+2img;)
o

c€B(A) geG(o,q) jEU

This formula is deduced in 2.3 from the decomposition of C' into simple cones,
by summing the series > _qz~ € and similar series for the cones CJ + po(C).
It may also be obtained directly by induction on N.

To apply these results to partition functions, we need the following notation.
We consider the subdivision of C'(A) given by the intersections of the cones C(o)
(generated by the o, j € o), for 0 € B(A). The interiors of the maximal cones of
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this subdivision are called chambers. For such a chamber v, we denote by B(A,~)
the set of bases ¢ such that - is contained in C(0).

Finally, for any basis o, let v, : E — W be the linear map such that v, (a;) = w;
for all j € o, and let p(0) be the volume of the parallelepiped {3, tjo; | 0 <
t; < 1}. Then (o) is the index of the subgroup €,c, Za; in A. Let G(o) be the
quotient (B;c, Za;)*/A* where the star denotes the dual lattice. Then G(o) is a

finite abelian group of order (o), endowed with characters e?™ for all A € A.

Theorem (closed formulae). Let v be a chamber.
(i) For all h €7, the function

[Pa(h)] - Z [ve(h) + po(C)]
c€B(A,y)

is a linear combination of characteristic functions of convexr polyhedra in V(h),
which contain lines.
(ii) For all h € 7, and for a generic linear form y on W, we have

—(y,vs(h))

e

VA (yv h) - E '
ceB(AY) wlo) Hk%o(y’“ - Zjea CikYj)

In particular, we have

vol(Pa(h)) = )

oEB(A,Y)

(y,v5(R))"
nlpa(0) [lngo (=Y + 250 Cikys)

so that the volume of Pa(h) is a polynomial function of h on 7.
(iii) For all A e ¥N A, and for a generic linear form y on W, we have

e_<yxv<7(>‘)>

(o)

These formulae are proved in 3.2, 3.3 and 3.4 in a more general setting. They im-
ply that the function h € 7 — Va(y, h) extends to an analytic function Va ~(y, h).
Moreover, we can compute Pa (y, A) by applying to Va (y, h) a series of differential
operators, defined as follows.

For a complex number a, define Todd(a, z) as the expansion of

z

,PA(yv )‘) = Z

c€B(A,y)

Z 621’71')\ (Q)H(l _ e—2i7rozk (g)e—yk‘f‘zj'ea C]‘k:yj)'

geG(o) kdo

1—ae =

into a power series in z. For ¢ a smooth function on E, and for u € E, denote
by O(u)¢ the derivative of ¢ in the direction u. Then Todd(a,d(u)) is a differen-
tial operator of infinite order, with constant coefficients. Moreover, for any com-
plex number ¢, we have a series of differential operators with constant coefficients
Todd(a, O(u) + ).

For g € E*/A* and y = (y1,... ,yn), we define the Todd operator (a series of
differential operators with constant coefficients) by

N
Todda(g,0 +y) := [ | Todd(e™*"**(g), d(cx) + yr)-
k=1

Now we can state the following result, proved in 3.5.
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Theorem (Euler-MacLaurin formula for partition functions). Lety be a chamber.
(i) The series

Todda(g,d + y)Va~(y, h)

converges for all g € E*/A*, and for small y € W*. Moreover, the sum of this
series vanishes whenever g is not in the finite set

G = |J Glo).

g€B(A,y)

(ii) For any A € yN A, we have for small y € W*:

Paly:\) = D ™ (g)(Todda(g,0+ y)Van(y: h))ln=r.
9€G(7)

Setting y = 0, we see that
Pal) = > €”™(g) lim Todda(g,d)vol(Pa(h)).

h—X,hEy
9€G(7)

In other words, the vector partition function is obtained by applying a canonical
differential operator with periodic coefficients to the volume function. This result
is new even for the classical partition function, that is, for the number of lattice
points in rational simplices (formulae for the number of lattice points in lattice
simplices are given in [7] and [9]).

By studying in sections 3.6 and 3.7 the partial derivatives of the function Va »,
we also express the sum of values of any polynomial function at all lattice points
of the polytope Pa()\) in terms of integrals, over the faces of this polytope, of the
function and of its partial derivatives. In particular, the vector partition function
is a linear combination of volumes of faces, with periodic coefficients. This refines
results of [20] and [8].

Consider now a rational convex polytope P in R™, that is, the convex hull of
finitely many points with rational coordinates. Assume that the interior P is not
empty. We can define P by a minimal set of inequalities

P={veR"| (up,v)+ A >0, 1<k<N}

where (ug, \p) € Z™ x Z are primitive. Let F be the set of vectors ug, 1 <k < N.
Then F depends only on the directions of the faces of codimension one of P.
For z € RY, we denote

Plx)={veR"| (ug,v)+zr >0, 1 <k <N}

and by C(F) the closed convex cone in RY such that 2 € C(F) if and only if P(x)
is not empty. Then A € C(F) as P = P(\). In 4.1, we describe open chambers
v C C(F) such that the closures ¥ cover C'(F). The choice of v such that A € ¥
amounts to the choice of an approximation of P by the family of simple polytopes
(with prescribed directions of faces) P(z), € v. In particular, if P is simple, then
A is in a unique chamber ~.

Let ¢ be a polynomial function on R™. Then the function

£ Ip(p)(a) = /P el

is piecewise polynomial on C(F). More precisely, for each chamber ~, the function
x € ¥+ Ip(p)(z) extends to a polynomial function Ip . (¢) on RV, see 4.2.



VECTOR PARTITION FUNCTIONS 803

For g € RN, we write (), g) for Zlk\f:1 Argr. We set

N

Todd(g,0/0x) := H
k=1

8/8xk
1 — e—2imgre—0/0xy

This defines a differential operator of infinite order with constant coefficients: the
Todd operator associated to g. It acts for example in the space of polynomial
functions of z = (z1,... ,zN).

Let G(F) be the subset of [0, 1[Y consisting of elements (gj) which satisfy the
following conditions:

1) The vectors ug € F such that g # 0 are linearly independent.

2) Ei\f:l grug is in Z™.

Then G(F) is a finite set of rational points in RY.

Theorem (Euler-MacLaurin formula for rational polytopes). Let P = P(\) be an
n-dimensional rational convex polytope in R™. Let ¢ : R® — C be a polynomial
function. Let v be a chamber such that A € 7. Then

Y elw)= Y ¥ Todd(g, 8/02)Ip(¢)(x)]o=r-

veEPNZN geC(F)

Actually, we could restrict the sum over C(F) to a smaller subset which depends
on v, see 4.4. In particular, for a simple polytope P with integral vertices, the
result above specializes to the main result of [3] (proved there by another method).
If moreover the tangent cone at each vertex of P is generated by a basis of Z", we
recover the Euler-MacLaurin formula of Khovanskii and Pukhlikov, see [17].

We thank the referee for his careful reading of our paper and for his comments
and suggestions. The present version owes much to his recommendations, especially
in sections 3.6 and 3.7.

1. DECOMPOSITIONS INTO SIMPLE CONES

1.1. A decomposition into simple fractions. In this section, E is a finite-
dimensional vector space over an infinite field K. Let W be another finite-
dimensional K-vector space endowed with a surjective linear map p : W — E.

Let (wq,...,wy) be a basis of W, and set ax = p(wg) for 1 < k < N. Then
A = (aq,...,an) is a finite sequence of elements of E, which generates this vector
space.

We denote by B(A) the set of bases of A, that is, of subsets o of {1,2,...,N}
such that (ax)ges form a basis of E. We denote by Ko C W the vector space
spanned by the wy (k € o), and by V the kernel of p. Then V is the space of linear
relations between elements of A. Moreover, we have a decomposition W = Ko @ V.
Let us denote by p, the projection from W to V' determined by this decomposition.

We denote by Q(W) the field of fractions of the symmetric algebra of W. Then
Q(W) is the field of rational functions on W*.

Proposition. In Q(W), we have the equality:

S| 1 1
(1.1) Hw—k: S (-] ).

k=1 ceB(A) keo K o pa(wi)
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Proof. The proof is by induction on the dimension of V. If dim V' = 0, then there
is nothing to be proved. If dimV > 1, let r = Z;\f:l rjw; be a non-zero element of

V . Then, multiplying r by 7! ngl wk_l, we obtain
N
1 r; 1
[I.-=> I
D R
Moreover, if 7; # 0, then the map p restricts to a surjection
i W =P Kuwg — B
K
and hence the kernel of p; is a hyperplane in V. Therefore, we can apply the
induction hypothesis to W7, and we obtain, for each fixed j,
1 1 1
Ml aIi I

oy oido keo K okt po(w)

It follows that

where we set

Trj 1
fU:Z_( H ( k))

jgo | kgol() P
Now, because r = Eévzl rjw;, and py(w;) = 0 for all j € o, we have
P2 ).
j¢o
Multiplying this equation by 7! Hk@ po(wi)™

1
fa:H (wk)

k¢o Pa

I we obtain

|

Let us rephrase the proposition in more concrete terms, by interpreting elements
of Q(W) as rational functions on W*. We embed E* into W* via p*; then, for
generic y € W*, a function ¢ in Q(W) gives rise to a rational function z —
o(y+p*z) on E*. If moreover ¢ is in the subring Q(V), then ¢ is constant on each
coset y + p*E* in W*. So (1.1) translates into an identity of rational functions on
E* which depend on the parameter y. To formulate it, we introduce the following
notation.

For o € B(A), there exist uniquely defined coefficients ¢;r € K (j € 0, k ¢ o)
such that ap = EjeU ¢jra;. Then p,(wy) = wi — Zje(, CjkW;.

Restricting (1.1) to y + p* E* for generic y € W*, we obtain the following

Corollary. We have
N

1 1 1
S U 7= 2 Ul omaydl o=

—_—)
oyt (2 an /N ol > jco CikYi

forall z € E* and y1, ... ,yn € K such that the formula makes sense.
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1.2. A decomposition into simple cones. Let W be a vector space of finite
dimension N over a subfield K of the field of real numbers. A polyhedral cone in W
is a closed convex cone C' C W (with vertex at 0) which is generated by finitely many
vectors 1, ... ,z; we set C = C(x1,...,x,). We denote by [C] = [z1,...,z,] the
characteristic function of C, i.e., the function on W with value 1 on C' and 0
outside C. We denote by C(W) the additive group of integral-valued functions on
W, generated by all characteristic functions of polyhedral cones.

For any closed convex cone C, we denote by C° the relative interior of C, i.e.,
the interior of C' in the affine space generated by C. Observe that C(W) con-
tains the characteristic functions of relative interiors of polyhedral cones, and more
generally, of locally closed polyhedral cones. The subgroup of C(WW) generated
by characteristic functions of polyhedral cones which contain lines is denoted by
LC(W). If W =W, @ W, and Cj is a polyhedral cone in W for j = 1,2, then we
set [C1] % [Ca] = [C1 + Cs]. We refer to [17] and to [19] for more properties of C(WW)
(which will not be used here).

Recall that a cone generated by linearly independent vectors is called simplicial.
Let C be a cone generated by a basis (w1, ... ,wy); then C is simplicial of dimension
N. Let p: W — E be a surjective linear map. We obtain an analog of our
decomposition into simple fractions (proposition 1.1) for the image of the function
[C] in the quotient C(W)/LC(W). To state it, we introduce the following notation.

For C = C(ws,... ,wy) as before, the edges of C' are the half-lines generated by

w1, ... ,wy. The corresponding lines are called the axes of C. If C’ is a simplicial
cone having the same axes as C, then there exist well-defined signs 1, ... ,&x such
that C' = C(ejwy, ... ,enywy). In this case, we set ¢(C,C") = Hi\le k-

For 1 <k < N, we set ay = p(wg). Any basis o of A defines a simplicial cone
C?:=CnKo=C(wj)jes
in Ko, together with a simplicial cone

pa(C) = Clpo(wk))rgo

in V. A point x € W is called regular if p(z) is not contained in any hyperplane of £
generated by some of the ay. For x regular, we denote by CZ the unique cone having
the same axes as C?, and such that p(C7) meets p(z). If p(z) = . o ja;, then
no I, ; is zero because x is regular, and moreover

jET

Cy = C(sgn(ro,)w;))jeo-

Theorem. For any cone C generated by a basis (w1,... ,wn) of W, and for any
regular element x in C, we have

(1.2) [C]= Y &(C°,CICT] = [po(C))]
oceB(A)

modulo LC(W).

1.3. Proof of theorem 1.2. The proof follows the same lines as the proof of
proposition 1.1; we argue by induction over the dimension of V. If this dimension
is zero, then A consists of linearly independent elements. In this case, there is a
unique basis ¢ = (1,... ,N) and C = C7 so there is nothing to be proved.
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If dim(V') = 1, then there is a non-trivial relation

N
r = E ’I”j’UJj.
j=1

We may assume that: ri,...,7, >0, 141 =--- =1, =0, and ryp41,... 78 < 0.
Replacing the generating vectors w; by positive multiples, we may assume that
C =C(wy,...,wy) and that

The bases of A are
o=0;=(1,...,5—1,7+1,... ,N)

where j < lorj>m+1. Letz = EQ’:l Trwy with non-negative coefficients

z1,...,xn. If j§ <1, the decomposition of p(x) in the basis o; is
l m N
p(x) = Z (xr — xj)ou + Z TRog + Z (xr + xj) .
k=1,k#j k=i+1 k=m-+1
If j§ > m + 1, the decomposition of p(z) in the basis o; is
l m N
p(z) = Z(azk +xj)oy + Z Troy + Z () — xj)a.
k=1 k=i+1 k=m-+1,k#j

So z is regular if and only if the numbers x;, are pairwise distinct for 1 < k <
and form+ 1<k < N as well, and z3 > 0 for [ + 1 < k < m. Therefore, we may
assume that

< <Ty, Typy1 >+ > ITN.

Moreover, for [ < k < m, the k-th coordinate of p(x) on any basis of A is positive.
We have p,(w;) =rif 1 < j <, and p,(w;) = —rif m+1 < j < N. So the
identity to be proved is

l
[wl,... ,’UJN] = Z(—l)j_l[—wl,... ,—’LUj_l,’LUj+1,... ,wN,T]
7j=1
N
(131) + Z (—1)N_J[’UJ1,... ,Wj—1, —Wj41,--- ,—’UJN,—T]
j=m+1

mod LC(W). To check it, we may assume that [ = m.
Set up, = wy for 1 < k <1, and up, = —wyg for [+1 < k < N, sothat r = Zi\f:luk.
Set moreover

N
UN41 ‘= —T = — E Uk
k=1

Then the space W is subdivided into the simplicial cones

Cluy,... y Uj—1, Uj41, .- - JUN+1)
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for 1 < j < N + 1. More precisely, W is the disjoint union of locally closed cones
CO = O(ulv s aul) + C(ul+17 s auN)Ov

CJ = C(ula"' auj—1)0+c(uj+17"' 7ul)+c(ul+17"' ,UN+1)O (1 S] < l)

and

Cji=Clur,... ,w)+Clugts... ,uj—1)’ + Clujsr,... ,uny1) (+1<j<N)

(this can be checked by starting with Cj41 and adding successively Cjyo, ..., Cy,
Co, C1, ..., Cy). It follows that

N
(1.3.2) Y [cil e Low).

i=0

Observe furthermore that, for any simplicial cone C, we have
(1.3.3) [C°] — (=1)3(O[_C) e LCW).

Indeed, it is enough to check this when dim(W') = 1; then W is the disjoint union
of C% and —C. So we can rewrite (1.3.2) as

l
(—1)N_l[w1, N ,U)N] + Z(—l)j+N_l[—w1, cee sy, W1, Wi41,. .., WN, r]
j=1
N
+ Z (—I)J_l_l[’wl, cee,Wy—1, —Wj415--- , “WN, —7’] S EC(W)
j=l+1

This implies (1.3.1).

Finally, we consider the case where dim(V) is at least 2. We use the notation
€3y for CF, to emphasize the dependence on V. Let r = Zf;l
element of V. Denote by p” : W — W/Kr the quotient map. We apply the first
step of the proof to the data C, z and p". Recall that each basis is the complement
in {1,...,N} of some index j such that r; # 0. Denote by m; : W — WJ =

EBk# Kwy, the corresponding projection with kernel Kr. We set Cl=Ccnwi (a

rjw; be a non-zero

simplicial cone in Wi ) and we denote by Ci Jr the unique simplicial cone having
the same axes as (Y and containing 7j(z). Then we have
[C]= ) &(c?,C1,)[C8,] + [sgn(r;)r]
J,ri 70
modulo LC(W). Because r; # 0, the map p restricts to a surjection p; : Wi E.

So we can apply the induction hypothesis to the data Ci /o T (x) and p;. Observing
that p(z) = p;m;(z), we obtain, for each fixed j,

Clpl= 32 (L) Cop)ICIn ] * (9 (O]
o.j¢o

modulo £C(W7). Tt follows that
€= "[Cs ]+ fs

o
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modulo LC (W), where we set
foim Y S(C1,C)e((C )7, C2 ) (CE ) + [sen(r)r]
Jj¢o,r;#0
(an element of C(V')). To end up the proof, we check that
fo =€(C7, g/v)[pg(C)]

modulo LC(V). For this, we apply the induction hypothesis to the simplicial cone
[p-(C)] in V, to the point p,(x) in this cone, and to the quotient map V' — V/Kr.

Observe that
r=2_ripa(ws).
j¢o
So we obtain
s (C)] = > e(ps(C), po(CL, )po(C2 )] * [sgn(r;)r]
j¢o,r;#0

modulo LC(V). It remains to see that for each fixed j and o, with j ¢ o,

5(05,Ci/) ((Ci/r)a7 7 v) = e(pa(C9), p (Cajc/r))g(ca’ wv)-

Using the relation ¢(C,C") = ¢(C,C")e(C”,C") between simplicial cones having
the same axes, we reduce the proof to checking that

e(C1,07,)e((C2,,)7,C7) = e(po (CF), po(C1 ).

Writing « = > ., yswy + ur, we have Ci/r = C(sgn(yx)wy)kzj. Therefore, we
have

CJ Oi/r H sgn yk
k. k#j
and moreover
(( - /r H sgn yk

keo

Finally, because po () = > 40, 12; YePo(wi) + ur, we have

epo(C7),po(C2, ) = T senlum)-

ko k]

1.4. A decomposition into locally closed cones. Notation being as in 1.2,
we obtain decompositions of [C] and of [C?] into alternated sums of characteristic
functions of locally closed cones; both decompositions hold in C(W).

Let = be a regular point of W. For o € B(A), write p(z) = > ., Zsj0; and
denote by o (x) (resp. o_(z)) the set of j € o such that z,; > 0 (resp. < 0).
Then

C; = C(wjﬂj € 0.,.(1‘)) * C(_wjvj € U_(CL'))

and £(C7,C%) = (—1)lo-®I. We define locally closed polyhedral cones C’? and
C;/U by

Ol = Clwy,j € 04 (2)) * Cluy, j € o_ ()",
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Cl7 = C(wj,j € o4(2))" x C(wj, j € o_(2)).

Both cones C!? and C!/? are contained in C'.

A linear form y on W is called regular if y(wg) # 0 for 1 < k < N, and
y(po(wy)) # 0 for all 0 € B(A) and all k ¢ 0. Such a form exists as all vectors
po(wr), k ¢ o are non-zero. For regular y, we denote by o5 (y) (resp. ¢ (y)) the
set of k such that 1 <k < N, k ¢ o and y(ps(wg)) > 0 (resp. < 0). We set

po(C)y = Clpo(wi), k € () * C(—po(wr), k € 0% (y))°,

po(C)y = Clpo(wi), k € 05 ()" * C(—po(wy), k € 0% (y)).
Both cones p,(C); and p;(C); are contained in the half-space y > 0.

Theorem. Let C be a cone generated by a basis (w1,... ,wyn) of W. Then, for
reqular x € C and reqular y € V* such that y > 0 on C, we have
(1.4.1) [C1= > (—D)I=WICrT o, (C))),
oceB(A)
(1.4.2) (€% = > (—1)IT=WI[CIT  [p,(C))).
cEB(A)

Proof. Observe that
[C7) = (=Dl-@l[Cy)
modulo LC (W), and that

[po(c)] = (_1)|Ui(y)‘[/}0(c);]
modulo LC(V). Combined with theorem 1.2, this implies that the function

)= > ()N« pa () =

ceB(A)

is in LC(W). On the other hand, f is an alternated sum of characteristic functions
of (closed) polyhedral cones C; such that each C; \ {0} is contained in the open
half-space y > 0. Therefore, f is supported in some acute cone (i.e. in some closed
convex cone which contains no line).

To conclude the proof of (1.4.1), we check that a function f € LC (W) identically
0 outside an acute cone D must be zero. Let F(W) be the vector space of functions
on W. We embed C(W) into F(W). The additive group of W acts on F(W) by
translations; we denote by w +— T'(w) this action. Observe that, for a polyhedral
cone C which contains a line ¢, we have (1 — T'(2))[C] = 0 for all € £. Because
f e LC(W), it follows that there exist x1,... ,x, € W\ {0} such that

T

[T -7@z)) =0

j=1
for all t; € K. Moreover, we can find z € W* such that z > 0 on D\ {0} and that
(z,xj) # 0 for all j. Replacing x; by —z;, we may assume that (z,z;) < 0 for all
j. Let w € W. We can choose A > 0 such that

<z,w+thxj) <0

je€J
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for any non-empty subset J of {1,...,r} and for ¢t; > A. Therefore, we have

T

0=(JJa-T(-tz)Hw) = > (Y fw+ tizy).

j=1 Jc{1,...,r} JjEJ

By assumption, our function f is identically 0 on the open half-space z < 0. It
follows that f(w) = 0.

To derive (1.4.2), we apply (1.4.1) to the cone —C = C(—wy,...,—wy) with
regular points —x € —C and —y € —C"V. Then we obtain

[Cl= > (DW=« [=p.(O)y):
ceB(A)
Using (1.3.3), we obtain that the function
g:=1C" = > (=)= WNC7 % [ps (C)y)]
ceB(A)
is in LC(W). But g vanishes identically outside some acute cone, and hence

g=0. O

Observing that [p,(C);] — (=1)17=@)[p,(C)] and [p5(C);] = (~1)'"=W[pe(C)°]
are in LC(V'), we obtain the following

Corollary. Let C be a cone generated by a basis of W. Then, for regular x € C,
we have modulo the subgroup of C(W) generated by polyhedral cones which contain
lines of V':

(1.4.3) [Cl= > [CF]*[ps(O)],
oceB(A)

(1.4.4) [C) = Y [CT*[po(C)).
oceB(A)

In fact, (1.4.3) and (1.4.4) are exchanged by the involution which maps [C] to
the function (—1)3(E)[C] for any polyhedral cone C in W, see [19], 3.3.

1.5. Laplace transforms and polyhedral cones. In this section, we establish
a connection between our results in 1.1 and 1.2, via the Laplace transforms of
polyhedral cones.

We consider a real vector space W of dimension N, endowed with a Lebesgue
measure dw. Let C C W be an acute polyhedral cone, and let CV C W* be its
dual cone. Then the interior of CV is not empty. Moreover, for each z € W¢ such
that Re(z) is in the interior of C'V, the integral

R(C)(z) := / e~ (WA dy
c
converges, and defines the Laplace transform of C.
First properties of the Laplace transform are given by the proposition below,
whose easy proof is omitted. A closed formula for the Laplace transform of any
acute polyhedral cone is obtained in 4.2.
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Proposition. (i) Let C be the cone generated by a basis (w1, ... ,wn) of W. Then
A

1.5 R(C = vol —

(15) (©6e) = vl [T =0

where vol |w| denotes the volume of the parallelepiped {Zjvzl tiw; | 0<t; <1}
(i1) For any acute polyhedral cone C, the map z — R(C)(z) extends to a rational
function R(C) on W{.
(iii) The map C — R(C) extends to an additive map R : C(W) — Q(W¢) which
vanishes on LC(W') and also on functions with support in a set of measure 0.

Consider now a cone C generated by a basis (w1,... ,wy), and a regular point x
in C. Applying R to the identity (1.2) and using (1.5), we recover identity (1.1). In
other words, theorem 1.2 implies proposition 1.1. But theorem 1.2 is stronger than
proposition 1.1, which would follow from an identity modulo the subgroup of C(W)
generated by LC(W) and by characteristic functions of cones of smaller dimension.

2. RESIDUE FORMULAE FOR PERIODIC FUNCTIONS

2.1. Formal series and rational functions associated to polyhedral cones.
We maintain the notation of 1.2, and we assume that K is the field of rational
numbers. Let L be a lattice in W. The group algebra of L over Z is denoted by
Z[L], with canonical basis (e!);c, and with quotient field Q(L). The choice of a
basis (w1,...,wn) of L identifies Z[L] to the ring of Laurent polynomials in the
indeterminates e®* (1 < k < N), with integral coefficients, and Q(L) to the field
of rational functions in these indeterminates, with rational coefficients.

We denote by Z[[L]] the space of formal series >, ; aie' where (a;)cr, is a family
of integers. Then Z[[L]] is a module over Z[L], multiplication by e! being defined by
€'Y mer €™ = er @m—ie™. A formal series f is called summable if there exist
non-zero vectors ug, ... ,u, € L such that ([T,_,(1 —e“*))f =: P is in Z[L]. Then
the element P[];_,(1—e“)~! of Q(L) is independent of the choices of uy, ... ,u,,
and is called the sum of f.

As an example, for any non-zero w € L, the series ZZOZO e™ is summable with
sum 1/(1 — e™), while the series Y22 e* is summable with sum zero.

We recall the following well-known result (see [13], Theorem 1.2, [4]).

kw

Proposition. (i) For any polyhedral cone C in W, the formal series
fieny:= > ¢
leCnL
is summable; let F(C, L) be its sum.

(ii) The cone C is acute if and only if F(C,L) # 0.

In fact, for acute C, the rational function F(C, L) can be interpreted as follows:
For any y in the interior of the dual cone of C, the series

is convergent, and its sum is F(C, L)(—y). In other words, the “algebraic” sum of
f(C, L) coincides with the summation of the series wherever it makes sense.
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For example, if C is the cone generated by a basis (w1, ... ,wy) of the lattice L,
then

f(C, L) = Z ekrwit - +knwn

E1yee kN >0
and hence
A
F(C,L) :jl;[l ——

Observe that the map C — f(C, L) defines an additive map

CW) = Z[[L] : p— Z o(l)e.

leL

It follows that the map C' +— F(C, L) defines an additive map C(W) — Q(L) which
vanishes on LC(W).

Consider now a lattice M in W which contains L, and a polyhedral cone C in W.
We express F'(C, L) in terms of F(C, M). For this, denote by L*, M* the lattices
in W* dual to L, M. Then M* is contained in L* and the quotient L*/M* is a
finite subgroup of W*/M* of order [M : L]. Each m € M defines a character

62i7rm . W*/M* - C*.
We let L*/M* act on C[M], C[[M]] and C(M) by

m __  2imm m

g-e"=e"""(g)e

Then we have

1 e™ ifmelL,
[M : L) et TMe 0 otherwise.

It follows that

f(CvL) =

Z gf(CvM)

geEL*/M*

[M : L]

Now let D = [];_,(1 — €“*) be a non-zero element in Z[M] such that Df(C, M)
is in Z[M]. Observe that D(q) := [];_,(1 — e?“*) has the same property, for all
non-zero integers q. Choose ¢ such that ¢M C L; then, multiplying by D(q) € Z[L]
we obtain:

1

(2.1.1) PO = or geLZ*/:M* g-F(C, M).

In particular, for a cone C' generated by a basis (mq,... ,my) of M, we have
1 al 1

(2.1.2) F(C,L) = Ry > 11 T gy

geL* /M* k=1
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2.2. A decomposition into simple fractions. We maintain the notation of 1.2
and 2.1; we give a decomposition into simple fractions of the function F(C, L) for

a cone C generated by a basis wi,... ,wy of L. Then
AT
F(C,L) = .
(C,L) kl;[l =

Let  be regular in C. For each basis o of A, write p(z) = >_,c, @o,jo; and set
€0, = 5gN(Zs,;). By theorem 1.2, we have

F(C,L) = Z Hsm (CS + ps(C), L).
ceB(A) jeo
We now compute each F(CY + p,(C), L). We set A := p(L); then A is a lattice
in E. In the case where (a;);eo is a basis of A, it follows that the w; (j € o) and
the py(wy) (k ¢ o) are a basis of L. Then we have

U 1 1
F(Cm + pO’(C)7 L) = H 1— e€o.iWj IQ 1— epg(u)k) .
JEOT o

In the general case, the formula is slightly more complicated and involves sums with
roots of unity, defined as follows.
Denote by A* C E* the dual lattice of A. Then each A € A defines a character

621'77)\ . E*/A* N (C*
For any basis o, we set
G(o):={g € E*/\* | ™ (g) =1Vj € o}

Then G(0) = (e, Za;)* /A" is a finite subgroup of £*/A*. We denote by u(o)
the order of G(o), so that
= [A : @ZO&J‘].

jEOT
In particular, (o) = 1 if and only if (o) eo is a basis of A.
We set

Lo :=p H(A) NQo.
This defines a lattice in Qo. We let G(o) act on C[L,], C[[L,]] and C(L,) by
qg- em = e2i7rp(m) (g)em
(this makes sense because p(Ly) C A).

Theorem. Let C be a cone generated by a basis (w1,... ,wn) of L. Let x € C be
regular; for each basis o, write p(z) =3, Toj0; and set €55 = sgn(zq,5). Then
we hcwe

(HjEU ‘SUJ) (CU L )
Hl—ewk‘ DD TCRNP YN | e )

k=1 ceB(A) geG(o)

Proof. We need to check that each F(CY + p,(C), L) is equal to
1 g- F(Cga LU)
_ p—2iTa o (wi)) "
W) Eoir Higo (1 — e7mer(g)erstwn))
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We set:
M, := Lo ® po(L).
Then M, is a lattice in W. Moreover, we have
M, =L,+ L.

Indeed, for any w € L, we have w = (w — py(w)) + po(w) with w — py(w) €
p~H(A) N Qo and p,(w) € py(L). Clearly, we have

__ F(7 L)

" g (1 conl)

To finish the proof by applying (2.1.1), we have to describe the quotient group
L*/M}. Consider the map p, : W — E defined by p,(w;) = «; if j € o, and
po(wg) = 0 for k ¢ 0. Then p,(p,(wy)) = —ay, for all k ¢ o, and moreover p,

F(C7 + po(C), My)

coincides with p on L. It follows that p,(My) = A. Because po (L) = D¢, Zay,
the induced map M, /L — A/ @j@ Zaj is an isomorphism. By this isomorphism,
the group L*/M} is identified to G(o), and we conclude by (2.1.2). |

2.3. One more decomposition into simple fractions, and a residue for-
mula for periodic functions. We give another decomposition of the function
Hi\le ﬁ into simple fractions, which involves sums over a unique group of roots
of unity. Then we specialize our identity in the variables ¢"* into a residue formula
for periodic functions.

Choose a positive integer ¢ such that gA is contained in jeo Zo; =: Zo for all
bases o, that is, gc; is an integer for all j € o and all k ¢ o (recall that the cji
are defined by ay = Zje(, ¢jraj). For o € B(A), set

G(o,q) = (2/4Z)” ={g9 = (9;)jeo | 9j € Z/qZ}.
Then each j € o defines a character
g e2ima " g;
of the finite group G(o, ¢). Moreover, for all k ¢ o, we have a well-defined character
g = €2 Cico Cindi

because the gc;i are integers.

Observe that G(o,q) ~ (Zo)* /(Zq~to)* surjects onto G(co) = (Zo)*/A*. More-
over, for k ¢ o, the character €2 of G(o) gives rise to the character ¢2'™ Zjex %ik9i
of G(o,q).

Theorem. Let C' be a cone generated by a basis (w1, ... ,wy) of L. Let x € C be
regular; for each basis o, write p(x) =Y., Tojo; and set €45 = sgn(zq ;). Then
the product

jECT

is equal to

q_lga,‘ 1
Z Z H 1— eqflaayj(wjj—i-%ﬂgj) kl;[ 1 ewk—ZjEU cjk(w;+2img;)

o€B(A) geG(o,q) jEo
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Proof. For each o, consider
My, = @Zq_le ® po(L).
jEOT
Then
M,y =EPZg w; + L.
Vst
Clearly, we have
1 1
[Tje, (1 — et eriwi) [T, (1 — erown))’

Moreover, the map p, sends M, , onto ¢~ Zo and hence p};. induces an isomorphism

F(CF + po(C), Mo q) =

G(o,q) — L*/Mj .. This isomorphism identifies the character g + €295 1o
2™ Wi and g s e 2T Djeo k05t e2im(pa (W) —wh) = ¢2impe (k) We conclude as
in 2.2. O

Example. Let us use the notation of 1.3. If the space of relations between the
elements «y = p(wg) is generated by

l N
r = E wj — E wj,
Jj=1

j=m+1

then the identity to be proven is

N
1 ; 1 1 1 1 1
_ 1)1
H 1—ews Z;( ) 1—em 1—e wi-11— eWitt 1—ew~n1-—e"

;o1 1 1 1 1
+ Z (—1)N-J : — ...

1—ewt 1—ewi-11— e Wit1 l—ewNv1l—e"

which is easily checked directly. Using this identity, it is also possible to give a
direct proof of theorem 2.3, using an induction argument similar to the proof of
proposition 1.1.

As in 1.1, we can specialize theorem 2.3 to obtain the following formula.

Corollary. For a generic complex linear form z on E, and for generic complex
numbers y1,... ,yn, the product

N
H —eyk+ Zak>

k=1
is equal to

> Y i i 1
leg, ](y]+2177g] +(z,05)) i 1_ eyk—zjeg cjr(y;+2img;)
o

c€B(A) geG(o,q) jEU
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2.4. Fourier transforms and polyhedral cones. Both maps C — R(C') (de-
fined in 1.5) and C' — F(C, L) may be understood via Fourier transforms of certain
generalized functions. We consider a real vector space W of dimension N; we use
the function notation ©(y) for a generalized function ©® on W*, although the value
of © at a particular point y may not make any sense. We say that © is smooth on
an open subset U of W* if there exists a smooth function 6(y) on U such that

(0, pdy) = 0(y)p(y)dy
e

for all test functions ¢ with compact support contained in U.
For f € C(W), the formula

FP) = [ e fu)au

defines a generalized function F(f), the Fourier transform of f. Remark that the

characteristic function [C] of a cone C' generated by a basis (wy,... ,wy) of W,
satisfies
N
(I T ¢y, we))F(CD(y) = vol |uw|
k=1

so that the generalized function F([C])(y) is smooth on the complement of the
union of hyperplanes wy = 0, and is equal to R(C)(iy) on this open subset. On the
other hand, if a polyhedral cone C' contains a line ¢, then for any w € ¢, we have

{y, w)F(C(y) =0
so that F([C]) is identically 0 outside the hyperplane of W* orthogonal to £. Thus,
for any f € C(W), we have for generic y € W*

F(H)y) = R(f)(iy)

and this determines R(f) uniquely.

Now fix a lattice L in W, and denote by Wy the rational vector space generated
by L. We can identify polyhedral cones in Wg with rational polyhedral cones in W/,
and hence C(Wp) identifies with a subgroup of C(W). For f € C(Wg), the formula

F(f.L)y) =) fDe'h

leL
defines a generalized function F(f, L) on W*. If C = C(ws, ... ,wy) is a simplicial
cone generated by a basis (wy, ... ,wy) of L, then
N
([T = e =)F(CL L)) =1
k=1

so that F([C], L)(y) coincides with F(C,L)(iy) on the complement of the union
of hyperplanes (y,wy) € 2nZ. On the other hand, if a rational polyhedral cone C
contains a line, then it contains a rational line ¢, and we have for all w € /N L

(1= '@ N F((C), L)(y) = 0.
Therefore, F([C], L) is identically 0 on the complement of the union of the hyper-
planes (y,w) € 27Z. We conclude that for any f € C(Wy), the generalized function

F(f,L)(y) is equal to the function F(f, L)(iy) for y outside a countable union of
hyperplanes.
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3. VECTOR PARTITION FUNCTIONS

3.1. Chambers and partition polyhedra. We consider a real vector space W
with a basis (wy,...,wy) and a surjective linear map p : W — E with kernel V' of
dimension n. We set p(wg) := ai for 1 <k < N,and A = (a1,... ,ayn). We denote
by C the convex cone in W generated by wi, ... ,wy, and we set C(A) := p(C).

For any subset x of A, we denote by C(k) C E the convex cone generated by
the a; (j € k). Then C(A) is the union of the simplicial cones C(0) (o € B(A)).
To any h € C(A), we associate the intersection of all cones C'(o) which contain
h. This defines a subdivision of C'(A) into polyhedral cones. The interiors of the
maximal cones of this subdivision are called chambers.

For any chamber v, we set

B(A,v):={ceB(A)|vycCC(o)}

Then the intersection of the C'(o) (o € B(A,~)) is the closure 7 of ~.
A subsequence of A is called generating if it contains a basis. We denote by
G(A) the set of generating subsequences of A. For a chamber v, we set

G(A,v) :={keG(A) | yC C(x)}.
For h € F, we set
V(h) :=p () and Pa(h) :=p ' (R)NC.

Then V' (k) is an affine space with direction V' = ker(p), and Pa(h) is a convex poly-

hedron in V(h), i.e., the intersection of finitely many closed half-spaces. Observe

that Pa(h) contains no affine line. Moreover, Pa(h) is non-empty if and only if &

is in C(A). The family (Pa(h))nrec(a) is called the family of partition polyhedra

defined by p: W — E and C. This construction is well known, see e.g. [18].
Recall that the recession cone of a convex polyhedron P C W is

re(P):={&eW |z + &€ P Vx e P}

Clearly, re(Pa(h)) is equal to PA(0) = CNV, i.e., to the cone of non-negative linear
relations between elements of A. In particular, the polyhedron Pa (h) is bounded
if and only if the cone C(A) is acute.

In fact, the structure of Pa(h) depends only on the position of h with respect
to the decomposition into chambers. To see this, we describe the vertices of Pa(h)
and their “tangent cones”, defined as follows: For any convex polyhedron P in W,
and for any x € P, the tangent cone of P at x is the closed convex cone generated
by —z + P; we denote by C, P this (polyhedral) cone. Because Pa(h) contains no
line, it is uniquely determined by its vertices and the corresponding tangent cones.

For o € B(A), we denote by v, : E — W the linear map such that v, (a;) = w;
for all j € 0. Then vo(ow) = > ,c, cjrw; for all k ¢ o. Moreover, ps(w) =
w — vep(w) for all w € W. If v is a chamber, and o € B(A, ), then

Pa(h) N EPRw; = {v,(h)}
Vit
for all h € 7. For k € G(A,~), we set
Pa(h) N @D Ruy, := Fi(h).
kek
Now we can state the following result, whose proof is a direct check.
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Proposition. Let v be a chamber.

(i) For any h € =, the convez polyhedron Pa(h) is simple, with vertices v, (h) (o €
B(A,~)) and corresponding tangent cones p,(C). More generally, for any k €
G(A,7), the set F.(h) is a face of dimension |k| —n of Pa(h), and this defines a
bijection between G(A,~) and the set of faces of Pa(h).

(ii) For any h € 7, the faces of Pa(h) are still the F(h) (k € G(A,7)), with
possible repetitions. Moreover, the dual of the tangent cone to Pa(h) at its ver-
tex v has a simplicial subdivision whose mazximal cones are the duals of the cones

ps(C) (0 € B(A,7), v=10,(h)).

3.2. Characteristic functions of partition polyhedra. In this section, we de-
duce from corollary 1.4 formulae for the characteristic functions of the partition
polyhedron Pa(h) and of its interior in V(h). Both functions live in the additive
group He(V(h)) generated by all characteristic functions of convex polyhedra in
V(h). We denote by LHe(V (h)) the subgroup of He(V (h)) generated by charac-
teristic functions of convex polyhedra which contain affine lines.

Theorem. Let h € C(A) and let v be a chamber such that h € 7.
(i) We have in He(V (h)):

(3:2.1) [Pa(m)] = D [va(h) +ps(C)]
c€B(A,y)
modulo LHe(V (h)). Furthermore, if h € C(A)°, then
(322) [Pa(h)] = Y [vo(h) +ps(C)°).
c€B(A,y)
(ii) For any vertex v of Pa(h), with tangent cone Cy,Pa(h), we have in C(V):
(3.2.3) [Co PA(R)] = > [04(C)]

c€B(A,y),v=vs(h)

modulo LC(V). Furthermore, if h € C(A)°, then

(3:24) CoPa(®)] = > [pe(O)]
c€B(A,y),v=vs(h)

modulo LC(V').

Proof. (i) Choose a regular point z € C. Then, restricting identity (1.4.3) to V' (h),
we obtain

[Pa(M)] = > V()N (CF +po(C)] =g
ceB(A)

for some g € LHe(V(h)). Now we choose = such that p(z) € v and that no
hyperplane generated by some of the «y separates h and p(x). If V(h) meets
Cy + po(C), then h is in p(Cy7), and hence h = 37, hoja; with hy; > 0 for
all j € o_(x). By the assumption on z, the set o_(z) must be empty, that is,
o € B(A, ). Therefore, C!? = C(0). Moreover, we have

V(h) n (Ca/cd + po(c)) = Uo(h) + pU(C).

Indeed, we have v,(h) € C(o) = CI° and hence v,(h) + p,(C) C V(h) N
(C2 + p,(C)). On the other hand, if u € V(h) N (Ci + po(C)), then u — p,(u) €
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C(0). But u — ps(u) = vep(u) = v,(h) and hence u € vy(h) + p,(C). This proves
(3.2.1).

Assume now that h € C(A)°. Then Pa(h) contains points (x1,...,zy) such
that x; > 0 for all k. It follows that

Pa(R) =NV (h).

For x as above, and for small € > 0, set ¥ := h—ez. Then z° is regular. Moreover,
identity (1.4.4) implies that

[Pa(R)’] = D V()N (C + po(C)%)] = ¢°
ceB(A)

for some g € LHe(V (h)).

If V(h) meets C"§ + p,(C)?, then h € p(C”). If moreover z ¢ C(c), then there
exists j € o such that z, ; < 0. By our choice of z, we have hy ; < 0. Then either
hoj = 0 and z) ; > 0, or hyj < 0 and 2] ; < 0. In both cases, h ¢ p(CL7), a

contradiction. So « € C(0), that is, o € B(A,~). Arguing as above, we then have
V(h) N (CE + po(C)°) = ve(h) + po (C)".

This proves (3.2.2).

(ii) is deduced from (i) by a process of limit at v, as follows. For an arbitrary
convex polyhedron P C V(h), and for € > 0, consider the function z — [P](v+¢x).
Then the pointwise limit of this function as ¢ — 01is [C,, P] if v € P, and 0 otherwise.

Assume that v € P. Remark that [C, P] is in LC(V) in the case where P contains
an affine line (then P contains an affine line through v) and also in the case where
P is an affine cone with vertex s # v (then C, P contains the line R(s — v)).

Now write

Pal = 3 o)+ o€+ Y051

c€B(A,y)

where each P; is a convex polyhedron in V' (h) which contains an affine line. Eval-
uating both sides at v + ex and letting ¢ — 0, we obtain

CoPam]= > [pe(ON+g
c€B(A,y),v=vs(h)

with g € LC(V'). This proves (3.2.3). Similarly, (3.2.4) follows from (3.2.2). O

3.3. Fourier transforms of partition polyhedra. In this section, we obtain a
closed formula for the Fourier transform of the Lebesgue measure on Pa(h). We
choose Lebesgue measures on W and FE; this induces a Lebesgue measure ds on each
fiber of p. For any basis o, we denote by u(o) the volume of the convex polytope
{2 jeotiaj |0 <t; <1} Forall h € C(A) and y in the interior of the dual cone
of C' NV, we set

Va(y,h) = / e~ W ds
Pa(h)

(this makes sense because y is bounded from below on Pa(h)). In particular, if the
cone C(A) is acute, then Va(y, h) is defined for all y € W*, and Va(h) := Va(0,h)
is the volume of Pa(h).
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Proposition. For any h € C(A), for any chamber v such that h € 7, and for
generic y in the interior of the dual cone of C NV, we have

53 am= 3 o= (wve ()
. AlY, = .
vetian M) Higo Wk = 2jeq cikys)

Proof. Taking the Fourier transform (see 2.4) of (3.2.1), we obtain for h € 7 and
for generic y € W*:

/ e~ Hvs)gs = Z / e Hu) ds,
Pa(h) d€B(A,Y) vy (h)+p~(C)
This gives our relation. O
Definition. We set
e_<yxv<7(h‘)>

1(0) Mg (Y — 20 je0 CikYs)

VA,V(yv h) =
ceB(AY)

(
This function coincides with Va(y, h) for h € 7, and is defined outside a union of
finitely many hyperplanes.

Corollary. If the cone C(A) is acute, then we have

B <y,vo(h)>n
= D g+ Sy )

for all h € 5, and for generic y € W*. In particular, the function h — Va(h) =
vol Pa(h) is a homogeneous polynomial function of degree n = N —d on the closure
of each chamber.

Proof. Fix h € 7 and generic y € W*. Expanding
Va(ty, h) :/ et s
P(h)

into a power series in ¢ and letting t — 0, we obtain our formula. O

3.4. Vector partition functions and their generalizations. In this section,
we obtain a discrete analog of proposition 3.3. We maintain the assumptions of 3.1,
and we assume furthermore that p maps the lattice L = @szl Zwy, C W onto a
lattice A in E. These lattices define uniquely Lebesgue measures on W and E; for
o € B(A), observe that

VOI{Z tjaj | 0 S tj S 1} = [A : @Zaj]
j€o j€Eo
so that the notation p(o) of 3.3 is consistent with the notation of 2.2.
For A € C(A) N A and for y in the interior of the dual cone of C' NV, we set

Paly, ) := Z e~ (yw) — Ze—fﬂl<y>w1>_'”_mN<yawN>
wEPaA(N)NL
(sum over all non-negative integers x1,... ,zy such that Eévzl xpar = A). This

series converges, because y is bounded from below on Pa(A).
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We also set

PRGN = Y e =N emml) e )
wePA(MN)ONL
(sum over all positive integers x1,...,zy such that Zlkvzl TRap = N).

If the cone C(A) is acute, then the functions Pa(y, A) and PR (y,\) are defined
for all y € W*. In particular, Pa(A) := Pa(0, A) is the number of solutions in non-
negative integers of the equation Eszl Trar = A, i.e., Pa is the vector partition
function associated to A. We call PQ the strict vector partition function.

Theorem. Let A € C(A) N A; let v be a chamber such that A\ € 5. Then, for
generic y in the interior of the dual cone of C NV, we have

(3.4.1)
e (0 () €2 ()
PA(yu )‘) = ; — CikYi\
D ST NP VIS e PR
Furthermore, if A € C(A)°, then
(3.4.2)
(e () €2 (g)
Pg(yv)‘) = (_1)n . — CiryiN
oel;An) nlo) ge;(a) Hk¢0(1 — eZimar (g)ev Zieo rT)

Proof. Consider the formal power series

F(PAQN), L) == > ev.

wEPA(N)NL

We show that this series is summable (see 2.1) with sum

Z 61}‘70\) Z e2imA (g)
venany M) Lot g, (1 — e 2iman(g)ets = 2en )
This implies (3.4.1).
For o € B(A,7), set
Fwe(N) + po(C), L) := > v,
wE (ve (AN)+ps (C))NL

Then, using 3.2 and 2.1, we see that
f(PA()‘)vL) - Z f(vo()‘)+po(c)vL)

c€B(A,y)
is summable with sum 0. Moreover, setting
My =Ly ®po(L)=Ls+ L
we have: v,(\) € M, and
evo(N) evo(N)

- Hk¢0(1 — ePa(wk)) - Hk¢0(1 _ eWrXjeo Cjkwj))'

f(vo(/\) + Po(c)a Mo)
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As in the proof of theorem 2.2, it follows that f(v,(A\) 4+ ps(C), L) is summable
with sum

eve () 2 (g)
w(o) 460 ) Hk¢0(1 _ e—2iﬂak(g)ewk_zj€g Cjkwj).

This proves (3.4.1).
For (3.4.2), we deduce from theorem 3.2 that the series

f(Pa(A)”, L Z F(0e(A) + po(C)°, L)

oEB(AY)

is summable with sum 0. Moreover, each series f(v, () + p,(C)°, M, ) is summable
with sum

s () 1
SESE § s e T — 1
H 1T_erev (=1)% 11 1_epolwn)’
k¢o
It follows that f(v, + po(C)°, L) is summable with sum
(_l)neva()\) e2i7r)\(g)

o) g€G (o) Hk¢0(1 — e2ima (g)e‘“’”zja Cjkwj)'
|

3.5. Euler-MacLaurin formula for vector partition functions. In this sec-
tion, we express Pa(y, A) and PR (y, A) (defined in 3.4) in terms of the values at A
of the function h — Va(y,h) and of its partial derivatives. For this, we introduce
series of differential operators with constant coefficients called Todd operators, as
follows.

For any complex number a, we set

Todd(a, z) := # = Z cla,m)z™
m=0

Then Todd(a, z) is an analytic function of z for small z. In particular, we have

= c — 1 - m—1 Bm 2m
Todd(1,2) = 7—— =1+ 52+ Z(—n i
where the B,,’s are the Bernoulli numbers.

For u € E and ¢ a smooth function on E, we denote by d(u)¢ the derivative of
© in the direction u. We define the Todd operator Todd(a,d(u)) by the formula

Todd(a, d(u)) := % =" c(a,m)d(u)™,
m=0

Then Todd(a, d(w)) is a differential operator of infinite order, with constant coeffi-
cients. It acts for example in the space of polynomial functions on E. For y € R,
we define Todd(a,d(u) + y) in a similar way. Finally, for g € E*/A* and y € W*,
we set
N
Todda(g,0 +y) := [ [ Todd(e™*"**(g), d(cx) + yi)
k=1
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with yr = (y,wy). Then Todda(g,0 + y) is a series of differential operators with
constant coefficients, and Todda (g, 9) is a differential operator of infinite order with
constant coefficients.

Theorem. Let v be a chamber, and let Va ,(y,h) be as in 8.3.
(i) The series

Todda(g,d + y)Va~(y, h)

converges for all g € E*/A*, and for small generic y € W*. Moreover, the sum of
this series vanishes if g is not in the finite set

G(y) := U G(o).
ceB(Ay)

(ii) For A € ¥ N A and for small generic y in the interior of the dual cone of
C NV, we have:

(3.5.1) Pa(y,A) = > €*™(g)Todda(g,0+ y)Va (Y, h)lh=n.
geG(V)
Furthermore, if A € C(A)°, then
(3.5.2) PRy, \) = Z ™ (g) Todda (—g, =0 — Y)Va (¥, B)|h=x-
geG(V)

Proof. (i) Using proposition 3.3, it is enough to check the assertions for the series
Todda (g, d + y)e™¥va ()
for o € B(A,~). Observe that

(353)  (0ar) +yr)e P = (g — (y, () e 00D
and that, for all k£ € o:
(3.5.4) Y — (Y, v (a)) = 0.

Moreover, the series
Todd (e~ (g), d(c) + yr)

has a non-zero constant term if and only if €?7**(g) = 1, and then this constant
term is equal to 1. It follows that

Todda(g,0 + y)e_<y7v"(h)>

= e @) TT S ele % (g), m) (g — (. vo ()™

k¢o m=0
if y € G(0); otherwise, Todda (g, d + y)e~ ¥ (M) =0,
(ii) We can rewrite the formulae above as

Yk = 2 jco CikYj
1 — e—2imag (g)e_yk-‘rz_jgg CikYj

Todda (g,d + y)e~ o) = o= {yva(h) H
kéo

if g € G(0); otherwise, Todda (g, + y)e~ (M) = 0. Using 3.3 and (3.4.1), we
obtain formula (3.5.1). The proof of (3.5.2) is similar. O
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Corollary 1. If the cone C(A) is acute, then we have for any A € C(A)NA and
for any chamber v such that \ € 5:

PaN) = > €™ (g) Todda(g,d)Va (h)|n=».
g€G ()

Furthermore, if A € C(A)°, then

PR = > €™ (g) Todda(—g, —0)Va~(h)|n=r-
g€G ()

Definitions. A function f on A is called

polynomial if f extends to a polynomial function on F,

periodic if f factors through A/L where L C A is a sublattice (then L is a
period group for f),

periodic polynomial if f belongs to the ring generated by polynomial and by
periodic functions (then a period group of f is a sublattice L such that f
restricts to a polynomial function on each coset of L) .

The closed formulae above show that the function Pa (resp. PX) is periodic
polynomial on the closure of each chamber in C(A) (resp. in C'(A)Y). More pre-
cisely, for any g € G(v), define a polynomial function Pa 4 on A by

PA797’Y = TOddA(g, 8)VA77.
Then the function

A= Paq(A) = Z 62”}\(9)73&977()‘)
9€G(7)

is periodic polynomial on A, and coincides with Pao on A N7.
Set

A(y) =={reA| ™ (g) =1Vg € G(v)}.

Then A(y) is the intersection of all sublattices ., Za; for o € B(A,7). An ele-
ment h € ANJ belongs to A(7) if and only if all vertices v, (h) of the polytope Pa(h)
are integral. According to Ehrhart [10], restriction of Pa , to A(7) is polynomial.
The following corollary gives a closed formula for this polynomial function.

Corollary 2. The sublattice A(7y) is a period group for Pa ., and restriction of
this function to this sublattice coincides with restriction of the polynomial function

Enpy = Z Pa,g~-

9€G(7)

3.6. Vector partition functions and volumes of faces. In this section, we
assume that the cone C(A) is acute. We obtain formulae for Pa () in terms of the
faces of the polytope Pa()) . In particular, we refine the results of [20].

First we express the series of differential operators Todda (g, d + y) occurring in
our Euler-MacLaurin formula, in terms of the faces of Pa(h) for h € . Recall that
these faces are indexed by the set G(A,~), see 3.1.

Observe that G() is the union of its subsets

G(o) ={g € E*/A* | *™ (g) = 1 Vk € 0}.
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It follows that G(v) is the disjoint union of its subsets
G(k)?:={g€ E*/A* | 2™ (g) =1 & k € K}

where k runs over G(A, ). For such a x and for g € G(k)°, we set

. O(ak) + yr 1
RA(Q? 9+ y) T H 1 — e—9(ar)—yk H 1 — e—2imay (g)e—a(ak)—yk ’

k€Er k¢r

a series of differential operators with constant coefficients. The constant term of

the differential operator Ra(g,0) is []¢, 1_@+g). We also set

'iﬂak(
o0+ ) = [[(0len) +0)-
k¢r
Then, for all g € G(k)?, we have
Todda(g,0 +y) = Ra(g, 0+ y)IL(0 + ).

We apply this formula to the function Va . Recall that Va (k) is the volume
of Pa(h) for h € 7. More generally, for h € v and k € G(A, ), the volume of the
face Fy;(h) is Vi 4(h) where we still denote by v the chamber (for the system x)
which contains h. Using (3.5.3) and (3.5.4), we obtain the following

Proposition. The function Va ~ satisfies the system of partial differential equa-
tions

Very(y,h) if s € G(A,5),
0 otherwise.

. (y + 0)Van(y h) = {

In particular,

VK,’Y ZfK 6 g(A77)7

0 otherwise.

I, (‘%VA,’Y = {

These equations can be used to compute inductively Va -; indeed, V, , is the
constant function p(o)~! for all ¢ € B(A,~). Moreover, we can restate Corollary
3.5.1 as

PA,'y: Z ’PA,/-@
KEG(A,Y)
where
PasV) = Y e¥™g)Ra(g,0)Var(h)n=r
g€G(K)?

is periodic polynomial of degree at most |x| —n, and with period group _, ., Zay.
This decomposition of Pa , is canonical.

Consider now the ring C[J] of differential operators on E with constant co-
efficients. Let Z(A,~) be the ideal generated by the operators Il (9) for x not
in G(A,~). We claim that for any element D € C[d], there exist constants cy
(k € G(A, 7)) such that

D= Z Cnnﬁ(a) (mOdI(Aa’}/))
NEQ(A/Y)
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and therefore, by the proposition:

DVaqr= Y cuVun
KEG(A,y)

In other words, the C[0]-module generated by the volume function of Pa (k) is the
vector space spanned by volumes of faces.

Indeed, the ring C[d] is generated by the d(ay), 1 < k < N. Consider a monomial
Hszl O(ag)™ and denote by v the sequence of all k such that ny, = 0. If v is
not generating, then the monomial is in Z(A,~). If v is generating, then we can
express ay (k ¢ v) as a linear combination of the o (j € v). Thus, we can write
each operator, modulo the ideal Z(A, ), as a linear combination of the II,(9) and
finally we keep only those where v is generating and in G(A, 7).

Let v € G(A,7) and let g € G(v)". Applying the claim to the operator Ra(g,d)
and to the system v, we see that there exist constants c.(g) (k € G(A,v)) such
that

RA(gva) = Zcm(g)nm(a) (mOd I(Vv ’Y))

and therefore

Page = Ra(g, O (0)Vay = Ra(9,0)Vury = Y enl9)Vir-
rEG(v,7)

So we obtain the following

Theorem. We have

PA,'Y = Z GKVK,’Y
KEG(A,Y)

where

a function on A/, .. Loy,.

This expresses the number of points in the rational convex polytope Pa()\) in
terms of the volumes of its faces and of the periodic functions ©,; observe that each
© is constant on the sublattice A(y), with value 3 () ¢x(g). The resulting
formula is not canonical, because the polynomials V,; satisfy linear relations.

The following corollary is a refinement of the result in [20]. It expresses the
difference between the periodic polynomial P, and the Ehrhart polynomial £a ;
both functions coincide on A(7). For A € A and x € G(A, ) we denote by [A], the
image of Xin A/ )", ., Zoy,.

Corollary. For each chamber, we have

ParN) —EayN) = D (0u([N) = Ox(0)Viry (V).
KEG(A,y),k#£A
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3.7. Euler-MacLaurin formula and integrals over faces. In this section, we
still assume that the cone C(A) is acute. We adapt the approach of 3.6 to express
Pa(y,A) in terms of integrals of the function Va(y, A) and its partial derivatives,
over the faces of Pa()).

We identify the ring C[0] with the symmetric algebra S(E), and we consider the
overring S(E ® W) = S(E) ® S(W). Identifying S(W) to the ring of polynomial
functions on W*, we denote S(E ® W) by C[9,y]. This ring is graded, and its
elements y, = (wg,y) have degree 1. We denote by S(A) the graded subring of
C[09, y] generated by the d(ax) + yx for 1 < k < N, and by the subring S(V) of
S(W) (identified to the space of polynomial functions on W* which are invariant
under translation by E*).

Let Z(A,~,y) be the ideal of S(A) generated by the operators I1,.(0 + y) for
k ¢ G(A,~). By proposition 3.6, the function Va (y, h) is killed by Z(A,~v,y). The
ring S(A) with its ideal Z(A, 7, y) is considered in [8].

We claim that for any D € S(A), there exist c.(y) € S(V) (k € G(A,7)) such
that

D= Zcﬁ I1,.(8 + y) (mod Z(A,~,y)).

The proof of this claim is the same as in 3.6; for a generating sequence v and k ¢ v,
we use the relation

(k) + Yk _chk (aj) +y5) = (ws _chkwjay>
jev jev
where w;, — Zjey cjrw; € V, that is, ag = Zjey CikQj.
Now, arguing as in 3.6, we obtain for v € G(A,v) and g € G(v)":
TOddA (gu 0 + y)VV,V = Z Cg (gu y)vﬁ,v
~€G ()

where each ¢, (g, y) is a series with terms in S(V') which is analytic in a neighborhood
of 0. We can thus consider ¢,(g,y) as a function on a neighborhood of E* in W*.
Setting

On(y,A) == > e¥™(g)enlg,y),
geG (k)
we obtain
,PA;y(yu )‘) = Z Gm(ya )‘)Vm'y(yu )\)
KEG(A,y)

For fixed ), the series ¢, (g, y) can be considered as a series of differential operators
with constant coefficients on the affine space V(). We denote by s the variable in
this affine space. Then the formula above becomes

Z e~ (vw) _ Z / (s),\)e~¥*)ds.
wEPA(A)NL KEG(A,y)

This summation formula holds for the exponential of any small linear form on W
and thus for any polynomial function. So we have obtained the following
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Theorem. Let v be a chamber. For each g € G(v), let cx(g,y) (k € G(A,7)) be
series with terms in S(V) such that

Todda(g,0+y) = > cxlg,y)e(d+y) (modZ(A,7,y)).
KEG(A,y)
Then, for any polynomial function ¢ on W and for any A € 7, we have
> oew= Y [ e-ael)ds
wePA(NNL KEG(A,y) Y Fr(N)
where
O4(=0(s),\) = D e*™g)enlg, —0(s))
9€G(K)

is a series of differential operators on V() with periodic coefficients of period group
Zk6n Zozk .

In particular, the function A\ — ZMGPA(A)QL o(w) is periodic polynomial on A,
and its restriction to A(y) is polynomial. Moreover, for fixed A, we have expressed
the sum of values of any polynomial function at all lattice points of the rational
convex polytope Pa(A), in terms of integrals over faces of the function and its
partial derivatives. This is in the spirit of the Euler-MacLaurin formula of Cappell
and Shaneson [8], announced in the case where Pa(\) is a simple lattice polytope
(that is, A € yNA(7)).

4. LATTICE POINTS IN RATIONAL CONVEX POLYHEDRA

4.1. Convex polyhedra and partition polyhedra. Let V' be a real vector space
of dimension n. Let P C V be a convex polyhedron which contains no line, and
with non-empty interior. Let F},..., Fy be the facets of P, that is, its faces of
codimension one. Write the equation of each F} as

(U, v) + A =0

where ug are in V*, A\ € R and (ug,v) + Ay > 0 for all v € P. Then the uy are
“inward pointing normal vectors” to P. We have:

P={veV|{upv)+ A >0(1<k<N)}L
Moreover, the recession cone of P (see 3.1) is
re(P)={veV | {(ugv)>0(1<k<N)}

the dual cone of C(u1, ... ,un). Since P contains no line, re(P) is acute, and hence
uy,...,uy generate the vector space V*.
For # = (21,...,2n) € RY, we set

P(z)={veV | (ug,v)+2,>0(1<k<N)}

(in particular, P(\) is equal to P). Then P(z) is a convex polyhedron, obtained
from P by parallel motions of its facets; the face structure of P(x) may be very
different from that of P.
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We will see that the P(z) form a family of partition polyhedra as defined in 3.1;
this result is known under various forms, see [18]. We set W := R¥ with canonical

basis (w1, ... ,wy), and we consider the map
v Vo= w
v = ((ug,v),...,{un,v)).

Clearly, ¢ is injective; we consider ¢ as an inclusion of V into W. Denote by
p: W — E := W/V the quotient map; set ay := p(wi) and A := (aq,... ,an).
Then we have the following statement, whose straightforward proof is omitted.

Proposition. (i) For any x € W, the affine map

x+ev: V. — w
v (<U1,U>+LE1,...,<UN,U>+$N)

induces an isomorphism of P(x) onto Pa(p(x)).

(ii) A subset o of {1,...,N} is a basis of A if and only if the sequence (ur)r¢,
is a basis of V*. In this case, the affine hyperplanes (ug,v) +xr =0 (k ¢ o) have
a unique common point s, (x), and moreover x + (s, () = vo(p(x)).

Observe that p : W — E depends only on the set
F = {Fl,... 7]’7‘]\7}

of all facets of P. Via p~!, the subdivision of C(A) C E by closures of chambers
defines a subdivision of the cone

C(F) =p (C(A) ={z e W | P(x) #0}.

We denote the chambers in C(A) and in C(F) by the same letter v, and we use
the notation B(F,~) for B(A,~) (the set of bases o of A such that the cone C(0)
contains ).

Combining the proposition above with proposition 3.1, we obtain the following

Corollary. Let v be a chamber in C(F). Then a point x € W is in v if and only
if P(xz) is simple with vertices sy(x) (o € B(F,~)). In this case, the directions of
edges of P(x) at s,(x) are given by the dual vectors of the basis (ur)r¢o-

4.2. Characteristic functions and Fourier transforms of convex polyhe-
dra. Using the notation and results of 4.1, we can now state theorems 3.2 and 3.3
for arbitrary convex polyhedra which contain no affine line.

Theorem. Let P C V be a convex polyhedron of dimension n which contains no
line. Let F ={Fy,... ,Fn} be the set of facets of P, with inward pointing normal
vectors ui, ... ,un, and let v be a chamber of C(F). Then

(i) For any x = (x1,... ,2N) € 7, we have modulo the group generated by char-
acteristic functions of polyhedra which contain lines:
(4.2.1) [P = > lso(@) +Clufo)ngo]
cEB(F,v)
where (uf, ,)igo is the dual basis of (ur)ygo, and where sq(x) = =3 )4, Tuuj 5 s

the corresponding vertex of P(x).



830 MICHEL BRION AND MICHELE VERGNE

(i) If moreover dv is a Lebesque measure on V, then we have for any generic
u€ C(ug,... ,un)%:

(4.2.2) / e (W) 4oy — Z o—(wsa (@) V01|uk,o|kfa
P(z) cEB(F,7) Hk¢a<“= “k,g>

where vol | , |k¢o is the volume of the parallelepiped {3, tiuy , | 0 <t < 1}.

Recall (see 1.5) that the Laplace transform of an acute polyhedral cone C C W
is the rational function R(C') on W such that

R(C)(z):/ e (W) dyy

c
for z such that Re(z) is in the interior of the dual cone of C. Setting x = 0 in
(4.2.2), we obtain a closed expression for this Laplace transform as a sum of simple
fractions.

Corollary 1. Let C be an acute polyhedral cone of dimension n. Let F be the set
of all facets of C, and let vy be a chamber of C(F). Then the Laplace transform of
C is given by
vol |u} -
R(C): | k,a’|f¢ .
c€B(F,7) Hk&a’ uk,a’

Using theorem 3.2, we also obtain the following result.

Corollary 2. Let P C V be a convex polyhedron of dimension n which contains
no line. Then we have modulo LHe(V):

(4.2.3) [P] = [s+C.P]
(summation over all vertices s of P, with tangent cones CsP). Moreover, for any
linear form uw on V which is bounded from below on P, we have

(4.2.4) / e~y = 3 eI R(C, ).
P S

In the case where P is bounded, (4.2.4) is due to A. Barvinok (see [2], §2),
whereas (4.2.3) is deduced in [3] from the Euler identity on the number of faces
of convex polytopes. In fact, the theorem above is an explicit version of corollary
2: the choice of a chamber leads to closed expressions of [CsP] and of R(CsP) for
all vertices s of P. From the geometrical point of view, each choice of a chamber
determines an approximation of P by a family of simple polyhedra, and in turn, a
subdivision of the dual cone of each Cs P into simplicial cones (see proposition 3.1).

4.3. Exponential sums for lattice points in rational convex polyhedra. As
in 4.1, we consider a convex polyhedron P in an n-dimensional real vector space V,
such that P is n-dimensional and contains no affine line. We assume moreover that
V' is endowed with a lattice M, and that all vertices of P are rational with respect
to M, i.e., that P is a rational convex polyhedron. We determine the exponential

sum
T et

vePNM
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where the linear form u on V is bounded from below on P. We use the following
notation.

For the equation (ug,v)+ A\ = 0 of each facet of P, we can assume that uy € M*
(the dual lattice of M), that A\x € Z and that (ug,Ag) is primitive in M* x Z.
Together with the assumption that (uy,v) + A > 0 on P, this determines (ug, Ax)
uniquely.

We denote by T the torus RY/Z~. Then any A € Z" defines a character €2/
of T: For g € T and a representative (g1, ... ,gn) of g in RY, we have

N
2™ (g) = exp(2in Z AkGk)-

k=1

For a basis o of F (that is, (ux)r¢. is a basis of V*), we denote by G(o) the image
in T = RY/ZN of the subgroup

{(g1,---,9n) ERN | g =0Vj €0 and ngukeM*}.
ko

Then G(o) is a finite subgroup of T' of order
p(o) = vol lug| kg, = 1/V01|u,’;70|k§g(7
where (uj ,)rgo is the dual basis to (uk)irgo-

Theorem. Let P = P()\) be an n-dimensional rational convex polyhedron in V,

with inward pointing normal vectors uy, ... ,un, and let v be a chamber such that
X €7. Then we have for any u € C(uy,... ,un)’:
—(u,55(N)) DYZD
(431) Y eti= Y e e - (9) -
vePAM vz MO el igo (1 — e7more i)

and moreover

(4.3.2)
(50 () 24w
Yo=Y : (o) 2 1e 2i7£qgk) (wui o))’
vEPONM cE€B(F,y) H g€G(o) HW"( e ’ )

Both formulae are proved in the same way as (3.4.1) and (3.4.2). But they
are not direct consequences of (3.4.1) and (3.4.2), because the latter apply to the
intersection PNZY where P C V is embedded in RY by v — ({ug,v),..., (un,v)).
Then it may happen that M is strictly contained in V N ZY.

Assume now that P is a lattice polyhedron, that is, all vertices of P are in the
lattice M. Then we obtain using 3.2:

T e = Y e (O, P, )
veEPNM s

(sum over all vertices of P). This formula is due to A. Barvinok, see [2], §4.

4.4. Euler-MacLaurin formula for rational convex polytopes. Let V be a
real vector space of dimension n, endowed with a lattice M. Let P C V be a
rational convex polytope, i.e., the convex hull of finitely many points of Mg. We
assume that the interior P° is not empty.
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For any polynomial function ¢ : V' — C, we set

ir(p) =Y @) andipo(p):i= > ¢(v).
vePNM vePONM
We express i p(p) and ipo(p) in terms of the integral of ¢ on P and of the variation
of this integral when P is deformed by independent parallel motions of its facets.
We denote by F = {F1,..., Fx} the set of facets of P, with equations (ug,v) +
Ax = 0 normalized as in 4.3. For z = (z1,... ,2x) € RY, we denote by P(z) the
convex polytope in V' defined by the inequalities (ug,v) + 2 > 0 for 1 < k < N.
In particular, we have P = P(X) where A = (A1,...,An). We set:

Ip(g)(z) = /P el

where the Lebesgue measure dv on V' is normalized so that V/M has volume 1.
For each basis o of F, we have a finite subgroup G(o) of the torus 7' = RV /ZV,
see 4.3. For any chamber 7, we denote by G(y) the union of all G(¢) for o € B(F, 7).
Finally, we set for g € T
N
Todd(g,0/0x) := H

k=1

1— e—2i7rgke—8/8wk :

Then, arguing as in 3.5, we obtain the following

Theorem. Let P = P(\) be an n-dimensional rational convez polytope in V. Let
@ : V. — C be a polynomial function; let v be a chamber such that \ € 7.
(i) The function x € v — Ip(p)(x) extends to a polynomial function Ip.(p) on
RV,
(i) For all g € T such that g ¢ G(v), we have
Todd#(g,0/0z)Ip(p) =0.

(iii) We have
ir(p) = Y *™(g)(Toddr(g,0/0)Ip()(x))|s=x
9€G(v)
and moreover
ipo(p) = Y ¥™g)(Toddr(—g,—0/02)Ip~(#)(x))]a=x-
9€G(v)

Consider now the case where P is a lattice polytope, i.e., all vertices of P are
in the lattice M. By 4.1, these vertices are the points so(A) = — > 44, Akuj, , for

o € B(F,7). Then, by the definition of G(c), we have e?™(g) = 1 for all g € G(0).
So our Euler-MacLaurin formula simplifies as follows.

Corollary. Let P = P(\) be a convex lattice polytope in V', let ¢ be a polynomial
function on V', and let v be a chamber such that A € 5. Then

ir(e) =Y (Toddr(g,0/0x)Ip(¢)(x))|z=x
9€G(7)
and moreover

ipo(p) = Y (Todds(—g,—0/02)Ip~(#)(x))]a=x.
9€G(v)



(1]

VECTOR PARTITION FUNCTIONS 833

REFERENCES

M. F. Atiyah, Elliptic operators and compact groups, Springer-Verlag, New York, 1974. MR
58:2910

A. I. Barvinok, Computing the volume, counting integral points, and exponential sums, Dis-
crete Comput. Geom. 10 (1993), 123-141. MR 94d:52005

M. Brion and M. Vergne, Lattice points in simple polytopes, J. Amer. Math. Soc. 10 (1997),
371-392. CMP 97:06

M. Brion and M. Vergne, An equivariant Riemann-Roch theorem for complete, simplicial
toric varieties, J. reine angew. Math. 482 (1997), 67-92. CMP 97:06

M. Brion et M. Vergne, Une formule d’Euler-MacLaurin pour les fonctions de partition, C.
R. Acad. Sci. Paris (Série I) 322 (1996), 217-220. MR 97a:11164

M. Brion et M. Vergne, Une formule d’FEuler-MacLaurin pour les polytopes convexes ra-
tionnels, C. R. Acad. Sci. Paris (Série I) 322 (1996), 317-320. MR 97a:11165

S. E. Cappell and J. L. Shaneson, Genera of algebraic varieties and counting of lattice points,
Bull. Amer. Math. Soc. 30 (1994), 62-69. MR 94f:14018

S. E. Cappell and J. L. Shaneson, Fuler-MacLaurin expansions for lattices above dimension
one, C. R. Acad. Sci. Paris (Série I) 321 (1995), 835-890. MR 96i:52012

R. Diaz and S. Robins, The Ehrhart polynomial of a lattice n-simplex, Electronic Research
Announcements of the AMS 2 (1996). CMP 96:17

[10] E. Ehrhart, Polyédres et réseauz, J. reine angew. Math. 226 (1967), 1-29. MR 35:4184
[11] V. Ginzburg, V. Guillemin and Y. Karshon, Cobordism techniques in symplectic geometry,

The Carus Mathematical Monographs,, Mathematical Association of America, to appear.

[12] V. Guillemin, Riemann-Roch for toric orbifolds, preprint (1995).
[13] M-N. Ishida, Polyhedral Laurent series and Brion’s equalities, International J. Math. 1 (1990),

251-265. MR 91m:14081

[14] L. C. Jeffrey and F. C. Kirwan, Localization for non-abelian group actions, Topology 34

(1995), 291-327. CMP 95:08

[15] J-M. Kantor and A. Khovanskii, Une application du théoréme de Riemann-Roch combinatoire

au polynéme d’Ehrhart des polytopes entiers de R?, C. R. Acad. Sci. Paris (Série I) 317
(1993), 501-507. MR 94k:52018

[16] T. Kawasaki, The Riemann-Roch theorem for complex V-manifolds, Osaka J. Math. 16

(1979), 151-159. MR 80f:58042

[17] A. Khovanskii and A. Pukhlikov, A Riemann-Roch theorem for integrals and sums of quasi-

polynomials over virtual polytopes, St-Petersburg Math. J. 4 (1993), 789-812. MR 94c:14044

[18] P. McMullen, Transforms, diagrams and representations, Proc. Geometry Symposium, Siegen

1978, Birkhauser, Basel, 1979, pp. 92-130. MR 81i:52007

[19] R. Morelli, A Theory of Polyhedra, Adv. Math. 9 (1993), 1-73. MR 94f:52023
[20] B. Sturmfels, On wvector partition functions, J. Combinatorial Theory, Series A 72 (1995),

302-309. MR 97b:52014

[21] M. Vergne, Fquivariant index formulas for orbifolds, Duke Math. J. 82 (1996), 637-652.

CMP 96:12

ABSTRACT. We obtain residue formulae for certain functions of several vari-
ables. As an application, we obtain closed formulae for vector partition func-
tions and for their continuous analogs. They imply an Euler-MacLaurin sum-
mation formula for vector partition functions, and for rational convex poly-
topes as well: we express the sum of values of a polynomial function at all
lattice points of a rational convex polytope in terms of the variation of the
integral of the function over the deformed polytope.

INSTITUT FOURIER, B.P. 74, 38402 SAINT-MARTIN D’HERES CEDEX, FRANCE
E-mail address: mbrion@fourier.ujf-grenoble.fr

EcoLE NORMALE SUPERIEURE, 45 RUE D’ULM, 75005 PARIS CEDEX 05, FRANCE
E-mail address: vergne@dmi.ens.fr



