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RESIDUE FORMULAE, VECTOR PARTITION FUNCTIONS

AND LATTICE POINTS IN RATIONAL POLYTOPES

MICHEL BRION AND MICHÈLE VERGNE

0. Introduction and statement of the main results

The main objects of the present article are vector partition functions, defined as
follows. Let E be a real vector space of finite dimension d, endowed with a lattice
Λ. Let ∆ = (α1, . . . , αN ) be a sequence of elements of Λ, all lying in an open
half-space. Then, for λ ∈ Λ, the equation

N∑
k=1

xkαk = λ

has a finite number of solutions in non-negative integers x1, . . . , xN . Denote this
number by P∆(λ), and call P∆ the vector partition function associated to ∆.

We begin by discussing our main results (announced in [5] and [6]), their motiva-
tions, and their relation to earlier work, in an informal way; precise statements will
be given at the end of this introduction. Clearly, the function P∆ vanishes outside
the closed convex cone C(∆) ⊂ E generated by ∆. We define a subdivision of this
cone into closed polyhedral cones. The interiors of maximal cones of this subdivi-
sion are called chambers. We obtain a closed formula for restriction of P∆ to the
closure of each chamber, which displays the periodic polynomial behaviour of this
function and its remarkable “continuity” properties under changing of chamber;
this refines the result of [20]. More generally, we determine the function

P∆(y, λ) =
∑

x1α1+···+xNαN=λ

e−x1y1−···−xNyN

on the closure of each chamber, where y = (y1, . . . , yN ) is in RN , and where
x1, . . . , xN in the summation are non-negative integers.

Set

V := {(x1, . . . , xN ) ∈ RN |
N∑
k=1

xkαk = 0}

and denote by n the dimension of V . For h ∈ E, set

V (h) := {(x1, . . . , xN ) ∈ RN |
N∑
k=1

xkαk = h} and P∆(h) := V (h) ∩ (R≥0)
N .
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Then each V (h) is an affine space with direction V , and P∆(h) is a convex poly-
tope in V (h). Clearly, P∆(h) is not empty if and only if h ∈ C(∆). The family
(P∆(h))h∈C(∆) is called the family of partition polytopes defined by ∆. When h is
in a chamber, the polytope P∆(h) is n-dimensional and simple, that is, there are
only n edges through each vertex. However, when h moves to the boundary of a
chamber, some vertices tend to a single vertex, and P∆(h) degenerates.

Observe that

P∆(y, λ) =
∑

(x1,... ,xN )∈P∆(λ)∩ZN
e−x1y1−···−xNyN .

We define a continuous version of the function λ ∈ C(∆)∩Λ → P∆(y, λ) as follows.
We normalize the Lebesgue measure on E so that the volume of E/Λ is 1, and
we consider the standard Lebesgue measure on RN . These choices determine a
Lebesgue measure ds on each V (h). For any linear form y on RN , we set

V∆(y, h) :=

∫
P∆(h)

e−〈y,s〉ds.

In particular, V∆(0, h) := V∆(h) is the volume of P∆(h).
We obtain closed formulae for P∆(y, λ) and V∆(y, h) for λ and h in the closure

of a chamber. We deduce an expression of P∆(y, λ) in terms of values at λ of the
function h 7→ V∆(y, h) and of its partial derivatives, as an Euler-MacLaurin formula
for vector partition functions. Such a formula has also been obtained by Guillemin,
see [12].

Consider now a rational convex polytope P in an n-dimensional real vector space
V endowed with a lattice. Then P can be identified in a canonical way with a
polytope P∆(λ), so that the family (P∆(h)) is obtained from P by independent
parallel motions of its facets; see 4.1 below. So our Euler-MacLaurin formula for
vector partition functions translates into a universal formula for the number of
lattice points (or more generally, for the sum of values of a polynomial function
at all lattice points) in a family of rational polytopes with parallel faces. Such
a formula was first obtained by Khovanskii and Pukhlikov [17] for certain simple
lattice polytopes, and then extended to other classes of lattice polytopes in [15],
[7], [3], [11] and [8]. Our formula will be stated at the end of this introduction; it
can be seen as a generalization of a result announced in [8].

Back to partition functions, let z be a linear form on E which takes positive
values on α1, . . . , αN . Consider the generating function∑

λ∈C(∆)∩Λ

P∆(y, λ)e−〈z,λ〉 =

N∏
k=1

1

1− e−yk−〈z,αk〉
.

We obtain a residue formula for this function of z, i.e., we decompose it as a sum of
“simple terms”, each of which is expressed in a set of d = dim(E) linearly indepen-
dent variables 〈z, αj〉, multiplied by a residue which depends only on y1, . . . , yN .
So it is easy to expand each simple term into a power series in z; this leads to our
formula for P∆.

Similarly, we compute V∆(y, h) by considering∫
C(∆)

V∆(y, h)e−〈z,h〉dh =
N∏
k=1

1

yk + 〈z, αk〉
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and decomposing the latter into “simple fractions” in z, multiplied by the corre-
sponding residue in y.

We deduce both residue formulae from a geometric result: a decomposition of
the standard cone (R≥0)

N into “simple cones” for which the intersection with each
V (h) is easily described. This decomposition of the “generating cone” (R≥0)

N

leads to a simultaneous decomposition for the family of partition polytopes P∆(h),
regardless of the way they degenerate when h moves to the boundary of a chamber.

Our detour via convex geometry could be avoided, but it provides a conceptual
explanation for some rather complicated formulae. In fact, we have tried to give
an elementary and self-contained exposition of our results in their various aspects:
convex geometric, algebraic (formal series and their sums) and analytic (Fourier
and Laplace transforms), at the risk of being heavy and repetitive.

Although our methods are very direct, the Atiyah-Bott fixed point formula,
together with the Kawasaki-Riemann-Roch formula for the index, are underlying
our explicit formulae. In the case where all vertices of P∆(λ) are integral, there is
an n-dimensional projective algebraic variety M(λ) with an effective action of an
n-dimensional algebraic torus, such that the polytope P∆(λ) is the image of M(λ)
under the moment map, the vertices of P∆(λ) being the images of fixed points.
Furthermore, P∆(y, λ) is the character of the space of holomorphic sections of the
line bundle over M(λ), and the higher cohomology groups vanish. So P∆(y, λ) is
the equivariant index, and, at least for regular λ, our formula is a special case of
[1], [16], [21]. This approach to the problem of counting lattice points in convex
polytopes via the geometry of toric varieties is pursued in [7], [11], [12], [4] and [8].

However, we feel it is worthwhile, in the spirit of Khovanskii and Pukhlikov [17],
to present an elementary proof in the context of polytopes. The use of generating
functions simplifies further our approach in [3] where the case of simple polytopes
with integral vertices was treated, based on the Euler relation for the number of
faces of polytopes. The Riemann-Roch formula for toric varieties boils down to
counting homogeneous monomials for various gradings on the algebra of polyno-
mial functions in N variables. This is what we achieve here in a direct way, and
simultaneously for all gradings, by decomposing the generating function of P∆(y, λ)
into simple fractions. This approach is inspired by Jeffrey and Kirwan’s proof of
the Guillemin-Sternberg conjecture [14], based on iterated residues.

To state our main results in a precise way, we consider the vector space W := RN

with standard basis (w1, . . . , wN ), and the standard cone C in W generated by
w1, . . . , wN . For any subset A of W , we denote by [A] its characteristic function,
i.e., the function with value 1 on A and 0 outside A.

Define a surjective linear map p : W → E by p(wk) = αk for 1 ≤ k ≤ N ; then
the kernel of p is V . A subset σ of {1, . . . , N} is called a basis of ∆ if the sequence
(αj)j∈σ is a basis of E. The set of bases of ∆ is denoted by B(∆). For σ ∈ B(∆),
we have a decomposition W = V ⊕ (

⊕
j∈σ Rwj) and we denote by ρσ : W → V

the corresponding projection. Then ρσ(C) is a closed convex cone, generated by
the basis (ρσ(wk))k/∈σ of V . Moreover, we have for any k /∈ σ: ρσ(wk) = wk −∑

j∈σ cjkwj where the real numbers cjk are defined by αk =
∑

j∈σ cjkαj .

Choose a point x ∈ C such that p(x) does not lie on any hyperplane generated
by some of the αk; then x is called regular (in the case where dim(E) = 1, any
non-zero x is regular). For any basis σ, we can write p(x) =

∑
j∈σ xσ,jαj with non-

zero coordinates xσ,j . Let εσ,j be the sign of xσ,j , and let |σ−(x)| be the number
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of j ∈ σ such that εσ,j = −1. Finally, let Cσ
x be the closed convex cone generated

by the εσ,jwj (j ∈ σ).

Theorem (decomposition into simple cones). The function

[C]−
∑

σ∈B(∆)

(−1)|σ−(x)|[Cσ
x + ρσ(C)]

is a linear combination of characteristic functions of closed convex cones which
contain lines.

This result is proved in 1.2. It implies an exact formula for [C] as a signed sum
of characteristic functions of locally closed cones, see 1.4. By integrating over C the
exponential of a complex linear form on W , our decomposition implies the following
formula.

Corollary (decomposition into simple fractions). For a generic complex linear
form z on E, and for generic complex numbers y1, . . . , yN , we have

N∏
k=1

1

yk + 〈z, αk〉 =
∑

σ∈B(∆)

(
∏
k∈σ

1

yk + 〈z, αk〉 )(
∏
k/∈σ

1

yk −
∑

j∈σ cjkyj
).

This can be considered as a residue formula for the rational function z 7→∏N
k=1 (yk + 〈z, αk〉)−1. A direct proof of this formula is given in section 1.1, by

a simple induction on N .
Actually, the assumption that α1, . . . , αN are contained in a lattice in E is not

needed for either of the two results above; but it will play a role in the next one,

a residue formula for the periodic function
∏N

k=1 (1 − eyk+〈z,αk〉)−1. Indeed, this
assumption implies that the numbers cjk are rational, so that we can choose a
common denominator q. For σ ∈ B(∆), denote by G(σ, q) the finite abelian group

(Z/qZ)σ = {g = (gj)j∈σ | gj ∈ Z/qZ}
endowed with characters g → e2iπq

−1gj (j ∈ σ) and g → e2iπ
∑
j∈σ cjkgj (k /∈ σ).

Theorem (decomposition into simple fractions, the periodic case). Let x ∈ C be
regular. For any basis σ of ∆, write p(x) =

∑
j∈σ xσ,jαj and set εσ,j := sgn(xσ,j).

Then, for a generic complex linear form z on E, and for generic complex numbers
y1, . . . , yN , the product

N∏
k=1

1

1− eyk+〈z,αk〉

is equal to∑
σ∈B(∆)

∑
g∈G(σ,q)

∏
j∈σ

q−1εσ,j

1− eq
−1εσ,j(2iπgj+yj+〈z,αj〉)

∏
k/∈σ

1

1− eyk−
∑
j∈σ cjk(yj+2iπgj)

.

This formula is deduced in 2.3 from the decomposition of C into simple cones,
by summing the series

∑
w∈C∩ZN ew and similar series for the cones Cσ

x + ρσ(C).
It may also be obtained directly by induction on N .

To apply these results to partition functions, we need the following notation.
We consider the subdivision of C(∆) given by the intersections of the cones C(σ)
(generated by the αj , j ∈ σ), for σ ∈ B(∆). The interiors of the maximal cones of
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this subdivision are called chambers. For such a chamber γ, we denote by B(∆, γ)
the set of bases σ such that γ is contained in C(σ).

Finally, for any basis σ, let vσ : E → W be the linear map such that vσ(αj) = wj

for all j ∈ σ, and let µ(σ) be the volume of the parallelepiped {∑j∈σ tjαj | 0 ≤
tj ≤ 1}. Then µ(σ) is the index of the subgroup

⊕
j∈σ Zαj in Λ. Let G(σ) be the

quotient (
⊕

j∈σ Zαj)∗/Λ∗ where the star denotes the dual lattice. Then G(σ) is a

finite abelian group of order µ(σ), endowed with characters e2iπλ for all λ ∈ Λ.

Theorem (closed formulae). Let γ be a chamber.
(i) For all h ∈ γ, the function

[P∆(h)]−
∑

σ∈B(∆,γ)

[vσ(h) + ρσ(C)]

is a linear combination of characteristic functions of convex polyhedra in V (h),
which contain lines.

(ii) For all h ∈ γ, and for a generic linear form y on W , we have

V∆(y, h) =
∑

σ∈B(∆,γ)

e−〈y,vσ(h)〉

µ(σ)
∏

k/∈σ(yk −
∑

j∈σ cjkyj)
.

In particular, we have

vol(P∆(h)) =
∑

σ∈B(∆,γ)

〈y, vσ(h)〉n
n!µ(σ)

∏
k/∈σ(−yk +

∑
j∈σ cjkyj)

so that the volume of P∆(h) is a polynomial function of h on γ.
(iii) For all λ ∈ γ ∩ Λ, and for a generic linear form y on W , we have

P∆(y, λ) =
∑

σ∈B(∆,γ)

e−〈y,vσ(λ)〉

µ(σ)

∑
g∈G(σ)

e2iπλ(g)
∏
k/∈σ

(1− e−2iπαk(g)e−yk+
∑
j∈σ cjkyj ).

These formulae are proved in 3.2, 3.3 and 3.4 in a more general setting. They im-
ply that the function h ∈ γ 7→ V∆(y, h) extends to an analytic function V∆,γ(y, h).
Moreover, we can compute P∆(y, λ) by applying to V∆,γ(y, h) a series of differential
operators, defined as follows.

For a complex number a, define Todd(a, z) as the expansion of

z

1− ae−z

into a power series in z. For ϕ a smooth function on E, and for u ∈ E, denote
by ∂(u)ϕ the derivative of ϕ in the direction u. Then Todd(a, ∂(u)) is a differen-
tial operator of infinite order, with constant coefficients. Moreover, for any com-
plex number t, we have a series of differential operators with constant coefficients
Todd(a, ∂(u) + t).

For g ∈ E∗/Λ∗ and y = (y1, . . . , yN), we define the Todd operator (a series of
differential operators with constant coefficients) by

Todd∆(g, ∂ + y) :=

N∏
k=1

Todd(e−2iπαk(g), ∂(αk) + yk).

Now we can state the following result, proved in 3.5.
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Theorem (Euler-MacLaurin formula for partition functions). Let γ be a chamber.
(i) The series

Todd∆(g, ∂ + y)V∆,γ(y, h)

converges for all g ∈ E∗/Λ∗, and for small y ∈ W ∗. Moreover, the sum of this
series vanishes whenever g is not in the finite set

G(γ) :=
⋃

σ∈B(∆,γ)

G(σ).

(ii) For any λ ∈ γ ∩ Λ, we have for small y ∈ W ∗:

P∆(y, λ) =
∑

g∈G(γ)

e2iπλ(g)(Todd∆(g, ∂ + y)V∆,γ(y, h))|h=λ.

Setting y = 0, we see that

P∆(λ) =
∑

g∈G(γ)

e2iπλ(g) lim
h→λ,h∈γ

Todd∆(g, ∂) vol(P∆(h)).

In other words, the vector partition function is obtained by applying a canonical
differential operator with periodic coefficients to the volume function. This result
is new even for the classical partition function, that is, for the number of lattice
points in rational simplices (formulae for the number of lattice points in lattice
simplices are given in [7] and [9]).

By studying in sections 3.6 and 3.7 the partial derivatives of the function V∆,γ,
we also express the sum of values of any polynomial function at all lattice points
of the polytope P∆(λ) in terms of integrals, over the faces of this polytope, of the
function and of its partial derivatives. In particular, the vector partition function
is a linear combination of volumes of faces, with periodic coefficients. This refines
results of [20] and [8].

Consider now a rational convex polytope P in Rn, that is, the convex hull of
finitely many points with rational coordinates. Assume that the interior P 0 is not
empty. We can define P by a minimal set of inequalities

P = {v ∈ Rn | 〈uk, v〉+ λk ≥ 0, 1 ≤ k ≤ N}
where (uk, λk) ∈ Zn × Z are primitive. Let F be the set of vectors uk, 1 ≤ k ≤ N .
Then F depends only on the directions of the faces of codimension one of P .

For x ∈ RN , we denote

P (x) = {v ∈ Rn | 〈uk, v〉+ xk ≥ 0, 1 ≤ k ≤ N}
and by C(F) the closed convex cone in RN such that x ∈ C(F) if and only if P (x)
is not empty. Then λ ∈ C(F) as P = P (λ). In 4.1, we describe open chambers
γ ⊂ C(F) such that the closures γ cover C(F). The choice of γ such that λ ∈ γ
amounts to the choice of an approximation of P by the family of simple polytopes
(with prescribed directions of faces) P (x), x ∈ γ. In particular, if P is simple, then
λ is in a unique chamber γ.

Let ϕ be a polynomial function on Rn. Then the function

x 7→ IP (ϕ)(x) :=

∫
P (x)

ϕ(v)dv

is piecewise polynomial on C(F). More precisely, for each chamber γ, the function
x ∈ γ 7→ IP (ϕ)(x) extends to a polynomial function IP,γ(ϕ) on RN , see 4.2.
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For g ∈ RN , we write (λ, g) for
∑N

k=1 λkgk. We set

Todd(g, ∂/∂x) :=

N∏
k=1

∂/∂xk
1− e−2iπgke−∂/∂xk

.

This defines a differential operator of infinite order with constant coefficients: the
Todd operator associated to g. It acts for example in the space of polynomial
functions of x = (x1, . . . , xN ).

Let G(F) be the subset of [0, 1[N consisting of elements (gk) which satisfy the
following conditions:

1) The vectors uk ∈ F such that gk 6= 0 are linearly independent.

2)
∑N

k=1 gkuk is in Zn.
Then G(F) is a finite set of rational points in RN .

Theorem (Euler-MacLaurin formula for rational polytopes). Let P = P (λ) be an
n-dimensional rational convex polytope in Rn. Let ϕ : Rn → C be a polynomial
function. Let γ be a chamber such that λ ∈ γ. Then∑

v∈P∩Zn
ϕ(v) =

∑
g∈C(F)

e2iπ(λ,g) Todd(g, ∂/∂x)IP,γ(ϕ)(x)|x=λ.

Actually, we could restrict the sum over C(F) to a smaller subset which depends
on γ, see 4.4. In particular, for a simple polytope P with integral vertices, the
result above specializes to the main result of [3] (proved there by another method).
If moreover the tangent cone at each vertex of P is generated by a basis of Zn, we
recover the Euler-MacLaurin formula of Khovanskii and Pukhlikov, see [17].

We thank the referee for his careful reading of our paper and for his comments
and suggestions. The present version owes much to his recommendations, especially
in sections 3.6 and 3.7.

1. Decompositions into simple cones

1.1. A decomposition into simple fractions. In this section, E is a finite-
dimensional vector space over an infinite field K. Let W be another finite-
dimensional K-vector space endowed with a surjective linear map p : W → E.
Let (w1, . . . , wN ) be a basis of W , and set αk = p(wk) for 1 ≤ k ≤ N . Then
∆ = (α1, . . . , αN ) is a finite sequence of elements of E, which generates this vector
space.

We denote by B(∆) the set of bases of ∆, that is, of subsets σ of {1, 2, . . . , N}
such that (αk)k∈σ form a basis of E. We denote by Kσ ⊂ W the vector space
spanned by the wk (k ∈ σ), and by V the kernel of p. Then V is the space of linear
relations between elements of ∆. Moreover, we have a decomposition W = Kσ⊕V .
Let us denote by ρσ the projection from W to V determined by this decomposition.

We denote by Q(W ) the field of fractions of the symmetric algebra of W . Then
Q(W ) is the field of rational functions on W ∗.

Proposition. In Q(W ), we have the equality:

N∏
k=1

1

wk
=
∑

σ∈B(∆)

(
∏
k∈σ

1

wk
)(
∏
k/∈σ

1

ρσ(wk)
).(1.1)
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Proof. The proof is by induction on the dimension of V . If dimV = 0, then there

is nothing to be proved. If dimV ≥ 1, let r =
∑N

j=1 rjwj be a non-zero element of

V . Then, multiplying r by r−1
∏N

k=1 w
−1
k , we obtain

N∏
k=1

1

wk
=
∑
j,rj 6=0

rj
r

(
∏
k 6=j

1

wk
).

Moreover, if rj 6= 0, then the map p restricts to a surjection

pj : W ĵ =
⊕
k 6=j

Kwk → E

and hence the kernel of pj is a hyperplane in V . Therefore, we can apply the

induction hypothesis to W ĵ , and we obtain, for each fixed j,∏
k 6=j

1

wk
=
∑
σ,j /∈σ

(
∏
k∈σ

1

wk
)(
∏

k/∈σ,k 6=j

1

ρσ(wk)
).

It follows that
N∏
k=1

1

wk
=
∑
σ

(
∏
k∈σ

1

wk
)fσ

where we set

fσ =
∑
j /∈σ

rj
r

(
∏

k/∈σ∪{j}

1

ρσ(wk)
).

Now, because r =
∑N

k=1 rjwj , and ρσ(wj) = 0 for all j ∈ σ, we have

r =
∑
j /∈σ

rjρσ(wj).

Multiplying this equation by r−1
∏

k/∈σ ρσ(wk)
−1, we obtain

fσ =
∏
k/∈σ

1

ρσ(wk)
.

Let us rephrase the proposition in more concrete terms, by interpreting elements
of Q(W ) as rational functions on W ∗. We embed E∗ into W ∗ via p∗; then, for
generic y ∈ W ∗, a function ϕ in Q(W ) gives rise to a rational function z 7→
ϕ(y+p∗z) on E∗. If moreover ϕ is in the subring Q(V ), then ϕ is constant on each
coset y + p∗E∗ in W ∗. So (1.1) translates into an identity of rational functions on
E∗ which depend on the parameter y. To formulate it, we introduce the following
notation.

For σ ∈ B(∆), there exist uniquely defined coefficients cjk ∈ K (j ∈ σ, k /∈ σ)
such that αk =

∑
j∈σ cjkαj . Then ρσ(wk) = wk −

∑
j∈σ cjkwj .

Restricting (1.1) to y + p∗E∗ for generic y ∈W ∗, we obtain the following

Corollary. We have

N∏
k=1

1

yk + 〈z, αk〉 =
∑

σ∈B(∆)

(
∏
k∈σ

1

yk + 〈z, αk〉 )(
∏
k/∈σ

1

yk −
∑

j∈σ cjkyj
)(1.1)′

for all z ∈ E∗ and y1, . . . , yN ∈ K such that the formula makes sense.
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1.2. A decomposition into simple cones. Let W be a vector space of finite
dimension N over a subfield K of the field of real numbers. A polyhedral cone in W
is a closed convex cone C ⊂W (with vertex at 0) which is generated by finitely many
vectors x1, . . . , xr; we set C = C(x1, . . . , xr). We denote by [C] = [x1, . . . , xr] the
characteristic function of C, i.e., the function on W with value 1 on C and 0
outside C. We denote by C(W ) the additive group of integral-valued functions on
W , generated by all characteristic functions of polyhedral cones.

For any closed convex cone C, we denote by C0 the relative interior of C, i.e.,
the interior of C in the affine space generated by C. Observe that C(W ) con-
tains the characteristic functions of relative interiors of polyhedral cones, and more
generally, of locally closed polyhedral cones. The subgroup of C(W ) generated
by characteristic functions of polyhedral cones which contain lines is denoted by
LC(W ). If W = W1 ⊕W2 and Cj is a polyhedral cone in Wj for j = 1, 2, then we
set [C1] ∗ [C2] = [C1 +C2]. We refer to [17] and to [19] for more properties of C(W )
(which will not be used here).

Recall that a cone generated by linearly independent vectors is called simplicial.
Let C be a cone generated by a basis (w1, . . . , wN ); then C is simplicial of dimension
N . Let p : W → E be a surjective linear map. We obtain an analog of our
decomposition into simple fractions (proposition 1.1) for the image of the function
[C] in the quotient C(W )/LC(W ). To state it, we introduce the following notation.

For C = C(w1, . . . , wN ) as before, the edges of C are the half-lines generated by
w1, . . . , wN . The corresponding lines are called the axes of C. If C ′ is a simplicial
cone having the same axes as C, then there exist well-defined signs ε1, . . . , εN such

that C ′ = C(ε1w1, . . . , εNwN ). In this case, we set ε(C,C′) =
∏N

k=1 εk.
For 1 ≤ k ≤ N , we set αk = p(wk). Any basis σ of ∆ defines a simplicial cone

Cσ := C ∩Kσ = C(wj)j∈σ

in Kσ, together with a simplicial cone

ρσ(C) = C(ρσ(wk))k/∈σ

in V . A point x ∈ W is called regular if p(x) is not contained in any hyperplane of E
generated by some of the αk. For x regular, we denote by Cσ

x the unique cone having
the same axes as Cσ, and such that p(Cσ

x ) meets p(x). If p(x) =
∑

j∈σ xσ,jαj , then
no xσ,j is zero because x is regular, and moreover

Cσ
x = C(sgn(xσ,j)wj)j∈σ.

Theorem. For any cone C generated by a basis (w1, . . . , wN ) of W , and for any
regular element x in C, we have

[C] =
∑

σ∈B(∆)

ε(Cσ, Cσ
x )[Cσ

x ] ∗ [ρσ(C)](1.2)

modulo LC(W ).

1.3. Proof of theorem 1.2. The proof follows the same lines as the proof of
proposition 1.1; we argue by induction over the dimension of V . If this dimension
is zero, then ∆ consists of linearly independent elements. In this case, there is a
unique basis σ = (1, . . . , N) and C = Cσ

x so there is nothing to be proved.
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If dim(V ) = 1, then there is a non-trivial relation

r =

N∑
j=1

rjwj .

We may assume that: r1, . . . , rl > 0, rl+1 = · · · = rm = 0, and rm+1, . . . , rN < 0.
Replacing the generating vectors wj by positive multiples, we may assume that
C = C(w1, . . . , wN ) and that

r =

l∑
j=1

wj −
N∑

j=m+1

wj .

The bases of ∆ are

σ = σj := (1, . . . , j − 1, j + 1, . . . , N)

where j ≤ l or j ≥ m + 1. Let x =
∑N

k=1 xkwk with non-negative coefficients
x1, . . . , xN . If j ≤ l, the decomposition of p(x) in the basis σj is

p(x) =

l∑
k=1,k 6=j

(xk − xj)αk +

m∑
k=l+1

xkαk +

N∑
k=m+1

(xk + xj)αk.

If j ≥ m + 1, the decomposition of p(x) in the basis σj is

p(x) =

l∑
k=1

(xk + xj)αk +

m∑
k=l+1

xkαk +

N∑
k=m+1,k 6=j

(xk − xj)αk.

So x is regular if and only if the numbers xk are pairwise distinct for 1 ≤ k ≤ l
and for m + 1 ≤ k ≤ N as well, and xk > 0 for l + 1 ≤ k ≤ m. Therefore, we may
assume that

x1 < · · · < xl, xm+1 > · · · > xN .

Moreover, for l < k ≤ m, the k-th coordinate of p(x) on any basis of ∆ is positive.
We have ρσ(wj) = r if 1 ≤ j ≤ l, and ρσ(wj) = −r if m + 1 ≤ j ≤ N . So the

identity to be proved is

[w1, . . . , wN ] =

l∑
j=1

(−1)j−1[−w1, . . . ,−wj−1, wj+1, . . . , wN , r]

+
N∑

j=m+1

(−1)N−j[w1, . . . , wj−1,−wj+1, . . . ,−wN ,−r](1.3.1)

mod LC(W ). To check it, we may assume that l = m.

Set uk = wk for 1 ≤ k ≤ l, and uk = −wk for l+1 ≤ k ≤ N , so that r =
∑N

k=1 uk.
Set moreover

uN+1 := −r = −
N∑
k=1

uk.

Then the space W is subdivided into the simplicial cones

C(u1, . . . , uj−1, uj+1, . . . , uN+1)
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for 1 ≤ j ≤ N + 1. More precisely, W is the disjoint union of locally closed cones

C0 := C(u1, . . . , ul) + C(ul+1, . . . , uN)0,

Cj := C(u1, . . . , uj−1)
0 + C(uj+1, . . . , ul) + C(ul+1, . . . , uN+1)

0 (1 ≤ j ≤ l)

and

Cj := C(u1, . . . , ul) + C(ul+1, . . . , uj−1)
0 + C(uj+1, . . . , uN+1) (l + 1 ≤ j ≤ N)

(this can be checked by starting with Cl+1 and adding successively Cl+2, . . . , CN ,
C0, C1, . . . , Cl). It follows that

N∑
i=0

[Ci] ∈ LC(W ).(1.3.2)

Observe furthermore that, for any simplicial cone C, we have

[C0]− (−1)dim(C)[−C] ∈ LC(W ).(1.3.3)

Indeed, it is enough to check this when dim(W ) = 1; then W is the disjoint union
of C0 and −C. So we can rewrite (1.3.2) as

(−1)N−l[w1, . . . , wN ] +
l∑

j=1

(−1)j+N−l[−w1, . . . ,−wj−1, wj+1, . . . , wN , r]

+

N∑
j=l+1

(−1)j−l−1[w1, . . . , wj−1,−wj+1, . . . ,−wN ,−r] ∈ LC(W ).

This implies (1.3.1).
Finally, we consider the case where dim(V ) is at least 2. We use the notation

Cσ
x/V for Cσ

x , to emphasize the dependence on V . Let r =
∑N

j=1 rjwj be a non-zero

element of V . Denote by pr : W → W/Kr the quotient map. We apply the first
step of the proof to the data C, x and pr. Recall that each basis is the complement

in {1, . . . , N} of some index j such that rj 6= 0. Denote by πj : W → W ĵ =⊕
k 6=j Kwk the corresponding projection with kernel Kr. We set C ĵ = C ∩W ĵ (a

simplicial cone in W ĵ) and we denote by C ĵ
x/r the unique simplicial cone having

the same axes as C ĵ and containing πj(x). Then we have

[C] =
∑
j,rj 6=0

ε(C ĵ , C ĵ
x/r)[C

ĵ
x/r ] ∗ [sgn(rj)r]

modulo LC(W ). Because rj 6= 0, the map p restricts to a surjection pj : W ĵ → E.

So we can apply the induction hypothesis to the data C ĵ
x/r, πj(x) and pj. Observing

that p(x) = pjπj(x), we obtain, for each fixed j,

[C ĵ
x/r] =

∑
σ,j /∈σ

ε((C ĵ
x/r)

σ, Cσ
x/V )[Cσ

x/V ] ∗ [ρσ(C ĵ
x/r)]

modulo LC(W ĵ). It follows that

[C] =
∑
σ

[Cσ
x/V ] ∗ fσ
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modulo LC(W ), where we set

fσ :=
∑

j,j /∈σ,rj 6=0

ε(C ĵ , C ĵ
x/r)ε((C

ĵ
x/r)

σ, Cσ
x/V )[ρσ(C ĵ

x/r)] ∗ [sgn(rj)r]

(an element of C(V )). To end up the proof, we check that

fσ = ε(Cσ, Cσ
x/V )[ρσ(C)]

modulo LC(V ). For this, we apply the induction hypothesis to the simplicial cone
[ρσ(C)] in V , to the point ρσ(x) in this cone, and to the quotient map V → V/Kr.
Observe that

r =
∑
j /∈σ

rjρσ(wj).

So we obtain

[ρσ(C)] =
∑

j /∈σ,rj 6=0

ε(ρσ(C ĵ), ρσ(C ĵ
x/r))[ρσ(C ĵ

x/r)] ∗ [sgn(rj)r]

modulo LC(V ). It remains to see that for each fixed j and σ, with j /∈ σ,

ε(C ĵ , C ĵ
x/r)ε((C

ĵ
x/r)

σ, Cσ
x/V ) = ε(ρσ(C ĵ), ρσ(C ĵ

x/r))ε(C
σ , Cσ

x/V ).

Using the relation ε(C,C ′) = ε(C,C′′)ε(C ′′, C′) between simplicial cones having
the same axes, we reduce the proof to checking that

ε(C ĵ , C ĵ
x/r)ε((C

ĵ
x/r)

σ, Cσ) = ε(ρσ(C ĵ), ρσ(C ĵ
x/r)).

Writing x =
∑

k,k 6=j ykwk + ur, we have C ĵ
x/r = C(sgn(yk)wk)k 6=j . Therefore, we

have

ε(C ĵ , C ĵ
x/r) =

∏
k,k 6=j

sgn(yk)

and moreover

ε((C ĵ
x/r)

σ, Cσ) =
∏
k∈σ

sgn(yk).

Finally, because ρσ(x) =
∑

k/∈σ,k 6=j ykρσ(wk) + ur, we have

ε(ρσ(C ĵ), ρσ(C ĵ
x/r)) =

∏
k/∈σ,k 6=j

sgn(yk).

1.4. A decomposition into locally closed cones. Notation being as in 1.2,
we obtain decompositions of [C] and of [C0] into alternated sums of characteristic
functions of locally closed cones; both decompositions hold in C(W ).

Let x be a regular point of W . For σ ∈ B(∆), write p(x) =
∑

j∈σ xσ,jαj and

denote by σ+(x) (resp. σ−(x)) the set of j ∈ σ such that xσ,j > 0 (resp. < 0).
Then

Cσ
x = C(wj , j ∈ σ+(x)) ∗ C(−wj , j ∈ σ−(x))

and ε(Cσ, Cσ
x ) = (−1)|σ−(x)|. We define locally closed polyhedral cones C′σ

x and
C ′′σ
x by

C′σ
x := C(wj , j ∈ σ+(x)) ∗ C(wj , j ∈ σ−(x))0,
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C′′σ
x := C(wj , j ∈ σ+(x))0 ∗ C(wj , j ∈ σ−(x)).

Both cones C ′σ
x and C′′σ

x are contained in C.
A linear form y on W is called regular if y(wk) 6= 0 for 1 ≤ k ≤ N , and

y(ρσ(wk)) 6= 0 for all σ ∈ B(∆) and all k /∈ σ. Such a form exists as all vectors
ρσ(wk), k /∈ σ are non-zero. For regular y, we denote by σc+(y) (resp. σc−(y)) the
set of k such that 1 ≤ k ≤ N , k /∈ σ and y(ρσ(wk)) > 0 (resp. < 0). We set

ρσ(C)′y := C(ρσ(wk), k ∈ σc+(y)) ∗ C(−ρσ(wk), k ∈ σc−(y))0,

ρσ(C)′′y := C(ρσ(wk), k ∈ σc+(y))0 ∗ C(−ρσ(wk), k ∈ σc−(y)).

Both cones ρσ(C)′y and ρσ(C)′′y are contained in the half-space y ≥ 0.

Theorem. Let C be a cone generated by a basis (w1, . . . , wN ) of W . Then, for
regular x ∈ C and regular y ∈ V ∗ such that y ≥ 0 on C, we have

[C] =
∑

σ∈B(∆)

(−1)|σ
c
−(y)|[C′σ

x ] ∗ [ρσ(C)′y],(1.4.1)

[C0] =
∑

σ∈B(∆)

(−1)|σ
c
−(y)|[C′′σ

x ] ∗ [ρσ(C)′′y ].(1.4.2)

Proof. Observe that

[Cσ
x ] = (−1)|σ−(x)|[C′σ

x ]

modulo LC(W ), and that

[ρσ(C)] = (−1)|σ
c
−(y)|[ρσ(C)′y ]

modulo LC(V ). Combined with theorem 1.2, this implies that the function

[C]−
∑

σ∈B(∆)

(−1)|σ
c
−(y)|[C′σ

x ] ∗ [ρσ(C)′y] =: f

is in LC(W ). On the other hand, f is an alternated sum of characteristic functions
of (closed) polyhedral cones Cj such that each Cj \ {0} is contained in the open
half-space y > 0. Therefore, f is supported in some acute cone (i.e. in some closed
convex cone which contains no line).

To conclude the proof of (1.4.1), we check that a function f ∈ LC(W ) identically
0 outside an acute cone D must be zero. Let F(W ) be the vector space of functions
on W . We embed C(W ) into F(W ). The additive group of W acts on F(W ) by
translations; we denote by w 7→ T (w) this action. Observe that, for a polyhedral
cone C which contains a line `, we have (1 − T (x))[C] = 0 for all x ∈ `. Because
f ∈ LC(W ), it follows that there exist x1, . . . , xr ∈ W \ {0} such that

r∏
j=1

(1− T (tjxj))f = 0

for all tj ∈ K. Moreover, we can find z ∈W ∗ such that z > 0 on D \ {0} and that
〈z, xj〉 6= 0 for all j. Replacing xj by −xj , we may assume that 〈z, xj〉 < 0 for all
j. Let w ∈W . We can choose A > 0 such that

〈z, w +
∑
j∈J

tjxj〉 < 0
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for any non-empty subset J of {1, . . . , r} and for tj > A. Therefore, we have

0 = (

r∏
j=1

(1 − T (−tjxj))f)(w) =
∑

J⊂{1,... ,r}
(−1)|J|f(w +

∑
j∈J

tjxj).

By assumption, our function f is identically 0 on the open half-space z < 0. It
follows that f(w) = 0.

To derive (1.4.2), we apply (1.4.1) to the cone −C = C(−w1, . . . ,−wN ) with
regular points −x ∈ −C and −y ∈ −C∨. Then we obtain

[−C] =
∑

σ∈B(∆)

(−1)|σ
c
−(y)|[−C′σ

x ] ∗ [−ρσ(C)′y ].

Using (1.3.3), we obtain that the function

g := [C0]−
∑

σ∈B(∆)

(−1)|σ
c
−(y)|[C′′σ

x ] ∗ [ρσ(C)′′y ]

is in LC(W ). But g vanishes identically outside some acute cone, and hence
g = 0.

Observing that [ρσ(C)′y]− (−1)|σ
c
−(y)|[ρσ(C)] and [ρσ(C)′′y ]− (−1)|σ

c
−(y)|[ρσ(C)0]

are in LC(V ), we obtain the following

Corollary. Let C be a cone generated by a basis of W . Then, for regular x ∈ C,
we have modulo the subgroup of C(W ) generated by polyhedral cones which contain
lines of V :

[C] =
∑

σ∈B(∆)

[C′σ
x ] ∗ [ρσ(C)],(1.4.3)

[C0] =
∑

σ∈B(∆)

[C′′σ
x ] ∗ [ρσ(C)0].(1.4.4)

In fact, (1.4.3) and (1.4.4) are exchanged by the involution which maps [C] to
the function (−1)dim(C)[C0] for any polyhedral cone C in W , see [19], 3.3.

1.5. Laplace transforms and polyhedral cones. In this section, we establish
a connection between our results in 1.1 and 1.2, via the Laplace transforms of
polyhedral cones.

We consider a real vector space W of dimension N , endowed with a Lebesgue
measure dw. Let C ⊂ W be an acute polyhedral cone, and let C∨ ⊂ W ∗ be its
dual cone. Then the interior of C∨ is not empty. Moreover, for each z ∈ WC such
that Re(z) is in the interior of C∨, the integral

R(C)(z) :=

∫
C

e−〈w,z〉dw

converges, and defines the Laplace transform of C.
First properties of the Laplace transform are given by the proposition below,

whose easy proof is omitted. A closed formula for the Laplace transform of any
acute polyhedral cone is obtained in 4.2.
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Proposition. (i) Let C be the cone generated by a basis (w1, . . . , wN ) of W . Then

R(C)(z) = vol |w|
N∏
j=1

1

〈z, wj〉(1.5)

where vol |w| denotes the volume of the parallelepiped {∑N
j=1 tjwj | 0 ≤ tj ≤ 1}.

(ii) For any acute polyhedral cone C, the map z → R(C)(z) extends to a rational
function R(C) on W ∗

C .
(iii) The map C → R(C) extends to an additive map R : C(W ) → Q(WC) which

vanishes on LC(W ) and also on functions with support in a set of measure 0.

Consider now a cone C generated by a basis (w1, . . . , wN ), and a regular point x
in C. Applying R to the identity (1.2) and using (1.5), we recover identity (1.1). In
other words, theorem 1.2 implies proposition 1.1. But theorem 1.2 is stronger than
proposition 1.1, which would follow from an identity modulo the subgroup of C(W )
generated by LC(W ) and by characteristic functions of cones of smaller dimension.

2. Residue formulae for periodic functions

2.1. Formal series and rational functions associated to polyhedral cones.
We maintain the notation of 1.2, and we assume that K is the field of rational
numbers. Let L be a lattice in W . The group algebra of L over Z is denoted by
Z[L], with canonical basis (el)l∈L and with quotient field Q(L). The choice of a
basis (w1, . . . , wN ) of L identifies Z[L] to the ring of Laurent polynomials in the
indeterminates ewk (1 ≤ k ≤ N), with integral coefficients, and Q(L) to the field
of rational functions in these indeterminates, with rational coefficients.

We denote by Z[[L]] the space of formal series
∑

l∈L ale
l where (al)l∈L is a family

of integers. Then Z[[L]] is a module over Z[L], multiplication by el being defined by
el
∑

m∈L em =
∑

m∈L am−lem. A formal series f is called summable if there exist

non-zero vectors u1, . . . , ur ∈ L such that (
∏r

k=1(1− euk))f =: P is in Z[L]. Then
the element P

∏r
k=1(1− euk)−1 of Q(L) is independent of the choices of u1, . . . , ur,

and is called the sum of f .
As an example, for any non-zero w ∈ L, the series

∑∞
k=0 ekw is summable with

sum 1/(1− ew), while the series
∑∞

k=−∞ ekw is summable with sum zero.
We recall the following well-known result (see [13], Theorem 1.2, [4]).

Proposition. (i) For any polyhedral cone C in W , the formal series

f(C,L) :=
∑

l∈C∩L
el

is summable; let F (C,L) be its sum.
(ii) The cone C is acute if and only if F (C,L) 6= 0.

In fact, for acute C, the rational function F (C,L) can be interpreted as follows:
For any y in the interior of the dual cone of C, the series∑

w∈C∩L
e−〈y,w〉

is convergent, and its sum is F (C,L)(−y). In other words, the “algebraic” sum of
f(C,L) coincides with the summation of the series wherever it makes sense.
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For example, if C is the cone generated by a basis (w1, . . . , wN ) of the lattice L,
then

f(C,L) =
∑

k1,... ,kN≥0

ek1w1+···+kNwN

and hence

F (C,L) =

N∏
j=1

1

1− ewj
.

Observe that the map C 7→ f(C,L) defines an additive map

C(W ) → Z[[L]] : ϕ 7→
∑
l∈L

ϕ(l)el.

It follows that the map C 7→ F (C,L) defines an additive map C(W ) → Q(L) which
vanishes on LC(W ).

Consider now a lattice M in W which contains L, and a polyhedral cone C in W .
We express F (C,L) in terms of F (C,M). For this, denote by L∗, M∗ the lattices
in W ∗ dual to L, M . Then M∗ is contained in L∗ and the quotient L∗/M∗ is a
finite subgroup of W ∗/M∗ of order [M : L]. Each m ∈M defines a character

e2iπm : W ∗/M∗ → C∗.

We let L∗/M∗ act on C[M ], C[[M ]] and C(M) by

g · em = e2iπm(g)em.

Then we have

1

[M : L]

∑
g∈L∗/M∗

g · em =

{
em if m ∈ L,

0 otherwise.

It follows that

f(C,L) =
1

[M : L]

∑
g∈L∗/M∗

g · f(C,M).

Now let D =
∏r

k=1(1 − euk) be a non-zero element in Z[M ] such that Df(C,M)
is in Z[M ]. Observe that D(q) :=

∏r
k=1(1 − equk) has the same property, for all

non-zero integers q. Choose q such that qM ⊂ L; then, multiplying by D(q) ∈ Z[L]
we obtain:

F (C,L) =
1

[M : L]

∑
g∈L∗/M∗

g · F (C,M).(2.1.1)

In particular, for a cone C generated by a basis (m1, . . . ,mN) of M , we have

F (C,L) =
1

[M : L]

∑
g∈L∗/M∗

N∏
k=1

1

1− e2iπmk(g)emk
.(2.1.2)
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2.2. A decomposition into simple fractions. We maintain the notation of 1.2
and 2.1; we give a decomposition into simple fractions of the function F (C,L) for
a cone C generated by a basis w1, . . . , wN of L. Then

F (C,L) =

N∏
k=1

1

1− ewk
.

Let x be regular in C. For each basis σ of ∆, write p(x) =
∑

j∈σ xσ,jαj and set

εσ,j = sgn(xσ,j). By theorem 1.2, we have

F (C,L) =
∑

σ∈B(∆)

(
∏
j∈σ

εσ,j)F (Cσ
x + ρσ(C), L).

We now compute each F (Cσ
x + ρσ(C), L). We set Λ := p(L); then Λ is a lattice

in E. In the case where (αj)j∈σ is a basis of Λ, it follows that the wj (j ∈ σ) and
the ρσ(wk) (k /∈ σ) are a basis of L. Then we have

F (Cσ
x + ρσ(C), L) =

∏
j∈σ

1

1− eεσ,jwj

∏
k/∈σ

1

1− eρσ(wk)
.

In the general case, the formula is slightly more complicated and involves sums with
roots of unity, defined as follows.

Denote by Λ∗ ⊂ E∗ the dual lattice of Λ. Then each λ ∈ Λ defines a character

e2iπλ : E∗/Λ∗ → C∗.

For any basis σ, we set

G(σ) := {g ∈ E∗/Λ∗ | e2iπαj (g) = 1 ∀j ∈ σ}.
Then G(σ) = (

⊕
j∈σ Zαj)∗/Λ∗ is a finite subgroup of E∗/Λ∗. We denote by µ(σ)

the order of G(σ), so that

µ(σ) = [Λ :
⊕
j∈σ

Zαj ].

In particular, µ(σ) = 1 if and only if (αj)j∈σ is a basis of Λ.
We set

Lσ := p−1(Λ) ∩Qσ.

This defines a lattice in Qσ. We let G(σ) act on C[Lσ], C[[Lσ]] and C(Lσ) by

g · em := e2iπp(m)(g)em

(this makes sense because p(Lσ) ⊂ Λ).

Theorem. Let C be a cone generated by a basis (w1, . . . , wN ) of L. Let x ∈ C be
regular; for each basis σ, write p(x) =

∑
j∈σ xσ,jαj and set εσ,j = sgn(xσ,j). Then

we have
N∏
k=1

1

1− ewk
=
∑

σ∈B(∆)

(
∏

j∈σ εσ,j)
µ(σ)

∑
g∈G(σ)

g · F (Cσ
x , Lσ)∏

k/∈σ(1 − e−2iπαk(g)eρσ(wk))
.

Proof. We need to check that each F (Cσ
x + ρσ(C), L) is equal to

1

µ(σ)

∑
g∈G(σ)

g · F (Cσ
x , Lσ)∏

k/∈σ(1− e−2iπαk(g)eρσ(wk))
.
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We set:

Mσ := Lσ ⊕ ρσ(L).

Then Mσ is a lattice in W . Moreover, we have

Mσ = Lσ + L.

Indeed, for any w ∈ L, we have w = (w − ρσ(w)) + ρσ(w) with w − ρσ(w) ∈
p−1(Λ) ∩Qσ and ρσ(w) ∈ ρσ(L). Clearly, we have

F (Cσ
x + ρσ(C),Mσ) =

F (Cσ
x , Lσ)∏

k/∈σ(1− eρσ(wk))
.

To finish the proof by applying (2.1.1), we have to describe the quotient group
L∗/M∗

σ . Consider the map pσ : W → E defined by pσ(wj) = αj if j ∈ σ, and
pσ(wk) = 0 for k /∈ σ. Then pσ(ρσ(wk)) = −αk for all k /∈ σ, and moreover pσ
coincides with p on Lσ. It follows that pσ(Mσ) = Λ. Because pσ(L) =

⊕
j∈σ Zαj ,

the induced map Mσ/L→ Λ/
⊕

j∈σ Zαj is an isomorphism. By this isomorphism,

the group L∗/M∗
σ is identified to G(σ), and we conclude by (2.1.2).

2.3. One more decomposition into simple fractions, and a residue for-
mula for periodic functions. We give another decomposition of the function∏N

k=1
1

1−ewk into simple fractions, which involves sums over a unique group of roots
of unity. Then we specialize our identity in the variables ewk into a residue formula
for periodic functions.

Choose a positive integer q such that qΛ is contained in
⊕

j∈σ Zαj =: Zσ for all

bases σ, that is, qcjk is an integer for all j ∈ σ and all k /∈ σ (recall that the cjk
are defined by αk =

∑
j∈σ cjkαj). For σ ∈ B(∆), set

G(σ, q) := (Z/qZ)σ = {g = (gj)j∈σ | gj ∈ Z/qZ}.
Then each j ∈ σ defines a character

g 7→ e2iπq
−1gj

of the finite group G(σ, q). Moreover, for all k /∈ σ, we have a well-defined character

g 7→ e2iπ
∑
j∈σ cjkgj

because the qcjk are integers.
Observe that G(σ, q) ' (Zσ)∗/(Zq−1σ)∗ surjects onto G(σ) = (Zσ)∗/Λ∗. More-

over, for k /∈ σ, the character e2iπαk of G(σ) gives rise to the character e2iπ
∑
j∈σ cjkgj

of G(σ, q).

Theorem. Let C be a cone generated by a basis (w1, . . . , wN ) of L. Let x ∈ C be
regular; for each basis σ, write p(x) =

∑
j∈σ xσ,jαj and set εσ,j = sgn(xσ,j). Then

the product

N∏
k=1

1

1− ewk

is equal to∑
σ∈B(∆)

∑
g∈G(σ,q)

∏
j∈σ

q−1εσ,j

1− eq
−1εσ,j(wj+2iπgj)

∏
k/∈σ

1

1− ewk−
∑
j∈σ cjk(wj+2iπgj)

.
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Proof. For each σ, consider

Mσ,q =
⊕
j∈σ

Zq−1wj ⊕ ρσ(L).

Then

Mσ,q =
⊕
j∈σ

Zq−1wj + L.

Clearly, we have

F (Cσ
x + ρσ(C),Mσ,q) =

1∏
j∈σ(1− eq

−1εσ,jwj )

1∏
k/∈σ(1 − eρσ(wk))

.

Moreover, the map pσ sends Mσ,q onto q−1Zσ and hence p∗σ induces an isomorphism

G(σ, q) → L∗/M∗
σ,q. This isomorphism identifies the character g 7→ e2iπq

−1gj to

e2iπq
−1wj , and g 7→ e−2iπ

∑
j∈σ cjkgj to e2iπ(ρσ(wk)−wk) = e2iπρσ(wk). We conclude as

in 2.2.

Example. Let us use the notation of 1.3. If the space of relations between the
elements αk = p(wk) is generated by

r =
l∑

j=1

wj −
N∑

j=m+1

wj ,

then the identity to be proven is

N∏
k=1

1

1− ewk
=

l∑
j=1

(−1)j−1 1

1− e−w1
· · · 1

1− e−wj−1

1

1− ewj+1
· · · 1

1− ewN
1

1− er

+

N∑
j=m+1

(−1)N−j
1

1− ew1
· · · 1

1− ewj−1

1

1− e−wj+1
· · · 1

1− e−wN
1

1− e−r

which is easily checked directly. Using this identity, it is also possible to give a
direct proof of theorem 2.3, using an induction argument similar to the proof of
proposition 1.1.

As in 1.1, we can specialize theorem 2.3 to obtain the following formula.

Corollary. For a generic complex linear form z on E, and for generic complex
numbers y1, . . . , yN , the product

N∏
k=1

1

1− eyk+〈z,αk〉

is equal to∑
σ∈B(∆)

∑
g∈G(σ,q)

∏
j∈σ

q−1εσ,j

1− eq
−1εσ,j(yj+2iπgj+〈z,αj〉)

∏
k/∈σ

1

1− eyk−
∑
j∈σ cjk(yj+2iπgj)

.



816 MICHEL BRION AND MICHÈLE VERGNE

2.4. Fourier transforms and polyhedral cones. Both maps C 7→ R(C) (de-
fined in 1.5) and C 7→ F (C,L) may be understood via Fourier transforms of certain
generalized functions. We consider a real vector space W of dimension N ; we use
the function notation Θ(y) for a generalized function Θ on W ∗, although the value
of Θ at a particular point y may not make any sense. We say that Θ is smooth on
an open subset U of W ∗ if there exists a smooth function θ(y) on U such that

(Θ, ϕdy) =

∫
W∗

θ(y)ϕ(y)dy

for all test functions ϕ with compact support contained in U .
For f ∈ C(W ), the formula

F(f)(y) :=

∫
W

e−i〈y,w〉f(w)dw

defines a generalized function F(f), the Fourier transform of f . Remark that the
characteristic function [C] of a cone C generated by a basis (w1, . . . , wN ) of W ,
satisfies

(
N∏
k=1

〈y, wk〉)F([C])(y) = vol |w|

so that the generalized function F([C])(y) is smooth on the complement of the
union of hyperplanes wk = 0, and is equal to R(C)(iy) on this open subset. On the
other hand, if a polyhedral cone C contains a line `, then for any w ∈ `, we have

〈y, w〉F([C])(y) = 0

so that F([C]) is identically 0 outside the hyperplane of W ∗ orthogonal to `. Thus,
for any f ∈ C(W ), we have for generic y ∈ W ∗

F(f)(y) = R(f)(iy)

and this determines R(f) uniquely.
Now fix a lattice L in W , and denote by WQ the rational vector space generated

by L. We can identify polyhedral cones in WQ with rational polyhedral cones in W ,
and hence C(WQ) identifies with a subgroup of C(W ). For f ∈ C(WQ), the formula

F(f, L)(y) :=
∑
l∈L

f(l)ei〈y,l〉

defines a generalized function F(f, L) on W ∗. If C = C(w1, . . . , wN ) is a simplicial
cone generated by a basis (w1, . . . , wN ) of L, then

(

N∏
k=1

(1− ei〈y,wk〉))F([C], L)(y) = 1

so that F([C], L)(y) coincides with F (C,L)(iy) on the complement of the union
of hyperplanes 〈y, wk〉 ∈ 2πZ. On the other hand, if a rational polyhedral cone C
contains a line, then it contains a rational line `, and we have for all w ∈ ` ∩ L

(1 − ei〈y,w〉)F([C], L)(y) = 0.

Therefore, F([C], L) is identically 0 on the complement of the union of the hyper-
planes 〈y, w〉 ∈ 2πZ. We conclude that for any f ∈ C(WQ), the generalized function
F(f, L)(y) is equal to the function F (f, L)(iy) for y outside a countable union of
hyperplanes.
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3. Vector partition functions

3.1. Chambers and partition polyhedra. We consider a real vector space W
with a basis (w1, . . . , wN ) and a surjective linear map p : W → E with kernel V of
dimension n. We set p(wk) := αk for 1 ≤ k ≤ N , and ∆ = (α1, . . . , αN ). We denote
by C the convex cone in W generated by w1, . . . , wN , and we set C(∆) := p(C).

For any subset κ of ∆, we denote by C(κ) ⊂ E the convex cone generated by
the αj (j ∈ κ). Then C(∆) is the union of the simplicial cones C(σ) (σ ∈ B(∆)).
To any h ∈ C(∆), we associate the intersection of all cones C(σ) which contain
h. This defines a subdivision of C(∆) into polyhedral cones. The interiors of the
maximal cones of this subdivision are called chambers.

For any chamber γ, we set

B(∆, γ) := {σ ∈ B(∆) | γ ⊂ C(σ)}.
Then the intersection of the C(σ) (σ ∈ B(∆, γ)) is the closure γ of γ.

A subsequence of ∆ is called generating if it contains a basis. We denote by
G(∆) the set of generating subsequences of ∆. For a chamber γ, we set

G(∆, γ) := {κ ∈ G(∆) | γ ⊂ C(κ)}.
For h ∈ E, we set

V (h) := p−1(h) and P∆(h) := p−1(h) ∩ C.

Then V (h) is an affine space with direction V = ker(p), and P∆(h) is a convex poly-
hedron in V (h), i.e., the intersection of finitely many closed half-spaces. Observe
that P∆(h) contains no affine line. Moreover, P∆(h) is non-empty if and only if h
is in C(∆). The family (P∆(h))h∈C(∆) is called the family of partition polyhedra
defined by p : W → E and C. This construction is well known, see e.g. [18].

Recall that the recession cone of a convex polyhedron P ⊂W is

re(P ) := {ξ ∈W | x+ ξ ∈ P ∀x ∈ P}.
Clearly, re(P∆(h)) is equal to P∆(0) = C∩V , i.e., to the cone of non-negative linear
relations between elements of ∆. In particular, the polyhedron P∆(h) is bounded
if and only if the cone C(∆) is acute.

In fact, the structure of P∆(h) depends only on the position of h with respect
to the decomposition into chambers. To see this, we describe the vertices of P∆(h)
and their “tangent cones”, defined as follows: For any convex polyhedron P in W ,
and for any x ∈ P , the tangent cone of P at x is the closed convex cone generated
by −x+ P ; we denote by CxP this (polyhedral) cone. Because P∆(h) contains no
line, it is uniquely determined by its vertices and the corresponding tangent cones.

For σ ∈ B(∆), we denote by vσ : E →W the linear map such that vσ(αj) = wj

for all j ∈ σ. Then vσ(αk) =
∑

j∈σ cjkwj for all k /∈ σ. Moreover, ρσ(w) =

w − vσp(w) for all w ∈ W . If γ is a chamber, and σ ∈ B(∆, γ), then

P∆(h) ∩
⊕
j∈σ

Rwj = {vσ(h)}

for all h ∈ γ. For κ ∈ G(∆, γ), we set

P∆(h) ∩
⊕
k∈κ

Rwk := Fκ(h).

Now we can state the following result, whose proof is a direct check.
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Proposition. Let γ be a chamber.
(i) For any h ∈ γ, the convex polyhedron P∆(h) is simple, with vertices vσ(h) (σ ∈

B(∆, γ)) and corresponding tangent cones ρσ(C). More generally, for any κ ∈
G(∆, γ), the set Fκ(h) is a face of dimension |κ| − n of P∆(h), and this defines a
bijection between G(∆, γ) and the set of faces of P∆(h).

(ii) For any h ∈ γ, the faces of P∆(h) are still the Fκ(h) (κ ∈ G(∆, γ)), with
possible repetitions. Moreover, the dual of the tangent cone to P∆(h) at its ver-
tex v has a simplicial subdivision whose maximal cones are the duals of the cones
ρσ(C) (σ ∈ B(∆, γ), v = vσ(h)).

3.2. Characteristic functions of partition polyhedra. In this section, we de-
duce from corollary 1.4 formulae for the characteristic functions of the partition
polyhedron P∆(h) and of its interior in V (h). Both functions live in the additive
group He(V (h)) generated by all characteristic functions of convex polyhedra in
V (h). We denote by LHe(V (h)) the subgroup of He(V (h)) generated by charac-
teristic functions of convex polyhedra which contain affine lines.

Theorem. Let h ∈ C(∆) and let γ be a chamber such that h ∈ γ.
(i) We have in He(V (h)):

[P∆(h)] =
∑

σ∈B(∆,γ)

[vσ(h) + ρσ(C)](3.2.1)

modulo LHe(V (h)). Furthermore, if h ∈ C(∆)0, then

[P∆(h)0] =
∑

σ∈B(∆,γ)

[vσ(h) + ρσ(C)0].(3.2.2)

(ii) For any vertex v of P∆(h), with tangent cone CvP∆(h), we have in C(V ):

[CvP∆(h)] =
∑

σ∈B(∆,γ),v=vσ(h)

[ρσ(C)](3.2.3)

modulo LC(V ). Furthermore, if h ∈ C(∆)0, then

[CvP∆(h)0] =
∑

σ∈B(∆,γ),v=vσ(h)

[ρσ(C)0](3.2.4)

modulo LC(V ).

Proof. (i) Choose a regular point x ∈ C. Then, restricting identity (1.4.3) to V (h),
we obtain

[P∆(h)]−
∑

σ∈B(∆)

[V (h) ∩ (C ′σ
x + ρσ(C))] = g

for some g ∈ LHe(V (h)). Now we choose x such that p(x) ∈ γ and that no
hyperplane generated by some of the αk separates h and p(x). If V (h) meets
C ′σ
x + ρσ(C), then h is in p(C′σ

x ), and hence h =
∑

j∈σ hσ,jαj with hσ,j > 0 for

all j ∈ σ−(x). By the assumption on x, the set σ−(x) must be empty, that is,
σ ∈ B(∆, γ). Therefore, C ′σ

x = C(σ). Moreover, we have

V (h) ∩ (C ′σ
x + ρσ(C)) = vσ(h) + ρσ(C).

Indeed, we have vσ(h) ∈ C(σ) = C ′σ
x and hence vσ(h) + ρσ(C) ⊂ V (h) ∩

(C ′σ
x + ρσ(C)). On the other hand, if u ∈ V (h) ∩ (C ′σ

x + ρσ(C)), then u− ρσ(u) ∈
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C(σ). But u− ρσ(u) = vσp(u) = vσ(h) and hence u ∈ vσ(h) + ρσ(C). This proves
(3.2.1).

Assume now that h ∈ C(∆)0. Then P∆(h) contains points (x1, . . . , xN ) such
that xk > 0 for all k. It follows that

P∆(h)0 = C0 ∩ V (h).

For x as above, and for small ε > 0, set x0 := h−εx. Then x0 is regular. Moreover,
identity (1.4.4) implies that

[P∆(h)0]−
∑

σ∈B(∆)

[V (h) ∩ (C ′′σ
x0 + ρσ(C)0)] = g0

for some g0 ∈ LHe(V (h)).
If V (h) meets C ′′σ

x0 +ρσ(C)0, then h ∈ p(C′′σ
x0 ). If moreover x /∈ C(σ), then there

exists j ∈ σ such that xσ,j < 0. By our choice of x, we have hσ,j ≤ 0. Then either
hσ,j = 0 and x0

σ,j > 0, or hσ,j < 0 and x0
σ,j < 0. In both cases, h /∈ p(C ′′σ

x0 ), a
contradiction. So x ∈ C(σ), that is, σ ∈ B(∆, γ). Arguing as above, we then have

V (h) ∩ (C ′′σ
x0 + ρσ(C)0) = vσ(h) + ρσ(C)0.

This proves (3.2.2).
(ii) is deduced from (i) by a process of limit at v, as follows. For an arbitrary

convex polyhedron P ⊂ V (h), and for ε > 0, consider the function x 7→ [P ](v+εx).
Then the pointwise limit of this function as ε→ 0 is [CvP ] if v ∈ P , and 0 otherwise.

Assume that v ∈ P . Remark that [CvP ] is in LC(V ) in the case where P contains
an affine line (then P contains an affine line through v) and also in the case where
P is an affine cone with vertex s 6= v (then CvP contains the line R(s− v)).

Now write

[P∆(h)] =
∑

σ∈B(∆,γ)

[vσ(h) + ρσ(C)] +
∑
j

aj [Pj ]

where each Pj is a convex polyhedron in V (h) which contains an affine line. Eval-
uating both sides at v + εx and letting ε→ 0, we obtain

[CvP∆(h)] =
∑

σ∈B(∆,γ),v=vσ(h)

[ρσ(C)] + g

with g ∈ LC(V ). This proves (3.2.3). Similarly, (3.2.4) follows from (3.2.2).

3.3. Fourier transforms of partition polyhedra. In this section, we obtain a
closed formula for the Fourier transform of the Lebesgue measure on P∆(h). We
choose Lebesgue measures on W and E; this induces a Lebesgue measure ds on each
fiber of p. For any basis σ, we denote by µ(σ) the volume of the convex polytope
{∑j∈σ tjαj | 0 ≤ tj ≤ 1}. For all h ∈ C(∆) and y in the interior of the dual cone
of C ∩ V , we set

V∆(y, h) :=

∫
P∆(h)

e−〈y,w〉ds

(this makes sense because y is bounded from below on P∆(h)). In particular, if the
cone C(∆) is acute, then V∆(y, h) is defined for all y ∈W ∗, and V∆(h) := V∆(0, h)
is the volume of P∆(h).
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Proposition. For any h ∈ C(∆), for any chamber γ such that h ∈ γ, and for
generic y in the interior of the dual cone of C ∩ V , we have

V∆(y, h) =
∑

σ∈B(∆,γ)

e−〈y,vσ(h)〉

µ(σ)
∏

k/∈σ(yk −
∑

j∈σ cjkyj)
.(3.3)

Proof. Taking the Fourier transform (see 2.4) of (3.2.1), we obtain for h ∈ γ and
for generic y ∈W ∗:∫

P∆(h)

e−i〈y,s〉ds =
∑

σ∈B(∆,γ)

∫
vγ (h)+ργ(C)

e−i〈y,s〉ds.

This gives our relation.

Definition. We set

V∆,γ(y, h) :=
∑

σ∈B(∆,γ)

e−〈y,vσ(h)〉

µ(σ)
∏

k/∈σ(yk −
∑

j∈σ cjkyj)
.

This function coincides with V∆(y, h) for h ∈ γ, and is defined outside a union of
finitely many hyperplanes.

Corollary. If the cone C(∆) is acute, then we have

V∆(h) =
∑

σ∈B(∆,γ)

〈y, vσ(h)〉n
n!µ(σ)

∏
k/∈σ(−yk +

∑
j∈σ cjkyj)

for all h ∈ γ, and for generic y ∈ W ∗. In particular, the function h → V∆(h) =
volP∆(h) is a homogeneous polynomial function of degree n = N −d on the closure
of each chamber.

Proof. Fix h ∈ γ and generic y ∈W ∗. Expanding

V∆(ty, h) =

∫
P (h)

e−t〈y,w〉ds

into a power series in t and letting t→ 0, we obtain our formula.

3.4. Vector partition functions and their generalizations. In this section,
we obtain a discrete analog of proposition 3.3. We maintain the assumptions of 3.1,

and we assume furthermore that p maps the lattice L =
⊕N

k=1 Zwk ⊂ W onto a
lattice Λ in E. These lattices define uniquely Lebesgue measures on W and E; for
σ ∈ B(∆), observe that

vol{
∑
j∈σ

tjαj | 0 ≤ tj ≤ 1} = [Λ :
⊕
j∈σ

Zαj ]

so that the notation µ(σ) of 3.3 is consistent with the notation of 2.2.
For λ ∈ C(∆) ∩ Λ and for y in the interior of the dual cone of C ∩ V , we set

P∆(y, λ) :=
∑

w∈P∆(λ)∩L
e−〈y,w〉 =

∑
e−x1〈y,w1〉−···−xN〈y,wN 〉

(sum over all non-negative integers x1, . . . , xN such that
∑N

k=1 xkαk = λ). This
series converges, because y is bounded from below on P∆(λ).
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We also set

P0
∆(y, λ) :=

∑
w∈P∆(λ)0∩L

e−〈y,w〉 =
∑

e−x1〈y,w1〉−···−xN 〈y,wN〉

(sum over all positive integers x1, . . . , xN such that
∑N

k=1 xkαk = λ).
If the cone C(∆) is acute, then the functions P∆(y, λ) and P0

∆(y, λ) are defined
for all y ∈ W ∗. In particular, P∆(λ) := P∆(0, λ) is the number of solutions in non-

negative integers of the equation
∑N

k=1 xkαk = λ, i.e., P∆ is the vector partition
function associated to ∆. We call P0

∆ the strict vector partition function.

Theorem. Let λ ∈ C(∆) ∩ Λ; let γ be a chamber such that λ ∈ γ. Then, for
generic y in the interior of the dual cone of C ∩ V , we have

P∆(y, λ) =
∑

σ∈B(∆,γ)

e−〈y,vσ(λ)〉

µ(σ)

∑
g∈G(σ)

e2iπλ(g)∏
k/∈σ(1− e−2iπαk(g)e−yk+

∑
j∈σ cjkyj )

.

(3.4.1)

Furthermore, if λ ∈ C(∆)0, then

P0
∆(y, λ) = (−1)n

∑
σ∈B(∆,γ)

e−〈y,vσ(λ)〉

µ(σ)

∑
g∈G(σ)

e2iπλ(g)∏
k/∈σ(1 − e2iπαk(g)eyk−

∑
j∈σ cjkyj )

.

(3.4.2)

Proof. Consider the formal power series

f(P∆(λ), L) :=
∑

w∈P∆(λ)∩L
ew.

We show that this series is summable (see 2.1) with sum∑
σ∈B(∆,γ)

evσ(λ)

µ(σ)

∑
g∈G(σ)

e2iπλ(g)∏
k/∈σ(1 − e−2iπαk(g)ewk−

∑
j∈σ cjkwj )

.

This implies (3.4.1).
For σ ∈ B(∆, γ), set

f(vσ(λ) + ρσ(C), L) :=
∑

w∈(vσ(λ)+ρσ(C))∩L
ew.

Then, using 3.2 and 2.1, we see that

f(P∆(λ), L)−
∑

σ∈B(∆,γ)

f(vσ(λ) + ρσ(C), L)

is summable with sum 0. Moreover, setting

Mσ := Lσ ⊕ ρσ(L) = Lσ + L

we have: vσ(λ) ∈Mσ and

f(vσ(λ) + ρσ(C),Mσ) =
evσ(λ)∏

k/∈σ(1− eρσ(wk))
=

evσ(λ)∏
k/∈σ(1 − ewk−

∑
j∈σ cjkwj))

.
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As in the proof of theorem 2.2, it follows that f(vσ(λ) + ρσ(C), L) is summable
with sum

evσ(λ)

µ(σ)

∑
g∈G(σ)

e2iπλ(g)∏
k/∈σ(1− e−2iπαk(g)ewk−

∑
j∈σ cjkwj )

.

This proves (3.4.1).
For (3.4.2), we deduce from theorem 3.2 that the series

f(P∆(λ)0, L)−
∑

σ∈B(∆,γ)

f(vσ(λ) + ρσ(C)0, L)

is summable with sum 0. Moreover, each series f(vσ(λ)+ρσ(C)0,Mσ) is summable
with sum

evσ(λ)
∏
k/∈σ

eρσ(λ)

1− eρσ(λ)
= (−1)nevσ(λ)

∏
k/∈σ

1

1− e−ρσ(wk)
.

It follows that f(vσ + ρσ(C)0, L) is summable with sum

(−1)nevσ(λ)

µ(σ)

∑
g∈G(σ)

e2iπλ(g)∏
k/∈σ(1− e2iπαk(g)e−wk+

∑
j∈σ cjkwj )

.

3.5. Euler-MacLaurin formula for vector partition functions. In this sec-
tion, we express P∆(y, λ) and P0

∆(y, λ) (defined in 3.4) in terms of the values at λ
of the function h 7→ V∆(y, h) and of its partial derivatives. For this, we introduce
series of differential operators with constant coefficients called Todd operators, as
follows.

For any complex number a, we set

Todd(a, z) :=
z

1− ae−z
=

∞∑
m=0

c(a,m)zm.

Then Todd(a, z) is an analytic function of z for small z. In particular, we have

Todd(1, z) =
z

1− e−z
= 1 +

1

2
z +

∞∑
m=1

(−1)m−1 Bm

(2m)!
z2m

where the Bm’s are the Bernoulli numbers.
For u ∈ E and ϕ a smooth function on E, we denote by ∂(u)ϕ the derivative of

ϕ in the direction u. We define the Todd operator Todd(a, ∂(u)) by the formula

Todd(a, ∂(u)) :=
∂(u)

1− ae−∂(u)
=

∞∑
m=0

c(a,m)∂(u)m.

Then Todd(a, ∂(u)) is a differential operator of infinite order, with constant coeffi-
cients. It acts for example in the space of polynomial functions on E. For y ∈ R,
we define Todd(a, ∂(u) + y) in a similar way. Finally, for g ∈ E∗/Λ∗ and y ∈ W ∗,
we set

Todd∆(g, ∂ + y) :=
N∏
k=1

Todd(e−2iπαk(g), ∂(αk) + yk)
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with yk = 〈y, wk〉. Then Todd∆(g, ∂ + y) is a series of differential operators with
constant coefficients, and Todd∆(g, ∂) is a differential operator of infinite order with
constant coefficients.

Theorem. Let γ be a chamber, and let V∆,γ(y, h) be as in 3.3.
(i) The series

Todd∆(g, ∂ + y)V∆,γ(y, h)

converges for all g ∈ E∗/Λ∗, and for small generic y ∈ W ∗. Moreover, the sum of
this series vanishes if g is not in the finite set

G(γ) :=
⋃

σ∈B(∆,γ)

G(σ).

(ii) For λ ∈ γ ∩ Λ and for small generic y in the interior of the dual cone of
C ∩ V , we have:

P∆(y, λ) =
∑

g∈G(γ)

e2iπλ(g)Todd∆(g, ∂ + y)V∆,γ(y, h)|h=λ.(3.5.1)

Furthermore, if λ ∈ C(∆)0, then

P0
∆(y, λ) =

∑
g∈G(γ)

e2iπλ(g)Todd∆(−g,−∂ − y)V∆,γ(y, h)|h=λ.(3.5.2)

Proof. (i) Using proposition 3.3, it is enough to check the assertions for the series

Todd∆(g, ∂ + y)e−〈y,vσ(h)〉

for σ ∈ B(∆, γ). Observe that

(∂(αk) + yk)e
−〈y,vσ(h)〉 = (yk − 〈y, vσ(αk)〉)e−〈y,vσ(h)〉(3.5.3)

and that, for all k ∈ σ:

yk − 〈y, vσ(αk)〉 = 0.(3.5.4)

Moreover, the series

Todd(e−2iπαk(g), ∂(αk) + yk)

has a non-zero constant term if and only if e2iπαk(g) = 1, and then this constant
term is equal to 1. It follows that

Todd∆(g, ∂ + y)e−〈y,vσ(h)〉

= e−〈y,vσ(h)〉∏
k/∈σ

∞∑
m=0

c(e−2iπαk(g),m)(yk − 〈y, vσ(αk)〉)m

if y ∈ G(σ); otherwise, Todd∆(g, ∂ + y)e−〈y,vσ(h)〉 = 0.
(ii) We can rewrite the formulae above as

Todd∆(g, ∂ + y)e−〈y,vσ(h)〉 = e−〈y,vσ(h)〉∏
k/∈σ

yk −
∑

j∈σ cjkyj

1− e−2iπαk(g)e−yk+
∑
j∈σ cjkyj

if g ∈ G(σ); otherwise, Todd∆(g, ∂ + y)e−〈y,vσ(h)〉 = 0. Using 3.3 and (3.4.1), we
obtain formula (3.5.1). The proof of (3.5.2) is similar.
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Corollary 1. If the cone C(∆) is acute, then we have for any λ ∈ C(∆) ∩ Λ and
for any chamber γ such that λ ∈ γ:

P∆(λ) =
∑

g∈G(γ)

e2iπλ(g)Todd∆(g, ∂)V∆,γ(h)|h=λ.

Furthermore, if λ ∈ C(∆)0, then

P0
∆(λ) =

∑
g∈G(γ)

e2iπλ(g)Todd∆(−g,−∂)V∆,γ(h)|h=λ.

Definitions. A function f on Λ is called

polynomial if f extends to a polynomial function on E,
periodic if f factors through Λ/L where L ⊂ Λ is a sublattice (then L is a
period group for f),
periodic polynomial if f belongs to the ring generated by polynomial and by
periodic functions (then a period group of f is a sublattice L such that f
restricts to a polynomial function on each coset of L) .

The closed formulae above show that the function P∆ (resp. P0
∆) is periodic

polynomial on the closure of each chamber in C(∆) (resp. in C(∆)0). More pre-
cisely, for any g ∈ G(γ), define a polynomial function P∆,g,γ on Λ by

P∆,g,γ := Todd∆(g, ∂)V∆,γ .

Then the function

λ 7→ P∆,γ(λ) :=
∑

g∈G(γ)

e2iπλ(g)P∆,g,γ(λ)

is periodic polynomial on Λ, and coincides with P∆ on Λ ∩ γ.
Set

Λ(γ) := {λ ∈ Λ | e2iπλ(g) = 1 ∀g ∈ G(γ)}.
Then Λ(γ) is the intersection of all sublattices

⊕
j∈σ Zαj for σ ∈ B(∆, γ). An ele-

ment h ∈ Λ∩γ belongs to Λ(γ) if and only if all vertices vσ(h) of the polytope P∆(h)
are integral. According to Ehrhart [10], restriction of P∆,γ to Λ(γ) is polynomial.
The following corollary gives a closed formula for this polynomial function.

Corollary 2. The sublattice Λ(γ) is a period group for P∆,γ, and restriction of
this function to this sublattice coincides with restriction of the polynomial function

E∆,γ :=
∑

g∈G(γ)

P∆,g,γ .

3.6. Vector partition functions and volumes of faces. In this section, we
assume that the cone C(∆) is acute. We obtain formulae for P∆(λ) in terms of the
faces of the polytope P∆(λ) . In particular, we refine the results of [20].

First we express the series of differential operators Todd∆(g, ∂ + y) occurring in
our Euler-MacLaurin formula, in terms of the faces of P∆(h) for h ∈ γ. Recall that
these faces are indexed by the set G(∆, γ), see 3.1.

Observe that G(γ) is the union of its subsets

G(σ) = {g ∈ E∗/Λ∗ | e2iπαk(g) = 1 ∀k ∈ σ}.
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It follows that G(γ) is the disjoint union of its subsets

G(κ)0 := {g ∈ E∗/Λ∗ | e2iπαk(g) = 1 ⇔ k ∈ κ}
where κ runs over G(∆, γ). For such a κ and for g ∈ G(κ)0, we set

R∆(g, ∂ + y) :=
∏
k∈κ

∂(αk) + yk
1− e−∂(αk)−yk

∏
k/∈κ

1

1− e−2iπαk(g)e−∂(αk)−yk ,

a series of differential operators with constant coefficients. The constant term of
the differential operator R∆(g, ∂) is

∏
k/∈κ

1
1−e−2iπαk (g)

. We also set

Πκ(∂ + y) :=
∏
k/∈κ

(∂(αk) + yk).

Then, for all g ∈ G(κ)0, we have

Todd∆(g, ∂ + y) = R∆(g, ∂ + y)Πκ(∂ + y).

We apply this formula to the function V∆,γ . Recall that V∆,γ(h) is the volume
of P∆(h) for h ∈ γ. More generally, for h ∈ γ and κ ∈ G(∆, γ), the volume of the
face Fκ(h) is Vκ,γ(h) where we still denote by γ the chamber (for the system κ)
which contains h. Using (3.5.3) and (3.5.4), we obtain the following

Proposition. The function V∆,γ satisfies the system of partial differential equa-
tions

Πκ(y + ∂)V∆,γ(y, h) =

{
Vκ,γ(y, h) if κ ∈ G(∆, γ),

0 otherwise.

In particular,

Πκ(∂)V∆,γ =

{
Vκ,γ if κ ∈ G(∆, γ),

0 otherwise.

These equations can be used to compute inductively V∆,γ ; indeed, Vσ,γ is the
constant function µ(σ)−1 for all σ ∈ B(∆, γ). Moreover, we can restate Corollary
3.5.1 as

P∆,γ =
∑

κ∈G(∆,γ)

P∆,κ

where

P∆,κ(λ) :=
∑

g∈G(κ)0

e2iπλ(g)R∆(g, ∂)Vκ,γ(h)|h=λ

is periodic polynomial of degree at most |κ| −n, and with period group
∑

k∈κ Zαk.
This decomposition of P∆,γ is canonical.

Consider now the ring C[∂] of differential operators on E with constant co-
efficients. Let I(∆, γ) be the ideal generated by the operators Πκ(∂) for κ not
in G(∆, γ). We claim that for any element D ∈ C[∂], there exist constants cκ
(κ ∈ G(∆, γ)) such that

D ≡
∑

κ∈G(∆,γ)

cκΠκ(∂) (mod I(∆, γ))
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and therefore, by the proposition:

DV∆,γ =
∑

κ∈G(∆,γ)

cκVκ,γ .

In other words, the C[∂]-module generated by the volume function of P∆(h) is the
vector space spanned by volumes of faces.

Indeed, the ring C[∂] is generated by the ∂(αk), 1 ≤ k ≤ N . Consider a monomial∏N
k=1 ∂(αk)

nk and denote by ν the sequence of all k such that nk = 0. If ν is
not generating, then the monomial is in I(∆, γ). If ν is generating, then we can
express αk (k /∈ ν) as a linear combination of the αj (j ∈ ν). Thus, we can write
each operator, modulo the ideal I(∆, γ), as a linear combination of the Πν(∂) and
finally we keep only those where ν is generating and in G(∆, γ).

Let ν ∈ G(∆, γ) and let g ∈ G(ν)0. Applying the claim to the operator R∆(g, ∂)
and to the system ν, we see that there exist constants cκ(g) (κ ∈ G(∆, ν)) such
that

R∆(g, ∂) ≡
∑
κ

cκ(g)Πκ(∂) (mod I(ν, γ))

and therefore

P∆,g,γ = R∆(g, ∂)Πν(∂)V∆,γ = R∆(g, ∂)Vν,γ =
∑

κ∈G(ν,γ)

cκ(g)Vκ,γ .

So we obtain the following

Theorem. We have

P∆,γ =
∑

κ∈G(∆,γ)

ΘκVκ,γ

where

Θκ(λ) =
∑

g∈G(κ)

cκ(g)e
2iπλ(g),

a function on Λ/
∑

k∈κ Zαk.

This expresses the number of points in the rational convex polytope P∆(λ) in
terms of the volumes of its faces and of the periodic functions Θκ; observe that each
Θκ is constant on the sublattice Λ(γ), with value

∑
g∈G(κ) cκ(g). The resulting

formula is not canonical, because the polynomials Vκ satisfy linear relations.
The following corollary is a refinement of the result in [20]. It expresses the

difference between the periodic polynomial P∆,γ and the Ehrhart polynomial E∆,γ;
both functions coincide on Λ(γ). For λ ∈ Λ and κ ∈ G(∆, γ) we denote by [λ]κ the
image of λ in Λ/

∑
k∈κ Zαk.

Corollary. For each chamber, we have

P∆,γ(λ) − E∆,γ(λ) =
∑

κ∈G(∆,γ),κ 6=∆

(Θκ([λ]κ)−Θκ(0))Vκ,γ(λ).
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3.7. Euler-MacLaurin formula and integrals over faces. In this section, we
still assume that the cone C(∆) is acute. We adapt the approach of 3.6 to express
P∆(y, λ) in terms of integrals of the function V∆(y, λ) and its partial derivatives,
over the faces of P∆(λ).

We identify the ring C[∂] with the symmetric algebra S(E), and we consider the
overring S(E ⊕W ) = S(E) ⊗ S(W ). Identifying S(W ) to the ring of polynomial
functions on W ∗, we denote S(E ⊕W ) by C[∂, y]. This ring is graded, and its
elements yk = 〈wk, y〉 have degree 1. We denote by S(∆) the graded subring of
C[∂, y] generated by the ∂(αk) + yk for 1 ≤ k ≤ N , and by the subring S(V ) of
S(W ) (identified to the space of polynomial functions on W ∗ which are invariant
under translation by E∗).

Let I(∆, γ, y) be the ideal of S(∆) generated by the operators Πκ(∂ + y) for
κ /∈ G(∆, γ). By proposition 3.6, the function V∆(y, h) is killed by I(∆, γ, y). The
ring S(∆) with its ideal I(∆, γ, y) is considered in [8].

We claim that for any D ∈ S(∆), there exist cκ(y) ∈ S(V ) (κ ∈ G(∆, γ)) such
that

D ≡
∑
κ

cκ(y)Πκ(∂ + y) (mod I(∆, γ, y)).

The proof of this claim is the same as in 3.6; for a generating sequence ν and k /∈ ν,
we use the relation

∂(αk) + yk −
∑
j∈ν

cjk(∂(αj) + yj) = 〈wk −
∑
j∈ν

cjkwj , y〉

where wk −
∑

j∈ν cjkwj ∈ V , that is, αk =
∑

j∈ν cjkαj .

Now, arguing as in 3.6, we obtain for ν ∈ G(∆, γ) and g ∈ G(ν)0:

Todd∆(g, ∂ + y)Vν,γ =
∑

κ∈G(ν,γ)

cκ(g, y)Vκ,γ

where each cκ(g, y) is a series with terms in S(V ) which is analytic in a neighborhood
of 0. We can thus consider cκ(g, y) as a function on a neighborhood of E∗ in W ∗.
Setting

Θκ(y, λ) :=
∑

g∈G(κ)

e2iπλ(g)cκ(g, y),

we obtain

P∆,γ(y, λ) =
∑

κ∈G(∆,γ)

Θκ(y, λ)Vκ,γ(y, λ).

For fixed λ, the series cκ(g, y) can be considered as a series of differential operators
with constant coefficients on the affine space V (λ). We denote by s the variable in
this affine space. Then the formula above becomes∑

w∈P∆(λ)∩L
e−〈y,w〉 =

∑
κ∈G(∆,γ)

∫
Fκ(λ)

Θκ(−∂(s), λ)e−〈y,s〉ds.

This summation formula holds for the exponential of any small linear form on W
and thus for any polynomial function. So we have obtained the following
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Theorem. Let γ be a chamber. For each g ∈ G(γ), let cκ(g, y) (κ ∈ G(∆, γ)) be
series with terms in S(V ) such that

Todd∆(g, ∂ + y) ≡
∑

κ∈G(∆,γ)

cκ(g, y)Πκ(∂ + y) (mod I(∆, γ, y)).

Then, for any polynomial function ϕ on W and for any λ ∈ γ, we have∑
w∈P∆(λ)∩L

ϕ(w) =
∑

κ∈G(∆,γ)

∫
Fκ(λ)

Θκ(−∂(s), λ)ϕ(s)ds

where

Θκ(−∂(s), λ) =
∑

g∈G(κ)

e2iπλ(g)cκ(g,−∂(s))

is a series of differential operators on V (λ) with periodic coefficients of period group∑
k∈κ Zαk.

In particular, the function λ 7→∑w∈P∆(λ)∩L ϕ(w) is periodic polynomial on Λ,

and its restriction to Λ(γ) is polynomial. Moreover, for fixed λ, we have expressed
the sum of values of any polynomial function at all lattice points of the rational
convex polytope P∆(λ), in terms of integrals over faces of the function and its
partial derivatives. This is in the spirit of the Euler-MacLaurin formula of Cappell
and Shaneson [8], announced in the case where P∆(λ) is a simple lattice polytope
(that is, λ ∈ γ ∩ Λ(γ)).

4. Lattice points in rational convex polyhedra

4.1. Convex polyhedra and partition polyhedra. Let V be a real vector space
of dimension n. Let P ⊂ V be a convex polyhedron which contains no line, and
with non-empty interior. Let F1, . . . , FN be the facets of P , that is, its faces of
codimension one. Write the equation of each Fk as

〈uk, v〉+ λk = 0

where uk are in V ∗, λk ∈ R and 〈uk, v〉 + λk ≥ 0 for all v ∈ P . Then the uk are
“inward pointing normal vectors” to P . We have:

P = {v ∈ V | 〈uk, v〉+ λk ≥ 0 (1 ≤ k ≤ N)}.
Moreover, the recession cone of P (see 3.1) is

re(P ) = {v ∈ V | 〈uk, v〉 ≥ 0 (1 ≤ k ≤ N)},
the dual cone of C(u1, . . . , uN). Since P contains no line, re(P ) is acute, and hence
u1, . . . , uN generate the vector space V ∗.

For x = (x1, . . . , xN ) ∈ RN , we set

P (x) := {v ∈ V | 〈uk, v〉+ xk ≥ 0 (1 ≤ k ≤ N)}
(in particular, P (λ) is equal to P ). Then P (x) is a convex polyhedron, obtained
from P by parallel motions of its facets; the face structure of P (x) may be very
different from that of P .



VECTOR PARTITION FUNCTIONS 829

We will see that the P (x) form a family of partition polyhedra as defined in 3.1;
this result is known under various forms, see [18]. We set W := RN with canonical
basis (w1, . . . , wN ), and we consider the map

ι : V → W
v 7→ (〈u1, v〉, . . . , 〈uN , v〉).

Clearly, ι is injective; we consider ι as an inclusion of V into W . Denote by
p : W → E := W/V the quotient map; set αk := p(wk) and ∆ := (α1, . . . , αN ).
Then we have the following statement, whose straightforward proof is omitted.

Proposition. (i) For any x ∈W , the affine map

x+ ι : V → W
v 7→ (〈u1, v〉+ x1, . . . , 〈uN , v〉+ xN )

induces an isomorphism of P (x) onto P∆(p(x)).
(ii) A subset σ of {1, . . . , N} is a basis of ∆ if and only if the sequence (uk)k/∈σ

is a basis of V ∗. In this case, the affine hyperplanes 〈uk, v〉+ xk = 0 (k /∈ σ) have
a unique common point sσ(x), and moreover x+ ι(sσ(x)) = vσ(p(x)).

Observe that p : W → E depends only on the set

F := {F1, . . . , FN}
of all facets of P . Via p−1, the subdivision of C(∆) ⊂ E by closures of chambers
defines a subdivision of the cone

C(F) := p−1(C(∆)) = {x ∈ W | P (x) 6= ∅}.
We denote the chambers in C(∆) and in C(F) by the same letter γ, and we use
the notation B(F , γ) for B(∆, γ) (the set of bases σ of ∆ such that the cone C(σ)
contains γ).

Combining the proposition above with proposition 3.1, we obtain the following

Corollary. Let γ be a chamber in C(F). Then a point x ∈ W is in γ if and only
if P (x) is simple with vertices sσ(x) (σ ∈ B(F , γ)). In this case, the directions of
edges of P (x) at sσ(x) are given by the dual vectors of the basis (uk)k/∈σ.

4.2. Characteristic functions and Fourier transforms of convex polyhe-
dra. Using the notation and results of 4.1, we can now state theorems 3.2 and 3.3
for arbitrary convex polyhedra which contain no affine line.

Theorem. Let P ⊂ V be a convex polyhedron of dimension n which contains no
line. Let F = {F1, . . . , FN} be the set of facets of P , with inward pointing normal
vectors u1, . . . , uN , and let γ be a chamber of C(F). Then

(i) For any x = (x1, . . . , xN ) ∈ γ, we have modulo the group generated by char-
acteristic functions of polyhedra which contain lines:

[P (x)] =
∑

σ∈B(F ,γ)

[sσ(x) + C(u∗k,σ)k/∈σ](4.2.1)

where (u∗k,σ)k/∈σ is the dual basis of (uk)k/∈σ, and where sσ(x) = −∑k/∈σ xku
∗
k,σ is

the corresponding vertex of P (x).
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(ii) If moreover dv is a Lebesgue measure on V , then we have for any generic
u ∈ C(u1, . . . , uN )0:∫

P (x)

e−〈u,v〉dv =
∑

σ∈B(F ,γ)

e−〈u,sσ(x)〉 vol |u∗k,σ|k/∈σ∏
k/∈σ〈u, u∗k,σ〉

(4.2.2)

where vol |u∗k,σ|k/∈σ is the volume of the parallelepiped {∑k/∈σ tku
∗
k,σ | 0 ≤ tk ≤ 1}.

Recall (see 1.5) that the Laplace transform of an acute polyhedral cone C ⊂W
is the rational function R(C) on W ∗

C such that

R(C)(z) =

∫
C

e−〈w,z〉dw

for z such that Re(z) is in the interior of the dual cone of C. Setting x = 0 in
(4.2.2), we obtain a closed expression for this Laplace transform as a sum of simple
fractions.

Corollary 1. Let C be an acute polyhedral cone of dimension n. Let F be the set
of all facets of C, and let γ be a chamber of C(F). Then the Laplace transform of
C is given by

R(C) =
∑

σ∈B(F ,γ)

vol |u∗k,σ|k/∈σ∏
k/∈σ u

∗
k,σ

.

Using theorem 3.2, we also obtain the following result.

Corollary 2. Let P ⊂ V be a convex polyhedron of dimension n which contains
no line. Then we have modulo LHe(V ):

[P ] =
∑
s

[s+ CsP ](4.2.3)

(summation over all vertices s of P , with tangent cones CsP ). Moreover, for any
linear form u on V which is bounded from below on P , we have∫

P

e−〈u,v〉dv =
∑
s

e−〈u,s〉R(CsP ).(4.2.4)

In the case where P is bounded, (4.2.4) is due to A. Barvinok (see [2], §2),
whereas (4.2.3) is deduced in [3] from the Euler identity on the number of faces
of convex polytopes. In fact, the theorem above is an explicit version of corollary
2: the choice of a chamber leads to closed expressions of [CsP ] and of R(CsP ) for
all vertices s of P . From the geometrical point of view, each choice of a chamber
determines an approximation of P by a family of simple polyhedra, and in turn, a
subdivision of the dual cone of each CsP into simplicial cones (see proposition 3.1).

4.3. Exponential sums for lattice points in rational convex polyhedra. As
in 4.1, we consider a convex polyhedron P in an n-dimensional real vector space V ,
such that P is n-dimensional and contains no affine line. We assume moreover that
V is endowed with a lattice M , and that all vertices of P are rational with respect
to M , i.e., that P is a rational convex polyhedron. We determine the exponential
sum ∑

v∈P∩M
e−〈u,v〉
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where the linear form u on V is bounded from below on P . We use the following
notation.

For the equation 〈uk, v〉+λk = 0 of each facet of P , we can assume that uk ∈M∗

(the dual lattice of M), that λk ∈ Z and that (uk, λk) is primitive in M∗ × Z.
Together with the assumption that 〈uk, v〉+ λk ≥ 0 on P , this determines (uk, λk)
uniquely.

We denote by T the torus RN/ZN . Then any λ ∈ ZN defines a character e2iπλ

of T : For g ∈ T and a representative (g1, . . . , gN) of g in RN , we have

e2iπλ(g) = exp(2iπ

N∑
k=1

λkgk).

For a basis σ of F (that is, (uk)k/∈σ is a basis of V ∗), we denote by G(σ) the image
in T = RN/ZN of the subgroup

{(g1, . . . , gN) ∈ RN | gj = 0 ∀j ∈ σ and
∑
k/∈σ

gkuk ∈M∗}.

Then G(σ) is a finite subgroup of T of order

µ(σ) := vol |uk|k/∈σ = 1/ vol |u∗k,σ|k/∈σ
where (u∗k,σ)k/∈σ is the dual basis to (uk)k/∈σ.

Theorem. Let P = P (λ) be an n-dimensional rational convex polyhedron in V ,
with inward pointing normal vectors u1, . . . , uN , and let γ be a chamber such that
λ ∈ γ. Then we have for any u ∈ C(u1, . . . , uN)0:∑

v∈P∩M
e−〈u,v〉 =

∑
σ∈B(F ,γ)

e−〈u,sσ(λ)〉

µ(σ)

∑
g∈G(σ)

e2iπλ(g)∏
k/∈σ(1− e−2iπgke−〈u,u

∗
k,σ〉)

(4.3.1)

and moreover

∑
v∈P 0∩M

e−〈u,v〉 = (−1)n
∑

σ∈B(F ,γ)

e−〈u,sσ(λ)〉

µ(σ)

∑
g∈G(σ)

e2iπλ(g)∏
k/∈σ(1 − e2iπgke〈u,u

∗
k,σ〉)

.

(4.3.2)

Both formulae are proved in the same way as (3.4.1) and (3.4.2). But they
are not direct consequences of (3.4.1) and (3.4.2), because the latter apply to the
intersection P ∩ZN where P ⊂ V is embedded in RN by v 7→ (〈u1, v〉, . . . , 〈uN , v〉).
Then it may happen that M is strictly contained in V ∩ ZN .

Assume now that P is a lattice polyhedron, that is, all vertices of P are in the
lattice M . Then we obtain using 3.2:∑

v∈P∩M
e−〈u,v〉 =

∑
s

e−〈u,s〉F (CsP,−u)

(sum over all vertices of P ). This formula is due to A. Barvinok, see [2], §4.

4.4. Euler-MacLaurin formula for rational convex polytopes. Let V be a
real vector space of dimension n, endowed with a lattice M . Let P ⊂ V be a
rational convex polytope, i.e., the convex hull of finitely many points of MQ. We
assume that the interior P 0 is not empty.
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For any polynomial function ϕ : V → C, we set

iP (ϕ) :=
∑

v∈P∩M
ϕ(v) and iP 0(ϕ) :=

∑
v∈P 0∩M

ϕ(v).

We express iP (ϕ) and iP 0(ϕ) in terms of the integral of ϕ on P and of the variation
of this integral when P is deformed by independent parallel motions of its facets.

We denote by F = {F1, . . . , FN} the set of facets of P , with equations 〈uk, v〉+
λk = 0 normalized as in 4.3. For x = (x1, . . . , xN ) ∈ RN , we denote by P (x) the
convex polytope in V defined by the inequalities 〈uk, v〉 + xk ≥ 0 for 1 ≤ k ≤ N .
In particular, we have P = P (λ) where λ = (λ1, . . . , λN ). We set:

IP (ϕ)(x) :=

∫
P (x)

ϕ(v)dv

where the Lebesgue measure dv on V is normalized so that V/M has volume 1.
For each basis σ of F , we have a finite subgroup G(σ) of the torus T = RN/ZN ,

see 4.3. For any chamber γ, we denote by G(γ) the union of all G(σ) for σ ∈ B(F , γ).
Finally, we set for g ∈ T :

ToddF(g, ∂/∂x) :=

N∏
k=1

∂/∂xk
1− e−2iπgke−∂/∂xk

.

Then, arguing as in 3.5, we obtain the following

Theorem. Let P = P (λ) be an n-dimensional rational convex polytope in V . Let
ϕ : V → C be a polynomial function; let γ be a chamber such that λ ∈ γ.

(i) The function x ∈ γ → IP (ϕ)(x) extends to a polynomial function IP,γ(ϕ) on
RN .

(ii) For all g ∈ T such that g /∈ G(γ), we have

ToddF (g, ∂/∂x)IP,γ(ϕ) = 0.

(iii) We have

iP (ϕ) =
∑

g∈G(γ)

e2iπλ(g)(ToddF(g, ∂/∂x)IP,γ(ϕ)(x))|x=λ

and moreover

iP 0(ϕ) =
∑

g∈G(γ)

e2iπλ(g)(ToddF(−g,−∂/∂x)IP,γ(ϕ)(x))|x=λ.

Consider now the case where P is a lattice polytope, i.e., all vertices of P are
in the lattice M . By 4.1, these vertices are the points sσ(λ) = −∑k/∈σ λku

∗
k,σ for

σ ∈ B(F , γ). Then, by the definition of G(σ), we have e2iπλ(g) = 1 for all g ∈ G(σ).
So our Euler-MacLaurin formula simplifies as follows.

Corollary. Let P = P (λ) be a convex lattice polytope in V , let ϕ be a polynomial
function on V , and let γ be a chamber such that λ ∈ γ. Then

iP (ϕ) =
∑

g∈G(γ)

(ToddF (g, ∂/∂x)IP,γ(ϕ)(x))|x=λ

and moreover

iP 0(ϕ) =
∑

g∈G(γ)

(ToddF(−g,−∂/∂x)IP,γ(ϕ)(x))|x=λ.
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Abstract. We obtain residue formulae for certain functions of several vari-
ables. As an application, we obtain closed formulae for vector partition func-
tions and for their continuous analogs. They imply an Euler-MacLaurin sum-
mation formula for vector partition functions, and for rational convex poly-
topes as well: we express the sum of values of a polynomial function at all
lattice points of a rational convex polytope in terms of the variation of the
integral of the function over the deformed polytope.
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