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Abstract The contamination of the eggs of farmland birds by

currently used plant protection products (PPPs) is poorly doc-

umented despite a potential to adversely impact their breeding

performance. In this context, 139 eggs of 52 grey partridge

Perdix perdix clutches, collected on 12 intensively cultivated

farmlands in France in 2010–2011, were analysed. Given the

great diversity of PPPs applied on agricultural fields, we used

exploratory GC/MS-MS and LC/MS-MS screenings measur-

ing ca. 500 compounds. The limit of quantification was

0.01 mg/kg, a statutory reference. A total of 15 different com-

pounds were detected in 24 clutches. Nine of them have been

used by farmers to protect crops against fungi (difenoconazole,

tebuconazole, cyproconazole, fenpropidin and prochloraz), in-

sects (lambda-cyhalothrin and thiamethoxam/clothianidin) and

weeds (bromoxynil and diflufenican). Some old PPPs were also

detected (fipronil(+sulfone), HCH(α,β,δ isomers), diphenyl-

amine, heptachlor(+epoxyde), DDT(Σisomers)), as well as

PCBs(153, 180). Concentrations ranged between <0.01 and

0.05 mg/kg but reached 0.067 (thiamethoxam/clothianidin),

0.11 (heptachlor + epoxyde) and 0.34 (fenpropidin) mg/kg in

some cases. These results testify an actual exposure of females

and/or their eggs to PPPs in operational conditions, as well as to

organochlorine pollutants or their residues, banned in France

since several years if not several decades, that persistently con-

taminate the environment.

Routes of exposure, probability to detect a contamination

in the eggs, and effects on egg/embryo characteristics are

discussed with regard to the scientific literature.

Keywords Bird . Egg . Exposure route . Farmland . Residue

analysis . Pesticide

Introduction

The most recent European Red List reviewing the conserva-

tion status of all European species reports that only 48 % of

bird species associated with agricultural ecosystems are clas-

sified within the status Bleast concern^—to be compared to

80 % for all bird species (BirdLife International 2015a). The

rate of biodiversity loss in farmlands is therefore still worry-

ing, despite target 3 of the European Union strategic plan for

biodiversity aims to Bincrease the contribution of agriculture

and forestry to maintaining and enhancing biodiversity^ by

2020 (European Commission 2011).

Farmland bird species have suffered from severe historical

declines (European Bird Census Council 2015). It is well

established that intensification of farming practices and associ-

ated changes in habitat were the main drivers of this decline,

through direct and indirect effects (e.g., Benton et al. 2002;

Chamberlain et al. 2000; Donald et al. 2001, 2006; Evans

2004; Robinson and Sutherland 2002; and references therein).

Farmland birds continue to decline today (Comolet-Tirman et al.

2015; European Bird Census Council 2015), as a result of var-

ious threats including illegal hunting, climate change and severe

weather, interaction with invasive species, changes in land-use

practices (intensification of agriculture and land abandonment),
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pollution, etc. (BirdLife International 2015a). Farming practices

and habitat changes are, however, still major drivers of bird

decline (BirdLife 2015a; Eglington and Pearce-Higgins 2012;

Stoate et al. 2009). Recent works suggest that the agricultural

use of actual plant protection products (PPPs) still contributes to

the ongoing decline of avian populations (Bro et al. 2010;

Geiger et al. 2010; Hallmann et al. 2014; Mineau and

Whiteside 2013; van der Sluijs et al. 2015; van Lexmond et al.

2015). Indeed, although bird ecotoxicology has been poorly

documented compared to other taxa (Köhler and Triebskorn

2013), it is admitted from field surveys, correlative data analysis

and laboratory experiments that some active substances (ASs)

can affect the survival of birds and their breeding success

through different mechanisms.

Adverse effects may occur indirectly through a reduction in

food abundance (weeds, seeds and invertebrates) resulting in a

poor breeding success (e.g., Boatman et al. 2004; Hart et al.

2006; Rands 1985). They may also occur directly by oral, air

or contact contamination. Intoxication can then lead to death

or to sublethal behavioural or immune disorders that can fa-

vour the death (cf. Garg et al. 2004; Lopez-Antia et al. 2013,

2015; Millot et al. 2015; and ref therein), as well as reproduc-

tive disorders such as anomalies in courtship behaviour

(Fernie et al. 2003; Ottinger et al. 2008); anatomical anomalies

of gonads (Bauer 1985); decrease in chick production rate

through reduced clutch size, clutch abandonment, reduced

fertility, teratogenicity or other effects such as eggshell thin-

ning (Fernie et al. 2003; Kamata et al. 2010; Kitulagodage

et al. 2011; Lopez-Antia et al. 2015; Maci and Arias 1987;

Mendenhall et al. 1983; Mineau 2005); reduced chick survival

and poor chick condition (Bhaskar et al. 2012; Kitulagodage

et al. 2011; Lopez-Antia et al. 2015; Mineau 2005; Nitu et al.

2012; Uggini et al. 2012). Intergenerational effects are also

observed (Bauer 1985; Fernie et al. 2003).

However, such effects are documented for only a small

number of ASs that are currently used. In addition, most of

the above very interesting cited works are lab studies. They

provide useful information but no firm conclusion that such

effects actually occur in the Breal world^. Additional field

works are therefore needed to consolidate the results. The first

requirement is the proof of a real contamination of the birds

and their eggs in operational conditions. There is a large body

of scientific literature on this subject, but few studies deal with

current pesticide ASs and with herbivorous-granivorous-

insectivorous farmland birds. In this context, this study con-

tributes to fill this gap of knowledge by providing field data

for a typical farmland bird, the grey partridge (Perdix perdix).

The ecology of this ground nesting bird makes it a suitable

focal species: (i) it mainly lays its clutches in crops, with a

preference for winter cereals (Bro et al. 2013) and (ii) it feeds

on a variety of items including sprouts, grains and seeds of

both cultivated and weed plants, and invertebrates. In addition,

the species is of conservation concern in several European

states (UK, Sotherton et al. 2014; France—BCentre^ area,

CSRPN 2013; Switzerland, Keller et al. 2010; etc.) due to its

ongoing population decline and/or range contraction

(BirdLife International 2015b). The management of this game

species benefitted from a large amount of research throughout

the world (e.g., review of Sotherton et al. 2014 for UK; e.g.,

Bro et al. 2000a, b, 2001, 2004, 2013 for France), but relatively

little attention was paid to field ecotoxicology so far.

Methods

Egg collection and storage

We collected failed eggs from hatched, destroyed and deserted

clutches of radiotagged grey partridge females (Bro et al.

2015). They were put in quail egg boxes and stored in the

dark at −20 °C.

Examination of egg and embryo status

Intact failed eggs were opened in the lab to examine their

content. They were classified as Binfertile^ (no germinal disc

observed, which includes embryos at development stage ≤1–

2 days; Bro et al. 2013; McCabe and Hawkins 1946), Bdead

embryo^ and Bundetermined^ (when we were not certain of

the status of the egg, such as in the case of rotten eggs). We

looked by eye for macroscopical deformities of embryos

≥15 days old (bill, skull, eye or leg defects; Ludwig et al.

1996). Eggshell thickness was measured to the nearest

0.001 mm by the same investigator using a digital micrometer

(IP65 0–25 mm, Mitutoyo, Japan). Measures were done at the

equator region after a careful separation of the inner

membranes.

Residue analysis

Quality assurance

Residue analyses were performed by Phytocontrol (Nîmes,

France). The laboratory is accredited by the French Commit-

tee of Accreditation (COFRAC) for the research and quantifi-

cation of pesticides in foodstuffs (no. 1–1904, COFRAC

2010). It works in compliance with the international standard

ISO/IEC 17025 and according to the LAB GTA 26 99-2 pro-

gram. In addition, the laboratory is certified ISO 14001 by the

French Agency of Normalisation (AFNOR).

Themethods were validated using several criteria: recovery

rates, repeatability, reproducibility, specificity and linearity

(SANCO/12571/2013, European Commission / Health &

Consumer Protection Directorate 2013).
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Multi-residue analyses

Sample preparation Samples were prepared using a

QuEChERS protocol which couples an extraction method of

pesticides using a solvent and a clean-up method using puri-

fication salts adapted to the matrix and to the substances. We

used QuEChERS no. NF EN 15662.

Extraction Ten grams of the whole egg was mixed with

10 mL of pure water and 10 mL of acetonitrile. Acetonitrile

was used as the extraction solvent because of its effectiveness

to remove polar components such as sugars, lipids, organic

acids, sterols, proteins, pigments and excess water. Salts (4 g

MgSO4, 1 g NaCl, citrate buffer at pH=5–5.5) were added,

and the mixture was vigorously shaken for 10 min and then

centrifuged at 15 °C for 5 min at 3000×g to separate the solid

and liquid phases.

Purification An aliquot of the supernatant (5 mL) was puri-

fied using a dispersive solid phase extraction (d-SPE) involv-

ing salts containing 900 mg of anhydrous MgSO4, 300 mg of

PSA and 300 mg of C18. After a vigorous shaking for 10 min,

mixtures were centrifuged at 15 °C for 5 min at 3000×g.

The supernatant (8 mL) was split into two fractions of 4 mL

and evaporated under a nitrogen stream. One fraction was

acidified with 5 % formic acid solution and redissolved in

0.2 mL of acetonitrile for GC/MS-MS analysis. The second

fraction was redissolved in 0.2 mL of mobile phase (0.1 %

acetic acid in water/acetonitrile, 50/50 v/v) for LC/MS-MS

analysis.

Identification and quantification Five microliters and 2 μL

were injected in LC and GC, respectively. Compounds were

identified and quantified with a triple quadrupole tandem

(QqQ) mass spectrometry (electrospray source, pos and

neg). The use of QqQ analyzers improves the sensitivity and

the selectivity of the analysis. Each compound was

characterised by its retention time, a quantitation transition, a

confirming transition and the ratio between the signals of these

transitions. For linearity, R values ranged between 70

and 120 %.

Residues of ca. 500 compounds were measured using both

LC/MS-MS and GC/MS-MS screenings (Online Resource 1).

Compounds were ASs and/or their isomers and/or their me-

tabolites. The recovery yields of all compounds varied be-

tween 70 and 120 %, with a coefficient of variation of 20 %.

Of the ASs we listed as used by the farmers in our 12 study

sites in spring and summer 2010–2011, 85.5%weremeasured

(Online Resource 2, Bro et al. 2015). The remaining ASs were

not measured either because they were not proposed in routine

by the laboratory or because they needed costly specific anal-

yses. Their inclusion would have severely exceeded our bud-

get for pesticide residue analysis.

Intrumentation For GC/MS-MS, analyses were carried out

using GC/MS-MS Scion (Bruker). Quantification was per-

formed with a workstation from Bruker. For LC/MS-MS,

analyses were carried out using a Shimadzu 8040. Quantifica-

tion was performed with Labsolution from Shimadzu.

Quality control In each batch of samples, two controls were

included: a reagent blank consisting of a vial containing only

solvent extract and an internal laboratory quality control (QC,

concentration 100 ppb) consisting of a spiked matrix with a

mix of pesticides. The batch analyses were considered valid

when the values of the analytes in the QC were within a range

of 70–120 % of the theoretical value.

Analytical performance The analytical methods used

allowed to reach a limit of quantification (LoQ) of 0.01 mg/

kg for almost all compounds—LoQ was lower for fipronil(+

sulfone): 0.005 mg/kg, and higher for flonicamide(+TNFA +

TNFG) and TNFG: 0.05 mg/kg (Online Resource 1). The

limit of detection (LoD) was approximatively half of LoQ.

The value of 0.01 mg/kg is the default value for maximum

residue levels (MRLs)1 when no specific MRL is set out for a

given product (Regulation (EC) No. 396/2005, article 18

1.(b)).

Selection of clutches and eggs for analyses

We analysed intact failed eggs. This is a common practice

because this sampling is non-invasive. The drawback is the

bias in the sample, which limits the cause to effect and other

quantitative interpretation of the results (see Discussion), but it

does not weaken an exploratory analysis of egg contamina-

tion. Another common practice is to analyse the first or the

second egg laid (e.g., Eng et al. 2014) to limit the variability in

the results. However, in our case, this was neither possible

because we did not know the laying sequence (the location

of a nest is only known once the clutch is completed and

incubation is initiated), nor desirable. Indeed, as much as 18

eggs—sometimes more—can be laid within ca. 20–30 days.

Thus, all of them are not likely to be exposed to an AS fol-

lowing its application (see Bro et al. 2015). As a consequence,

a non-positive result obtained on one egg cannot be extrapo-

lated to the whole clutch. The analysis of several eggs is then

required to maximise the probability to detect a contamina-

tion. In this context, we sometimes pooled a few eggs in a

same sample, trying to find the best compromise between

the risk of a potential dilution effect on the one hand and the

funds available on the other hand.

Clutches and eggs were selected following three

Bstrategies^:

1 See Online Resource 4.
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1. Eggs displaying worst cases with regards to several end-

points (eggshell thickness, embryo deformity),

2. Failed eggs of successful clutches with lowest egg hatch-

ing rates,

3. Eggs of clutches potentially exposed to specific ASs (ASs

that have been commonly used but that would need fur-

ther consideration with regards to risk assessment for avi-

an reproduction (first-tier toxicity-exposure ratio

(TERlt) <5; Bro et al. 2015; EFSA 2009)).

Hatched eggs were not analysed so far both for financial

and analytical reasons. Only the calcareous eggshells and cho-

rionic membranes are available. The quantity is likely to be

insufficient to allow residue analyses, and this matrix may not

be the best one to detect compounds. Additional tests are

therefore required.

Sample size

We performed residue analyses on 52 clutches collected on 12

sites located in intensively cultivated farmlands in north-

central France (Bro et al. 2015; Millot et al. 2015). These

clutches corresponded to 645 eggs laid, of which 38.8 %

hatched. One hundred thirty-nine eggs were analysed,

representing 21.6 % of the total number of eggs laid and

35.2 % of failed eggs. The 139 eggs were constituted into 73

samples of one to four eggs. Clutches were analyzed for pes-

ticide residues through one to three samples and one to eight

eggs (Table 1).

Potential exposure

We considered that a female (and then her eggs) was

potentially exposed to an AS if the area where it was

radiotracked during the pre-laying, egg-laying or incu-

bation periods overlapped with treated fields (see Bro

et al. 2015 for methodological details). When a com-

pound was detected in a clutch, we provided data (date,

crop, dose of AS(s)) about the corresponding treat-

ment(s) of the field(s) frequented by the females and

their eggs. We calculated the amount of the AS applied

on the field (g/ha) by multiplying the dose (l/ha) ap-

plied by the farmers and the concentration of the AS

in the trade formulation (mg/l or g/l). The former was

known from a farmer survey2 (Bro et al. 2015), the

latter from information retrieval in the E-PHY database

managed by the French Ministry of Agriculture (http://e-

phy.agriculture.gouv.fr/).

Results

Clutch contamination

We detected contaminants in 24 out of the 52 analysed

clutches, i.e., 46.2 % (Table 1). Globally, few compounds

were detected compared to what one could have expected on

the basis of potential exposure (Online Resources 2 and 3). A

total of 15 different compounds were found, of which nine

ASs are currently used by farmers to protect crops. The de-

tected substances were azole (difenoconazole, tebuconazole,

cyproconazole, prochloraz) or amine (fenpropidin) fungi-

cides, pyrethroid and neonicotinoid insecticides (lambda-

cyhalothrin and thiamethoxam/clothianidin, respectively)

and herbicides (bromoxynil—hydroxybenzonitrile and

diflufenican—pyridinecarboxamide). The other compounds

were fipronil(+sulfone), HCH(α,β,δ isomers), diphenyl-

amine, heptachlor(+epoxyde), DDT(Σisomers) and

PCBs(153, 180).

We detected one compound in 70.8 % of the 24 contami-

nated clutches, two compounds in 12.5 % and more complex

mixtures (three to five compounds) in 16.7 %. In one clutch,

we detected two compounds that were combined in a trade co-

formulation (tebuconazole and fenpropidin; cf. Online Re-

source 3: clutch 2011-45-586-1).

Concentrations

A compound was detected but not quantified in 14 cases

(Table 1). When concentrations were quantified, they were

generally within one to four/five orders of magnitude of the

LoQ. Higher concentrations were quantified in three cases:

0.067 mg/kg of thiamethoxam/clothianidin, 0.11 mg/kg of

heptachlor(+epoxyde) and 0.34 mg/kg of fenpropidin

(Table 1).

Contamination and exposure

In eight cases, we could associate the contamination of the

clutch to a potential exposure of the female during egg forma-

tion and/or egg laying (Online Resource 3). The fungicide

fenpropidin was frequently detected when Bexpected^ (three

clutches out of four potentially exposed, Online Resource 2),

but this was not observed for the other ASs. The dose applied

on the field often corresponded to a low volume compared to

the approved maximum dose.

In nine other cases, contamination could not be associated

with a potential exposure of the female identified using the

method of Bro et al. (2015), but the AS has been used in the

study site of the corresponding year. Data are provided in the

last column (Bother uses in the site^) in Online Resource 3. In

other cases, the compounds that were detected were not listed2 Field data Bchecked^ on E-PHY
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as ASs used by the farmers (and not as a pesticide in case of

PCBs).

Discussion

Contamination of eggs by current active substances

Contamination of farmland birds by the PPPs currently used

in agriculture is poorly documented in situ, with some excep-

tions such as raptor species (see Gómez-Ramírez et al. 2014).

In this context, this study provides some field data on a typical

medium-sized omnivorous farmland bird, the grey partridge.

It reports the contamination of some eggs by some current

ASs. Such result is a first stone in the foundation of further

investigations of unintentional effects of PPPs on non-target

wildlife in cultivated landscapes. The second main contribu-

tion of this work is to provide field references of concentration

of some ASs in eggs, and data about the treatments of the

field(s) frequented by the females and/or where their eggs

were laid. However, it remains difficult in the state of the art

to relate concentrations in eggs to exposure doses given the

gaps of knowledge (identification and quantification of the

different routes of exposure) and of data (transfer characteris-

tics in eggs) in birds. In spite of this, our results would be

useful to plan lab experiments with realistic in ovo injections

(e.g., Blus and Henny 1997; Dunachie and Fletcher 1970;

Fischer 2005).

We detected nine ASs out of the hundred to which eggs

have been potentially exposed to (Bro et al. 2015, Online

Resource 2). It would have been be quite interesting to corre-

late the detection of ASs to a series of factors such as their

physico-chemical properties, their environmental fate, their

metabolism in birds (see data compiled in Online Resource

4), as well as the associated treatments (crop, usage, time and

type of application, dose applied, window of exposure, etc.;

see data in Online Resource 3). Unfortunately, available data

of contamination are not sufficient so far to provide a reliable

analysis. In particular, absence of detection and detection of

mixtures should be consolidated by a higher sample size.

Contamination by thiamethoxam and clothianidin should

be discussed with regards to the current regulatory ban of

some neonicotinoids in some countries. These ASs were de-

tected as thiamethoxam/clothianidin in three clutches laid in

2011 in three different geographical sites (Online Resource 3).

This contamination has probably been detected as a result of

exposure to thiamethoxam. Indeed, it was used on these three

sites between March and May, when sowing beet, maize or

pea seeds—authorised uses in 2011 (Online Resource 3). Two

females frequented one or two fields of maize in April and one

female a field of canning peas in May. Thus, exposure is

therefore highly credible knowing the diet and the habitat

use of the species. These potential exposures were notT
a
b
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identified by Bro et al. (2015) because they considered a 15-

day period before the laying date of the first egg (this corre-

sponds to the main phase of yolk formation in the domestic

hen) to determine potential exposure. Sowing of coated seeds

occurred before that time.

Clothianidin was identified as the main residue in two sam-

ples (Online Resource 3). This is compatible with an exposure

to thiamethoxam since clothianidin is a metabolite of

thiamethoxam metabolism in the domestic hen (EFSA

2014). Clothianidin is maybe a residue also found in eggs

(this is not mentioned in the report) given that it is the major

residue found in the liver. More quantitative data would be

welcome to interpret more deeply our results. However, we

cannot exclude an exposure to clothianidin given that this AS

was authorised in France on maize from 1 April to 31 July

2011, as in-furrow application of pellets (ANSES 2011;

DRIAAF 2011). Parent compound is reported to account for

20 % of the radioactivity of residues in eggs following an

exposure of laying hens to clothianidin (EFSA 2014). This

scenario is however not the most probable according to our

field data.

Routes of contamination

Four routes of contamination were possible: (1) a direct expo-

sure of the eggs when the pesticides were sprayed, (2) a direct

exposure of the eggs through the contaminated vegetation, (3)

a direct exposure of the eggs through the contaminated

feathers of the females and (4) a maternal transfer to the eggs

(through diet, preening and/or inhalation). They are not mutu-

ally exclusive. All were considered in the method that was

proposed byBro et al. (2015) to identify and quantify potential

exposure.

Direct exposure is a likely phenomenon both because most

ASs applied in the fields during the breeding season are

sprayed (Millot et al. 2015) and because the grey partridge is

a terrestrial bird that mainly lives and nests in crops (Bro et al.

2013). However, whether direct exposure is an important

route of egg contamination is an open question. The behaviour

of grey partridge females may prevent direct exposure from

spraying as well as favour it from treated vegetation, depend-

ing upon the relative dates of treatments and laying. Indeed,

laying females only remain on their nests during a few hours

per day to lay (Birkan and Jacob 1988), and they cover their

eggs with plant material found around the nest when they

leave it (McCabe and Hawkins 1946). A direct exposure of

the clutch when the crop where it was laid has been treated

may have occurred in four cases out of the eight contaminated

clutches with a potential exposure identified with the method

used by Bro et al. (2015).

Maternal exposure is likely to be an important route of

exposure given (1) the timing of pesticide use (mainly

during egg formation, Bro et al. 2015), (2) the diet of the

species and (3) the biochemical origin of egg content

(lipovitellin and phosvitin, some yolk lipoproteins, are exclu-

sively synthetised by the liver of the laying hen (Sauveur and

de Reviers 1988); thus, lipophilic ASs may be included in

fatty content). In addition, the metabolism studies performed

in laying hens indeed demonstrate a residue transfer to the

eggs for many ASs (Online Resource 4, EFSA reasoned

opinions). Exposure through inhalation cannot be excluded

given that some of the ASs are volatile (Online Resource 4)

and are detected in the air (Marlière 2009).

Which level of contamination at the population scale?

We detected compounds in slightly less than half of the

clutches we analysed, and the ASs were generally quantified

at low concentrations, i.e., close to the limit of quantification.

One of the two issues now is to know whether it rather reflects

a low or a high level of contamination at the population scale.

At the current stage of the work, it is difficult to draw a con-

clusion. Indeed, egg sample is biased toward unhatched eggs.

This may overestimate the detection of contaminations if con-

taminations reduce egg hatching rate, as well as underestimate

it if contaminations only impact hatchling conditions (e.g.,

Kitulagodage et al. 2011). Laying order may also have influ-

enced the probability to detect an exposure to an AS, but this

aspect is not known with our field data.

The probability to detect contaminations in situ taking into

account the different mechanisms of losses and transfer should

also be considered to interpret the results. We did not find data

about transfer of ASs into egg content through eggshell and

membranes for the ASs under interest in case of a direct ex-

posure despite immersion experiments have been performed

(Dunachie and Fletcher 1966, 1967). Transfer rate is increased

when a fat-soluble AS is associated to oil vehicle (Hoffman

and Albers 1984). If egg contamination results from a mater-

nal effect, we need to look at the metabolism of the AS in

birds. Detailed data exist on poultry. Experiments on laying

hens administered (chronically or not) with radiolabelled ASs

provide information on the excretion rate and on the kinetics

of the ASs, as well as on the distribution of residues in organs,

tissues and eggs. Partial data can be found in public reports

and databases (Online Resource 4). Given that domestic hens

and grey partridges are both galliform species, we assume that

hen data are representative of our species. Data onmetabolism

in laying hens indicate that the (at least some) ASs are rapidly

and mainly excreted via the urine and/or the faeces. Only

small amounts of residues are transferred to the eggs. In the

light of these pieces of information, we expect to only detect a

maternal contamination as a Bweak signal^ given the proba-

bility to capture such event. This issue has been already

highlighted as inherent to field conditions (Quintaine et al. in

press), and abnormality frequency may be more informative

than deviations frommeans (Egea-Serrano et al. 2012). Under
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this hypothesis, and taking into account any prior degradation

in the environment (metabolism in plants, phytolysis, etc.),

our results might indicate a more global non-target pesticide

exposure of farmland birds.

Effects on breeding performance

The second key issue is to relate residues in eggs to effects on

the individuals (health concern) and in fine on the population

dynamics (population management concern). Correlating ac-

tual exposure (presence and concentration of ASs) to the char-

acteristics of individual eggs (fate, eggshell thickness) and

embryos (stage of development when death occurred, defor-

mity) would have required to perform a separate analysis for

each egg and to analyse simultaneously control eggs. Other

endpoints such as the oxidative stress may also be valuable

additive information.

Some ASs detected in partridge eggs may influence, under

certain exposure conditions, the fecundity, the fertility and the

development of embryos of some bird species (Lopez-Antia

et al. 2013; Rivière et al. 1985) or are suspected to have endo-

crine disrupting properties (e.g., EFSA 2010, 2011; Saxena

et al. 2015). However, whether such effects actually occur in

the field remains an open question. This issue is still a current

challenge in avian ecotoxicology. It is all the more complex to

be documented that a series of other causes may contribute to

variations in clutch size (Mourão et al. 2010), fertility rate

(Bramwell 2002) and embryonic mortality rate (Mourão et al.

2010; Nakage et al. 2003; Wilson et al. 2003). In this context,

field (Bishop et al. 2000), semi-field (Johnston et al. 1996) and/

or lab (Lopez-Antia et al. 2013, 2015; Kitulagodage et al. 2011)

experimental studies are required to control potential confound-

ing factors and provide conclusive results.

Contaminations by other pollutants

We detected in partridge eggs some compounds (DDT/

isomers, PCB/congeners, heptachlor, HCH/isomers) that

are listed on annex A or B of the Stockholm convention

on persistent organic pollutants (POPs). These chemicals

are widely distributed and persistent in the environment,

they bioaccumulate through the food web and are toxic

to humans and wildlife. As such, they still receive spe-

cial attention from researchers. As a consequence and

contrarily to current pesticide ASs, a large body of lit-

erature is devoted to these compounds in wild birds

(e.g., Fernie et al. 2003; Fry 1995; Gómez-Ramírez

et al. 2014; Hoffman et al. 2002; Meador 1996). These

compounds are still detected in many bird species

throughout the world (e.g., Augspurger et al. 2008—

wood duck in USA; Clark et al. 2009—peregrine falcon

in USA; Eng et al. 2014—starling in Canada; Gomez-

Ramirez et al. 2012; Martínez-López et al. 2007—

Eurasian eagle owl, booted eagle and goshawk in Spain;

Fliedner et al. 2012—herring gull in Germany; Gao

et al. 2009—six species of aquatic birds (gull, tern,

plover, common coot), ring-necked pheasant, mallard

and swan in China; Kocagöz et al. 2014—gulls, coot

and heron in Turkey; Malik et al. 2011—cattle egret

in Pakistan). Our results provide however new data

since little is known about their occurrence in free-

living galliform birds. The concentrations are however

quite lower than the ones currently quantified in other

species/countries and are not likely to reduce the breed-

ing success of the grey partridge.

Soil particles ingested with grit or soil residues absorbed by

plants may be the exposure route for compounds such as HCH

(Orton et al. 2013), fipronil or neonicotinoids (Bonmatin et al.

2015) that are stored in French soils. The spot of contamina-

tion by DDT/isomers is less obvious, and only hypotheses can

be proposed. In some raptor studies, it is suggested that the

recent increase of DDE concentrations in eggs are due to a

local use of dicofol (inGómez-Ramírez et al. 2014;Wiemeyer

et al. 1989, 2001), an organochlorine acaricide manufactured

from DDT used to protect vegetables and fruits (JMPR – Joint

FAO/WHO Meeting on Pesticide Residues 2011). International

regulations limit impurities in technical dicofol, but accidents in

pesticide refinement are possible. Such an origin in our study

may be plausible given that (i) DDT/isomers were detected in

clutches of partridges living in a site where strawberries, legumes

and wine are produced and (ii) its use as an acaricide on straw-

berries, beans and grapes was banned in France in late March

2010 (EPHY database, accessed September 2015). Although

this AS was not listed in the course of our study, we cannot

exclude that it has been used by some farmers that did not

participate to the work (see Bro et al. 2015; Millot et al. 2015).

Conclusion

This work provides evidence of the contamination of a

farmland galliform bird by some pesticide ASs. The char-

acteristics of rapid and high excretion rate of ASs and their

low transfer rate to tissues, organs and eggs measured in

worst-case situations do not fully prevent contamination of

non-target organisms in the real world. This result is con-

gruent with risk assessment estimates of some ASs (higher

tier TER lower or close to 5, EFSA 2009). However, the

effects of the contamination we detected on egg character-

istics and egg fate cannot be inferred from our data. It is

known from lab studies that exposure to some ASs, of

which chemicals suspected to have endocrine disruptor

properties, during embryonic development may have repro-

ductive consequences, but whether such effects occur in the

field remains an open question. Conclusions will only be

drawn from experiments simulating operational conditions
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of use. However, before planning experiments, exposure in

field conditions should be better documented. Provided that

funds were available, partridge failed eggs might be a non-

invasive monitoring tool of contamination of farmland

birds by PPPs. Indeed, hunters are solicited to collect

clutches deserted by partridges following disturbance, for

instance by crop harvesting, and to make the eggs incubated

by bantam hens or artificially in specific centres. A propor-

tion of eggs could be analysed. Such dedicated surveys are

already operational for monitoring wildlife poisoning inci-

dents (e.g., SAGIR in France—http://www.oncfs.gouv.fr/

Reseau-SAGIR-ru105, the Wildlife Incident Investigation

Scheme in UK—http://www.pesticides.gov.uk/guidance/

industries/pesticides/topics/reducing-environmental-

impact/wildlife) or monitoring some contaminants in some

raptor species and their eggs (reviewed by Gómez-Ramírez

et al. 2014). Such a wide-scale scheme could be implement-

ed for farmland birds and PPPs. It would be highly valuable

as a surveillance tool of pesticide contamination of wildlife

as a complement of more focused studies (Quintaine et al.

in press; Lopez-Antia et al. 2013, 2015).
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