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Residues and zero-cycles on 
algebraic varieties 
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0. Introduction 

In a general sense this paper is concerned with exceptional configura- 
tions of points on a smooth projective algebraic variety M. If I D is a linear 
system of divisors and Z a set of distinct points, we denote by 154,(D) I the 
sub-linear system of divisors in ID I which pass through Z. Then we say 
that Z is superabundant in case the superabundance 

co(Z, ID) = dim I5(D)I - (dimIDI - degZ) 

is positive; this means that the points of Z fail to impose independent con- 
ditions on I D 1. In case the linear system I D I induces a projective embedding 

c: M >A- Pr 
the superabundance exactly measures the failure of the points p = c(p) (p C Z) 
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to be in general position, so that superabundant sets may be thought of as 
generalized multisecant planes. In case M is an algebraic curve and I D is 
the canonical linear series we are discussing special divisors, a beautiful 
subject with a venerable history. For surfaces the simplest interesting 
example of a superabundant configuration are the nine points of intersection 
of two cubics in the projective plane. 

There is one central idea in this paper, which we will explain following 
the introduction of some notation. We assume given a holomorphic line 
bundle L -> M whose associated complete linear system induces a projective 
embedding 

CL: M__>pr. 
We set p CL(P), Z = CL(Z), M = cL(M) and denote by {Z} the linear span in 
Pr of the points p where p C Z. More generally, we denote by {Z, AZ, ... , 

3,Z} the linear span of the I-ll osculating spaces to M at the points p. We 
call {Z}, ..., {Z, &ZY, * ..., &Z} the osculating sequence associated to the 0-cycle 
Z. We shall also sometimes denote by p a point in C7+' lying over CL(P) e Pr. 

Now suppose that M has dimension n and that E -L M is a rank n 
holomorphic vector bundle with a section s e H0(0(E)) having a set Z = (s) 
of distinct isolated zeroes. If we set 

IZ = P1(s) + -* + Pd(S) and 
(L= KodetE 

then the residue theorem (Section I) gives a linear relation 

(0.1) 0.1Xis)p1(s) 0 , X 0. 

In particular the superabundance co(Z, IK det E) > 0, a relation which 
has a converse at least in case n = 1, 2. Differentiation of (0.1) , times with 
respect to s e HO(0(E)) gives similar linear relations among the Ith osculating 
spaces to M at points p C Z, relations in which the values of the polynomials 
in SymP(Ho(0(E))) appear as coefficients. Our basic observation is that 
0-cycles Z = (s) for s e HO(0(E)) have osculating sequences whose growth is 
much slower than for a generic 0-cycle, and that the quantitative measure 
of this is reflected in the graded ideal in (D,_0SymIAHO(0(E)) defined by M. 
The precise statement is given in Section II b). 

This then is the idea behind the paper. Following a recollection of the 
local properties of residues, the global residue theorem and a converse are 
proved in Section I b). It is this converse which motivates our feeling that, 
in general, the conditions imposed by the residue theorem are sufficient for 
a configuration of points to have certain global properties. In Section I c) 
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we interpret geometrically the constraints imposed by the residue theorem 
in terms of "multisecant planes," somewhat by analogy with the picture 
one has of special divisors on curves as multisecant planes on the canonical 
curve. Then in Sections I d) and e) we specialize the residue theorem to line 
bundles on curves and rank-two vector bundles on surfaces respectively. 
In the curve case the connection with Abel's theorem and special divisors is 
established. In the surface case we continue a project initiated by 
Schwarzenberger [S] of associating rank-two bundles to zero-cycles on 
surfaces. Here we are able to give a reasonably complete existence 
and uniqueness result, one which is especially aimed at superabundant 
0-cycles. 

Turning to Section II we first define precisely the osculating sequence 
associated to a 0-cycle on a variety in projective space. Then in Part II b) 
we give the fundamental relation bounding the growth of this osculating 
sequence in terms of the graded ideal mentioned above. 

Applying this bound necessitates having information on this ideal. 
Actually, what is needed here are just inequalities, this because the 
mechanism works in the somewhat surprising way: 

Fewer relations in the graded ring 
(0.2) } 

Slower growth of osculating sequence. 

It is the tension created by the inequalities in (0.2) going in the non-obvious 
direction which makes our method work. The simplest case in which the 
homogeneous ideal can be estimated is when 

M-L& d...* * L (n-times) 

where L -> M is a line bundle whose complete linear system I L I induces a 
projective embedding 

CL: M-> P. 

If we let ML =CL(M), the zero-cycles Z = (s) for s e HO(0(E)) are intersec- 
tions of ML with a linear space pN-, of complementary dimension. We are 
led by the residue theorem to consider the diagram 

M IL PI 

I tK+mL , 0?m < En n 
P1r 

and in particular to the growth of the osculating sequence of Z CK+mL(Z) 
in Pr. Since the osculating spaces eventually exhaust pr, a corollary is the 
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estimate 

(0.3) dim I K + mL I _c(n, N, d, m) 

given in Part II c) below. In particular, taking m 0 0 we obtain the bound 
on h"'0(M) given in [H] and also in [C-G, 2] where it is derived for general 
webs as a consequence of Abel's theorem. 

In Part II d) we examine in closer detail the growth of the osculating 
sequence in the case of curves. The bound (0.3) turns out to be essentially 
equivalent to Castelnuovo's inequality on the genus of a non-degenerate 
curve in projective space. 

In Part II e) we turn again to surfaces. By the Kodaira vanishing 
theorem the L. H. S. of (0.3) is given by a topological number according to 
the Hirzebruch-Riemann-Roch theorem. We examine the resulting inequal- 
ities for low degrees, characterizing some of the extreme cases such as the 
K3 surfaces S c P", which are uniquely specified by 

idegS = 2n - 2 
Pg(S) 0 0 

in almost exact analogy with elliptic curves. 
As indicated by its title, Section III is concerned with proving the 

sufficiency of the conditions imposed by the residue theorem. The simplest 
case here contains the conditions imposed on a complete intersection 

(0.4) Z = C C', Y Cy Cc= ILI 

where L -> S is a line bundle whose complete linear system ILI induces a 
projective embedding in P". Except for the case when S has minimal degree 
n - 1 in Pi, the residue theorem turns out to impose non-trivial conditions 
on a complete intersection (0.4), and in Part III a) we prove that these are 
"in general" sufficient. Actually, we give two completely different proofs 
of this "converse to the Bezout theorem," the second of which may lead to 
the best precise meaning of "in general" but we are not able to establish 
this. 

In Parts III b) and c) we set about characterizing extremal varieties; i.e., 
those for which equality holds in (0.3) for some m, under the assumptions 
on the codimension k and degree d, 

k== N-n > 2 
(0.5)1d2 ?3 lId > 2k + 3 . 
It is first shown that the extremal property is independent of m, and is 
characterized by the linear section 
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Z = P *-ML 

having the maximum superabundance 

(0.6) 60(Z, I0pk(2)) = d - (2k + 1) 

on the linear system of quadrics in pk. Under the conditions (0.5) and (0.6) 
on a configuration Z of points in general position in pk, it follows that the 
DO k(k-1)/2 quadrics containing Z intersect in a rational normal curve C. This 
fact is usually proved by a synthetic argument, but here we give an analytic 
proof in keeping with the general spirit of the paper. Once this is established 
we then show that as pk varies the curves C trace out an (n + 1)-dimensional 
variety VL c PN of minimal degree k = codim VL + 1 on which ML is a 
divisor. 

Once we know where to look it is reasonable to hope to explicitly con- 
struct extremal varieties, thereby proving that the estimates (0.3) are 
sharp. The details of this can be found in [H]. 

Finally, in the appendix we give some informal observations on the 
general problem of superabundance and on how our results fit in. Then we 
discuss three open problems which arise from this work. 

As mentioned above, this paper is based on the one idea of differentiat- 
ing the residue theorem (0.1) and then seeing what comes out. The results 
we find overlap somewhat with the thesis [H] by one of us. There the 
methods are quite different and may be roughly described as algebro- 
geometric using the Riemann-Roch for curves and linear series techniques 
similar to the proof of Castelnuovo's bound given in Chapter II of [G-H]. 
In fact, our techniques are closer to those used in the study of webs in 
[C-G, 1] and [C-G, 2], in that there is a common theme of applying local 
differential geometry to obtain global conditions on algebraic varieties. It 
is in the theory of abelian equations associated to webs that the osculating 
sequence first appeared (cf. the references cited in [C-G, 1]). 

The use of residues provides a direct and self-contained method for 
arriving at the essential mechanism in understanding the superabundance 
in the present context. In principle the technique works equally for vector 
bundles, but this depends on finding a good concept of "non-degenerate" for 
subvarieties of a Grassmannian. For this reason the method has potentially 
wider applicability than standard algebro-geometric techniques, which rely 
on the curve sections and therefore have to do with line bundles. On the 
other hand, the web methods are restricted to abelian equations coming 
from HO(0(K)) ? H0(0(detE)) whereas the residues give abelian equations 
associated to Ho(((K? detE)), and so are more general in scope. 
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Finally we should like to call special attention to the very interesting 
paper [A-S], which gives information on the osculating sequence in the 
general, as opposed to the extreme, case. 

I. The residue theorem and interpretations 

a) Local properties of residues. 
We shall summarize, in a form convenient for use in this paper, some 

local properties of residues from Chapter V of [G-H]. We denote by 0 the 
local ring at the origin in Cn and by m = {z1, * , zj the maximal ideal. Let 
f *(z), ..., f(z) e m be functions with the origin as isolated common zero 
generating an ideal Jf cz 0. Equivalently, the fi(z) C m constitute a regular 
sequence. Geometrically, we may think of the fi as defining a O-dimensional 
scheme which is set-theoretically the origin but whose additional infinitesi- 
mal structure is given by the finite-dimensional C-algebra 0/5. 

Given g(z) e 0 we set 

g(z)dz1 A ... A d z.n 
fi(Z) ... AX&Z) 

and define the point residue by 

(1.1) Resio, = ( 2- ) Yi 

where F is the real n-cycle given by {z: Ifj(z) -s} for sufficiently small s, 
and with orientation d(argfi) A ... A d(argf A) > 0. The following are the 
properties of (1.1) which we shall require. 

i) The first one, which is obvious, is the Cauchy integral formula 

(1.2) Rs~0~ (g(z)dz, A ... Adz,,) klcJ ( 
k1M 

(1.2) Resio, (L 1 )=k! k!( (?)a 

ii) Next, if the fi(z) are defined in a neighborhood of U = {z: II z I I E}, 

and if fi(z, t) is analytic in z C U and t for I t I < a with fi(z, 0) = f%(z), then 
for a and s sufficiently small the functions fi(z, t) will have a finite set of 
isolated common zeroes p,(t) in the interior of U. With 

_(t) g(z)dz1 A ... A dzn W 
1z t **fnz t) 

the sum 

EpResp,(t) (a)(t)) 
is a holomorphic function of t and 

(1.3) If (EResp,(ta(a(t))) = A, Resp,(t) (t)) at a 
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iii) If c) is as above, if 

fig' - 5jaif 
is also a regular sequence, and if 

- det I1 a~j(z) lg(z). dz, A ... A dzn, 
fz) * ... f (z) 

then the transformation formula 

(1.4) Resto, (o - Resi0o A' 
is valid. 

iv) The pairing 

ResfO/?C& > C 

defined by 

(1.5) Resf (g, h) Res,10( g(z)h(z)dz, A ... A dz, , 
f1()) ... f.(z) / 

is non-degenerate (local duality theorem). 
v) The pairing (1.5) depends on the coordinate system in C" and choice 

of generators fi for the regular ideal J. To make it intrinsic, we recall that 
for any regular sequence gj, *.* , g, C m generating an ideal J), 

(1.6) lExti z (0/V, (9) _ i/ ) , 

where the isomorphism in (1.6) transforms by det(bij) when we change to 
new generators g' = Ej bij g for V). If we let Q1l denote the stalk at the 
origin of the sheaf of holomorphic n-forms on Cn, it follows that the pairing 
(1.7) Res: (9/? g3Ext (0/5, Q1l) C 

is intrinsic and non-degenerate. 

b) The residue theorem and a converse. 
Now we shall give a global residue theorem for vector bundles. Let M 

be a compact, complex manifold of dimension n, E-->M a homomorphic 
vector bundle of rank n, and s e HO(0M(E)) a section with zero set Z a 
discrete set of points. More precisely, the image of 

9(*) 
S 

defines a sheaf of ideals Jz and Z is the 0-dimensional scheme with structure 
sheaf Oz = (9/5z. 

Given 0' e HO(0M(KO det E)) we shall define for each p e Z a point 
residue 
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Resp(?)- 

To do this choose a local holomorphic frame e1, ** , en, for E and local 
holomorphic coordinates z = (z1, , zn) centered at p. Then I s(z) = fi(z)e1 + * + fn(z)e6 

+(z) =g(z)dz1A .. A dz. (D e1 A A en 

and we set 

(1.8) Resp (1=) Res,,,} (g(z)dz, A A dz, ) 

By the transformation formula (1.4), this is well-defined. We also note from 
the property (1.5) of the point residue that (1.8) may be defined if we are 
given only 

,irp e Oz, P(K (& det E) . 
THEOREM. With the above notations, 

(1.9) EpezResp(?) = 0 

Conversely, if we assume the vanishing theorem 

(1.10) Hq(Qm(A PE)) = 0 for q > 0, 1 ! pn n , 

then for given A C C ,, (K(& det E) the relation 

Lpe Z Resp( AIr) = 0 

is necessary and sufficient for there to exist + C HI (Cm(K(? det E)) inducing 
each rp. 

We note that (1.10) is satisfied in case 

E = L,(G ... (3L. 

where the L.--- M are positive line bundles, by the Kodaira vanishing 
theorem. 

Proof. The result will be a formal consequence of duality. That is we 
let 

coz - Extra (,z, QM) 

be the dualizing sheaf and recall the canonical identification (cf. (1.7)) 

Z, P=Homc((9z,, C). 
Then we define 

Res: CM (KX det E) - f a 
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by 

<Res Up, Tp> - Res ( *P)P ) 

where irp e (.Mp(K9det E) and cp ,O,,. According to the local duality 
theorem and the standard Koszul complex, the sheaf sequence 

(1.11) 0 -' QM > Q- (E) - QM(A E) 
As Res 

-*Q-(det E) - cZ 0 

is exact. It is then a formal result that the exact complex of sheaves (1.11) 
induces both maps in 

))Res H 
(1.12) HO (Om(Kf9 det E) H?(z QM) 

and that the composite is zero. In the present circumstances we may 
canonically make the identifications 

IH0(@o) = Extn(M; CO, Q'n) 
H (QM) = Ext (M; CM, Q7) 

and then (1.12) becomes 

HO (Om(K(&det E ))R) Extn(M; s Qn) 3Ext(M; { My Qn) . 

Because duality is functorial this sequence is the dual of 
Res* (3* 

Hn (OM(det E*)) - H0(Oz) - HO (Cm) 

Finally, since according to (1.7) the pairing between 

Extn(M; tOz Qn) and H0(Oz) 

is given by residues, 

pe zResp( ) <Res' A, 3*1> 

-0, 
thus proving the residue theorem. 

Turning now to the converse, we see that the right hand end of (1.11) is 

(1.13) 0 - JZ(KgdetE) - m CM(K9detE) - 0 a . 

Under the vanishing assumption (1.10) 

(1.14) H1(Jz(K(DdetE)) _ H-(Q-) C 

Combining (1.14) with the exact cohomology sequence of (1.13) gives 

HO (Om(KO det E)) -s HO(cz) -f C - 0, 
which implies the converse. Q.E.D. 
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c) Cayley-Bacharach property and multisecant varieties. 
We want to interpret the residue theorem in geometric language. To 

begin with, we assume given on our variety M a zero-dimensional subvariety 

Z = Pi + --+ Pd 

consisting for the moment of distinct points. Let L -> M be a holomorphic 
line bundle with complete linear system I L of effective divisors D with 
[D] _ L. 

Definition. We shall say that Z has the Cayley-Bacharach property 
relative to I L I if any divisor D e I L I passing through all but one point of 
Z necessarily contains Z. Additionally, Z satisfies the strong Cayley- 
Bacharach property if any Z'= Z - p fails to satisfy the Cayley-Bacharach 
property. 

The Cayley-Bacharach property implies that the points of Z fail to 
impose independent conditions on ILI, i.e., 

(1.15) dim I L I- deg Z < dim 1,5z(L) I 
where 1,fz(L) I is the complete linear system associated to the subsheaf Jz(L) 
of O(L). The condition (1.15) makes sense for any 0-dimensional scheme Z, 
where by definition 

deg Z = Ep6 z dim, (zp), 

and we may use it to define the Cayley-Bacharach property in this case. 
The strong Cayley-Bacharach property is equivalent to (1.15) together with 

dim ILI - degZ' = dim Iz,(L)I 
for any Jz, z Jz with Jz, # 5,. 

From the exact cohomology sequence of 

0 - 5Z(L) > OM(L) > Cz(L) > 0 
and dim H?(Oz(L)) = deg Z, we note that the Cayley-Bacharach property 
implies 

(1.16) H1(5z(L)) # 0 . 
When also H'(OM(L)) 0= O (1.15) is equivalent to (1.16), and in this case the 
strong Cayley-Bacharach property is equivalent to (1.16) together with 

(1.17) H1(5z,(L)) = 0 

for ideal sheaves 5J, properly contained in Iz. 
Somewhat more geometrically, we consider the rational mapping 

CL: M - pr 
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given by the complete linear system I L 1. Specifically, if s0, * * *, s, G HO(OM(L)) 

constitute a basis then 
CL(P) = [so(p) *.. * s(p)] , p G M- 

For a set of points Z = p, + --- + Pd we denote by {Z}L the linear span of 
their images CL(P,). Here we assume that none of the p, is a base point. For 
a 0-dimensional scheme Z we define {Z}L to be the intersection of the 
hyperplane sections DE L I which contain Z in the ideal-theoretic sense; 
i.e., D e 15z(L) |. In all cases, if we define the superabundance 

(1.18) c(Z, L) = dim I54,(L) I- (dim I L I- deg Z) 

to be the numerical measure of the failure of Z to impose independent 
conditions on ILI, then by elementary linear algebra 

(1.19) dim {Z}L = deg Z - 1 - co(Z, L) 

Summarizing, assuming no p, e Z is a base point of IL , we have the fol- 
lowing: 

The Cayley-Bacharach condition implies 

(1.20) dim {Z}L ? deg Z -2 . 

The strong Cayley-Bacharach property is equivalent to (1.20) together with 

(1.21) dim {Z'}L = deg Z' - 1 
for all J, properly contained in 5J. 

Linear subspaces {Z}L satisfying (1.20) may be thought of as multisecant 
planes for the map CL: M- >Pr. For example, the simplest of these are 
trichords. If set-theoretically Z consists of a single point p and if (1.20) is 
satisfied, then p is some sort of inflection point on the image variety. For 
spaces {Z}L satisfying (1.20) and (1.21) we have I dim {Z}L= deg Z-2, and 

dim {Z'}L = deg Z' - 1 
for any proper subvariety Z' c Z, and we may think of {Z}L as a simple 
multisecant plane. 

The residue Theorem (1.9) implies the 

(1.22) PROPOSITION. The zero locus Z of a holomorphic section 
s G HO(CM(E)) satisfies the Cayley-Bacharach property relative to the 
complete linear system K( det El. If the vanishing theorem (1.10) holds, 
then the strong Cayley-Bacharach property is satisfied. 

d) Points and line bundles on curves. 
We want to examine the residue theorem for curves and surfaces. For 
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this a preliminary general lemma will be useful. Let M be a compact, 
complex manifold and Li -> M (i = 1, 2) a pair of holomorphic line bundles 
with L = L10L2. Let Z be a 0-dimensional scheme on M, assumed disjoint 
from the base loci of IL, and IL , and assume that 

(1.23 (The Cayley-Bacharach property holds for Z relative to | L I 
(1.23) idim [image of HO(OM(L2)) ) HO((9z(L2))] > a . 

LEMMA. With the preceding notations and assumption (1.23), 

(1.24) dim {Z}L ? degZ-1- a . 

Proof. By trivializing the line bundle L around each p, e Z, the points 
CL(P) E Pr for p near to p, may be considered as vectors f(p) e Cr+l. We 
initially assume the p, are distinct and, by suitable trivializations of L, may 
put the first assumption in (1.23) in the form 

(1.25) EpI e zf(P,) 0 . 
Similarly, by trivializations of the Li the mapping eL, is given for p close to 
p, by g(p) G Crl+l and the sections of L2 by functions s(p). By (1.25), and 
with suitable trivializations, 
(1.26) Ep, Zs(p,)g(p,) = 0 s c H?(OM(L2)) 

By the second assumption in (1.23) there are ?c independent relations (1.26), 
and this implies the lemma in case the p, are distinct. 

The general case is proved by the same linear algebra argument, but 
dualized so that the Cayley-Bacharach conditions are expressed in terms of 
the number of sections of a line bundle which contain Z in the ideal- 
theoretic sense rather than the simple linear dependence condition (1.25). 

Q.E.D. 
Suppose now that L -o C is a line bundle over an algebraic curve of 

genus g and that we are given a section s e HO(OC(L)) whose divisor 

(S) = Z = Pi + *- - + Pd (d _ 1),Y 
where some of the p, may be repeated. Since hl(C(K + L)) = O by the 
Riemann-Roch theorem for curves 
(1.27) dimlK+ LI g + d-2, 
while by the residue theorem in the form (1.22), 
(1.28) dim {Z}K+L = d -2 . 

Comparing (1.27) and (1.28) we find: 

i) In case g = 0 there is no implication. This is consistent with the 
following observation: 
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The rational normal curves are the only algebraic curves having no 
multisecant planes. 

ii) In case g = 1 the canonical bundle is trivial, so that K + L = L and 
(1.28) is a tautology. 

iii) In case g > 2 there is a non-trivial conclusion. This follows from 
(1.24) by taking Z to be the divisor of s C HO(C(L)), L1 = K, and L2 = L. 
Then we easily find a > r = dim I L 1, so that we obtain 

(1.29) dim {Z}K <d-1-r . 
The image of CK: C -> pg-i is called the canonical curve, denoted by C 

and with CK(P) = p. In case C is non-hyperelliptic the mapping eK is bira- 
tional; in the hyperelliptic case C is a rational normal curve and CK is two- 
to-one. The statement (1.29) has the geometric interpretation: 

(1.30) If the divisor p1 + * * * + Pd varies in a linear system of dimen- 
sion r, then the canonical images p, c C span at most a pd-l-r in Pg-'. 

Now this result is usually derived from 

ABEL'S THEOREM: If pp p,(X) varies with r linear degrees of freedom 
with parameters X = [1, >1 ** *, Br] C pr, then for any Go e HO(Qc) the abelian 
sum 

(1.31) E o = constant 

modulo periods. 

The partial derivatives D/aD, of (1.31) give 

Eps.(p,)0(p,) = 0 (a = 1, ..., r), 

which implies (1.29). In fact, for curves our residue theorem is essentially 
equivalent to Abel's theorem (cf. [G] for further discussion). 

Before leaving curves, at least for the time being, it is perhaps instruc- 
tive to show how to prove equality in (1.29), at least in case 

(1.32) r > d-g + 1 

so that (1.29) is non-vacuous. Suppose that Z = p1 + * + Pd spans a pd-1-p 

(p > r) in pg-1. We will show that Z then varies with UP linear degrees of 

freedom; i.e., ho(C(L)) = p + 1. Now Z lies on 

(g - 1) - (d - 1 - p)= g - d + p 
= f + 1 

independent hyperplanes where p' > 0 by (1.32). For any such hyperplane 
H containing the fixed linear space {Z} = {Z}K, 
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H-C - Z + Z' 
where the residual divisor 

-Pt+ * +Pd d+' = 2g-2, 

varies with coP' linear degrees of freedom. By (1.29) applied to Z', 

dim {Z'} ? d' - 1 -' 
=g-2-p. 

So there are 
(g - 1) - (g -2- p) = p + 1 

independent hyperplanes containing Z', and by letting these vary we see 
that Z moves with ooP linear degrees of freedom as desired. 

What we have done here is to prove the converse of Abel's theorem 
(1.31) for special divisors, i.e., those whose canonical images fail to span pg-'. 
By proof analysis one sees that this argument does not use the Riemann- 
Roch theorem, and in fact it gives a proof of this theorem using (1.29) and 
elementary linear algebra. 

e) Points and rank-two vector bundles on surfaces. 
It is well-known that on a complex manifold M an effective divisor D 

defines a holomorphic line bundle [D]->M and, up to constants, a holomorphic 
section s e HO(OM([D])) with divisor (s) = D. We shall prove a partial analogue 
in higher codimension by giving a converse to the residue theorem in the 
case of points on a surface. This discussion is a refinement of Section iv), 
Chapter V of [G-H] where references to the original papers are given. 
A similar result was known to Barth and van de Ven some time ago and 
has been used by W. Barth [B] in connection with his work on stable bundles 
on P2. 

Let S be a smooth algebraic surface with structure sheaf ( = C,, LO-S 
a holomorphic line bundle, and Z a 0-dimensional scheme defined by a sheaf 
of regular ideals Jf, ci (. We ask for a pair (E, s) consisting of a rank-2 
holomorphic vector bundle E-?S and section s e Ho(C(E)) whose scheme- 
theoretic divisor is Z and where det E = L. 

(1.33) PROPOSITION. The pair (E, s) with (s) = Z and det E= L exists.-=-Z 
satisfies the Cayley-Bacharach property relative to I K + L 1. The pair is 
(essentially) unique if Z satisfies the strong Cayley-Bacharach property. 

Proof. We shall give the argument in case Z consists of distinct points, 
and shall explain the meaning of essential uniqueness during the course of 
the proof. 

If (E, s) exists then with L = det E = A 2E, the Koszul resolution 
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(1.34) 0 -0 (D(L*) - O(E*) 0z 

gives a class 
(1.35) e e Ext'(S; 54, O(L*)) 
For each p e Z we denote by Qp the local ring 0,,p and by ?, the image of 5z 
in (9,; then Jf is the maximal ideal and by use of the local Koszul resolution, 

(1.36) Ext'p (5p, C,(L*)) L* (? Kp* 
Under the identification (1.36) the localizations 

eV eL* (gKp* 
of e are all non-zero. We recall here that in the local-to-global spectral 
sequence 

(1.37) Ek I = Hk (S, Ext' (5, C(L*))) Extk+l (S; 54, O(L*)) 

the class e maps naturally to 

d~peZ epeHI (S, Ext' (5, O(L*)))- Ep ez Extp (p, Op(L*)) 

Conversely, a class e as in (1.35) defines a short exact sequence (1.34) with 
a coherent sheaf yI in the middle. The condition ep 7 0 on the localizations 
is equivalent to yI being locally free, in which case yF- 9(E*) for a rank-two 
bundle E- S. The map IF -5 O gives s e H?(O9(E)) with (s) = Z, and since 
codim Z 2 implies 

Pic(S - Z) _ Pic(S) 

we see that L = det E. Summarizing: 

Finding (E, s) is equivalent to having e e Ext'(S; 5z, C(L*)) with non- 
zero localizations ep e Lp* Kp*. 

Setting 2* = O(L*) and applying the exact sequence of Ext* (S; *, S*) to 

0- - -Z C9 - C -Z )0 
give 

(1.39) 
O -- Ext' (S; 9, 2) -> Ext' (S; 5z, 2*) P Ext2 (S; (9, 2*) - Ext2 (S; 0, 2*) 

EDp e Z Lp* (g) Kp* 
where the local-to-global spectral sequence together with 

Xtk 2*) =0 1k~z 
has been used. Te dl f (1Lp (. Kp9 k i2 

has been used. The dual of (1.39) is 
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(1.40) 0 '- H((9(L?() K)) < Ext'(S; 5J, 2*) 

< & DpZLp?KpA H0((9(K?3L)). 
If we are given (E, s) defining (1.34) and (1.35), then (1.39) and (1.40) imply, 
for all ' C HO ((9(K(ge L)) 

0 <p(e), A> 
<e, p*+> 

=pez Resp 

giving another proof of the global residue theorem in this case. Conversely, 
if we are given 

(1.41) 0 # e, e L X Kp* satisfying <pez<Cp, P**> 0 0 
for all + e HO (C(K?L)), then we obtain e e Ext'(S; 0, S*) with localizations 
ep. But (1.41) is equivalent to the Cayley-Bacharach property, since a set 
of points xp c Pr has this property relative to the hyperplanes - there are 
XP c Cr~l projecting onto xp and satisfying 

(1.42) 0PXP = 0 

in Cr~l. This gives the existence half of our proposition. 
The strong Cayley-Bacharach property is equivalent to a unique, up to 

scalar multiples, relation (1.42). In this case there is, again up to scalars, 
a unique e e Ext' (S; 4Z, 2*) with the desired properties. It follows that for 
any two pairs (Ei, si) satisfying the conditions of the proposition there is a 
bundle isomorphism E, - E2 taking s, to s2. Q.E.D. 

II. Residues and the osculating sequence 

a) The osculating sequence. 
Let M be a compact, complex manifold and 

CL: M- pr 

the meromorphic mapping given by the complete linear system ILI associated 
to a holomorphic line bundle LA-M. If S0, . . ., sr G HO(((L)) are a basis for 
the sections, then locally we may choose a non-vanishing section e of L -->M 
and write 

S2(z) = fA(Z) * e . 

By slight abuse of notation we set 

(2.1) f(Z) = (fo(Z) ... * fr(z)) e C 

with the understanding that, if p e M has coordinate z, then p = CL(P) is the 
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image of f(z) under the projection Cril _> Pr. Such local liftings of CL exist 
away from the base locus B of the linear system I LI, and unless otherwise 
mentioned we shall restrict our attention to M - B. 

Definition. The span in Pr of the vectors 

&'lf(z) + 
i, i & X= 1 + + - 

is the Pt" osculating space 3Pp to the image M = CL(M) at the point p CL(P). 

Of course 3Pp is well-defined independently of the local lifting f. The 
osculating spaces give an intrinsically defined increasing sequence of linear 
spaces attached to each point p C M. We note the 

(2.2) LEMMA. For A! sufficiently large 

asp = pr 

Proof. If not there is a linear function e on Cr+1 such that all osculating 
spaces lie in the hyperplane defined by d. Equivalently, the analytic func- 
tion <d, f(z)> vanishes to infinite order at z = 0, and is hence identically 
zero. This contradicts the non-degeneracy of M c pr* Q.E.D. 

We now come to our basic construction. Let E-> M be a rank-n holo- 
morphic vector bundle and s C HO((D(E)) a holomorphic section whose divisor 
(s) = Z consists of distinct points. We write 

Z = Pi + --- + Pd (d -on,,(E)); 
and remark that what is essential here is not that the pi should be distinct 
but that the divisor of s should be zero-dimensional. We consider the 
rational map 

CKCdet E: M > Pr 

associated to the complete linear system I K? det El and assume that none 
of the pi is a base point. 

We denote by 

{Z. Z, .., Z= {P1, , Pd; bp1, ..., 3P d; ...; 6Pp1, l ..., YPd}KFdetE 

the linear span of the ptI osculating spaces at the corresponding points 
pi GPr. 

Definition. The sequence of linear spaces 

is called the osculating sequence associated to the section s e HO(O(E)). 
The residue theorem 



478 P. GRIFFITHS AND J. HARRIS 

(2.3) =1ResI) = 0, +e HO(@(K(g detE)), 

implies that 
dim {Z} d - 2 . 

Our basic idea is to obtain bounds on the entire osculating sequence by 
successively differentiating the residue theorem, a program we shall begin 
in the next section and refine in the succeeding ones. 

We also note that the converse to the residue theorem implies the 
strong Cayley-Bacharach property 

fdim {Z} d -2 
{dim {Z'} d-2 if Zr = Z-point 

in case the vanishing theorem (1.10) is satisfied. 

b) The fundamental relation. 
We retain the notation and assumptions from the previous section. For 

a pt" order differential operator 

A = EP+..-+"n= PA, ... .1n 
ap 

considered as a vector in Sym.1(Tp(M)) we use the convention (2.1) with 
L = KO det E and set 

Oap= A -f(z) 

projected into Pr. This is well-defined modulo ap-lp, and the pth osculating 
space is clearly given by 

-p= {=AP: X ? P and A e Sym.1(Tp(M))}. 
At each pi C Z the differential ds C EP 0 T* (M) induces an isomorphism 

(2.4) EPi_ TPi(M) 
since the zeroes of s are assumed non-degenerate. Using (2.4) each 
A C Sym.t (HI (((E))) induces 

Ai e Sym.1 (Tpj (M)) 
and we set 

6A = P AiPi- 

THEOREM. With the preceding notations 

(2.5) 0 modulo {Z, 6Z, ...,-Z 

for all A C Sym.P (HO (@9(E))). 

Proof. The residue theorem (2.3) gives 

Ed P. = 0 
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for a suitable choice of local lifting (2.1), and this is the 4O0 case of the 
theorem. Let now 

8 = SOs 81s ,SN 

be a basis for HI(@(E)) and set 

s(t) = sI + EN t SP - 

We shall apply D/&tp at t = 0 to 

ERes ()) 

By (1.3) this is 

(2.6) d 
Resp.(a (0) )=?) 

and it remains to examine the individual terms in this sum. 
Let zj, *- , zn be local holomorphic coordinates centered at pi C M and 

el*, en a local holomorphic frame for E -> M such that 

s0(z) - =1 zae - 
For 1 ? p ? Nset 

sP(z) - ,:iApa(z)e,. 
The ith term in (2.5) is 

(2.7) Reso(&&l (g(z)dziA...Adz()) 

where { Sa(t) =Zfa + Ep N tpApa(z) 
-(z) g(z)dz1 A A dz?(3el A ... A e, . 

Using Cauchy's formula (1.2), 

(2.7)-E n>Reso} (Ap.(z)g(z)dz1 A * A dzn ) 

- CY--l>PApa(O) (0) + (...)g(O) . 

Using our identifications this equation is 

E=1 asopi 0 modulo {P1, * *Pd}, 

which is the , = 1 case of the theorem. 
The general argument proceeds in the same manner. Q.E.D. 
We would like to explain the geometric meaning of (2.5) when E- >M 

is generated by its global sections. If G(N - n, N) denotes the Grassman- 
nian of PN-n's in pN then the assignment p --{s e HO(@(E)): s(p) = 0} gives 
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a mapping CE: M-*G(N- n, N) such that EL-M is induced from the universal 
quotient bundle. The zero divisors of sections s C HI( ((E)) are the inverse 
images under CE of Schubert cycles on the Grassmannian. In the diagram 

M E 

M-> G(N- n, N) 

eTK(gdet E 
pr 

for such a generic Schubert cycle a, 

eCE'(a) =Pi + + ad 

is a zero cycle Z on M, and we may consider the linear span {p1, -A {Z} 
in Pr of the points pi CKCxdetE(pi). The residue theorem (2.3) says that {Z} 
is a multisecant plane. By varying a, we successively obtain the relations 
(2.5) bounding the growth of the sequence of osculating spaces to M= 
CKgdet E (M) at corresponding points pi. The number of independent equations 
(2.5) is 

dim (SymP HO(O(E))) - r(M, a) 

where r(p, a) is the dimension of the space of A C Sym' (HO(C(E))) satisfying 
A (pi) = 0. In other words, and this is the fundamental geometric point to 
our paper, the growth of the osculating sequence at corresponding points 
pi is governed by the relations in the graded ring ffl SymP(Ho(C9(E))). 
Applying this principle necessitates estimating r(jp, o), and in the next 
section we shall do this in the simplest case. 

c) The fundamental bound for complete intersections. 
We want to pursue the consequences of the fundamental relation (2.5) 

in the simplest case when E=L (jD ... * 6L (n-times) is a sum of line bundles. 
To focus on the essential aspects we assume that the complete linear system 
IL i has a base locus in codimension >2 and induces a birational mapping 

CL: M - PI 

onto a non-degenerate algebraic variety ML C JjP of codimension k = N - n 
and degree d. For a generic pk in PI the intersection 

(2.8) Pk. ML Pi + *+ d 

Z 

is the divisor of a generic section s C HI(@((E)) _ 9 HI((D(L)). We recall that 
the pi are d > k + 1 points in general position in pk (cf. Lemma (2.13) below). 

Now choose a basis 

{sl, *.*.*. S.; s+Y *.*.*. SN+1} {= sa; sp} (1 < a < n, n + 1 < p < N + 1) 
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for HO((D(L)) and consider the zero-cycle (2.8) defined by s, = *-- = Sn = 0. 
For 0 ? m< ? n the residue theorem (1.9) implies the 

PROPOSITION. For * e HO (@(K + mL)) 

(2.9) Res ?+ n-r . 

Proof. In (1.9) we take E = Ltl+&(E ... & LI-"+', 8 = ...+18 * e"+ 

in the denominator, and Sp.l ... Sol * (n + 1 < p. ! N + 1) in the numerator. 
Q.E.D. 

We may apply (2.9) to give another proof of (2.5) in the present situa- 
tion. To explain the connection with the previous argument, remark that 
(2.9) may also be obtained by setting 

sa(ta) = sa + Eptaps, 

and successively differentiating 

E Res(P% ... PnM 0 

Now consider the diagram 

M IL >N 

(2. 10) ieK+mL 

pr 

and assume that none of the pi is a base point of the linear system ] K+ mL 
We set 

CK+mL(M) = M 
CK+mL(P) P 

ayp = p" osculating space to M at p. 

Suppose that zj, * - , z. are local holomorphic coordinates centered at pi e M 
and e is a local holomorphic frame for L M such that near pi 

Sa = Za - e a 1?a n. 
If 

g = g(z)dz1 A - - - A dz,? & em, 
then by (1.2) 

(2.11) (it)! * (fin)! Resp( yP; 
... SP, spl(0) ... s*p(o) a&Pg(0) + . ) 

Stej+1 ... spn~l azl' ...a ? 

where (--) are linear combinations of lower derivates of g(z) evaluated at 
z = 0. We may use (2.11) to evaluate the individual terms in (2.9), the 
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result being that if we set 

allPi = ,'p 
o jt ... (bl tz)i . =. . + + Jeff 

we obtain the relation 

(2.12) a-1s;1(Pi) sp() a Pi O{Z, aZ, ***, 1Z} . 
This equation is, of course, a special case of (2.5). 

To apply (2.12) we need an estimate on the number of independent 
coefficients which appear. This is provided by the following lemma which 
may be found in Section iii), Chapter II of [G-H] or in Section I of [C-G, 11. 
For completeness we shall give the proof here. 

(2.13) GENERAL POSITION LEMMA. The generic section 

Pk* ML = Pi + **? + Pd 

consists of d >?i k + 1 points in general position in pk. Any subset of 
min (d, kl + 1) imposes independent conditions on the complete linear system 
I Opk(l) of hypersurfaces of degree 1 in pk. 

To rephrase the lemma in cohomological terms, we set Z = pi + * + Pd 
and consider the exact cohomology sequence 

(2.14) 0 - HO(-4(l)) ) HO(Opk(l)) HO(@(l))-> HI(JjZ(l)) - 0 

of the exact sheaf sequence 

0 - 4fj (l) - Opk(l) OAi) - 0 

The lemma implies that 

(2.15) dim[image of (HO((pk(l)) HO (O(l)))] > min(d, kl + 1) 
which by (2.14) is the same as 

(2.16) h'(4z(l)) d - min(d, kl + 1). 

Proof. By non-degeneracy we may choose (N+ 1) points p1, .*.* PN+1 G M 
whose images p' = CL(P,) span pN Then p', ..., Pk+1 (k = N- n) span a Pk 

such that the intersection 
Pk. MpP -~1- + P * L =P1l + ***+ P,+, + ***+ Pd 

This implies that a generic Pk meets ML in d > k + 1 points of which some 
subset of (k + 1) is linearly independent. We want to show that any subset 
of (k + 1) is independent. 

If not, then we may fix a Pk and assume that for some neighborhood U 
of Po in the Grassmannian with coordinate $, the intersections 

P' (e ML = pk() + ... + Pk'+X) + . + p + ($) 
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where pjp(5) varies in an open neighborhood V. on M, the V. being pairwise 
disjoint, and where some (k + 1) of the p,(5) are linearly dependent. By 
perhaps shrinking neighborhoods we may assume that p'($>), , p4+,(t) are 
linearly dependent. 

Now, and this is the main observation, for any points pl e V1, * P*, Pke- e 
Vk+l the images perhaps will lie on several Pk's, at least one of which can 
be chosen to be a pk($) for some e e U. Then p- = * *p = +1(e) 
and consequently 

p' A ... A P'k-? - 

By analytic continuation of this equation we conclude that any (k + 1) points 
of ML are linearly dependent, which contradicts our initial observation. 

Now suppose that d > ki + 1 and group the points as follows: 

Ay, .. Y k; Pk+tY 'Y P2k; ;Pk(1-1)+lY .., Pk1; Pk1+1Y, .. 

G, G2 GI 

Each group Ga, spans a hyperplane HOa in Pk not meeting any of the other 
points, and then 

D = H1 + *-+ H, 
gives a hypersurface D e I(DOk(l) I passing through p1, **.*, YPk but not Pk1+i- 
This proves (2.15) with any subset Z' consisting of k1 + 1 points from Z 
replacing Z in the statement there. 

The case d < ki + 1 is similar only easier. Q.E.D. 

It follows from (2.12) and (2.15) that for each p = (e, *.., yn) the points 
a". are subject to at least min (d, (N - n)(Q + n - m) + 1) independent 
relations modulo {Z, aZ, *--, b1zz} (he = pi + *-- + [en). We define 

(2.17) 

c(n, N, d, It, mn) = ( + 1 )[d - min(d, (N- n)(fe + n - m) + 1)] 

= ho(Op(-l (p))[d - min(d, (N - n)(p + n - m) + 1)]. 
By (2.12) 

(2.18) dim{Z, AZ, ..., y3"Z} 
< h'3(Opnl(fA)) * h'(54z(t + n - m)) + dim {Z, aZ, *..., 3allZ} 

< K(n, N, d, m,, in) + dim{Z, AZ, **,-'Z 

We note that 

ic(n,N,d, p, m)=O for > d I ( -n), 

so that for 4cc in this range the osculating sequence stabilizes. If we define 
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(2.19) ,c(n, N, d, m) = ,.>,O(n, N, d, e, m) 

then this is a finite sum and by Lemma (2.2) we obtain the 

FUNDAMENTAL BOUND. For any complete linear system I L for which 
CL: M-> pN is birational onto its image, and for 0 ? m: ?! n 

(2.20) dim i K + mL I , jc(n, N, d, n) . 

If Z = pN-n. ML is a generic section of cL(M), then equality holds in (2.20) 
if, and only if, 

(2.21) h'(5z([e + n - m)) = d - min(d, (N- n)(fe + n - m) + 1) 
fore [d - 1/N - n] + (m - n). 

There are relations between these estimates for various m. For example, 
from (2.17) we see that 
(2.22) c(n, N. di t, m) = O K(n, N. di p + 1, m + 1) = 0 . 

Situations (2.10) for which equality holds in (2.20) will be said to be extremal. 
A priori it would appear that this depends on the particular m (0 : m : n), 
but because of Lemma (1.24) and (2.22) it is at least plausible that the 
essential case is when n = m. This will be proved to be the case in Section 
III below. For the moment we note the 

(2.23) COROLLARY. HO(O(K + mL)) = 0 if d ? (n - m)(N - n) + 1. In 
particular the Hodge number 

hn 0(M)=O if d<n(N-n)+ 1. 

d) The osculating sequence for curves. 
We will examine the bound (2.20) for a curve C of genus g. According 

to the discussion at the end of the preceding section we should consider 
the osculating sequence arising from the diagram 

C {L pan 

(2.24) {eK+L 
pr 

which is (2.10) in the case n = 1, N = n, and m = 1. By the Riemann-Roch 
theorem (cf. the end of Part I a) for a proof of R-R) 

(2.25) nd g+ 
Ir= d + g- 2 

where d is the degree of the image curve CL(C) and i = h0(K - L) is the 
index of speciality of the line bundle L -> C. Referring to (2.7), we have 

c(1, n, d, p, 1) = d - min(d, (n - 1)p + 1), 
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and by (2.18) the bounds in the osculating sequence are 

dim{Z} ? d - 2, 
dim{Z, AZ} ? (d - 1) + (d - n) - 1, since d > n, 
dim{Z, 3Z, a2Z} ! (d - 1) + (d - n) + (d - 2n + 1) - 1, if d > 2n -1. 

In Part I d) we have already discussed the first estimate with the conclusion 
that it was interesting essentially in case the genus 

g > 2 

which we now assume. The second estimate is non-trivial only if 

2d - n -2 < r, 

which by (2.25) is equivalent to i> 0. Consequently, the higher order 
behavior in the osculating sequence is interesting only for special 
divisors. 

Suppose now that i > 0. We will use the third step in (2.26) to give a 
proof of Clifford's theorem: 

(2.27) 2dim I degL, 

in case ILI is birational. If (2.27) fails, i.e., 

d ? 2n - 1, 
then the osculating space sequence (2.26) stabilizes with {Z, AZ, &2Z}, and by 
(2.20) 
(2.28) X = dim{Z, AZ, 32Z} = 2d - n -1. 

Comparing (2.28) and (2.25) gives i ! 0, which contradicts our assumption. 
We remark that the general case of Clifford's theorem together with 

an analysis of the case when equality holds in (2.27) may be proved by a 
similar method. 

Returning to the general osculating sequence, we have 

{Z, aZ, ...AI ,Z} - Pr for e [ > d- 1. 

By (2.20) 

(2.29) r < ,(1, n, d, 1) - 1 
-K(1, n, d, 0) + (d - 2) 

where 

(2.30) ,c(1,n,d,0)=g(d,n)=(d-n)+(d-2n+1)-+-(d-3n+2)-+*... 

will be called Castelnuovo's number. Either by applying (2.20) when n = 1, 
N= n, m = 0 or by comparing (2.25) and (2.29) we deduce 
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CASTELNUOVO'S BOUND. For a non-degenerate curve of degree d in P" 
the genus satisfies 

(2.31) g ? g(d, n) 

where g(d, n) is Castelnuovo's number (2.30). 

The curves for which equality holds in (2.31) have been discussed in 
detail in [G-H] and [C-G, 1]. We shall examine them once again from our 
present viewpoint in Section III below. 

e) The osculating sequence for surfaces. 
We will to some extent parallel the discussion for curves in the preced- 

ing section, although the complete enumeration of cases is of course more 
complicated. Let S be an algebraic surface and consider the diagram (2.10) 
in the case n = 2, N n, m = 2, 

S > P 

I K+2L 

pr 

We use the standard notations from surface theory, 

PI h0(K) geometric genus 
q h0(Q') = h'() =irregularity 
Pa= pg- q = arithmetic genus, 

and for any line bundle L - S 

s= h'(L) = h'(K - L) superabundance 
i = h(L)= h0(K - L) index of speciality 

Jw(L) = 1(L*L + K.L) + 1 

= g(C) 

in case ILI contains a smooth curve C. The Riemann-Roch theorem for 
surfaces is 

(2.33) dimL LL _KL + P? + 
2 2 

d - w(L) + Pa + 8-i + 1, 
where d = L * L = degree of LO->S. 

Applying (2.33) to L, K + 2L, and K + L using hi(K + mL) = 0 for i > 0, 
m > 0 gives 
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(n = dim I L d = d w-(L) + pa + s - i + 1 
(2.34) r dimlK+ 2LI = d + 2z(L) + p,, -2 

t = dimIK+ Li = w(L) + Pa-1. 
By (2.17) 

K(2, n, d, , 2) (be + 1)[d - min(d, e(n - 2) + 1)] 

=0 for [eLd 1], 

and by this together with (2.18) the bounds in the osculating sequence are 

(dim {Z} d -2, 

(2.35) dim{Z, AZ}?! (d-1) + 2(d- n + 1)-1, since d > an-1, 
dim {Z, 6Z, 32Z} (d -1) + 2(d - n +1) + 3(d - 2n + 3)- 1, 

if d > 2nX-3. 
In fact the first two are equalities as follows from the proof of the converse 
to the residue theorem and (2.13). We now examine cases. 

i) The first inequality is non-vacuous unless 

(2.36) ? d -2, 
and we shall prove 

(2.37) The inequality (2.36) holds S is a surface of minimal degree 
n - 1, in which case it is an equality. 

Before giving the argument we note the analogy with curves (cf. case 
i) below (1.28)): 

The surfaces of minimal degree, but not e.g., the image of P2 under the 
complete linear system IO0,2(k) for k > 3, are analogues of the rational 
normal curves. 

Proof of (2.37). If (2.36) holds, then by (2.34) 

2zw(L) + Pa ? 0 
-1 < w(1) + Pa'- since t>-1, 

which together imply z(L)- 0. By Noether's lemma (cf. Chapter IV of 
[G-H]), S must be rational, from which it follows that q = i = 0. By 
(2.34) again 

d + 1 > n = d + s + 1 
so that s = 0 and d = n - 1 as desired. 

Conversely, the surfaces of minimal degree are known (loc. cit.) and for 
these r = d - 2. Q.E.D. 
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The geometric meaning of (2.37), which will be discussed in a general 
context in Part III a) is this: 

Given an ample line bundle L -A S over a surface and of degree d = L L, 
a general set of d points on S is a complete intersection of two curves from 
LI=-dimILI = d + 1. 

ii) Suppose now that we are in the intermediate range 

(2.38) n ! d ? 2n -3, 

so that the initial inequality in (2.35) is non-vacuous. By (2.2) and (2.35) 

r < d - 2n . 
On the other hand, by (2.23) 

p= i = 0 , 

which together with (2.34) implies 

d + 2z(L) - q - 2 ? 3d - 2n 
d + 2z(L) + 2q - 2s - 2 

5-3q 

2 

This gives a version of Clifford's theorem for surfaces: 

If ILI is birational and q = 0 but h'(L) t 0, then 

2dim!LI ? d + 2. 

This may be proved directly by going to the usual Clifford's theorem on the 
curves in ILI. 

So far as we can determine the surfaces in the degree range (2.38) do 
not have the the same simple description as for curves because of the 
various possibilities for the irregularity. So we shall examine these surfaces 
for the extreme values of q. 

If q = 0 then S is rational. In fact, by (2.34) 

d 2d - 2z(L) - 1 
= d - K.L -3 

(-K) L>0 

so that I mK I is empty for m > 0. By the Castelnuovo-Enriques criterion 
(loc. cit.), S must be rational. 

At the other extreme, from (2.34) and t > -1 we have for all degrees 

-pa ? Z(L) . 
On the other hand, Pa = -q for d < 2n - 3 so that we obtain 
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q ? w(L), 
which also follows from the Lefschetz hyperplane theorem. By Castelnuovo's 
bound on the genus of a hyperplane section applied to C = S- Pn-1 we have 

(2.39) q-w(L) _ d-n +- . 
We will prove that: 

Equality holds in (2.39) S is a geometrically ruled surface over a 
curve of maximal genus in Pn-'. 

What this means is that S is a P'-bundle over a base curve B, and under 
the given projective embedding the fibres of S -> B go into straight lines. 
A generic hyperplane section of S then projects birationally onto B, and is 
hence a Castelnuovo curve. 

Proof. If equality holds in (2.39), then when C = Pn-- S the line bundle 
L-> C is non-special by Clifford's theorem for curves. Then by the 
Riemann-Roch theorem, 

dim iLcJ = d -z(L) 
= -1 , 

so that Cc Pn-1 is normally embedded. The exact cohomology sequence of 
0-> 0-> O(L) -> O(Lc) -> 0 gives, since HO(e(L)) HI (0(Lc)) is surjective, 

(2.40) q = h'(L) 

Now consider the Albanese map 

a:S >A, A=Alb(S). 

Since pg = 0 the image is a curve B of genus q = z(L). By the Riemann- 
Hurwitz formula the restriction 

a: C o B 

is birational, and hence the fibres of a are straight lines. This together 
with (2.40) proves our claim. 

iii) In case d > 2n - 2 we obtain from (2.21) the bound 

pg(S) < 1,(p + i)[d - min(d, (n - 2)(p + 2) + 1)] 
= (d - 2n + 3) + 2(d - 3n + 5) + *-- 
= pg(d, n) 

where the last equality is a definition. In particular 

P9(S) 1 if d= 2n -2 . 

We shall show that if equality holds then S is a K 3 surface. Since ho(K) > 0, 
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t > it in (2.34) and using Pa =1 - q we have 

n ? w(L) - q 
< n - q 

the second step being Castelnuovo's bound on the genus of a non-degenerate 
curve in P"'. It follows that q = 0 and z(L) = n. Then 

n- 1 (LL + K-L) + 1 
2 

K.L X +K*L 
2 

implies that K- L 0, and consequently K is trivial. The properties 

q=0, K=0 

serve to characterize K3 surfaces, and prove our claim. 

III. Inverting the residue theorem 

a) Complete intersections on surfaces. 
Perhaps the most naive question which one can ask about a configura- 

tion of points Z on a smooth variety M is the converse of the Bezout 
theorem: When is Z a complete intersection? More precisely, we should be 
given line bundles La -> M (a -1, -* - , n = dim M) together with a O-dimen- 
sional scheme Z whose ideal sheaf is locally a complete intersection, and we 
ask for divisors D. C I La I such that 

Z = Di ... D'a 
in the sense of schemes; i.e., 

14Z = END I +.. + JD,& 

In this section we shall for simplicity concentrate on the case when Z 
consists of distinct points, but the results carry over to the general situa- 
tion. 

The topological constraint is given by the usual Bezout theorem 

(3.1) deg Z = # (D1, ..., D"), 

the right hand side being the intersection number of the divisors Da. The 
formula (3.1) holds under the usual proviso that the Da intersect in a 
0-dimensional variety. An additional constraint is furnished by the residue 
theorem in the form (1.22): 

(3.2) Z satisfies the Cayley-Bacharach property relative to the complete 
linear system I K + L1 + + LI. 

In this section we will show that: 
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(3.3) In case M is a surface S and L, = L, = L is a line bundle whose 
complete linear system! Li gives a birational mapping of S, the conditions 
(3.1) and (3.2) are "in general" sufficient that Z be a complete intersection. 

The intuitive meaning of "in general" is 

(3.4) {dim {Z}K?2L = d-2, but 
Z is otherwise generic . 

In particular, a proper subset Z' c Z should impose independent conditions 
on 1K + 2L1; i.e., the strong Cayley-Bacharach property should hold. 

The precise meaning can be put in several forms, and for us it will be 
this: 

(3.5) Given Z satisfying (3.1) and (3.2), either Z lies on a pencil from 
LI or else 154(K + 2L) I is a positive-dimensional linear system having a 

fixed curve. In the former case, either Z is a complete intersection or else 
the pencil in I L I has a fixed curve. 

What is going on here is that in the d-fold symmetric product S'd) the 
condition (3.2) defines a closed subvariety which may not be irreducible but 
which in any case has a Zariski open U in common with the set of complete 
intersections. What is desirable is to characterize the points in the closure 
of U which remain complete intersections; (3.5) gives one sufficient condition 
that this be so. 

Before giving the proof of (3.3) we wish to record several remarks. 
The first is that, by (2.37) above, the condition (3.2) is vacuous the 
complete linear system L I embeds S as a surface of minimal degree in Pn. 

The second is that (3.3) should not be thought of as giving an explicit 
answer to the problem of characterizing complete intersections. Rather, it 
should be interpreted as a reciprocity or duality statement which is "in 
general" equivalent to a cycle being a complete intersection. The flavor of 
(3.3) is perhaps best illustrated by the special case of the Pascal theorem: 
In order that 6 points in P2 lie on a conic, it is necessary and sufficient that, 
for the hexagon they define, the pairs of opposite sides should meet in 3 col- 
linear points. 

The final remark is that in case 

IK + LI c ILI 
we deduce from (3.4) that the conditions (3.1) and (3.2) imply that Z lies on 
a pencil in I L , and is therefore a complete intersection provided this pencil 
has no fixed curve. In particular, this applies to P2 and covers the converse 
to the Cayley-Bacharach theorem given in Section ii), Chapter V of [G-H]. 
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We now give the proof of (3.3). Suppose 
CL: S -- P 

is the birational embedding given by I L 1. Proving that Z lies on a pencil 
in L is equivalent to showing that 

(3.6) dim {Z}Ls _ -2 . 

Setting d deg Z, our assumption (3.2) implies 

(3.7) dim {Z}K+2L ? d - 2, 

so that if (3.6) were false then by Lemma (1.24) 

(3.8) dim {Z}K+L < d -XT-1. 

Now for W a generic complete intersection 

{dim { W}K+2L = d - 2 

(dim { W}K+L = d -n 

so that we have, so to speak, proved the converse of (3.1) and (3.2) for 
0-cycles which satisfy (3.7) but are otherwise general. 

To complete the proof of (3.5) we assume (3.7) but not (3.6), so that 
(3.8) must hold and therefore |1(K + L) I is non-empty. Suppose there is 
an irreducible curve C e 5,z(K + L) ; we will derive from this a contradic- 
tion. 

If we let Co, = Ext',(O%, Q1) be the dualizing sheaf, the exact cohomology 
sequence of 

0 - >,3(K + L)- O S(K + 2L) > 0tC(L) > 

together with h'(Os(K + L)) 0 gives a surjection 

(3.9) HO((Ds(K + 2L)) - HO(cOC(L)) 0 

If s e HO(cOC(L)) vanishes at all but one point of Z, then by (3.9) we may 
find s e HO (O(K + 2L)) vanishing at all but one point of Z. By the assump- 
tion (3.2) s, and hence s, must vanish at the remaining point of Z. This 
implies that Z e I Lc (cf. (1.28); the argument is given there only in case 
C is smooth, but the general case may be deduced in the same way as 
Abel's theorem for singular curves in [G]). 

Using Oc([Z]) _ Oc(L), we consider the exact cohomology sequence of 

0 - 4z(K + L) > Z(K + 2L) ->(t)C > 

which because of h (gz(K + L)) 0 is 
0 > Ho(gz(K + L)) > HO(5z(K + 2L)) - HO(c(c) 

H1 ( 7(K + L)) > H1 (4, (K + 2L))-> H'(coc) -> 0. 
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The dimensions h'(O(K + 2L)) and hi(ca) are the same as if Z were a 
complete intersection. Hence the same must be true of the hi(gz(K + L)), 
and this contradicts (3.8). Q.E.D. 

It is perhaps of interest to give a variational form of (3.3) based on 
Proposition (1.33). Precisely what we shall prove is: 

(3.10) Let S be a regular surface and Z, (it I < s) an analytic family 
of 0-cycles satisfying { Z0 is complete intersection, and 

dim{Zt}K+2L d - 2. 
Then the Zt are also complete intersections. 

Proof. From deformation theory [K-S] we recall that the Zariski 
tangent space to the moduli of a vector bundle E -> S is H' (S, W>S(E, E)). 
In particular, if this group is zero then any local deformation is trivial. 

In case E = L 0 L, E, E) _0 (0 and by the regularity assumption 
on the surface S the bundle L (0 L is rigid. 

Now by Proposition (1.33) there are rank-two bundles Et -> S together 
with s, e Ho(O(Et)) such that det Et = 2L and (st) = Zt. Since dim {Zt} = 

d - 2 for t sufficiently small, we even have the uniqueness of (Et, st) SO 

that we may assume holomorphic dependence on t. Because of E. _ L (03 L 
and rigidity it follows that all Et _ L L, and this implies that Zt is a 
complete intersection. Q.E.D. 

This argument suggests an alternate proof of (3.3). Suppose that Z is 
a 0-cycle with 

dim {Z}K+2L = d-2 . 

Then by (1.33) there is a unique (E, s) with (s) = Z and det E = 2L. We 
note that the discriminant A = c 2(E) - 4c2(E) = 0. Under the additional 
assumptions { dim {Z'}K+2L = d - 2 for Z' = Z-point 

thl(O,) = O., 

we think it quite likely that E _ L (0 L by a semi-stable bundle argument. 
If so, this would provide a more satisfactory converse to the Bezout 
theorem. 

To conclude this section we wish to make one final observation. Recall 
that the canonical curve C c p(-i has the remarkable property that if 
Pi, * *, Pd e C is a set of points spanning a pd-i-n then Z =p+ 4- ** + Pd 

varies in an oon-dimensional family of such multisecant planes. The follow- 
ing corollaries of (3.3) are analogues for 0-cycles on surfaces: 
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If Z is a 0-cycle of degree d with {Z}L+2L pd-2 but otherwise Z is 
generic, then Z varies in an co2o"-dimensional family of such multisecant 
planes where {Z}K+L pd-n; and if Z is as above, then the osculating 
sequence {Z}K?2L, {Z, aZ}K?2L, *-- is subject to (2.35). 

b) Structure of extremal varieties, i) 

Definition. A mapping 
CL. M-> PN 

of a compact, complex manifold into PN given by a complete linear system 
Lfor some line bundle L -- M is said to be extremal if CL is birational onto 
its image ML and if equality holds in the fundamental bound (2.21), 

dimK4K + mLI ? t(n, N, d, m) 

for some m with 0?!< n m n. 
Letting k = N - n and d > k + 1 be the codimension and degree of ML, 

we have discussed extremal curves and surfaces satisfying 

d ? 2k + 2, 
and probably this discussion generalizes to higher dimensions. In this and 
the following section we shall determine the structure of extremal varieties 
when d > 2k + 3. 

We begin with a lemma. 

(3.11) LEMMA. Let Z = P1 + + Pd be a set of d > kl + 1 points in 
general position in pk where k > 2, 1 > 2. If Z imposes the minimum 
number kl + 1 of conditions on I Oek(l) |, then this is already true for 1 -2. 

Proof. Recall from Lemma (2.13) that any kl + 1 points from Z impose 
independent conditions. Under the assumptions of Lemma (3.11) then, any 
hypersurface D e I Opk(l) I passing through kl + 1 points from Z must contain 
Z entirely. 

Let Q e |9,k(2) be any quadric passing through 2k + 1 points of Z, say 
Pt. ... , P2k+1- We must show that Q contains Z, i.e., that Q passes through 

any remaining point, say Pkl+2. Group the points in Z as follows: 

PlY , P2k+1; P2k+2Y . P3k+?; ; P(-1)k+2 . Plk+1; Plk+2 
. 

G3 Gz 

By general position the points in Ga span a hyperplane Ha, containing no 
other points from Z, and then 

D = Q + H3 + *.** + Hie I |pk(l) 

passes through P1, ..., Pkl+ and hence through Pkl+2- So Pkl+2 e Q as desired. 
Q.E.D. 
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From this lemma and (2.21) we deduce the 

(3.12) LEMMA. Suppose that d > 2k + 2 andML c pN is extremal. Then 
equality holds in (2.21) when either 

m = n and [e=2, or 
(m= n - 1 and [=1. 

To see how equality can hold in (2.21) we shall prove the 

(3.13) LEMMA. A set Z of d > kl + 1 points lying on a rational normal 
curve C in Pk is always in general position and imposes exactly kl + 1 
independent conditions on I Opk(l) 1- 

Proof. If t is a linear coordinate on PI we recall that, for any integer 
m, HO(Opi(m)) is the vector space of polynomials in t of degree <m; it has 
dimension h?(Opi(m)) = m + 1. A rational normal curve C in Pk is the image 
of PI under the complete linear system I Opa(k) 1. In a suitable homogeneous 
coordinate system it is given parametrically by 

t ) [1, t? . , tk] . 

Using a van der Monde determinant we see that distinct points on P' go to 
points in general position in p'. 

Now (pk(l) , ( Opt(kl) and the restriction mapping 

HO(Opk(l)) ) H?(Opi(kl)) > 0 

is visibly surjective. Since ho(Op((kl)) -kl + 1 it follows that, for ic the 
ideal sheaf of C, 

ho(?c(l)) ho(Opk(l)) - (kl + 1) 

For Z a set of distinct points on C, 

ho(gz(l)) > h?(?c(l)) ? ho(@pk(l)) -(kl + 1) 

while the reverse inequality is (2.23). Q.E.D. 

The usual route to the determination of extremal varieties, which is 
the one used originally by Castelnuovo and presented in [C-G, 1], is the 
following converse to Lemma (3.13): 

(3.14) LEMMA. Given d > 2k + 3 points Z in general position in pk 

imposing exactly 2k + 1 independent conditions on the linear system 

1 Opk(2)1 of quadrics, it follows that Z lies on a unique rational normal 
curve. 

Combining (3.13) and (3.14) we deduce the converse to Lemma (3.12); 
namely, if equality holds in (2.21) when either 
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(m = n and A- 2, or 
(3.15) lm-n-1 and [ = 1, 

then ML is extremal and moreover a generic section pk- ML lies on a unique 
rational normal curve. Since dim G(k, N) = (k + 1)n there are ao (k+1-, such 
rational normal curves, but in previous work one could show by additional 
arguments that they only fill up a variety VL of dimension n + 1, which 
then must be a variety of minimal degree k = codim VL + 1 in pN. Still 
further analysis shows that ML lies in a special way on VL. For example, 
when d ? 7 an extremal algebraic curve of degree d in P3 lies on a quadric 
surface where it has type (in, mn) or (mn, mn + 1) according to whether the 
degree d = 2m or 2m + 1 is even or odd. The general rule is that ML 
should be as close as its degree allows to being an intersection of VL with 
a hypersurface in p'. 

Now, although quite elegant, Lemma (3.14) so far requires a rather 
elaborate synthetic proof. Here we shall proceed differently, and shall 
basically use infinitesimal methods to replace Lemma 3.14 by a lemma in 
tri-linear algebra. In fact this is consistent with the present paper, which 
in some sense has as a theme the application of infinitesimal methods 
(calculus) to problems in algebraic geometry. The manner in which rational 
normal curves will turn up linearly is via the observation that, in pk with 
homogeneous coordinates [x,, * *-*, Xk], the rational normal curves are images 
of straight lines y,, = Ajt + Be under a Cremona transformation 

1 (3.16) x __. 
Ya 

In fact, (3.16) gives the unique rational normal curve through the vertices 
[O *.., 1, *--, 0] of the coordinate simplex in pk and passing through the 
two additional points [I* , /An, 11 ** , [ * * * 1/Ba, ... ]. 

In the next section, then, we will complete the determination of 
extremal varieties by infinitesimal methods. 

c) Structure of extremal varieties, ii) 

In this section we will prove the 

(3.17) THEOREM. Suppose that CL: M- P"N is an extremal algebraic 
variety of codimension k > 2 and degree d > 2k + 3. Then the image ML is 
a hypersurface in an (n + 1)-dimensional variety VL of minimal degree 
codim VL + 1. 

Before giving the proof we make a couple of remarks. The first is that 
once we know where to look for extremal varieties, it is not too hard to 
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show first ML sets in a special way in VL (basically, as close to a complete 
intersection as possible), and then to actually construct extremal varieties 
verifying that the basic estimates (2.21) are sharp. The second is that we 
need not assume (2.21) for all Ae, but only either of the equivalent conditions 
in (3.15). This follows from the argument below. 

To start the proof, our hypothesis suggests that we consider the 
diagram (2.10) in one of the two cases in (3.15), and because of (2.18) it 
seems better to take m = n -1 (although either would do). Thus in 

M IL PN 

(3.18) e{K+(m-1)L 

par 

we denote by e e G(k, N) a variable point, by pk(2) C pN the corresponding 
linear space, and then the generic intersection 

(3.19) Pk(e) * ML = p1(e) + * + PdQ() 

while over in pr using the customary notations 

P =K+?(n-1)L(P) , 

t M = tK+?(f)L(M) 

we have by (3.15) and (2.18) 

(3.20) (dim {pj(V} = d - k - 2 
(dim{pi(e), 3pi)} (d -/k-1) + n(d -2k-i)- 1. 

If we put pd-k-2(e) {PiQd)}, then 
e pd-k-2(e) 

gives a rational map 

(3.21) w: G(k, N) - G(d - k - 2, ar) 

analogous to the Poincare mapping used in [C-G, 1]. The second equation in 
(3.20) will give information on the differential of X using a tri-linear algebra 
lemma which we shall explain shortly. 

By way of motivation, consider in general for a moment the Grassman- 
nian G(m - 1, N - 1) as the set of Cm's through the origin in CN, and for 
A e G(m - 1, N - 1) recall the canonical identification of the tangent space 

TA(G(m - 1, N - 1)) _ Hom (A, CN/A) 

Suppose that W is an open set in some Cl and that 

or: W-* G(m -1, N-1) 
is a holomorphic mapping (obviously we have (3.21) in mind). Then the 
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differential of ', at A = +(w) is 

(3.22) A*: C1 > Hom (A, Cs/A) 

If, in addition, '+ has the property that for one (and hence any) holomor- 
phically varying basis e1(w), *-* *, em(w) the m(l + 1) vectors {e8(w), aes(w)/Dwa} 
(1 < s < m, 1 ?c a < 1) span a C2m-1+1, then the differential (3.22) factors 
through the inclusion C2m-l+l c C' and becomes { A*: Cl , > Hom (A, C2`n1 '/A) 

11 11Z 
A*: C1 - Hom (Cm, Cm-l ) 

The tri-linear algebra lemma will pertain to maps 

(,: Cl - Hom (Cm, Cm-l--l) 
having properties which will be consequences of the second equation in 
(3.20) when applied to the differential of X in (3.21). 

We assume that m > 1 + 1 and use the index ranges 1 < a, f8 < 1; 
1 <s<m;1? l 1. For 9 as above and a = (a, *.. I ,1) e Cl denote 
by 

ep, e Hom (C m, CIM-l-1) 

the image of a. We make the assumption that there is a basis {ej} for Cm 
and generators (Jfs) for Cm1lt such that 

(3.24) cp(e8) = )(a) (no summation) 

=(faI $saO)fs. 

We also assume that all 

(3.25) det 11 ] <sar 1 ? . 

Intuitively, (3.21) is a reasonable alternative to having the 9, simultaneously 
diagonalized. 

Definition. A knotpoint is 0 / e e Cm such that 

(3.26) e e (ker01) n ... n (kerq0~1) 

where al, ***, a1- Ct are linearly independent. 

Equivalently, by (3.24) and (3.25), for 0 = a e C', 
kerR= Cl-1(a) c Cm 

and a knotpoint is 
(3.27) 0 / e en< ,=OC1-.(Of) 
for some 0 = co e Cl*. 

In general there may be no solutions to (3.27), but in our application 
Cm will be spanned by knotpoints, and so we assume this. 
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(3.28) LEMMA. The knot point locus is a rational normal curve in Ptm1. 

Proof. Suppose that 

I:S'--l AsItffS = o,0t 1, * -- I1 

is a basis for the relations among the {f}. The condition that 

e=- Em71~e. 
belong to ker 9o is, by (3.24), 

~XS$~SD 0a 7Aact , s = 1, *--, m 

for some {c,}. If we set p8 ,- (1/X), the knotpoint condition (3.26) is that 
the system 

(3-29) 5$)aa + EpsA8te1, 0 , s = 1, * In, m 

of m equations in the 21 - 1 unknowns (an, *.., a1; c1, *--, c11) should have 
(1 - 1) independent solutions. Viewing the coefficient matrix in the system 
(3.29) as a linear mapping C2-1'-> C, the equivalent condition that the 
image have dimension <1 is that all (1 + 1) x (1 + 1) minors of this coef- 
ficient matrix 

IOs(x; ps Ast 

should be zero. By (3.25) these are linear equations in the p8. In other 
words, under a suitable Cremona transformation (3.16) of Ptm1 to itself, the 
knotpoint locus maps to a linear space. By (3.25) this linear space has 
dimension <1 while by assumption it is non-empty. Hence the knotpoints 
are the Cremona transform of a line. Q.E.D. 

Using (3.28) we will prove the 

(3.30) LEMMA. The points pi(-) lie on a rational normal curve C(Y) in 
pd-k-2() 

Proof. We will apply (3.28) not to ir in (3.21) considered on all of G(k, N), 
but rather we fix a pk+' in PX and consider the embedding of the dual pro- 
jective space 

0 C G(k, N); 

i.e., we take all pk($) contained as hyperplanes in Pok+'. Geometrically, 

PO ML - EL 

is a curve section of ML, and we are considering the diagram 

E IL pk+1 

(3.31) tK+(n-l)L 

Pr 
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obtained by restricting (3.18) to this curve. For ~ e PE`o' the points pi(e) 
vary on a 1-dimensional arc in pr, and we denote by p'(e) the tangent line. 
Then (3.20) applied to the diagram (3.31) becomes 

dim{p )} = d - k - 2 

(3.32) dim {piQe),p')} = (d - k - 1) + (d - 2k - 1) - 1 

2d - 3k - 3. 

Indeed, the coefficient n in the second equation in (3.20) corresponds to the 
n independent directions D/Dza to M at a point, and in the second equation in 
(3.32) we are only considering the direction which is tangent to E. The 
mapping (3.21) corresponding to (3.31) is 

0okl > G(d - k - 2, X) 

Taking 
1 =k + 1, m =d - k - 1, N= +1 , 

we have 
2m - 1 + 1 = 2d - 3k - 2. 

The above mapping is 

I {P1(), , Pd-k-2($)} Y 

and since pi(d) varies on an arc, 

(P(dq)) = PXe) 

Together with (3.22) this last equation says first of all that the differential 
condition 

dim Pi()ap) (i) }=2m - l 

given just below (3.22) is satisfied, and secondly that the differential has the 
"pseudo-diagonalized" form (3.24), where es 8=p and fs =p' (1 ? s ? d-k-1). 
Lemma (3.30) will follow from (3.28) provided we can show that pd-k-2(Q) is 

spanned by knotpoints. 
In fact, we claim that each pi(d) is a knotpoint. By projective duality, 

each point p E pok + defines a hyperplane p L in psk. Fixing %0, as d E pek+ 

varies in the hyperplane pi(dO) l the point pi(to) remains fixed. Then, 
k= I-1 independent tangent vectors to pm(io) L give exactly what is required 
in (3.26). Q.E.D. 

(3.33) LEMMA. The points pi(*;) lie on a rational normal curve C(e) c 
pk(Q) 

Proof. This will be a formal consequence of (3.30), and we will omit 
reference to i. Choose Pk+2, * * Pd as vertices of a coordinate simplex in 
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pd-k-2, and use the index range 1 a, ,8 < k + 1, k + 2 ? s < d. Multiplying 
p8 by a constant if necessary, we may assume that C goes through the ps 
and [1, *.., 1], and hence C is given parametrically by 

t '[ @ 
t b ' 

In particular 

( ) 0 ~~~~~~~~tar b. 

Now suppose that [xl, x2, ***, Xd] is a homogeneous coordinate system in 
pk having p1, , Pk+, as vertices; i.e., 

xa(p) = 

According to (2.12), the relations on the points pi E pr are 

(3.35) i=lxa(Pi)pi = 1, *, k + 1 . 

Comparing (3.34) and (3.35) we find 

xa(Ps) - b 
ta bs 

Thus, the pi lie on the rational normal curve C c pk given parametrically by 

b~~~~~~ b r., _ t-b -l, 

with pa corresponding to b = ta and p8 to b b8. Q.E.D. 

To complete the proof we assume for simplicity that CL is biregular and 
write M in place of ML. For a generic pk the intersection M_ k -Z is a 
set of d points in general position lying on a rational normal curve C, which 
is the intersection of D0k(k-l)/2 quadrics in pk. Suppose we can prove that 
the restriction mapping 

(3.36) HO(4M(2)) > HO(Jz ?& Opk(2)) ... > 0 

is surjective. Geometrically this means that the quadrics in pk which pass 
through Z are intersections of quadrics in PN which contain M. Now as 
mentioned above the intersection of the quadrics in Ho(-4z 0 opk(2)) is just 
the rational normal curve C, and the intersection of the quadrics in HO(4M(2)) 
will be a variety V such that 

V-pk = C. 

It follows that dim V = n + 1, deg V = k, and we are done. So it remains 
to prove the 
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(3.37) LEMMA. The mapping p in (3.36) is surjective. 

Proof. Let us choose coordinates [x,, **, IXk; y1 *.., IyJ = [x, y] in P' 
such that pk is given by y 0 O. Then H0(-4, (9P k(2)) are the quadrics Q(x) 
which pass through z = pk _ M. We want to find a quadric of the form 

(3.37) ~yQ = Eg=8 .Pj(x, y), degP, = 1, 

such that Q - Q' vanishes on M. For this it will suffice to show that every 
quadric in Ho(4, ?0O,(L2)) has the form (3.37). The Koszul resolution of 
4, is 

(3.38) 0 - , ( (L*k) ... , (O(L) -> , 3M(L) Z -> 0 

We tensor (3.38) with 0(L2), and then to prove the lemma it will suffice to 
show that 

D HO(0 (L)) >- HI (? ( OM(L)) 

is surjective. This is tedious but straightforward to check by writing 
everything out using (3.38). 

Appendix: Some observations and open problems 

Let M be a smooth projective algebraic variety on which we are given 
a configuration Z of distinct points and a linear system i D 1. We may take 
as a general aim that of estimating the superabundance o(Z, ID I), and of 
saying something about the extreme cases. 

When M is an algebraic curve the superabundance is bounded by 
hl (O([D - Z])), and hence is zero unless D - Z is a special divisor. Then 
one can always estimate the superabundance by Clifford's theorem, and in 
case ID - Z I is birational the much stronger bound provided by Castel- 
nuovo's estimate on the genus can be used. In both circumstances the 
extreme cases can be identified. Especially interesting is the situation when 
D I-IKI is the canonical series; then the superabundance is zero unless Z 
itself is a special divisor, and the Riemann-Roch formula gives 

dim I Z' = d - g + o(Z, IKI) 
where d = deg Z. 

When M is an algebraic surface the first observation is that the general 
problem is not particularly well-posed since e.g., in P2 the superabundance 
relative to I @p2(k) I is maximized when Z lies on a line. In practice one will 
want to estimate o(Z, I D1) when Z is not on a fixed component of an 
auxiliary linear system. Now there is a choice of going directly to the zero- 
cycles, or of working with the curves on the surface as an intermediary 
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with the hope of using the previous estimates. The latter, which is the 
traditional approach used e.g., in the classification theory of surfaces, 
sometimes necessitates detailed case arguments involving singular and/or 
reducible curves. More seriously, this technique does not seem to generalize 
easily to higher dimensions, e.g., threefolds ([RI notwithstanding). One 
may suspect that, on account of the Lefschetz hyperplane theorem, the 
essential geometry occurs in dimension [n/2] on an n-dimensional variety. 
So, with the residue theorem providing the analytic tool, we have gone 
directly to the zero-cycles, and our main result may be informally summa- 
rized as follows: 

Given a holomorphic vector bundle E -> M of rank n over an n-dimen- 
sional algebraic manifold M and a section s e Ho(((E)) having divisor 
(s) = Z a zero-dimensional scheme, there is an inverse relation between the 
growth of the two sequences 

(A.1) a(Z, reEl) and 
b((oQ3Z, I K? det El) 

where I teE I is the sequence of linear systems associated to the graded ring 
&e Sym!-H?(((E)) and 31'Z is the zero-dimensional scheme with ideal sheaf 

More precisely, the fundamental relation (2.5) pertains to a bundle 
E -> M induced by a holomorphic mapping 

(A.2) ': M > G(k, N), k = N-n, 

where I E is essentially the linear system obtained by composing q with 
the PlUcker embedding. 

We were able to utilize (A.1) effectively only in case E = L 3 * * L 
is a sum of line bundles and, with the benefit of hindsight, it may be said 
that at a very basic level our results do not go significantly beyond these 
of Castelnuovo. Indeed, many of our applications could have been proved 
by going to the curve sections of M. On the other hand, the formalism 
(A.1) is of a more general character, and in its application several inter- 
esting questions arise which we should like to mention briefly. 

i) On the problem of non-degenerate maps to Grassmannians. 
Suppose we consider (A.2) (or rather the dual) in the case of a surface, 

say 
q: S > G(1, N), 

and assume that q is biregular onto its image. For p e S we denote by 
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I(p) c PN the corresponding line. If pN-3 C PV is generic, the Schubert 
condition 

l(p) meets P`-3 

defines the 2nd Chern class p, + - - - + Pd on S. The problem we have in mind 
is a) to find a good definition of non-degeneracy for the mapping (, and b) 
to show that for non-degenerate maps, 1(pj), , l(p,) give d > d(N) 
( [N/2]) lines in general position in p'. It is not immediately clear to us 
what the definition of general position for lines 11, *-*, ld in PN should be; 
certainly any k < [(N + 1)/2] should span a p2k-1, but this is probably not 
sufficient. 

It may be that this problem only has reasonable solutions for stable 
(or semi-stable) bundles E -> S. 

ii) Extending Castelnuovo's bound to the non-linear case. 
The general question here is to bound the genus of a curve C in a 

general variety V, perhaps in terms of the homology cycle -i e H2( V) 
carried by the curve. Two special cases came to mind, the first being to 
bound the genus of a curve 

C c G(1, 3) 

assuming that the ruled surface in P3 defined by the co1 lines l(p) (p e C) is 
non-developable (the developable case is covered by Castelnuovo's bound). 
Another occurs when V is a threefold with q(V) = p( V) = 0 and h2( V)- 1 
(e.g., V may be a complete intersection in p,). Every curve on V has a 
unique homology invariant, which we may call its degree. 

A motivation for this second problem is this: In the study of the 
intermediate Jacobian of V, the essential difficulty lies in understanding 
the curves on V. An optimistic possibility is that the curves of maximum 
genus, being somehow a distinguished family, might be of help. For 
example, guided by the case of curves in P3 it seems possible that the 
curves of large fixed degree d might form an irreducible family, and for 
those d such that the curve cannot be a complete intersection of two sur- 
faces on V, it may be the case that the residual curves D such that C + D 
is a complete intersection will contribute to the intermediate Jacobian. 

Another related question is to bound the pg of a non-degenerate surface 
in G(1, 3), as this situation bears some formal resemblance to plane curves 
but is non-linear. 

iii) Constructing vector bundles of higher rank. 
This is the problem of extending Proposition (1.33) to bundles of rank 
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n > 3. Suppose e.g., that E -> V is a rank-3 bundle over a smooth threefold. 
If s, e HI(O(E)) is a section with a set Z, of simple zeroes, then Z1 represents 
c3(E) and satisfies the Cayley-Bacharach property relative to I K?3 det El. 
If s, is another section, then the condition 

(A.3) s, A 2- 0 

defines (in general) a curve C representing c2(E). In fact, the section s, A 82 e 
Ho(O(A2E)) is not generic, so that (A.3) defines a codimension-two subvariety 
(it is a determinantal variety) rather than one of codimension three. More- 
over, C is the locus of zeroes of the sections sI - ts, (t e P'), and hence carries 
a linear pencil containing Z, and Z2. 

So extending (1.33) to bundles of higher rank might begin with the 
following: Given Z c C on V and a line bundle L such that Z satisfies the 
Cayley-Bacharach condition relative to I K? L , and moreover such that 
this condition defines a linear pencil on C containing Z, then does there exist 
E -> V and sections so, s, e Ho(((E)) defining Z1, Z2, and C as above? No 
doubt this formulation needs refinement, perhaps to take into account the 
determinantal character of C, but the geometric problem may be worth- 
while. 
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