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Abstract

A multi-modal transportation system of a city can be modeled as a multiplex network

with different layers corresponding to different transportation modes. These layers

include, but are not limited to, bus network, metro network, and road network.

Formally, a multiplex network is a multilayer graph in which the same set of nodes are

connected by different types of relationships. Intra-layer relationships denote the

road segments connecting stations of the same transportation mode, whereas

inter-layer relationships represent connections between different transportation

modes within the same station. Given a multi-modal transportation system of a city,

we are interested in assessing its quality or efficiency by estimating the coverage i.e., a

portion of the city that can be covered by a random walker who navigates through it

within a given time budget, or steps. We are also interested in the robustness of the

whole transportation system which denotes the degree to which the system is able

to withstand a random or targeted failure affecting one or more parts of it. Previous

approaches proposed a mathematical framework to numerically compute the

coverage in multiplex networks. However solutions are usually based on eigenvalue

decomposition, known to be time consuming and hard to obtain in the case of large

systems. In this work, we propose MUME, an efficient algorithm for Multi-modal

Urban Mobility Estimation, that takes advantage of the special structure of the

supra-Laplacian matrix of the transportation multiplex, to compute the coverage of

the system. We conduct a comprehensive series of experiments to demonstrate the

effectiveness and efficiency of MUME on both synthetic and real transportation

networks of various cities such as Paris, London, New York and Chicago. A future goal

is to use this experience to make projections for a fast growing city like Doha.

Keywords: Multiplex networks; Robustness; Resilience; Coverage; Random walker;

Multimodal transportation; Random and targeted failures

1 Introduction

In the past years scholars have increasingly realized that urban infrastructure modeling

can not be addressed in a decoupled way: transportation networks in big cities are natu-

rally multi-modal, and as such commuters use different modes to move around the city.

This implies that congestion in surface (car) commuting has large effects on other modes

of transportation, e.g., bus ormetro; the other way around, incidences in themetro system

(e.g., temporary power failure in a station) will have severe consequences on the bus and
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private car systems. Provided that many cities—and particularly large metropolis—offer

open data from all sorts of remote sensing devices, it is tempting to dive deep in those

data so as to characterize such interwoven layers, and quantify their mutual effect on each

other. In this paper, however, we intend to take one step back and address the question

from a theoretical perspective to (i) represent the multi-modal transportation system as

a multiplex network; (ii) mathematically characterize the random walk coverage of this

multiplex, and (iii) assess the robustness of such coverage when the system is confronted

with failure. This strategy—setting a theoretical framework—provides an anticipatory un-

derstanding, for instance to avoid possible, unforeseen negative side-effects of urban plan-

ning decisions. Also from an urban planning point of view, our proposal ultimately opens

the path for an holistic route ranking, helping authorities to prioritize certain navigation

strategies over others, in particular during mega events.

Regarding point (i) above, our work adds to the literature on multiplex networks, which

has gained a lot of momentum in the last five years. As research on complex systems ma-

tured, it became essential tomove beyond simple graphs and investigatemore complicated

(but more realistic) frameworks. At first sight, the expansion from “monoplex” to multi-

plex may be hailed as an easy one—from a network to a “stack” of networks. However,

things turned out to be more complicated, and a generalization of “traditional” network

theory had to be developed, e.g., see [1]. To begin with, an adjacency matrix can no longer

encode the layer-to-layer interactions of multiplex systems, and rather supra-adjacency

matrices or adjacency tensors enter the scene, e.g., see [2–4]. This in turn modifies all

the underlying algebra that lays at the base of monoplex network analysis, both regarding

static descriptors—degree, transitivity, eigenvector centrality, modularity, etc. [5–8]—and

dynamic processes [9], such as mobility on urbanmultiplexes. The latter—which is the fo-

cus of this contribution, see next Section—has been tackled only recently [10–12].

Needless to say, randomwalk dynamics—and its neighboring problems, e.g., Mean First

Passage Time [13, 14] and network coverage [15, 16]—have a long tradition in network

theory [17]. We here resort on De Domenico et al. [18], which offers the first theoreti-

cal generalization of random walks to the multiplex framework, as applied to navigability

processes on multi-modal transportation networks.

Finally, the concept of robustness has been central to network theory from the early

2000s [19, 20], because of its applied significance together with a long-standing tradition

under the topic of percolation theory in Statistical Physics [21, 22]. Closer to urban ques-

tions, Arcaute et al. [23] have relied on percolation to explore the limits of regions and

cities; Li et al. [24] propose an interesting dynamical percolation approach to unveil com-

plex commuting dynamics in cities; and finally other works [25, 26] focus on the problem

of infrastructural robustness and city design from the idea of progressive structure fail-

ure (removal of randomly chosen edges). More recently, Romero et al. [27] studied the

impact of external stress on the structure of networks applied to social media platforms;

and Baggio et al. [28] looked at the robustness of multiplex networks in a social-ecological

context. In the multilayer framework, percolation transitions have also been studied from

a theoretical perspective, e.g., see [29].

This paper is organized as follows. In the next section,we present the data model used

to represent a multi-modal transporation system of a city, and formalize the problem of

efficient computation of the coverage using randomwalkers. Thenwe introduce theMulti-
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model UrbanMobility Estimation algorithm; and in the validation section, we present the

experimental evaluation of the model; with a conclusion at the end of the paper.

2 Datamodel and problems

Many physical realities can be modeled as sets of interconnected entities; and multi-layer

networks are used as a representation of these complex systems. We therefore observe

many dynamical processes being studied on top of these networks, such as diffusion pro-

cesses [30, 31], synchronization [32, 33], percolation [34, 35], etc. We use, in particular,

multiplex networks to provide the comprehensive conceptual framework, see e.g., [1, 18,

30, 36–43], and random walks to study the mobility of commuters within a multimodal

transportation network in a city. This will allow the development of optimal navigation

strategies.

2.1 Multiplex networks

Given a set of L layers, each representing a type of relationship and containing N nodes.

The relationship is represented by an edge and can be anything depending on the complex

system, e.g., in social networks, it can be “friendship” on one layer such as Skype and

“professional” on another layer, such as LinkedIn. For multimodal transportation systems,

the nodes represent the components of the complex system, e.g., bus stations in the first

layer, andmetro stations in the second layer, etc. Even though the layers are different from

each other, the commuters use both of them to move in a large city, and therefore it is

important to represent their mobility by taking into account the coupling between layers.

A multilayer network is a pair M = (G,C) where G is a finite sequence of (directed or

indirected, weighted or unweighted) intra-layer graphs Gα = (Vα ,Eα), and C is the set of

inter-layer connections between nodes of different layers Gα and Gβ , i.e.,

C =
{

Eαβ ⊆ Vα × Vβ | α �= β
}

. (1)

Amultiplex network is a special type of multilayer network in which V1 = V2 = · · · = VL =

V , and the only possible type of interlayer connections are those in which a given node is

only connected to its counterpart nodes in the rest of layers, i.e.,

Eαβ =
⋃

α, β

{[

i(α), i(β)
]

| i(α) ∈ Vα , i(β) ∈ Vβ ,α �= β
}

. (2)

Here, a node-layer i(α) means that node i participates in layer α.

In other words, multiplex networks consist of a fixed set of nodes connected by differ-

ent types of links, see Fig. 1. The paradigm of multiplex networks is social systems, since

these systems can be seen as a superposition of a multitude of complex social networks,

where nodes represent individuals and links capture a variety of different social relations.

In this study, we consider node-aligned multiplex networks, i.e., inter-layer connections

are “diagonal” in the sense that each node is connected only to its counterpart in the other

layers, and the inter-layer edges exist only between consecutive layers.

There have been some attempts in the literature formodelingmultilayer networks prop-

erly by using the concept of tensors, e.g., see [6, 44]. In this study, we use proper matrix

representation, and therefore the supra-adjacencymatrix of themultiplex network has the
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Figure 1 Example of a multiplex configuration. A three layer multiplex network showing the inter-layer and

intra-layer correspondences between different nodes

general form

W =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

W(1) +D(11) D(12) D(13) · · · D(1L)

D(21) W(2) +D(22) D(23) · · · D(2L)

D(31) D(32) W(3) +D(33) · · · D(3L)

...
...

...
. . . D(L–1)L

D(L1) D(L2) · · · DL(L–1) W(L) +DLL

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (3)

where W(α) is the adjacency matrix of layer α, D(αβ) is a diagonal matrix such that d
αβ

ii is

the cost associated with the inter-layer edge [i(α), i(β)], andD(αα) is a diagonal matrix such

that dαα
ii represents the cost of staying in the same node and in the same layer.

Note that multiplex networks allow an easy integration of traversal times by adding

weights to the different edges of the network. Weights of edges in the same layer will

represent the time it takes to go from one station to another, whereas weights of edges

connecting the same station in two different layers represent the time it takes to transfer

from onemode of transportation to another. The weights of transferring can also take into

account the frequency of each line, which is not part of this study. However, in some cases,

frequency can be relevant in bus or rail networks.

Remark 1 The spectrum of the supra-adjacency matrix (and its associated supra-Lapla-

cian matrix) is directly related to several dynamical processes that take place on a multi-

layer network, such as the diffusion dynamics [45], and the guarantee of a unique station-

ary state of the Markov process, e.g., see [46].

Represented this way, multiplex networks encode significantly more information than

their single layers taken separately, since they include correlations between the role of the

nodes in the different layers. For example, a node that is a hub in the metro layer is more
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likely to be a hub in the bus layer. Therefore, the degree of nodes in the metro layer is

positively correlated with that of the bus layer. Negative correlations may also exist, when

the hubs of one layer are not the hubs of another layer.

One limitation of multiplex networks, when all lines of a transportation mode are put

in the same layer, is that they do not account for the cost of transferring between lines (at

the same stop), especially when the stop is represented with the same node in that layer.

However, there is a study by Aleta et al. that addresses this issue, see, e.g., [47].

2.2 Coverage by randomwalk

Random walks constitute a fundamental mechanism for many dynamics taking place on

complex networks, e.g., see [48]. To assess the urbanmobility in this multiplex transporta-

tion system, we model commuters as random walkers and we determine the coverage of

the random walks, defined as the expected value of the number of steps to reach all nodes

in the transportation system, regardless of the layer, on a walk that started from any node-

layer j(α), i.e.,

Cj(α) (t) = E
[

# steps to reach all nodes in the graph on a walk that starts at j(α)
]

,

i.e., it is the expected value of the number of nodes in the network being visited at least

once in a time less than or equal to t, regardless of the layer, assuming that walks started

from any other node-layer in the network.

A random walk is a Markovian process [49], which means that the transitions between

states are historyless, i.e., the probability of transitioning to the next state depends only

on the current state, not on any of the other previous states. Moreover, at each time step,

the random walker has three options: the first one is to stay at the same node, the second

one is to move to other neighboring nodes on the same layer and the last one is to switch

to one of its counterparts on other layers, as illustrated in Fig. 2.

The mathematical model, used in this paper, is inspired from the study in [18], and was

clearly developed by us in [50].

Therefore, given amultiplex transportation systemofN nodes and L layers, the discrete-

time master equation describing the probability of finding the walker in node-layer i(α),

at time (t + 1), can be written as, e.g., see [18, 50, 51]

pi(α)(t + 1) =Aαα
ii pi(α)(t) +

N
∑

j �=i

Aαα
ij pj(α)(t)

+

L
∑

β=1

A
αβ

ii pi(β)(t) +

L
∑

β=1

N
∑

j �=i

A
αβ

ij pj(β)(t) (4)

which can be assembled in matrix form as P(t + 1) = AP(t), where A ∈ R
NL×NL is the

transition supra-matrix (always assumed to be independent of time), and P ∈ R
NL is a

supra-vector containing the probability of finding the walker at any node-layer i(α), such

that

P =
[

pT
1 pT

2 · · · pT
L

]T
and pα = [p1(α) p2(α) · · · pN(α)]

T .
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Figure 2 Random walk on a multiplex. An illustration of different possible moves available for a random

walker in a multiplex setting

For a classical random walk, the transition probability of moving from node-layer i(α)

to node-layer j(α), i.e., within the same layer α, or to switch to the counterpart of vertex i

in layer β , i.e., to node-layer i(β), is uniformly distributed. Therefore we have

A
αβ

ij =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

dαα
(i)

ki(α)+ci(α)
if i = j and β = α,

wα
ij

ki(α)+ci(α)
if i �= j and β = α,

d
αβ

(i)

ki(α)+ci(α)
if i = j and β �= α,

0 if i �= j and β �= α,

(5)

where wα
ij is the weight of the intra-layer edge [i(α), j(α)] and d

αβ

(i) is the weight of the inter-

layer edge [i(α), i(β)], i.e., the cost to switch from layer α to layer β at node i, while dαα
(i)

quantifies the cost of staying in the samenode and in the same layer. These are the elements

of the matricesW(α), D(αβ), and D(αα) inW respectively.

The intra-layer strength of a node-layer i(α) is ki(α), and ci(α) is the inter-layer strength

of node i with respect to its connections to its counterparts in different layers. They are

defined as

ki(α) =
∑

j∈N (i)

wα
ij and ci(α) =

∑

β

d
αβ

(i) ,

so that the total strength of node-layer i(α) is the sum, i.e., κi(α) = ki(α) + ci(α).

Remark 2 Since each node is coupled only with its counterparts in different layers, then,

only the elements of the type A
αβ

ii are different from zero. Jumps to other nodes in the

other layers, as in Lévy random walks, are not allowed, and thereforeA
αβ

ij = 0 for i �= j and

α �= β .
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3 Mathematical analysis of themodel

In matrix form, it can be shown that the discrete-time master equation (4) can be written

as the initial value problem,

⎧

⎨

⎩

d
dt
[P(t)] = –(I –A)P(t),

P(t = 0) = P(0)
(6)

and without loss of generality, we assume that, at t = 0, the random walker is in the first

layer at node-layer j(1), i.e., P(t = 0) = Pj(1)(0) then the initial value problem admits the

following solution

P(t) = exp
[

–t(I –A)
]

Pj(1)(0), (7)

where exp [–t(I –A)] is the usual matrix exponential, i.e.,

exp
[

–t(I –A)
]

=

∞
∑

k=0

(–t)k

k!
(I –A)k .

Remark 3 It is easy to see that Pj(1)(0) = [eTj 0T · · · 0T ]T with ej ∈R
N being the canonical

vector, and 0 ∈R
N is the vector of all zeros.

Theorem 1 Let K be the diagonal matrix containing the total strength of all nodes, i.e.,

K = diag(W1), where 1 ∈ R
NL is the vector of all ones, then A =K– 1

2WK– 1
2 . Therefore,

the matrix (I –A) is the normalized supra-Laplacian of the multiplex network.

Proof The supra-Laplacian of the multiplex network is

L =K –W

=K
1
2
(

I –K– 1
2WK– 1

2
)

K
1
2 .

Therefore, the matrix (I –A) is the normalized supra-Laplacian. �

The random walker can be at any layer, so let pi(t) be the probability to find the walker

in node i at time t, regardless of the layer, i.e.,

pi(t) =

L
∑

α=1

pi(α) = ET
i P(t), (8)

where Ei = [eTi · · · eTi ]
T ∈R

NL. Since P(t +1) =AP(t), and using Equations (8) and (7), we

get at time (t + 1) the following expression for pi(t + 1)

pi(t + 1) = ET
i AP(t)

= ET
i A exp

[

–t(I –A)
]

Pj(1)(0). (9)

To determine the coverage, defined as in [18], let’s find an expression for the probability

δi,j(t) not to find the walker in vertex i after t time steps, assuming it started in vertex j,
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that is

δi,j(t) =
[

1 – pj(0)
]

t
∏

τ=1

[

1 – pi(τ )
]

. (10)

From (10), we get the recurrence relation δi,j(t + 1) = δi,j(t)[1 – pi(t + 1)], thus leading to

the initial value problem

⎧

⎨

⎩

d
dt
[δi,j(t)] = –δi,j(t)E

T
i A exp [–t(I –A)]Pj(1)(0),

δi,j(t = 0) = δi,j(0),
(11)

with δi,j(0) = 0 for j = i since the walker started in vertex j and the probability of not finding

it in the same vertex is 0. In the case of j �= i, then δi,j(0) = 1. The solution to the initial value

problem (11) is, see [18]

δi,j(t) = δi,j(0) exp
[

–ET
i BPj(1)(0)

]

with B =

t
∑

τ=0

Aτ+1. (12)

Therefore, the coverage is given by double averaging over all vertices the probability

[1 – δi,j(t)], i.e.,

C(t) = 1 –
1

N2

N
∑

i=1

N
∑

j=1

δi,j(0) exp
[

–ET
i BPj(1)(0)

]

. (13)

Theorem 2 The matrixB need not be formed explicitly, since only its action on the vector

Pj(1)(0) is needed, i.e., a matrix-vector product, therefore

BPj(1)(0) =

[

t
∑

τ=0

Aτ+1

]

Pj(1)(0)

=
[

A +A2 + · · · +At+1
]

Pj(1)(0)

=APj(1)(0) +A
(

APj(1)(0)
)

+ · · · +A
(

A · · ·
(

APj(1)(0)
)

· · ·
)

.

Moreover, since Pj(1)(0) = [eTj 0T · · · 0T ]T , then

APj(1)(0) =
[(

A(1 :N , j)
)T

0T · · · 0T
]T
,

i.e., the jth column ofA and we get the following recurrences

ET
i APj(1)(0) =A(i, j),

ET
i A

2Pj(1)(0) =

N
∑

ℓ1=1

A(i,ℓ1)A(ℓ1, j),

ET
i A

3Pj(1)(0) =

N
∑

ℓ1=1

N
∑

ℓ2=1

A(i,ℓ1)A(ℓ1,ℓ2)A(ℓ2, j),
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ET
i A

4Pj(1)(0) =

N
∑

ℓ1=1

N
∑

ℓ2=1

N
∑

ℓ3=1

A(i,ℓ1)A(ℓ1,ℓ2)A(ℓ2,ℓ3)A(ℓ3, j),

...

ET
i A

t+1Pj(1)(0) =
∑

ℓ1

∑

ℓ2

· · ·
∑

ℓt

A(i,ℓ1)A(ℓ1,ℓ2)A(ℓ2,ℓ3) · · ·A(ℓt , j).

Proof These relations can be proven easily the usual way of proving recurrences, i.e., val-

idate for the initial case, then assume it is correct for τ and prove that it is still correct for

τ + 1. The details are skipped. �

Remark 4 The number of walks from node i to node j of length τ is the entry on row i and

column j of the matrix Aτ . Therefore the matrix B represents the total number of walks

from node i to node j, of any length less than or equal to (t + 1).

4 Resilience to failures and percolation

Significant progress has been made in understanding the percolation properties of multi-

layer networks. For example, it has been shown that dependency links can have a serious

impact on cascading failure events, in particular for interdependent networks. And, in

many multilayer networks, some nodes of a layer are interdependent on nodes in other

layers. A node is interdependent on another node in a different layer if it needs the other

node to function in order to function itself properly. When two or more networks are in-

terdependent, a fraction of node failures in one layer can trigger a cascade of failures that

propagate in themultilayer network. This canmean that a network of networks as a whole

may bemore fragile than its constituent parts taken in isolation. A dramatic real-world ex-

ample of a cascade of failures is the blackout that affectedmuch of Italy in 2003, where the

shutdown of power stations directly led to the failure of nodes in the Internet commu-

nication network, which in turn contributed to further breakdown of power stations, see

[52]. Also, the work of Brummitt et al. in [53, 54] shows the importance of considering

interconnected networks to better understand cascading failures. It is therefore critical to

consider interdependent network properties in order to design robust networks.

It is now clear that the robustness ofmultilayer networks can be evaluated by calculating

the size of their mutually connected giant component (MCGC) when a random failure

affects a fraction of the nodes in the system, see the pioneering work in [52]. The MCGC

of a multilayer network is the largest component that remains after the random failure

propagates back and forth in the different layers.

The MCGC is defined as the set of nodes i(α) that satisfy the following recursive set of

equations, see [55]

(a) at least one neighbor j(α) of node i(α) in layer α is in the MCGC;

(b) all the interdependent nodes i(β) of node i(α) are in the mutually connected giant

component.

Network percolation theory has already been exploited in the urban context for pur-

poses other than the ones in this work, e.g., see [24, 56, 57]. With the road networks for

dozens of cities at hand, we can now proceed with the percolation dynamics in two dif-

ferent ways. Both of them share the idea of progressive structural deterioration [19, 20,

58], understood either as error or failure (removal of randomly chosen edges); or attack
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(removal of important edges, where “importance” can be quantified by some descriptor,

such as high betweenness of edges, high centrality of nodes, etc.) Note that in this work

we focus on bond percolation (the removal of edges) as opposed to site percolation (the

removal of nodes).

To quantify the robustness of the multimodal transportation system, we use percolation

theory [19] to describe the impact of edge failures in the multiplex on the coverage. We

iteratively remove edges from themultiplex and compute the new coverage of the resulting

network.

5 Computational approach

In [18], a numerical approach to estimate the coverage has been proposed. It is based

on the eigendecomposition of the normalized supra-Laplacian (I – A) ∈ R
NL×NL. The

general form of the coverage has the following expression

C(t) = 1 –
1

N2

N
∑

i,j=1

δi,j(0) exp

[

–
∑

ℓ∈�
0

Ci,j(ℓ)t –
∑

ℓ∈�
+

Ci,j(ℓ)
e–λℓt – 1

–λℓ

]

,

where Ci,j(ℓ) = ET
i AVℓPj(0) are constants depending on the vertex, the transition matrix,

the eigendecomposition, and the initial conditions. Each supramatrixVℓ is obtained from

products of the eigenvectors of the normalized supra-Laplacian, and �
0 and �

+ indicate

the sets of all null and positive eigenvalues of the normalized supra-Laplacian, respectively.

Remark 5 Any solution approach based on the eigendecomposition is time consuming

and hard to obtain, especially for large matrices. Therefore it should be avoided.

5.1 Proposed algorithm

The main kernel in computing the coverage is how to compute the exponent ET
i [A +

A2 + · · · +At+1]Pj(0). For this, we propose the Multi-model Urban Mobility Estimation

(MUME) Algorithm 1. Therefore, the way the coverage is computed here results in a

tremendous saving in the computational time, as opposed to the eigendecomposition of

the (normalized) supra-Laplacian matrix (I –A) proposed in [18].

5.2 Complexity analysis

Floating point operation (flop) is a simple, machine-independent measure of algorithm

complexity. In multi-modal transportation networks, we usually have a small number of

layers, for example in our study, L = 2, since we consider a bus layer and a metro layer.

Hence, in theMUME algorithm, we have one matrix-vector product per iteration (Step 6)

whose count is ≪ 2N2 flops, because of the sparsity of the matrixA; and one addition of

2N-vectors (Step 7) whose count is 2N flops.

6 Experimental evaluation

The main objective of this work is to study urban mobility challenges in modern cities, as

well as the robustness and resilience of the complex transportation systems. Such work

can serve as a basis for an automatic comparative evaluation of transportation system ef-

ficiency of different cities. Themultilayer nature of the proposed framework requires data

from different modes of transportation. However, it is found that not so many cities have
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Algorithm 1 Computing ET
i [A +A2 + · · · +At+1]Pj(0)

1: procedure ComputeExponent(A,N ,L, i, j, t)

2: Pj(0) ← [eTj 0T · · · 0T ]T

3: a ←APj(0) ⊲ jth column ofA

4: ā ← a

5: for τ ← 1, t do

6: a ←Aa ⊲ 1 matrix-vector product per iteration

7: ā ← ā + a ⊲ vector update

8: end for

9: exponent ← 0

10: for α ← 1,L do

11: exponent ← exponent + ā(i + (α – 1)N)

12: end for ⊲ exponent = ET
i ā

13: end procedure

collected, cleaned, and made data about their transportation systems publicly available.

We thus limited our experimentation to four big cities: Paris, London, New York City, and

Chicago.

We experiment with random graphs of different natures to derive more generalizable

conclusions. In what follows, we present an overview of the data and the methods de-

veloped to produce the multiplex urban transportation network of every city from raw

data. We then summarize and discuss our results for both convergence of coverage and

robustness to failures.

6.1 Data

At the level of every city; we acquire, parse and combine GTFS (Google Transit Feed Spec-

ification)a datasets of every transportation mode. Google Transit Feed Specification is a

format of data created to provide transit schedules and public transport information for

specific geographical location. It is a “standard” developed by Google in order to help pub-

lic transport agencies to publish and integrate their data with Google Maps. A typical

GTFS feed includes information about multiple aspects of a transit system, such as stops,

routes, trips, and schedules. Needless to say, the availability of these datasets is a key re-

source to study the dynamics of the transportation systems, e.g., see [59–62]. In our study,

we use GTFS datasets to represent the anatomy of the public transportation system in all

cities except London, and build a multiplex urban transportation network for every city.

In order to process and transform the combined GTFS datasets to multiplex system, we

perform four tasks:

MergingGTFSdataset fromdifferent sources. Since the datasets come fromvarious agen-

cies and transportation companies which have adopted different indexes, the first step to

reliably build transportation network after merging datasets is to re-index stop locations

to avoid any conflicts. To do so, we join stations spatially (using latitude and longitude

coordinates). We use text similarity matching techniques applied on stations’ names to

double check our results.

Identifying and extracting routes. As we are interested in identifying connected loca-

tions, we start by filtering occasional trips, such as trips during national holidays, etc.,



Baggag et al. EPJ Data Science  ( 2018)  7:14 Page 12 of 21

from our dataset. Then, for each trip, we order stop locations based on departure time to

identify connected locations.

Transportation network as a graph. We construct a graph of every transportation net-

work in the city from the set of ordered stop locations per trip. Every set of these nodes

represent a path in the network. As a result, we obtain a network for each mode of trans-

portation in the city. As an example; for the case of Paris, the result of this step for both

metro and bus networks is illustrated in Fig. 3.

Building amultiplex network. In our study, we represent the transportation network as a

two-layer multiplex: Bus network andMetro network, as these two transportation modes

represent the most significant urban transportation modes. The nodes of each layer rep-

resent the stop stations (bus stations or metro stations). As our multiplex system has to

be ordinal and diagonal, we establish a connection (a link) between a node in one layer

(e.g., bus) and its counter-part in the other layer (e.g., metro). We adopted an assumption

Figure 3 Bus (top panel) and Metro (bottom panel) networks generated frommerged GTFS files for the city

of Paris. We can clearly see that bus network covers a much larger area than metro network and is much

denser than it
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according to which two nodes in two different layers that are within a walking distance

radius (≤ 100 m) represent the same station (i.e, a station that provides a connection be-

tween the two transportation modes).

As stated in the modeling section, we assume that the transition probabilities are uni-

form at each node. That is, at each node, the random walker has the same probability to

move through all possible edges, including those connecting to other layers.

We eliminate the nodes from layer 1 (respectively: layer 2) that don’t match any node in

layer 2 (respectively: layer 1). We make sure to retain connectivity through the removed

nodes by connecting their neighbors recursively. Note that by doing so, we could end-up

with a network that has much more edges than the initial one. So, in order to build a mul-

tiplex network, we used a simplified approach by keeping the same number of stations at

every layer. We simply run a recursive algorithm to remove the nodes (stations) which do

not have a counterpart in the other transportation layer, however, we retained the con-

nectivity between the nodes. By removing the nodes, the algorithm increased the number

of edges between the different remained nodes. This is for instance the case of Paris Bus

network (see Table 1).

We apply the same process for each of the studied cities, and as a result, we obtain the

multiplex representation of the urban transportation for every city.

In the case of the city of London, we use both (1) OpenStreetMap (OSM)b and (2) The

National Public Transport Data (NPTDR).c OSM provides an updated map of different

bus and metro stations in the city, whereas NPTDR contains a snapshot of every public

transport journey inGreat Britain for a selectedweek inOctober each year.WhileNPTDR

database covers Great Britain (England, Scotland, Wales), we focus only on London city.

First, we filter all the stations from NPTDR that are inside the bounding box of London

city. Second, we extract all the stop points and trajectories of the twomodes of transporta-

tion considered, i.e., bus and metro networks in this case. Then, we use these stop points

and trajectories to build the graph of each layer. Next, we identify the inter-layer edges

that connect all the same nodes residing in both layers. Finally, we build a two-layer trans-

portationmultiplex for the city of London bymerging both graphs and using the identified

ordinal nodes.

Table 1 Basic statistics about different transportation networks used in this study. Bus (initial) is the

initial bus network extracted from GTFS files; Bus (multiplex) is the part of the initial bus network that

matches the metro network in the city. Edges in Bus (multiplex) are routes (paths) extracted from Bus

(initial)

City/Mode # Nodes # Edges Degree Area (km2)

Paris/Metro 302 359 2.37 688.15

Paris/Bus (initial) 4647 7749 3.33 4279.93

Paris/Bus (multiplex) 302 38,842 257.23 687.52

New York/Metro 211 232 2.19 207.63

New York/Bus (initial) 6295 6858 2.17 1017.18

New York/Bus (multiplex) 211 1276 12.09 207.63

Chicago/Metro 72 72 2.0 163.57

Chicago/Bus (initial) 8602 8882 2.06 253.42

Chicago/Bus (multiplex) 72 72 2.0 163.58

London/Metro 307 372 2.42 4229.38

London/Bus (multiplex) 307 381 2.49 4229.39
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Note that the hardest part about collecting data, is to use two sources of data for two

modes of transportation, for example the metro network and the bus network for the city

of London. When we started the resilience analysis, the data was not available for the

city of London. Thus, we used other reliable data sources, Open Source Maps and The

National Public Transport Data (NPTDR), in this case. The summary of the characteristic

of each network is given in Table 1.

6.2 Convergence of the coverage

Given a multi-model transportation network and its corresponding multiplex represen-

tation, we are interested in how much of the network a random walker can visit (cover)

within a given budget of time. The time budget can be substituted with a correspond-

ing number of steps or movements that allow the walker to go from one node to one of

its neighbors. The faster the coverage (i.e., fewer steps) the better. Indeed, the number of

steps required to visit the entire network in a complete randomized setting is a very good

indicator about the quality of the underlying multi-model transportation system.

We first run MUME to compute the coverage convergence curve on synthetic graphs.

The idea is to build different multiplex networks of two layers to mimic the two trans-

portation modes under study. We also enforce different configurations of the multiplex to

capture the heterogeneity observed in the real networks of buses and metros as shown in

Fig. 3. Thus we generate random graphs with heterogeneous degree distributions follow-

ing Barabási–Albert (BA) model and other graphs with more homogeneous degree distri-

butions following Erdős–Rényi (ER). Based on our empirical observation, we found that

metro stations in general are quite somewhat similar to BA graphs, whereas bus graphs we

generated resemble ER graphs. The reason of this interesting distinction resides in the way

bus networks are generated in which we only keep bus stations that match metro stations,

and then create edges between any two pairs of nodes (bus stations) for which there is a

shortest path in the initial bus graph that doesn’t contain any metro station. This process

naturally lead to a much denser graph as the number of paths in a graph is much higher

than the number of its edges. Thus, we create three different multiplex networks configu-

rations: BA-BA, BA-ER, and ER-ER. The first and third networks simulate cases where the

two transportation modes share similar topological properties, whereas the second case

simulates more realistic cases of transportation modes having different graph topologies.

We fix the number of nodes in all graphs toN = 100 and vary the number of edges. In BA,

we requested that each new node connects to two already existing nodes, while in ER we

set the density score p = 0.4.

Practically, we vary τ , the number of steps, to take values in [0, 1000] interval.We request

MUME to compute the coverage score for each value of τ . We run this process several

time and report on averages. Figure 4 plots the coverage curves of the different synthetic

multiplex networks.

Several observations can be made here. First, while all three multiplex networks cov-

erage converge within τ = 1000 steps, it is interesting to see that ER-ER network reaches

convergence faster. This is mainly due to the fact that the graphs on both layers in the ER-

ER network are dense which leads to a smaller average shortest path in the whole network.

This result is also partly explained by the homogeneous degree distribution of ER graphs

which prevents the randomwalker from getting stuck in a local hub, unlike BA graphs that

favor the formation of such hubs. Second, we found that BA-BA and BA-ERmultiplex net-

works show exactly the same convergence behavior, despite the multiple runs performed.
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Figure 4 Coverage convergence of randommultiplex networks. We consider three different configurations

for a two layered multiplex: BA-BA, BA-ER, and ER-ER with the following settings: BA (N = 100, E = 196), ER

(N = 100, E = 2003)

While further investigations need to be conducted to determine the actual reasons behind

such behavior, we believe that the presence of one BA layer in the multiplex can heavily

impact the random walker and get him into those dense regions and hubs in the BA layer

that are not necessarily connected in the other layer.

Figure 5 reports the results of coverage convergence observed in the four cities studied

here. We intentionally run the random walker for the same number of steps (τ = 1000)

for all cities to enable a direct comparison of the results. As expected, the convergence

of the coverage happens faster in smaller graphs (Chicago) than bigger once (Paris and

New York). Obviously, the smaller the number of stations a transportation system has,

the fewer the number of steps required to cover all of them. We also see that the multi-

modal transportation network of Paris allows a higher coverage compared to New York

and London. This is explained by the density of both “Metro de Paris” which is the second

denser worldwide, and the great density of its corresponding bus network that has more

that 38K edges (a complete graph of that size would have had approximately 45K edges).

Another surprising yet interesting observation is the coverage achieved by the London

multiplex network, which lays a little bit above 0.2 at τ = 1000, way behind the perfor-

mances achieved by the other three cities. This is all the more surprising that both Lon-

don metro network and bus network are of the same size as Paris networks. The reasons

of such under-performancemight be due to the fact that London networks have been gen-

erated from a different dataset which might be incomplete for the bus network (the metro

network has been thoroughly verified by us).

6.3 Robustness to failures

Another important qualitative aspect of multi-modal transportation systems is their abil-

ity to withstand random failures that may occur in the system. In reality, failures hap-

pen more frequently that one could imagine. A heavy traffic jam due to an accident, bad
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Figure 5 Coverage convergence of the multi-modal transportation networks of Paris, London, New York City,

and Chicago

weather condition, or renovation work usually can take down an entire road segment

which forces commuters to change their routes, especially in cases where bus drivers for

instance cannot take initiatives on their own. It is also the case of metro stations, where

frequent closure of segments happen due to electrical shutdowns, suspicious objects on

the rails, maintenance work, etc. Thus, understanding the impact of such failures and the

way they affect the entire system is of a great importance for cities.

To quantify the robustness of the multi-modal transportation system, we use percola-

tion theory [19] that nicely describes the impact of edge failures in the multiplex on the

coverage. It is worth noticing that we are dealing with bond percolation as opposed to site

percolation in which nodes are removed from the network instead.

For all multiplex networks we have created (three synthetic and four real), we iteratively

remove a fraction of edges (5%) from both layers of themultiplex, and useMUME to com-

pute the coverage achieved at τ = 1000 steps of the resulting network. As one could expect,

the coverage score should be inversely correlated with the fraction of edges removed, i.e.,

the more failures there is, the harder it gets for the random walk to reach nodes.

Figures 6 and 7 show the degradation of the coverage as a function of the amount of

removed edges in both synthetic and real multi-modal transportation networks. Interest-

ingly enough, we see in Fig. 6 that failures affect our three synthetic networks in three

completely different ways. The most fragile multiplex network is BA-ER that gets almost

completely disconnected with the removal of only 20% of its edges. This is followed by

the BA-BA network whose coverage degradation is somewhat linear to the fraction of re-

moved edges. ER-ER on the other hand demonstrates a strong robustness to failures with

it securing more than 85% of its coverage when 80% of its edges are removed. While the

results of ER-ER and BA-BA can be explained by the relatively high/low densities of their

two basic forming graphs BA, ER (the higher the density, the better the robustness of the

coverage). It is unclear why having two graphs of different topological structures severely

fragilizes the whole integrated multiplex system.
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Figure 6 Robustness of randommultiplexes to random failures. The curves are averaged over three

independent runs

Figure 7 Robustness to failure of three big cities: Paris, London, and New York City

Here, it is worth noting that most of the literature regards the BA graphs as being more

robust to failure. However, most of these studies are “site” specific; and we may cite the

works, e.g., in [63, 64], which look (even though partially) at the relationship between edge

failure, robustness and network topology.

Unsurprisingly, the real transportation networks of the four cities behave just like the

synthetic BA-ERmultiplex network. High fragility is observed as networks losemore than

20% of their coverage after removing only 5% of their edges. The coverage tends to zero

after the removal of 50% of edges. Despite this common fragility, one can see that Paris
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transportation system is slightly more robust to failures, followed by Chicago, New York

City, and London.

7 Conclusion

The main objective of this study is to better understand and predict urban mobility pat-

terns in the city, and analyze the robustness of the multi-modal transportation system,

i.e., its ability to withstand random and targeted failures. To do so, we model the multi-

modal transportation system as a “multiplex network” consisting of several layers that

correspond to the different transportation modes available in the city; and we estimate

the coverage of the city, which is defined as the average fraction of distinct vertices visited

at least once during a time budget.

We first developed a mathematical framework to compute the coverage in a multiplex

network setting, which we applied to different synthetic and real-life transportation sys-

tems built from four different cities, namely Chicago, London, New York, and Paris. Our

experiments revealed different convergence patterns of the coverage in multiplex net-

works that are related to the topological characteristics of their underlying graphs. Dense

and homogeneous graphs for instance lead to a faster convergence in general. Second,

we looked at how different transportation networks react to failures and stress. Failures

are simulated by the withdrawal of a small fraction of the edges from different layers, and

coverage is computed for each removed fraction. A close inspection of the results showed

that, unlike synthetic transportation networks, the four cities we studied behave quite sim-

ilarly in terms of coverage degradation, with Paris network being the most robust among

all. Moreover, one of the interesting findings of this work is the similarity between real

transportation networks and BA-ER simulated networks.

As a future work, we intend to expand our mathematical framework to capture the ac-

tual commuting dynamics. Our focus will be to estimate the average travel time of com-

muters in different cities, and how it is affected by failures occurring in the system.We are

developing a scalable computational framework to help planners in the city of Doha to effi-

ciently manage the flow of people and intelligently handle capacity of their infrastructure.

We hope that the developed computational tool will help the city of Doha to identify early

problems, predict failures and design better transportation infrastructure in preparation

for the FIFA 2022 world cup.
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