
0885-8950 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2018.2822295, IEEE

Transactions on Power Systems

1

Resilience Enhancement of Distribution Grids
Against Extreme Weather Events
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Abstract—This paper proposes a resilience-oriented design
(ROD) technique to protect distribution grids against high-impact
but low-probability extreme weather events. The problem is
formulated as a two-stage stochastic mixed integer problem. The
first stage is to make ROD decisions, i.e., hardening existing
distribution lines and deploying ROD resources such as back-
up distributed generators (DGs) and automatic switches. The
second stage evaluates the system operation cost during a realized
extreme weather event and repair cost after the event. A novel
modeling strategy is proposed to deal with the decision-dependent
uncertainty of distribution line damage status which is affected by
the first-stage hardening decisions. As both stages have binary
variables, a modified and computationally efficient progressive
hedging algorithm with scenario bundling is introduced. The al-
gorithm performance is evaluated by calculating lower bounds of
solutions. The proposed model and algorithms are demonstrated
on 34-bus and 123-bus test feeders.

Index Terms—Distribution systems, decision-dependent uncer-
tainty, failure probability, progressive hedging, resilience-oriented
design, scenario bundling, stochastic programming

NOMENCLATURE

Sets and Indices

ΩN Set of buses indices i
ΩB Set of lines indices (i, j)
ΩDG⊂ΩN Set of buses with DGs
ΩSG⊂ΩN Set of substation buses
ΩSW ⊆ΩB Set of lines with switches
ΩL⊆ΩN Set of buses with loads
T Set of durations of extreme weather events indices

t
S Set of scenarios indices s

Parameters

ccij Annual capital cost ($) for adding an automatic
tie switch at line (i, j)

chij Annual capital cost ($) for hardening line (i, j)

cgi Annual capital cost ($) for deploying a back-up
DG at bus i

cLi Penalty cost ($) for shedding 1kWh load at bus i

cR0 Base repair cost ($)
M Sufficiently large positive number
NG The total number of newly installed DGs

PL,s
i,t Active load (kW) at bus i in time period t at

scenario s
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QL,s
i,t Reactive load (kVar) at bus i in time period t at

scenario s
P g,max
i Maximum active power limit (kW) of generation

at bus i
Qg,max

i Maximum reactive power limit (kVar) of genera-
tion at bus i

V max
i Maximum voltage magnitude (pu) at bus i

V min
i Minimum voltage magnitude (pu) at bus i

Pmax
ij Maximum active power limit (kW) for line (i, j)

Qmax
ij Maximum reactive power limit (kW) for line (i, j)

Rij Resistance (pu) for line (i, j)

TR,s
ij Repair time (hour) for line (i, j) at scenario s

V0 Reference voltage magnitude
Xij Reactance (pu) for line (i, j)

xc0
ij Binary parameter indicating whether line (i, j)

has an exist switch (1) or not (0)
ωH Average occurrences of extreme weather events

in a year
ζ0ij,t(s) Parameter indicating the damage status of line

(i, j) if it is not hardened, damaged (1) or func-
tional (0) at time t in scenario s

ζ1ij,t(s) Parameter indicating the damage status of line
(i, j) if it is hardened, damaged (1) or functional
(0) at time t in scenario s

td,0ij (s) The first time that ζ0ij,t(s)=1 occurs in scenario
s

td,1ij (s) The first time that ζ1ij,t(s)=1 occurs in scenario
s

∆t Time-period length

Variables

cR,s
ij Repair cost ($) for line (i, j) in scenario s

CI1 (x
h) Total annual capital cost ($) of line hardening

CI2 (x
g) Total annual capital cost ($) of installing back-up

DGs
CI3 (x

c) Total annual capital cost ($) of adding new auto-
matic tie switches

P s
ij,t Active power flow (kW) of line (i, j) at time t in

scenario s
Qs

ij,t Reactive power flow (kVar) of line (i, j) at time
t in scenario s

P g,s
i,t Active power output (kW) of generation at bus i

at time t in scenario s
Qg,s

i,t Reactive power output (kVar) of generation at bus
i at time t in scenario s

xc1
ij Binary variable indicating whether new line

switch is added (1) or not (0) at line (i, j)
xc
ij Binary variable indicating whether line (i, j) has

switch (1) or not (0)
xh
ij Binary variable indicating whether line (i, j) is

hardened (1) or not (0)
xg
i Binary variable indicating whether a new back-up
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DG is placed at bus i (1) or not (0)
yc,sij,t Binary variable indicating whether the line switch

at line (i, j) is closed (1) or not (0) at time t in
scenario s

ϑs
mn,t Binary variable equals 1 if m is the parent bus of

n and 0 otherwise at time t in scenario s
us
ij,t Binary variable indicating whether line status is

damaged (1) or not (0) at time t in scenario s
γs
i,t Load shedding percentage of load i at time t in

scenario s
V s
i,t Voltage magnitude of bus i at time t in scenario

s

I. INTRODUCTION

PRESENTLY, most distribution systems are designed and
maintained for normal weather conditions, which can-

not withstand extensive damages caused by extreme weather
events [1]. For example, Hurricane Wilma in 2005 damaged
more than ten-thousand distribution poles in Florida [1].
Hurricane Sandy in 2012 devastated the overhead distribution
system in New York, which resulted in a loss of nearly
1000 utility poles and more than 900 transformers as well
as 8,371,242 customer outages [2]. In addition, U.S. power
grids are now old and outdated, making them more vulnerable
to such events [3]. One way to address this issue is to
design resilient distribution systems that can withstand extreme
weather events.

A distribution system is considered to be resilient if it is
able to anticipate, absorb, adapt to, and/or rapidly recover
from a disruptive event [4]. The resilience enhancement goals
can be fulfilled through upgrading and operating measures
[5]. Our paper focuses on exploring the impacts of upgrading
grids on system resilience. Resilience-oriented design (ROD)
is defined as topological and structural upgrades to make
power system less susceptible to extreme weather events [5].
In general, hardening existing distribution lines, installation
of DGs and adding line switches are effective ROD strategies
that are commonly used by utilities. Hardening distribution
lines with stronger materials can make them more robust
to extreme weather events. Backup DGs can provide on-site
power for critical facilities and load centers, and contribute
to energizing microgrids to restore load after an extreme
weather event [6]–[11]. Installing automatic switches enables
network reconfiguration that can re-route power to on-outage
portions of distribution networks, shorten the restoration time
and enhance the restoration capability [12].

There are a few studies on ROD of distribution systems
to protect against extreme weather events, which in general
apply two types of modeling techniques: robust and stochastic
modeling. Yuan et al. [13] proposed a new robust optimization
model to solve the resilient distribution network planning
problem under the worst scenario of extreme weather events.
However, their study used a polyhedral set to represent damage
uncertainty, where grid fragility models for specific extreme
weather events were ignored in calculating uncertainty budget.
Moreover, only one hardening measure, i.e., line hardening,
was taken into consideration. In addition, it was assumed that
hardened lines would not be damaged in future events, which
is impractical. In [14], the authors proposed a power distri-
bution system hardening framework using a tri-level robust
optimization. Ref. [14] considered three hardening strategies:
upgrading distribution poles, vegetation managements, and the
combination of the two. A greedy algorithm was proposed to

deal with the coupling issue of the hardening decisions in
the first level and the damage uncertainty in the second level.
However, some important ROD measures were missed, such
as the installation of DGs and automatic tie switches.

Another approach to manage uncertainty in ROD problems
is stochastic programming. Stochastic programming is an
extension of standard deterministic mathematical program-
ming, in which the space of possible outcomes (e.g. line
failure uncertainty) is represented by a probability-weighted
scenario tree. Yamangil et al. [15] proposed a scenario-based
variable neighborhood decomposition search algorithm to de-
sign resilient electrical distribution grids. This work improved
previous studies by assuming that the hardened lines could be
damaged at the rate of 1

10 of unhardened counterparts. How-
ever, the interrelation between the first-stage line hardening
decisions, and the uncertain line damage status, was not taken
into account. The decision-dependent uncertainty is inherent
in infrastructure resilience enhancement. This is because the
resilience enhancement can only change the failure probability
of system components, but cannot reduce it to zero. To manage
the risk in a more realistic manner, it is necessary to model
the failure of system components as a decision-dependent
uncertainty. Arab et al. [16] proposed a proactive resource al-
location model for repair and restoration of potential damages
to power system components located on the traveling paths of
upcoming hurricanes. They used Bender’s decomposition to
solve the two-stage stochastic integer program. But the quality
of solutions were not evaluated. Moreover, Bender’s decom-
position is efficient in solving stochastic programs with linear
programming problems but not for mixed-integer programs in
the second stage.

In this paper, we formulate the ROD problem using a two-
stage stochastic mixed-integer programming (SMIP) model. In
the first stage, the system planner makes ROD decisions: hard-
ening existing distribution lines and deploying ROD resources
such as back-up distributed generators (DGs) and automatic
tie switches. The second stage evaluates the system operation
cost and repair cost under an extreme weather event. The
enhancement of resilience under extreme weather events can
be evaluated by the reduction in load shedding penalty cost
and repair cost. There are two key challenges: (i) the decision-
dependent uncertainty, i.e., the first-stage hardening decisions
will affect the resolution of line damage status uncertainty, is
inherent in infrastructure resilience enhancement and difficult
to model; (ii) the existence of integer constraints on the ROD
decision making in the first stage and recourse decisions
(operation statuses of tie switches and DGs, and damage status
of distribution lines) in the second stage results in the non-
convexity of stochastic ROD models and considerable compu-
tation difficulties. This paper resolves the two challenges by
providing the following key contributions:

(1) An innovative modeling technique is proposed to capture
the decision-dependent uncertainty in ROD modeling. The
uncertain line damage status is decoupled by two independent
parameters, which can be generated in advance to represent
the line damage status with and without hardening. A con-
straint is formulated to pick the two independent variables
to represent the realized line damage status according to the
hardening decisions. This method avoids a time-consuming
and computationally intensive procedure of generating a large
dictionary of scenario sets for all possible values of hardening
decisions. Moreover, the inter-temporal correlation imposed
by the repair process can be captured by sampling the two
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independent variables.
(2) Efficient algorithms based on the modified progressive

hedging (PH) are introduced to cope with the large-scale two-
stage SMIP ROD problems. The PH algorithm can reduce
the computational difficulty by decomposing the problem
into scenario-based subproblems and solving subproblems in
parallel. We apply a scenario bundling technique to signifi-
cantly improve the quality of PH algorithm’s lower bounds.
A multiple replication procedure (MRP) is applied to test
the stability and quality of candidate solutions with limited
scenarios.

The rest of the paper is organized as follows. Section II
proposes mathematical formulations. Section III provides two
solution algorithms. Numerical results are presented in Section
IV. Section V concludes the study.

II. MATHEMATICAL FORMULATION

We propose a two-stage stochastic mixed-integer program-
ming framework for ROD under uncertainty. The first stage is
to make ROD decisions (hardening existing components and
allocating ROD resources such as DGs and switches), and
the second stage is to evaluate operation costs in terms of
load shedding and damage repair in realized extreme weather
events, e.g., hurricanes, ice storms, etc. In this section, we
will first present the overall formulation for the two-stage
stochastic program of ROD, then describe in detail the model
for uncertainties, and the model for the recourse behavior of
the distribution system in an extreme weather event.

A. Optimization Model

min CI1 (x
h) + CI2 (x

g) + CI3 (x
c1) + ωHEsφ(s) (1)

s.t.
∑

i∈ΩDG

xg
i 6 NG (2)

xc0
ij + xc1

ij = xc
ij , ∀(i, j) ∈ ΩSW (3)

xg
i , x

h
ij , x

c
ij , x

c1
mn∈{0, 1}, ∀i∈ΩDG, (i, j)∈ΩB , (m,n)∈ΩSW

(4)
where

CI1 (x
h) =

∑

(i,j)∈ΩB

chijx
h
ij (5)

CI2 (x
g) =

∑

i∈ΩDG

cgi x
g
i (6)

CI3 (x
c1) =

∑

(i,j)∈ΩSW

ccijx
c1
ij (7)

Esφ(s) =
∑

s∈S

pr(s)φ(s) (8)

with

φ(s) = min
∑

t∈T

∑

i∈ΩL

cLi γ
s
i,tP

L,s
i,t ∆t+

∑

(i,j)∈ΩB

cR,s
ij (9)

s.t. yc,sij,t 6 xc
ij , ∀(i, j) ∈ ΩSW , t ∈ T (10)

us
ij,t = (1− xh

ij)ζ
0,s
ij,t + xh

ijζ
1,s
ij,t, ∀(i, j) ∈ ΩB , t ∈ T (11)

cR,s
ij = cR0 ·

∑

t∈T

us
ij,t, ∀(i, j) ∈ ΩB (12)

∑

{j|(i,j)∈ΩB}

P s
ij,t −

∑

{j|(i,j)∈ΩB}

P s
ji,t = P g,s

i,t − (1− γs
i,t)P

L,s
i,t ,

∀i ∈ ΩN , t ∈ T

(13)

∑

{j|(i,j)∈ΩB}

Qs
ij,t −

∑

{j|(i,j)∈ΩB}

Qs
ji,t = Qg,s

i,t − (1− γs
i,t)Q

L,s
i,t ,

∀i ∈ ΩN , t ∈ T

(14)

yc,sij,t + us
ij,t 6 1, ∀(i, j) ∈ ΩSW , t ∈ T (15)

−yc,sij,tP
max
ij − (1− xc

ij)M 6 P s
ij,t 6 yc,sij,tP

max
ij

+(1− xc
ij)M, ∀(i, j) ∈ ΩSW , t ∈ T

(16)

−yc,sij,tQ
max
ij − (1− xc

ij)M 6 Qs
ij,t 6 yc,sij,tQ

max
ij

+(1− xc
ij)M, ∀(i, j) ∈ ΩSW , t ∈ T

(17)

−(1− uc,s
ij,t)P

max
ij − xc

ijM 6 P s
ij,t 6 (1− uc,s

ij,t)P
max
ij

+xc
ijM, ∀(i, j) ∈ ΩB , t ∈ T

(18)

−(1− uc,s
ij,t)Q

max
ij − xc

ijM 6 Qs
ij,t 6 (1− uc,s

ij,t)Q
max
ij

+xc
ijM, ∀(i, j) ∈ ΩB , t ∈ T

(19)

V s
i,t −

RijP
s
ij,t +XijQ

s
ij,t

V0
− (1− yc,sij,t + 1− xc

ij)M 6 V s
j,t

6 V s
i,t −

RijP
s
ij,t +XijQ

s
ij,t

V0
+ (1− yc,sij,t + 1− xc

ij)M,

∀(i, j) ∈ ΩSW , t ∈ T
(20)

V s
i,t −

RijP
s
ij,t +XijQ

s
ij,t

V0
− (us

ij,t + xc
ij)M 6 V s

j,t

6 V s
i,t −

RijP
s
ij,t +XijQ

s
ij,t

V0
+ (us

ij,t + xc
ij)M,

∀(i, j) ∈ ΩB , t ∈ T

(21)

ϑs
mn,t+ϑs

nm,t − xc
ijM 6 1− us

ij,t 6 ϑs
mn,t + ϑs

nm,t

+xc
ijM, ∀(i, j) ∈ ΩB , t ∈ T

(22)

ϑs
mn,t + ϑs

nm,t − (1− xc
ij)M 6 yc,sij,t 6 ϑs

mn,t + ϑs
nm,t

+(1− xc
ij)M, ∀(i, j) ∈ ΩSW , t ∈ T

(23)
ϑs
mn,t = 0, ∀(m,n) ∈ ΩSG, t ∈ T (24)

∑

n∈N(m)

ϑs
mn,t 6 1, ∀m ∈ ΩN , t ∈ T (25)

ϑs
mn,t ∈ {0, 1}, ∀(m,n) ∈ ΩB , t ∈ T (26)

0 6 P g,s
i,t 6 xg

iP
g,max
i , ∀i ∈ ΩDG, t ∈ T (27)

0 6 Qg,s
i,t 6 xg

iQ
g,max
i , ∀i ∈ ΩDG, t ∈ T (28)

P g,s
i,t > 0, ∀i ∈ ΩSG, t ∈ T (29)

Qg,s
i,t > 0, ∀i ∈ ΩSG, t ∈ T (30)

Vi
min

6 V s
i,t 6 Vi

max, ∀i ∈ ΩN , t ∈ T (31)

0 6 γs
i,t 6 1, ∀i ∈ ΩL, t ∈ T (32)

yc,sij,t, u
s
ij,t ∈ {0, 1}, ∀(i, j) ∈ ΩB , t ∈ T (33)

In this two-stage stochastic programming model, the objec-
tive is to minimize ROD investment cost and the product
of the annual occurrence of extreme weather events and the
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expected costs of the projected load shedding and damage
repair with respect to the probability distribution of scenarios,
as shown in equation (1). The investment cost of hardening
lines, placing DGs and adding line switches is given by (5)-
(7), respectively, which includes purchasing and installation
cost. Constraint (2) restricts the number of DGs that can be
installed. xc

ij in constraint (3) represents whether line (i, j)
has a switch or not, which will be used in the second-stage
problem. xc1

ij represents a first-stage decision, i.e., whether to

add a new switch at line (i, j). If there is an existing switch
on line (i, j), xc0

ij = 1, then it is unnecessary to install a new

switch, which imposes xc1
ij = 0. If xc0

ij = 0, it indicates that

whether line (i, j) has a new switch or not depends on the
first-stage decision xc1

ij . Here xc0
ij is assumed to be a known

parameter.
The expectation of load shedding penalty cost obtained by

solving the second-stage problem is described in equation
(8), where pr(s) is defined as the probability of s being
realized (approximated by the frequency in S), and Es denotes
the mathematical expectation with respect to s. For a fixed
value of first-stage decision variables x = [xh,xc,xg] and a
particular scenario s, a second-stage problem can be described
by equations (9)-(33). Equation (9) represents the objective
function of the second-stage problem, i.e., minimizing the total
load shedding cost during an extreme weather event, and the
damage repair cost after the event. Constraint (10) indicates
that if a switch has been added in the first stage, the switch
can be used for reconfiguration in the second stage under
a specific scenario, which connects first-stage decisions with
second-stage variables. Constraints (11)-(33) will be discussed
in Sections II-B and II-C.

B. Uncertainty Modeling and Scenario Generation

This paper considers four random variables for the stochas-
tic scenario s: the load multiplier, the wind speed, the line
repair time, and the line damage status.

Fig. 1. Multipliers of load profiles at the substation (root node), with the
peak values as the bases.

1) Uncertainty of load: τ(s) describes the load level uncer-
tainty for a stochastic scenario. Fig. 1 shows the multipliers
of active and reactive load profiles at a substation on a typical
day in summer [17], [18], denoted by MP (t) and MQ(t).
The active and reactive load are normalized with respect to
their peak values respectively. We make an assumption of
homogeneous load pattern: all individual node loads share the
same normalized active and reactive load profiles [19]. The
base values of each load, denoted by Pi and Qi, are given by
the test system.

PL,s
i,t = τi(s) ·M

P (t) · Pi, ∀i ∈ ΩL, t ∈ T

QL,s
i,t = τi(s) ·M

Q(t) ·Qi, ∀i ∈ ΩL, t ∈ T .
(34)

where τi(s) is assumed to follow a normal distribution [20].
2) Uncertainty of wind-induced extreme events: In this

paper, we consider wind-induced extreme weather events (e.g.
hurricanes), since they pose the top threat to distribution
systems. v(s) represents the wind speed. Here we use hur-
ricanes for illustration. During a hurricane, the wind speed at
a distribution line can be represented by a function of the
distance from the distribution line to the hurricane eye as
shown in Fig. 2 [21]:

Fig. 2. The simulated wind speeds at different distribution lines during a
hurricane

vij(s)=





Kvvm(1− exp[− 1
Rmw

ln( Kv

Kv−1 )dij ]) 06 dij<Rmw

vm exp[−( ln βmv

Rs−Rmw
)(dij −Rmw) Rmv6dij6Rs

0 dij > Rs

(35)
where parameter Kv = 1.14; vm represents the maximum

sustained wind speed of a hurricane(in nautical miles per
hour); dij represents the distance between the hurricane eye
and the distribution line (i, j); Rmv represents the radius to
the maximum wind speed (in nautical miles); Rs indicates the
radius of the area affected by the hurricane (in nautical miles);
βmv indicates the modeling factor specifying the hurricane
boundary, which is assumed to be 10. The time-varying
hurricane parameters, such as vm, Rmv, Rs and hurricane eye
location can be simulated by the approach in [21].

3) Uncertainty of line repair time: The repair time of each
damaged line, TR

ij(s), is a random variable that depends on
utilities’ dispatches of repair crews and resources [22], [23].
Without loss of generality, it is assumed that the repair time of
each damaged line is independent and shares the same Weibull
probability density function, ∀(i, j) ∈ ΩB :

fTR
ij
(t) =

{
βT

αT
( t
αT

)βT−1exp[−( t
αT

)
βT ] if t > 0

0 otherwise,
(36)

where βT = 10 and αT = 4 [16].
4) Uncertainty of line damage status: u(s;xh) represents

the outcome of the random event (whether the line is damaged
in the extreme weather event) parametrized by the decision
xh. xh acts as a parameter, reflecting the endogeneity of the
line damage uncertainty: the damage probability of a line will
decrease if the line is hardened. Here comes the challenge: we
cannot generate the specific scenarios,particularly the samples
of u(s;xh), in advance of solving the optimization problem,
because xh is a decision variable that is unknown beforehand.
A brutal-force solution for this problem is to generate a
dictionary of the scenario set, {Sxh}, for all possible values
of xh in advance, then use proper second-stage constraints
to look up the specific Sxh corresponding to the current xh.
However, that is computationally intractable since the number
of possible values of xh boosts exponentially with the size of
the system.
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We propose a modeling strategy to solve the challenges.
Based on the independence among different lines, first we
have uij,t(s;x

h) = uij,t(s;x
h
ij), ∀(i, j) ∈ ΩB . Then, we

decouple each uij,t(s;x
h
ij) into two independent parameters

ζ1ij,t(s) and ζ0ij,t(s) (see (11), where s is put as superscript).

ζ1ij,t(s) represents the damage status of line (i, j) if the line is

hardened, while ζ0ij,t(s) represents the damage status of line

(i, j) if the line is not hardened. Constraint (11) picks ζ1ij,t(s)
or ζ0ij,t(s) to represent uij,t(s;x

h
ij) according to the value of

xh
ij as shown in Fig. 3. Notice that the distributions of ζ1ij,t(s)

and ζ0ij,t(s) are conditionally independent of xh, thus can be
determined in advance.

Fig. 3. The damage status of line (i, j) with corresponding hardening
decision

Therefore, we only need to sample ζ1ij,t(s) and ζ0ij,t(s) for

all (i, j) independently in the phase of scenario generation. For
different t, the inter-temporal correlation imposed by the repair
process is also considered in this paper. In particular, we have
the following process to determine the damage status of a line
during a hurricane. (i) Starting from t = 0, ζ0ij,t(s), regarded as
a function of t, is in a Bernoulli process with damage (failure)
probability pij(v) (explained later) until it equals 1 for the first

time at t = td,0ij (s). So, ζ0ij,t(s) = 0 for all t < td,0ij (s). (ii)

During the next TR
ij (s) hours, ζ0ij,t(s) is set to be 1, indicating

the line outage during the repairing period. (iii) If the repair
is accomplished before the end of the hurricane, we assume
the line will not be damaged again in the remaining time

of this hurricane. td,0ij (s) can be sampled from the geometric

distribution with parameter pij(v). ζ
1
ij,t(s) can be described

by the same process except the damage probability is reduced
to 1

10pij(v) due to the hardening.
The failure probability of line (i, j), denoted by pij(v) can

be derived by failure probabilities of all its major components
(the poles in this paper) with the assumption of independence
of lines’ failures [24]:

pij(v) = 1−

mij∏

k=1

(1− pIk(v)), ∀(i, j) ∈ ΩB (37)

where mij is the total number of poles of line (i, j), and
pIk(v) is the failure probability of the kth pole. So a line fails
if at least one pole fails. pIk(v), regarded as a function of v,
is a fragility curve for wind load obtained through fragility
analyses, which usually satisfies the lognormal distribution of
the wind speed v [24]. In this paper, to simplify the problem,
we assume that all poles at the same distribution line share the
same fragility curve and the failure probabilities of all poles
are independent for a fixed v.

In addition, constraint (12) indicates that each damaged
line’s repair cost is linearly proportional to the line’s repair
time. According to the report in [25], there are two factors that
impact a line’s repair cost: equipment replacement cost and
crew hours. It is assumed that lines have the same equipment
replacement cost denoted by cR0 , but have different repair
time, which is represented by the time summation of line
damage statuses us

ij,t with respect to time.

5) Scenario Generation: In summary, the procedure for
scenario generation is as follows:

1: Acquire the fixed parameters: |T |.
2: for Scenario s = 1, . . . , |S| do
3: Sample τi(s) from N(1, 0.12), ∀i ∈ ΩL.
4: Sample vij,t(s) by approach in [21], ∀(i, j)∈ΩB , t ∈T
5: Generate PL,s

i,t and QL,s
i,t , ∀i ∈ ΩL via (34).

6: for (i, j) ∈ ΩB do
7: Sample TR

ij(s) from WeilBull(10, 4).

8: Calculate pij(v) via (37).

9: Sample td,0ij (s) from Geometric(pij(v)).

10: ζ0ij,t(s) =

{
1 td,0ij (s) ≤ t ≤ min{t+ TR

ij(s)− 1, |T |}
0 otherwise.

11: Sample td,1ij (s) from Geometric( 1
10pij(v)).

12: ζ1ij,t(s) =

{
1 td,1ij (s) ≤ t ≤ min{t+ TR

ij(s)− 1, |T |}
0 otherwise.

13: end for
14: end for

The procedure is independent of decision variables and can
be run before solving the optimization problem (setting the
parameters for the second-stage problems).

C. Distribution System Modeling

In this paper, the operation decisions of distribution systems
are represented by recourse decisions to mitigate aftermath
impacts of extreme weather events. These operation decisions
consider network reconfiguration, load shedding, and DG re-
dispatching. The operation constraints of distribution systems
are represented by (13)-(32). Equations (13) and (14) represent
the power balance at each bus. Equations (10), (15)-(19) give
the full set of power flow constraints. They represent the
generic power flow constraints for dynamic typologies. The
switching actions are controlled by three binary variables: xc

ij

indicates whether a tie switch is located in line (i, j); us
ij,t

indicates whether line ij is damaged in the scenario s at time
t; and yc,sij,t indicates whether the tie switch, if exists, is on or

off in the scenario s at time t. The three variables for (i, j)
and t determine whether the line is on or off at that time,
whose logic is shown in Fig. 4.

Fig. 4. The logic of line status
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Constraints (15)-(19) enforce the line flow limits, and
represent the network connectivity in different typologies.
In constraints (20)-(21), the big M method is applied to
ensure the voltages of two buses are independent if the line
between them is damaged. In particular, when a line flow
is forced to be zero, the voltages at the two ends will be
decoupled. Distribution networks are normally operated as
radial for effective coordination of protection systems under
emergency and faulted operating conditions although they
may have a meshed structure with the integration of DGs
[26]. The radiality is enforced by constraints (22)-(26), which
are based on the spanning tree approach in [10], [26]. Two
binary variables ϑs

mn,t and ϑs
nm,t are introduced to define the

spanning tree structure of distribution networks regardless of
the power flow direction. Constraints (22) and (23) represent
the relation between the connectivity status of line (i, j) and
the spanning tree variables ϑs

mn,t and ϑs
nm,t. Constraint (22)

indicates that line (i, j) is in the spanning tree (us
ij,t = 0)

if either node m is the parent of node n (ϑs
mn,t = 1), or

node n is the parent of node m (ϑs
nm,t = 1). Constraints

(23) indicates that if line (i, j) is connected by closing the
line switch, either ϑs

mn,t or ϑs
nm,t must be one. Equation

(24) indicates that the substation node has no parent node,
while constraint (25) requires that other nodes should have at
most one parent node. Constraints (13)-(14) and (20)-(21) are
linearized DistFlow equations which have been widely used
to calculate the complex power flow and voltage profile in
problems such as DG placement, service restoration, system
operation, and planning of distribution systems [10], [13],
[14], [18], [27]–[31]. Constraints (27) and (28) limit active
and reactive power output of DGs, respectively. Constraint
(31) imposes the voltage limits. Constraint (32) limits load
shedding ratios. The load shedding is modeled as a continuous
variable to reflect the evolving severity of extreme events and
system damage states.

III. SOLUTION ALGORITHM

In this section, we introduce two modified PH algorithms
with and without bundling scenarios to solve the ROD problem
presented in Section II. Firstly, we use a compact notation to
express the SMIP ROD model. In order to illustrate how the
scenario-based PH works, we rewrite the compact notation of
the SMIP ROD model into a scenario formulation. Secondly,
the motivation and implementation steps of the modified PH
algorithm for solving the SMIP ROD model are detailed.
Thirdly, an approach to compute the lower bounds is presented
to evaluate the solution quality of the modified PH algorithms.
Fourthly, in order to accelerate the convergence of the original
PH algorithm and improve its lower bound, we decompose
the subproblems by scenario bundles instead of individual
scenarios in the original PH algorithm.

A. The Compact Notation of ROD Problem

In order to elaborate the proposed algorithms and facilitate
the solution discussion, we use a compact notation to express
the proposed ROD model:

min
x

c⊤x+
∑

s∈S

pr(s)φ(x, s) (38)

s.t. Ax 6 b (39)

x ∈ Z
n1

+ (40)

where vector x represents the binary decision variables in the
first stage as shown in (4), and the cost coefficient vectors
are defined as c ∈ R

n1 . Constraint (39) is a vector form
representation of the number limit of DGs and line switches
in (2)-(3). φ(x, s) denotes the system operation problem for a
given scenario s ∈ S , which is defined as follows:

φ(x, s) = min g⊤y (41)

s.t. Fy 6 r(s)− e(s)x (42)

y ∈ Z
p2

+ × R
n2−p2 (43)

where the vector y represents the second-stage decision vari-
ables. Constraints (10)-(32) can be expressed in a vector form
as shown in (42). Here, c ∈ R

n1 , A ∈ R
m1×n1 , b ∈ R

m1 , g ∈
R

n2 ,F ∈ R
m2×n2 , e ∈ R

m2×n1 , r ∈ R
m2 comprise the data

of the SMIP ROD model.
The SMIP ROD model in the form of (38)-(43) is an

optimization problem with an infinite dimension. In order
to cope with this difficulty, we assume that there is a finite
number of scenarios s = 1, . . . , |S|, with the corresponding
probabilities pr(s) = 1

|S| . Then, the problem (38)-(43) can

be written as a large-scale deterministic mixed-integer linear
program (MILP) with a block-angular structure [32]:

z = min

{
c⊤x+

|S|∑

s=1

pr(s)g(s)
⊤y(s) : (x,y(s)) ∈ K(s),

s = 1, . . . , |S|

}

(44)

where K(s) =
{
(x,y(s)) : Ax 6 b,x ∈ Z

n1

+ ,Fy(s) 6

r(s) − e(s)x,y(s) ∈ Z
p2

+ × R
n2−p2

}
. Here the first stage

decision vector x must be scenario independent.
By introducing copies of the first-stage variables x, the

block-angular structure of (44) leads to the so-called scenario
formulation of the SMIP ROD model:

z = min

{
|S|∑

s=1

pr(s)(c
⊤x(s) + g(s)⊤y(s)) : (x(s),y(s))

∈ K(s), s = 1, . . . , |S|,x(1) = · · · = x(|S|)

}

(45)
where x(1) = · · · = x(|S|) represents the non-anticipativity
constraint, which will stipulate the first-stage decision vector
x to be independent of scenarios. This scenario formulation
(45) slips the large-scale SMIP ROD model into scenario sub-
problems with the condition of non-anticipativity constraints.

B. Progressive Hedging Algorithm

The general combination, NP-hard natural of mixed-integer
problems and uncertainty, leads to the considerable difficulty
in solving SMIP ROD models. For small-scale SMIP ROD
problems, standard MILP solvers can be used to directly solve
their extensive forms (EFs) presented in (44). However, for
large-scale ROD problems, their EFs are too large to solve
using in a reasonable run-time using available MIP solvers.
In addition, the commonly used stage-based decomposition
algorithm, Benders decomposition, relies heavily on the con-
vexity of φ(x, s) and cannot be directly applied to the case
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with integer variables in the second stage [33]. Rockafellar and
Wets proposed the Progressive Hedging (PH) decomposition
algorithm as a heuristic [34] to effectively solve stochastic
mixed-integer problems. PH algorithm can reduce the compu-
tational difficulty by decomposing the EF in (44) into scenario-
based subproblems as shown in (45) and solving subproblems
in parallel. PH has been successfully implemented in solving
unit commitment problems [33], [35], [36].

Algorithm 1 The PH Algorithm for SMIP ROD Problems

1: Initialization:Let k ← 0 and wk(s)← 0, s = 1, . . . , |S|.
For each s = 1, . . . , |S|, compute:

(x(s)k+1,y(s)k+1) := argmin
x(s),y(s)

{
c⊤x(s) + g(s)⊤y(s) :

(x(s),y(s)) ∈ K(s)
}

2: Iteration update: k ← k + 1

3: Aggregation: x̂k =
|S|∑
s=1

pr(s)x(s)
k

4: Update multiplier: w(s)k= w(s)k−1+ρ(x(s)k−x̂k), s =
1, . . . , |S|

5: Decomposition: For each s = 1, . . . , |S|, compute:

(x(s)k,y(s)k) := argmin
x(s),y(s)

{
c⊤x(s) + g(s)⊤y(s) +

w(s)kx(s) + ρ
2

∥∥x(s)− x̂k
∥∥2 : (x(s),y(s)) ∈ K(s)

}

6: Termination: If all first-stage scenario solutions x(s)k

agree, go to Stop; otherwise go to Step 2

For such a two-stage SMIP ROD problem, the modified PH
algorithm is sketched in Algorithm 1. The PH algorithm is
initialized by solving the individual-scenario problems in Step
1. In each iteration, PH solves subproblems individually and
aggregates the solutions to obtain the expected value x̂k. The
estimates of multipliers w(s)k are updated in Step 4 using
a specific penalty parameter ρ to enforce the non-anticipative
policy. The performance of PH depends on the value of ρ. The
decomposition step (Step 5) of each iteration involves solving
variants of subproblems that are augmented with a linear term
proportional to the multiplier w(s)k and a squared two norm
term penalizing deviation of x(s)k from x̂k−1.

C. Computation of lower bounds for PH

Computational studies have shown that PH can find solu-
tions with acceptable optimality gap for practical applications
[36]. However, it is still necessary to evaluate the quality of PH
solutions. Gade et al. [37] proposed an approach to calculate
the lower bounds in any iteration of PH by solving a simple
optimization problem. We modify the proposition of lower
bound in [37] for our proposed formulation:

Proposition 1: Let w(s), satisfies
|S|∑
s=1

pr(s)w(s) = 0.

And Ds(w(s)) := min

{
pr(s)

(
c⊤x(s) + g(s)⊤y(s) +

w(s)x(s)
)
: (x(s),y(s)) ∈ K(s)

}

Then the lower bound can be expressed as D(w) :=
|S|∑
s=1

Ds(w(s)) 6 z∗.

In each iteration, the lower bound D(w) on the optimal
objective value z∗ is computed using the multiplier w(s)k.

These lower bounds are reported in our numerical results. The
major advantage is that we can obtain the lower bounds for a
stochastic mixed-integer problem even when the sub-problems
are not solved to the optimality, and a lower bound can be
easily calculated with approximately the same effort as one
PH iteration.

D. The PH Algorithm with Scenario Bundling

Motivated by Crainic’s strategy of grouping scenarios in
PH-based meta-heuristics [38], Gade et al. [37] proposed the
bundle version of PH algorithm, which allows Step 1 and Step
5 of PH algorithm to solve small EFs of the SMIP ROD model
rather than single-scenario problems. The advantages over the
basic PH are as follows: 1) scenario bundling can significantly
improve the quality of PH algorithm’s lower bounds [37]; 2)
scenario bundling can accelerate the speed of agreement in
the first-stage solutions, which in turn reduces the number of
PH iterations for convergence [35]. However, the increased
number of scenarios in each bundle may result in the increased
computational difficulty of the bundles as each of them yields
a small-scale extensive form stochastic program.

Suppose the set of scenarios is partitioned into bundles, each
has NS scenarios. We denote the set of bundles by B, with
β ∈ B and S(β) ⊂ S represents the scenarios in bundle β.

So |B| = |S|
NS

. Let pr(β) =
∑

s∈S(β)

pr(s), β ∈ B. Then the PH

algorithm with scenario bundling is described in Algorithm 2.
We restate the extension of Proposition 1 to the bundle version
of PH algorithm here as Proposition 2.

Proposition 2: Let w(β), β∈ B, satisfies
∑
β∈B

pr(β)w(β) =

0. Let

Dβ(w(β)) := min

{
pr(β)

(
c⊤x(β) +

∑

s∈S(β)

pr(s)

pr(β)
g(s)⊤y(s)

+w(β)x(β)
)
:
(
x(β), (y(s))s∈S(β)

)
∈ K(β)

}

Then D(w) :=
∑
β∈B

Dβ(w(β)) 6 z∗.

IV. NUMERICAL RESULTS

Wind-induced extreme weather events (e.g. hurricane, tor-
nado, ice storms) pose the top threat to overhead distribution
systems. In this paper, we projected two test systems, 34- and
123-bus distribution feeders into two coastal cities in Texas
where hurricanes occur frequently. According to the histogram
of landfall hurricane frequency in Texas [39], we assume
ωH = 2. The detailed network and load data can be found
in [40], [41] and [42]. It is assumed that a city close to Texas
coast will be affected by a hurricane for 24 hours.

The initial investment costs of the three considered ROD
measures are shown in Table II. It is assumed the life time
of the three ROD measures is 10 years. Without considering
the interest rate, the annual capital cost for purchasing and in-
stallation of each ROD measure is 1

10 of the initial investment
cost. Here we use the natural gas-fired CHPs with 400kW
capacity as back-up DGs, which can be controlled by utilities
for enhancing network resilience. The candidate positions to
implement different ROD measures are shown in Table I. In
practice, the candidate positions to install tie switches are
usually restricted by many considerations such as the necessity



0885-8950 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2018.2822295, IEEE

Transactions on Power Systems

8

Algorithm 2 The PH Algorithm for ROD Problems with
Scenario Bundling

1: Initialization:Let k ← 0 and w(β)k ← 0. For each β ∈ B,
compute:
(
x(β)k+1, (y(s)k+1)s∈S(β)

)
:= argmin

x(β),y(s)

{
c⊤x(β) +

∑
s∈S(β)

pr(s)
pr(β)

g(s)⊤y(s) :
(
x(β), (y(s))s∈S(β)

)
∈ K(β)

}

2: Iteration update: k ← k + 1
3: Aggregation: x̂k :=

∑
β∈B

pr(β)x(β)
k

4: Update multiplier: w(β)k =w(β)k−1+ρ
(
x(β)k− x̂k

)
,

β∈B
5: Decomposition: For each β ∈ B, compute:

(
x(β)k+1, (y(s)k+1)s∈S(β)

)
:= argmin

x(β),y(s)

{
c⊤x(β) +

∑
s∈S(β)

pr(s)
pr(β)

g(s)⊤y(s) + w(β)k−1x(β) +

ρ
2

∥∥x(β)− x̂k−1
∥∥2 :

(
x(β), (y(s))s∈S(β)

)
∈ K(β)

}

6: Termination: If all first-stage scenario solutions xk
β agree,

go to Stop; otherwise go to Step 2

and space. Hence, the candidate positions for switches are pre-
defined based on the optimal switch allocations for network
reconfiguration in [43]–[45]. The candidate switch locations
of 34-Bus and 123-Bus test systems are shown in Fig. 5 and
Fig. 6 respectively.

TABLE I
THE FEASIBLE REGIONS FOR THE THREE ROD MEASURES

No. ROD Measure Candidate positions
Number of Variables

34-Bus 123-Bus

1 Back-up DG deployment All nodes 34 123

2 Line hardening All line sections 37 128

3 Tie switch deployment Pre-selected lines 9 14

The basic load shedding penalty cost is assumed to be
$14/kWh [46] and the load shedding cost parameter cLi in
equation (9) is the product of the basic load shedding penalty
cost and the load priority. It is assumed that there are 5 load
priorities and the voltage range is set as 0.95p.u ∼ 1.05p.u.
The time-period length is assumed to be ∆t = 1 hour. The
initial repair cost cR0 of each line is assumed as $2000.

TABLE II
THE CAPITAL COST OF DIFFERENT ROD MEASURES

#No. Measures Cost($)

1 Hardening line 5, 924/pole [47]

2 Installing a back-up DG 1, 500/kW [15]

3 Adding an automatic tie switch 15, 000 [15]

*Assume the span of two consecutive poles is 150 ft.

A. Computational platforms

All models and algorithms are implemented using the PySP
package in Pyomo. All of our customizations relating to ρ

setting, variable fixing, cycle detection/breaking, and variable
slamming are performed through a parametrization of PySP’s
WW extension module. IBM’s CPLEX 12.6 mixed-integer
solver is used to solve all subproblems. All experiments are
implemented on Iowa State University Condo cluster, whose
individual blades consist of two 2.6 GHz 8-Core Intel E5-2640
v3 processors and 128GB of RAM.

B. Experiment Results

The parallel PH algorithm implementation is performed on
a modest-sized 34-bus distribution system with 50 scenarios
and a large-scale 123-bus distribution system with 100 sce-
narios. The scenarios are randomly generated via procedures
described in Section II-B5. We consider both run-time and
overall solution quality in the analysis. The PH algorithms
are performed in parallel, utilizing 4 nodes of the Condo
cluster for 34-bus system and 7 nodes for 123-bus system.
We also solve the EF of ROD problems on both test systems
by allocating the maximum possible number of threads (16)
to each CPLEX running on a node. The solution of EF,
which provides the global optimal solution and an indication
of absolute instance difficulty [48], serves as a performance
baseline for PH algorithms.

Comparison of PH algorithm with and without bundling
scenarios: We set the optimality tolerance of PH for solving
subproblems as 10−5. The PH convergence metric is assumed
as 0.0001%, which is defined as the unscaled sum of difference
between the first-stage variables and the means.

For the 34-bus ROD problem, the EF of this 50-scenario
instance has 1, 608, 766 variables (1, 361, 866 binary) and
712, 050 constraints. We solve the EF in 6.5733 hours of wall
clock time with a 0.01% optimality gap. The first-stage invest-
ment cost of the EF is $3, 987, 000. Then we experimented PH
with different numbers of scenarios per bundle. For example,
10 bundles means the 50 scenarios are divided into 10 bundles
with 5 scenarios in each. The results are shown in Tables III.
The first column in Table III indicates the number of bundles
while the second column represents the total cost of the first
stage and the second stage. The third column in this table
describes the lower bound of PH, while the fourth column
represents the relative gap between the objective and lower
bound. The lower bound is computed at the last iteration. The
fifth column describes the first-stage cost, while the sixth and
seventh columns respectively report the convergence iteration
and run time. The optimal ROD investment decisions are
shown in Figs. 5. By bundling scenarios into 10 bundles, the
lower bound of PH algorithm is much tighter with a 2.04%
relative gap, and the algorithm converges with less iterations.
However, it takes longer time to solve sub-problems.

For the large-scale 123-bus ROD problem, the EF of the
100-scenario instance has 39, 012, 195 variables (37, 282, 600
binary) and 4, 659, 201 constraints. No feasible incumbent
solution of the EF is obtained by the end of 240-hour wall
time run, which shows the significant computational challenge
of large-scale stochastic ROD problems when being tackled
by non-decomposition-based methods. On the other hand, we
show the results of PH algorithms with bundling in Table
IV. Although the lower bounds are not as tight as those in
Table III, they are within an acceptable range, compared with
results obtained by a linear relaxation method in [36] with
a lower bound of 227, 710.98. Overall, we obtain the best
tradeoff between computational burdens and solution quality
using bundles with 2 scenarios as shown in Fig. 6. These
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results demonstrate the effectiveness of bundling as a method
for improving lower bound quality and convergence speed.

TABLE III
THE COMPARISON OF PH ALGORITHM WITH AND WITHOUT BUNDLING

SCENARIOS IN 34-BUS DISTRIBUTION SYSTEM

Bundles Obj. PH L.B.
Relative

Gap

First Stage

Cost
Iter.

Run

Time

No 718,827.69 681,163.90 5.24% 398,700 168 0.65 hr

25 718,827.69 6,87,746.06 4.32% 398,700 68 0.24 hr

10 718,827.69 704,157.59 2.04% 398,700 28 1.78 hr

TABLE IV
THE COMPARISON OF PH ALGORITHM WITH AND WITHOUT BUNDLING

SCENARIOS IN THE MODIFIED 123-BUS FEEDERS

Bundles Obj. PH L.B.
Relative

Gap

First Stage

Cost
Iter.

Run

Time

No 1,874,209.49 1,634,251.87 12.65% 258,600 300 35.74 hr

50 1,867,431.12 1,790,492.96 4.12% 258,600 167 42.73 hr

25 1,870,939.95 1,714,716.46 8.35% 261,000 95 54.84 hr

Fig. 5. The optimal ROD investment decisions of PH algorithm in 34-bus
feeder

Solution validation by multiple replication procedure: In
this paper, the Monte-Carlo simulation is used to generates 50
scenarios for 34-bus distribution system. However, the com-
plete scenario space is extremely large. Hence it is necessary
to test the quality of the solution based on limited generated
damage scenarios. For this purpose, MRP [49] is used to test
the stability and quality of the candidate solution shown in Fig.
5. The candidate solution is tested against 30 samples, each
with a sample size of 50 scenarios. The one-sided confidence
interval (CI) in the percentage term with regard to objective
value for the optimality gap is [0, 0.64%] with α = 0.05,
which means that there is a chance of 95% that the optimality
gap is within the CI. We also do the same MPR for 123-bus
distribution system, and its one-sided CI in the percentage
term with regard to objective value for the optimality gap is
[0, 7.52%] with α = 0.05. Thus, the candidate solutions of the
stochastic programming for both test systems are stable and
of high quality.

V. CONCLUSION

This paper proposes an innovative two-stage stochastic
mixed-integer model to design resilient distribution systems
against extreme weather events. The first stage is to make
ROD decisions, which includes hardening existing distribution
lines or deploying ROD resources such as back-up DGs and
automatic tie switches. The second stage is to evaluate the

Fig. 6. The optimal ROD investment decisions of PH algorithm with 50
bundles in modified 123-bus feeder

system operation cost during extreme weather event. Four
random variables are considered: load level multiplier, wind
speed of extreme events, line repair time, and line damage
status. As the first-stage hardening decisions affect the uncer-
tainty realization of line damage statuses, a novel modeling
strategy is presented to decouple the interdependency between
line damage uncertainty and first-stage hardening decisions.
The implementation of multiple ROD measures results in the
non-convexity of the second-stage value function under integer
recourses and considerable computational difficulties. The
proposed PH algorithms with and without bundling scenar-
ios, overcome these fundamental difficulties by decomposing
the EF into scenario-based subproblems and solving these
subproblems in parallel. Case studies on 34-bus and 123-bus
distribution systems illustrate the efficiency and effectiveness
of the proposed models and algorithms. The results also
validate that the PH algorithm with scenario bundling can
improve the overall solution quality.
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