
Resilience in High-Level Parallel

Programming Languages

Sara S. Hamouda

A thesis submitted for the degree of

Doctor of Philosophy at

The Australian National University

June 2019

c© Sara S. Hamouda 2019

Except where otherwise indicated, this thesis is my own original work.

Sara S. Hamouda

13 October 2018

To my parents, Hoda and Salem.

Acknowledgements

I grant all my gratitude to Almighty Allah, for blessing me with this wonderful

learning journey and giving me the strength to complete it.

Crossing the finish line would not have been possible without the great support

and assistance of a group of wonderful people. First of all, my supervisors, Josh

Milthorpe, Peter Strazdins and Steve Blackburn, who offered their ultimate guidance

and support to remove every obstacle in the way and enable me to achieve my goals.

I wish to express my deepest appreciation to my primary supervisor, Josh Milthorpe,

who dedicated many hours for discussing my work, refining my ideas, connecting

me to collaborators, and challenging me with difficult questions sometimes to help

me learn more. Thank you, Josh, for all the favors you showed me during these years.

Without your encouragement and generous support, this thesis would not have been

possible.

I am very grateful to the X10 team; David Grove, Olivier Tardieu, Vijay Saraswat,

Benjamin Herta, Louis Mandel, and Arun Iyengar, for giving me the opportunity to

collaborate with them in the Resilient X10 project, and for the invaluable experience I

gained from this collaboration. I am also very grateful to the computer systems group

in the research school of computer science at the ANU for the valuable feedback and

recommendations given during the PhD monitoring sessions. I would like to thank J.

Eliot B. Moss for valuable discussions about transactional memory systems during his

visit to the ANU, and Peter Strazdins for valuable discussions that led to the design

of the resilience taxonomy described in this thesis.

I am grateful to the Australian National University for providing me the HDR

merit and stipend scholarship. This research was undertaken with the assistance of

resources and services from the National Computational Infrastructure (NCI), which

is supported by the Australian Government.

Finally, I would to thank my family and friends for the continuous encouragement

and the happy moments they favored me with. My nephews, Nour Eldeen, Omar,

and Eyad, are now too young to read these words, but I hope one day they will open

my thesis and read this line to know how much I love them and how much chatting

with them on a regular basis was my main source of happiness during my remote

study years. To my dear family; Hoda, Salem, Mai, Ahmed and Esraa, thanks for

supporting me every step of the way.

vii

Abstract

The consistent trends of increasing core counts and decreasing mean-time-to-failure in

supercomputers make supporting task parallelism and resilience a necessity in HPC

programming models. Given the complexity of managing multi-threaded distributed

execution in the presence of failures, there is a critical need for task-parallel ab-

stractions that simplify writing efficient, modular, and understandable fault-tolerant

applications.

MPI User-Level Failure Mitigation (MPI-ULFM) is an emerging fault-tolerant

specification of MPI. It supports failure detection by returning special error codes

and provides new interfaces for failure mitigation. Unfortunately, the unstructured

form of failure reporting provided by MPI-ULFM hinders the composability and the

clarity of the fault-tolerant programs. The low-level programming model of MPI and

the simplistic failure reporting mechanism adopted by MPI-ULFM make MPI-ULFM

more suitable as a low-level communication layer for resilient high-level languages,

rather than a direct programming model for application development.

The asynchronous partitioned global address space model is a high-level pro-

gramming model designed to improve the productivity of developing large-scale

applications. It represents a computation as a global control flow of nested parallel

tasks that use global data partitioned among processes. Recent advances in the AP-

GAS model supported control flow recovery by adding failure awareness to the nested

parallelism model — async-finish — and by providing structured failure reporting

through exceptions. Unfortunately, the current implementation of the resilient async-

finish model results in a high performance overhead that can restrict the scalability of

applications. Moreover, the lack of data resilience support limits the productivity of

the model as it shifts the challenges of handling data availability and atomicity under

failure to the programmer.

In this thesis, we demonstrate that resilient APGAS languages can achieve scalable

performance under failure by exploiting fault tolerance features in emerging com-

munication libraries such as MPI-ULFM. We propose multi-resolution resilience, in

which high-level resilient constructs are composed from efficient lower-level resilient

constructs, as an approach for bridging the gap between the efficiency of user-level

fault tolerance and the productivity of system-level fault tolerance. To address the

limited resilience efficiency of the async-finish model, we propose ‘optimistic finish’

— a message-optimal resilient termination detection protocol for the finish construct.

To improve programmer productivity, we augment the APGAS model with resilient

ix

x

data stores that can simplify preserving critical application data in the presence of

failure. In addition, we propose the ‘transactional finish’ construct as a productive

mechanism for handling atomic updates on resilient data. Finally, we demonstrate

the multi-resolution resilience approach by designing high-level resilient application

frameworks based on the async-finish model.

We implemented the above enhancements in the X10 language, an embodiment

of the APGAS model, and performed empirical evaluation for the performance of re-

silient X10 using micro-benchmarks and a suite of transactional and non-transactional

resilient applications. Concepts of the APGAS model are realized in multiple pro-

gramming languages, which can benefit from the conceptual and technical contri-

butions of this thesis. The presented empirical evaluation results will aid future

comparisons with other resilient programming models.

Contents

Acknowledgements vii

Abstract ix

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Multi-Resolution Resilience . 4

1.3 Problem Statement . 5

1.4 Research Questions . 6

1.5 Thesis Statement . 6

1.6 Contributions . 6

1.7 Thesis Outline . 7

2 Background and Related Work 9

2.1 Resilience Definition . 9

2.2 Taxonomy of Resilient Programming Models 10

2.2.1 Adaptability . 10

2.2.1.1 Resource Allocation . 10

2.2.1.2 Resource Mapping . 11

2.2.2 Fault Tolerance . 12

2.2.2.1 Fault Type . 12

2.2.2.2 Fault Level . 13

2.2.2.3 Recovery Level . 13

2.2.2.4 Fault Detection . 14

2.2.2.5 Fault Tolerance Technique 15

2.2.3 Performance . 17

2.2.3.1 Performance Recovery 17

2.3 Resilience Support in Distributed Programming Models 19

2.3.1 Message-Passing Model . 19

2.3.1.1 MPICH-V . 20

2.3.1.2 FMI . 20

2.3.1.3 rMPI . 21

2.3.1.4 RedMPI . 21

2.3.1.5 FT-MPI . 21

xi

xii Contents

2.3.1.6 MPI-ULFM . 22

2.3.1.7 FA-MPI . 22

2.3.2 The Partitioned Global Address Space Model 23

2.3.2.1 GASNet . 23

2.3.2.2 UPC . 23

2.3.2.3 Fortran Coarrays . 24

2.3.2.4 GASPI . 24

2.3.2.5 OpenSHMEM . 25

2.3.2.6 Global Arrays . 25

2.3.2.7 Global View Resilience 25

2.3.3 The Asynchronous Partitioned Global Address Space Model . . 25

2.3.3.1 Chapel . 26

2.3.3.2 X10 . 27

2.3.4 The Actor Model . 28

2.3.4.1 Charm++ . 28

2.3.4.2 Erlang . 29

2.3.4.3 Akka . 29

2.3.4.4 Orleans . 29

2.3.5 The Dataflow Programming Model 29

2.3.5.1 OCR . 30

2.3.5.2 Legion . 30

2.3.5.3 NABBIT and PaRSEC . 31

2.3.5.4 Spark . 31

2.3.6 Review Conclusions . 31

2.4 The X10 Programming Model . 34

2.4.1 Task Parallelism . 34

2.4.2 The Happens-Before Constraint 34

2.4.3 Global Data . 35

2.4.4 Resilient X10 . 36

2.4.5 Elastic X10 . 37

2.4.5.1 The PlaceManager API 37

2.4.5.2 Place Virtualization . 39

2.5 Summary . 39

3 Improving Resilient X10 Portability and Scalability Using MPI-ULFM 41

3.1 Introduction . 41

3.2 X10 over MPI . 43

3.2.1 Initialization . 43

3.2.2 Active Messages . 44

3.2.3 Team Collectives . 45

3.2.3.1 The Emulated Implementation 47

3.2.3.2 The Native Implementation 47

3.3 MPI-ULFM Overview . 48

3.3.1 Fault-Tolerant Communicators . 48

Contents xiii

3.3.2 Failure Notification . 49

3.3.3 Failure Mitigation . 49

3.4 Resilient X10 over MPI-ULFM . 52

3.4.1 Resilient X10 Transport Requirements 52

3.4.2 Global Failure Detection . 53

3.4.3 Identifying Dead Places . 53

3.4.4 Native Team Collectives . 54

3.4.4.1 Team Construction . 54

3.4.4.2 Team Failure Notification 55

3.4.4.3 Team Agreement . 56

3.4.5 Non-Shrinking Recovery . 57

3.5 Performance Evaluation . 58

3.5.1 Experimental Setup . 58

3.5.2 Performance Factors . 59

3.5.2.1 The Immediate Thread 59

3.5.2.2 Emulated Team versus Native Team 59

3.5.3 MPI-ULFM Failure-Free Resilience Overhead 60

3.5.4 Resilient X10 over MPI-ULFM versus TCP Sockets 62

3.5.5 Team Construction Performance 63

3.5.6 Team Collectives Performance . 64

3.6 Related Work . 67

3.7 Summary . 68

4 An Optimistic Protocol for Resilient Finish 69

4.1 Introduction . 69

4.2 Nested Task Parallelism Models . 71

4.3 Related Work . 72

4.4 Resilient Async-Finish Optimality Limit 73

4.5 Async-Finish Termination Detection Under Failure 75

4.5.1 Failure Model . 75

4.5.2 Recovery Challenges . 75

4.6 Distributed Task Tracking . 77

4.6.1 Finish and LocalFinish Objects . 78

4.6.2 Task Events . 78

4.7 Non-Resilient Finish Protocol . 79

4.7.1 Garbage Collection . 80

4.8 Resilient Pessimistic Finish . 80

4.8.1 Adopting Orphan Tasks . 81

4.8.2 Excluding Lost Tasks . 81

4.8.3 Garbage Collection . 81

4.9 Resilient Optimistic Finish . 83

4.9.1 Adopting Orphan Tasks . 84

4.9.2 Excluding Lost Tasks . 85

4.9.3 Garbage Collection . 85

xiv Contents

4.9.4 Optimistic Finish TLA Specification 87

4.10 Finish Resilient Store Implementations 89

4.10.1 Reviving the Distributed Finish Store 90

4.11 Performance Evaluation . 90

4.11.1 Experimental Setup . 91

4.11.2 BenchMicro . 91

4.11.2.1 Performance Factors . 92

4.11.2.2 Performance Results . 93

4.11.3 Conclusions . 102

4.12 Summary . 103

5 Towards Data Resilience in X10 105

5.1 A Resilient Data Store for the APGAS Model 106

5.1.1 Strong Locality . 107

5.1.2 Double In-Memory Replication . 107

5.1.3 Non-Shrinking Recovery . 108

5.1.4 Distributed Transactions . 111

5.2 From Finish to Transaction . 112

5.2.1 Transactional Finish Construct . 113

5.2.1.1 Nesting Semantics . 113

5.2.1.2 Error Reporting Semantics 114

5.2.1.3 Compiler-Free Implementation 115

5.2.2 Finish Atomicity Awareness . 115

5.2.2.1 The Join Signal . 115

5.2.2.2 The Merge Signal . 116

5.2.2.3 Extended Finish Protocols 117

5.2.3 Implementation Details . 117

5.2.3.1 Transaction Identifier and Log 117

5.2.3.2 Lock Specification . 117

5.2.3.3 Concurrency Control Mechanism 118

5.2.3.4 Two Phase Commit . 119

5.2.3.5 Transaction Termination Guarantee 126

5.3 Resilient Application Frameworks . 127

5.3.1 Application Resilient Stores . 127

5.3.1.1 Place Local Store . 127

5.3.1.2 Transactional Store . 129

5.3.2 Resilient Iterative Framework . 134

5.3.2.1 The Global Iterative Executor 136

5.3.2.2 The SPMD Iterative Executor 137

5.3.3 Resilient Parallel Workers Framework 139

5.3.3.1 Parallel Workers Executor 140

5.4 Performance Evaluation . 142

5.4.1 Experimental Setup . 142

5.4.2 Transaction Benchmarking . 142

Contents xv

5.4.2.1 ResilientTxBench . 142

5.4.2.2 Graph Clustering: SSCA2 Kernel-4 145

5.4.3 Iterative Applications Benchmarking 150

5.4.3.1 X10 Global Matrix Library 152

5.4.3.2 Linear Regression . 153

5.4.3.3 Logistic Regression . 154

5.4.3.4 PageRank . 158

5.4.3.5 LULESH . 158

5.4.4 Summary of Performance Results 162

5.5 Summary . 163

6 Conclusion 165

6.1 Answering the Research Questions . 166

6.2 Future Work . 168

6.2.1 Fault-Tolerant One-Sided Communication 168

6.2.2 Hardware Support for Distributed Transactions 169

6.2.3 Beyond X10 . 169

Appendices 171

A Evaluation Platforms 173

B TLA+ Specification of the Optimistic Finish Protocol 175

C TLA+ Specification of the Distributed Finish Replication Protocol 205

List of Abbreviations 221

Bibliography 225

xvi Contents

List of Figures

1.1 APGAS multi-resolution resilience (MRR). 4

2.1 Taxonomy of resilient programming models. 10

2.2 A sample X10 program and the corresponding task graph. 35

2.3 Place management with Place.places(). 37

2.4 Place management with the PlaceManager class. 38

3.1 X10 layered architecture. 42

3.2 X10 active messages implementation over MPI. 44

3.3 Team API implementation options. 46

3.4 MPI-ULFM failure detection and acknowledgement. 50

3.5 MPI-ULFM communicator shrinking recovery. 51

3.6 Team construction performance. 64

3.7 Team.Barrier performance. 66

3.8 Team.Broadcast performance. 66

3.9 Team.Allreduce performance. 66

3.10 Team.Agree performance. 66

4.1 Dynamic computation models. 71

4.2 Message-optimal async-finish TD protocols. 74

4.3 Task tracking under failure. 76

4.4 Tracking remote task creation. 78

4.5 Task tracking events as task c transitions to place 3. 81

4.6 BenchMicro: local finish performance. 93

4.7 BenchMicro: single remote task performance. 95

4.8 BenchMicro: flat fan-out performance. 96

4.9 BenchMicro: flat fan-out message back performance. 97

4.10 BenchMicro: tree fan-out performance. 98

4.11 BenchMicro: all-to-all performance. 99

4.12 BenchMicro: all-to-all with nested finish performance. 100

4.13 BenchMicro: ring around via at performance. 101

5.1 Resilient store replication. 108

xvii

xviii LIST OF FIGURES

5.2 Shrinking recovery versus non-shrinking recovery for a 2-dimensional

data grid. 109

5.3 Weak scaling performance for three GML benchmarks. 110

5.4 Resilient store recovery. 110

5.5 Distributed graph clustering example. 111

5.6 Two-phase commit: a committing transaction. 120

5.7 Two-phase commit: an aborting transaction. 120

5.8 Resilient two-phase commit: a committing write transaction. 123

5.9 Resilient two-phase commit: an aborting write transaction. 123

5.10 Master replica and slave replica state diagrams. 132

5.11 ResilientTxBench transaction throughput with 0% update. 146

5.12 ResilientTxBench transaction throughput with 50% update. 147

5.13 SSCA2-k4 strong scaling performance under failure. 151

5.14 Linear regression weak scaling performance. 155

5.15 Logistic regression weak scaling performance. 157

5.16 PageRank weak scaling performance. 159

5.17 LULESH weak scaling performance. 161

List of Tables

2.1 Distributed processing systems resilience characteristics. 32

3.1 MPI-ULFM failure mitigation functions. 50

3.2 Performance of Team collectives with different MPI implementations. . 61

3.3 Performance of Team collectives with sockets and MPI-ULFM 62

3.4 Team construction performance on Raijin with ULFM. 63

3.5 Team.Barrier performance. 64

3.6 Team.Broadcast performance. 65

3.7 Team.Allreduce performance. 65

3.8 Team.Agree performance. 65

4.1 TLA+ actions describing the optimistic finish protocol. 88

4.2 Execution time in seconds for BenchMicro patterns with 1024 places. . . 102

4.3 Slowdown factor versus non-resilient finish with 1024 places. 102

5.1 Comparison between finish and transactional finish. 116

5.2 The PlaceManager APIs. 127

5.3 The PlaceLocalStore APIs. 128

5.4 The TxStore APIs. 129

5.5 The resilient iterative application framework APIs. 135

5.6 The parallel workers application framework APIs. 139

5.7 ResilientTxBench parameters. 143

5.8 Transaction throughput results. 145

5.9 SSCA2-k4 performance with different concurrency control mechanisms. 150

5.10 SSCA2-k4 strong scaling performance under failure. 151

5.15 Changed LOC for adding resilience using the iterative framework. . . . 162

xix

xx LIST OF TABLES

Chapter 1

Introduction

This thesis studies the challenges of supporting productive and efficient resilience

support in high-level parallel programming languages. In particular, it consid-

ers the Asynchronous Partitioned Global Address Space (APGAS) programming

model [Saraswat et al., 2010] exemplified by the X10 programming language [Charles

et al., 2005].

1.1 Background and Motivation

Recent advances in High Performance Computing (HPC) systems have resulted in

greatly increased parallelism, with both larger numbers of nodes and larger numbers

of computing cores within each node. With this increased system size and complex-

ity comes an increase in the expected rate of failures [Schroeder and Gibson, 2007;

Bergman et al., 2008; Cappello et al., 2009; Shalf et al., 2010; Ferreira et al., 2011;

Dongarra et al., 2011]. Programmers of HPC systems must therefore address the twin

challenges of efficiently exploiting available parallelism, while ensuring resilience to

component failures. As more industrial and scientific communities rely on HPC as

a driving power for their innovation, the need for productive programming models

that simplify the development of scalable resilient applications continues to grow.

The Message Passing Interface (MPI), the de facto standard programming model

for HPC applications, is carefully designed for performance scalability rather than

resilience or productivity. It does not provide native task-parallel abstractions; how-

ever, users handle this limitation by integrating MPI programs with other tasking

libraries at the expense of increased programming effort and integration complexi-

ties [Chamberlain et al., 2007; Hayashi et al., 2017]. In light of the criticality of failures

on large-scale computations, the MPI Fault Tolerance Working Group (FTWG) was

formed to study different proposals for extending MPI with fault tolerance inter-

faces. After developing three proposals, FT-MPI [Fagg and Dongarra, 2000], Run

Through Stabilization (RTS) [Hursey et al., 2011], and MPI User Level Failure Miti-

gation (MPI-ULFM) [Bland et al., 2012b], the MPI FTWG has converged towards the

MPI-ULFM specification.

1

2 Introduction

MPI-ULFM is currently the only active proposal for adding fault tolerance seman-

tics to the coming MPI-4 standard. It enables applications to recover from fail-stop

process failures by providing failure detection and failure mitigation interfaces in

MPI. Failure reporting is done by returning special error codes from a subset of

MPI interfaces. To avoid altering the whole code with conditional checking for er-

rors, a cleaner option for handling failures is by registering a global error handling

function. However, using a global error handler isolates failure recovery from the

piece of code where the failure was detected, which complicates failure identification

and recovery [Laguna et al., 2016; Fang et al., 2016]1. This simplistic unstructured

form of failure reporting harms the modularity and the clarity of MPI-ULFM pro-

grams and complicates composing multiple fault tolerance techniques. Because of

the low-level programming model of MPI and the above programmability challenges

of MPI-ULFM, we argue that MPI-ULFM can be more useful as a low-level com-

munication base for resilient high-level programming models rather than a direct

programming model for application development.

The difficulties involved in developing distributed multi-threaded applications

using low-level programming models, such as MPI, motivated the development of

productivity-oriented programming models for HPC. The most influential project in

that direction is DARPA’s High Productivity Computing Systems project, which re-

sulted in the emergence of the APGAS programming model and its earliest examples:

X10 [Charles et al., 2005] and Chapel [Chamberlain et al., 2007].

The APGAS model avoids the main productivity barriers of MPI — a fragmented

memory model and lack of task parallelism support — by providing a global view

for distributed memory and supporting nested task parallelism. The async-finish task

model emerged in APGAS languages as a more flexible nested parallelism model

than the fork-join model [Guo et al., 2009]. The words async and fork represent

constructs for spawning asynchronous tasks, and the words finish and join represent

synchronization constructs. While finish can track asynchronous tasks spawned

directly or transitively by the current task, join can only track asynchronous tasks

spawned directly by the current task. Hence, the async-finish model can express not

only fork-join task graphs but also other task graphs with arbitrary synchronization

patterns. Unfortunately, most of the research on APGAS programming models has

focused on its performance and productivity and ignored issues related to resilience.

To address this limitation, the X10 team has recently developed Resilient X10

(RX10), which extends the APGAS model with user-level fault tolerance [Cunning-

ham et al., 2014; Crafa et al., 2014]. Fault tolerance is added by extending async-finish

with failure awareness and structured failure reporting through exceptions. A re-

silient finish can detect the loss of any of its tasks due to a process failure and

consequently raises an exception. Unlike MPI-ULFM, adopting a structured form

of failure reporting in RX10 enables adding fault tolerance to existing codes in a

clear and understandable way. It also facilitates the hierarchical composition of fault

tolerance strategies. For example, see Listing 1.1.

1See [Laguna et al., 2016] for a more detailed description of this issue using a sample code.

§1.1 Background and Motivation 3

Listing 1.1: Structured failure handling using the resilient async-finish model. A place

represents an operating system process in X10. The statement async S; spawns an

asynchronous task to execute S. The statement at (p) S; executes S at place p. The

statement finish S; blocks the current task until all asynchronous tasks spawned by

S terminate. The lines with a gray background are those added for fault tolerance.

1 def local_iteration(i:Int) {

2 try {

3 finish compute_using_neighbor();

4 } catch (ex:DeadPlaceException) { // neighbor died

5 //local recovery using approximation

6 val success = estimate_without_neighbor();

7 if (!success) throw new ApproximationFailure();

8 }

9 }

10 def global_iteration(i:Int) {

11 try {

12 finish for (p in places) at (p) async {

13 local_iteration(i);

14 }

15 checkpoint();

16 } catch(ex:ApproximationFailure) {

17 //restart this iteration

18 i--;

19 //global recovery using checkpoint/restart

20 val success = load_last_checkpoint();

21 if (!success) throw new FatalException();

22 }

23 }

24 def main () {

25 try {

26 for (var i:Int = 1; i < 10; i++) {

27 global_iteration(i);

28 }

29 } catch(ex:FatalException) {

30 print("fatal error occurred");

31 }

32 }

Listing 1.1 is a pseudocode for an iterative algorithm that uses two nested finish

scopes to govern the execution of each iteration. The outer finish at Line 12 governs

the execution of an iteration across all the processes. Failures detected by this finish

are handled aggressively by restarting the entire iteration (Lines 16–22). Failing

to restart is a fatal error (Lines 29–31). The inner finish at Line 3 governs the

computation assigned to a single process at each iteration. Each process calculates

a result using its neighboring process. This algorithm attempts to recover from a

neighbor’s failure locally by generating an approximate result (Lines 4–8) rather than

restarting the iteration. It raises an exception to the outer finish only when the

approximation algorithm fails.

4 Introduction

Despite the advantages of the resilient async-finish model, RX10 has had major

practicality issues. First, adding failure awareness while maintaining the flexibility of

the async-finish model added a significant performance overhead to common appli-

cation patterns. Second, RX10 did not leverage recent fault tolerant MPI implementa-

tions for inter-process communication, which limited its portability to supercomputer

platforms. Finally, RX10 shifted the whole burden of failure handling to program-

mers, as it did not provide any support for commonly used fault tolerance techniques

or any mechanism for protecting application data. We address these issues in this

thesis aiming to provide a productive efficient programming model for developing

resilient HPC applications.

1.2 Multi-Resolution Resilience

When designing resilient applications, the choice of the resilience approach directly

impacts performance and productivity. System-level resilience provides fault toler-

ance to applications transparently using a generic fault tolerance technique. This

approach is attractive for productivity; however, no fault tolerance technique is uni-

versally efficient for all applications. On the other hand, user-level resilience allows

users to customize fault tolerance to specific application characteristics. This approach

is attractive for performance; however, it incurs a high productivity cost.

We argue that a balance between the efficiency of user-level fault tolerance and

the productivity of system-level fault tolerance can be achieved by supporting multi-

resolution resilience. Multi-resolution resilience is a special type of user-level resilience

that requires the programming model to provide efficient and composable resilient

constructs that can be used for building resilient frameworks at different levels of

abstraction. We recognize that both efficiency and composability are necessary fea-

tures for a practical implementation of multi-resolution resilience. The absence of

efficiency harms performance, while the absence of composability harms productivity

as it complicates building higher-level frameworks.

Resilience Productivity

Performance
User-level resilience

(for MRR: efficient & composable

resilient constructs)

System-level resilience
(for MRR: resilient application frameworks)

APGAS

MPI-ULFM

Hadoop

Chapel

MPI

MRR

Figure 1.1: APGAS multi-resolution resilience (MRR) for reconciling performance, resilience,
and productivity.

§1.3 Problem Statement 5

Figure 1.1 shows how multi-resolution resilience can enable APGAS languages to

reconcile performance, resilience, and productivity. The Venn diagram highlights that

each of the priorities of APGAS, user-level resilience, and system-level resilience is

concerned with only two of the three features. For APGAS, reconciling performance

and productivity is a key design objective. In addition, composable synchronization

constructs are already available for supporting nested task parallelism. By extending

these constructs with failure awareness, APGAS languages can gain the performance

advantages of user-level resilience. They can also gain the productivity advantage

of system-level resilience by using these constructs for building resilient application

frameworks that handle fault tolerance on behalf of programmers. However, realizing

this ambitious goal is challenging. Taking RX10 as an example implementation of

multi-resolution resilience, we investigate performance and productivity problems

that can hinder achieving this goal. We describe these problems in the next section.

1.3 Problem Statement

The composable async-finish model is a suitable base for multi-resolution resilience.

However, adding failure awareness to the async-finish model does not come for

free. It requires the runtime system to perform additional book-keeping activities for

tracking the control flow of the computation. Our early experience with RX10 demon-

strated that the composability of the async-finish model did not result in performance

efficiency due to the high resilience overhead imposed by the book-keeping activities

of the runtime system [Hamouda et al., 2015]. The main source of the overhead is

due to the use of a resilient termination detection protocol for the finish construct

that pessimistically tracks every state transition of remote tasks. In this thesis, we

investigate the possibility of designing an optimistic finish protocol that reduces the

resilience overhead in failure-free executions by allowing some uncertainty about

the states of remote tasks. Such a protocol must be able to correctly resolve any

uncertainties at failure recovery time.

Although an optimistic finish protocol may succeed in reducing the resilience

overhead in failure-free scenarios, it cannot eliminate the resilience overhead entirely.

In this thesis, we investigate the possibility of eliminating the resilience overhead

for certain classes of applications by exploiting resilience capabilities in emerging

fault-tolerant message-passing libraries. In particular, we focus on the MPI-ULFM

library and evaluate its suitability to the RX10 programming model. To the best of our

knowledge, our work is the first to evaluate MPI-ULFM in the context of a high-level

parallel programming language.

Initial development of RX10 [Cunningham et al., 2014] focused mainly on recov-

ering the computation’s control flow and left the burden of protecting application

data to the programmer. The complexities of ensuring data availability and consis-

tency in the presence of failures is exacerbated in applications that require atomic

updates on distributed data. In this thesis, we address the challenge of supporting ef-

ficient data resilience support in APGAS languages, including support for distributed

transactions.

6 Introduction

1.4 Research Questions

The objective of this thesis has been to answer the following questions:

• How to improve the resilience efficiency of the async-finish task model?

• How to exploit the fault tolerance capabilities of MPI-ULFM to improve the

scalability of resilient APGAS languages?

• How to improve the productivity of resilient APGAS languages that support

user-level fault tolerance?

1.5 Thesis Statement

High-level programming models can bridge the gap between resilience, productiv-

ity and performance by supporting multi-resolution resilience through efficient and

composable resilient abstractions.

1.6 Contributions

This thesis focuses on software mechanisms for tolerating fail-stop process failures. It

contributes multiple enhancements to the X10 language to provide practical support

for multi-resolution resilience based on the async-finish task model. The following

are the main contributions of my thesis:

• A taxonomy of resilient programming models.

• A detailed semantic mapping between X10’s resilient asynchronous execution

model and ULFM’s failure reporting and recovery semantics.

• A novel message-optimal resilient termination detection protocol, named ‘opti-

mistic finish’, that improves the efficiency of the resilient finish construct.

• A novel extension to the async-finish model to support resilient transactions

that simplify handling distributed data atomicity in non-resilient and resilient

applications.

• Extending RX10 with data resilience support by designing two resilient stores

that shift the burden of handling data availability and consistency from the

programmer to the runtime system and standard library.

• Demonstrating the multi-resolution resilience approach by building two pro-

ductive resilient application frameworks based on the async-finish model. The

first framework is a resilient iterative framework for bulk-synchronous applica-

tions, and the second framework is a parallel workers framework suitable for

embarrassingly parallel applications.

§1.7 Thesis Outline 7

• An empirical performance evaluation of the above enhancements using micro-

benchmarks and applications with up to 1024 cores.

Contributions of the thesis are presented in the following publications: [Hamouda

et al., 2015], [Hamouda et al., 2016], [Grove et al., 2019], and [Hamouda and Milthorpe,

2019].

1.7 Thesis Outline

The thesis follows the following structure:

• Chapter 2 describes a taxonomy of resilience characteristics, provides a broad

overview of resilience features in different programming models, and describes

the X10 programming model in detail.

• Chapter 3 describes the details of the integration between MPI-ULFM and

RX10 and evaluates the resulting performance optimizations (related publi-

cation: [Hamouda et al., 2016]).

• Chapter 4 describes the optimistic finish protocol — our proposed protocol for

improving the efficiency of resilient nested parallelism in APGAS languages —

and evaluates the protocol in different computation patterns (related publica-

tion [Hamouda and Milthorpe, 2019]).

• Chapter 5 describes multiple extensions to X10 that aim at reducing the com-

plexity of handling data resilience in X10 applications. It describes a pro-

posed transactional finish construct for handling distributed data atomicity.

It also describes multiple productive application frameworks. The value of

these frameworks is demonstrated by developing a suite of transactional and

non-transactional resilient applications. The chapter concludes with a detailed

analysis of the performance of these applications with up to 1024 cores (re-

lated publications: [Hamouda et al., 2015], [Hamouda et al., 2016], [Grove et al.,

2019]).

• Chapter 6 describes the thesis conclusions and directions for future work.

8 Introduction

Chapter 2

Background and Related Work

In this chapter, we review the foundational concepts of resilience and their imple-

mentation in a wide range of programming models. The objective of our review is

to identify not only the common approaches but also the neglected approaches in

the area of resilience research. We also aim to identify the most suitable program-

ming model for providing multi-resolution resilience — our proposed approach to

user-level resilience which aims to combine productivity and performance scalability.

After defining resilience in Section 2.1, we describe a taxonomy of resilient pro-

gramming models in Section 2.2. In Section 2.3, we use the taxonomy as a basis for

describing the resilience characteristics of a wide range of programming models. The

conclusions derived from our review are summarized in Section 2.3.6. Because we

use X10 as a basis for our research, we dedicate Section 2.4 to describing the X10

programming model and its resilience features in detail.

2.1 Resilience Definition

Although resilience is sometimes used as a synonym for fault tolerance, there are

other broader definitions. Almeida et al. [2013] reviewed a number of definitions of

resilience and concluded with this quite inclusive definition:

[resilience is] the emerging property of a system that is effective and effi-

cient in accommodating to and recovering from changes in a broad sense

with minimal impact on the quality of the service provided (avoiding fail-

ures as much as possible and performing as close as possible to its defined

goals). [Almeida et al., 2013]

Almeida et al. consider fault tolerance as a necessary but not a sufficient property

for resilience, because the impact on performance after recovery is an important

factor that should not be ignored. They also consider resilience as a dynamic system

property that requires the system to be able to recognize changes and adapt to them.

9

10 Background and Related Work

Resilience Characteristics

Adaptability PerformanceFault Tolerance

Resource Allocation

- Fixed

- Dynamic

Resource Mapping

- Implicit

- Explicit

Fault Type

- Hard Fault

- Soft Fault

Fault Detection

- Heart-beating

- Communication Error

- Failure Prediction

- Data Inspection

Recovery Level

- User

- System

FT Technique

- Checkpoint/Restart

- Replication

- Migration

- Task restart

- Transaction

- ABFT

Performance Recovery

- Shrinking recovery

- Non-shrinking recovery

- Global load balancing

- Speculative execution

Fault Level

- Task

- Process

Figure 2.1: Taxonomy of resilient programming models.

2.2 Taxonomy of Resilient Programming Models

Based on Almeida et al.’s definition, we developed a taxonomy of resilient program-

ming models that considers features in three broad categories: adaptability, fault toler-

ance, and performance management. Although the literature is rich with reviews for

the different fault tolerance approaches and their implementations [Elnozahy et al.,

2002; Cappello, 2009; Maloney and Goscinski, 2009; Egwutuoha et al., 2013; Bland

et al., 2013], our review is unique in classifying programming models according to

features in all three categories. The taxonomy framework enables us to zoom-in on

the internal implementations of the different programming models and to identify

missing properties in certain programming models that can provide more efficient

support for resilience. This section provides a brief description of the taxonomy pre-

sented in Figure 2.1. The two features in our taxonomy, resource mapping and fault

level, are adapted from the taxonomy in [Thoman et al., 2017].

2.2.1 Adaptability

A system’s adaptability describes its ability to dynamically adjust the execution envi-

ronment in response to resource failure. The taxonomy dissects adaptability into two

properties: resource allocation and resource mapping.

2.2.1.1 Resource Allocation

This property describes the allocation policy of the hardware resources (i.e. compute

nodes or processors) for executing the application processes.

§2.2 Taxonomy of Resilient Programming Models 11

Fixed Allocation

A runtime system in this category allocates a fixed-size pool of resources for the ap-

plication. It requires specifying the number of processes at startup time and does not

provide the capability of starting new processes during execution. When a process

fails, the application can only use the remaining processes to continue processing.

Some applications can easily adapt to a shrinking set of resources by redistributing

the workload among the remaining resources. In contrast, it is challenging for appli-

cations that use static workload partitioning to tolerate the loss of resources. These

applications may compensate the fixed allocation policy by allocating spare processes

in advance to be used for recovery. However, this method results in wasting resources

as the spare processes may remain idle for most or all of the processing time.

Dynamic Allocation

A runtime system in this category is capable of expanding its resource allocation dur-

ing execution. Rather than allocating spare resources in advance, the runtime system

can dynamically allocate new resources to compensate for failed ones. In program-

ming models in which the processes are tightly coupled, such as MPI and APGAS,

dynamic process allocation may impose global synchronization on the applications

to reach a consistent view on the available set of processes. If a globally consistent

view is not required, the runtime system can employ an asynchronous handshaking

protocol that eventually propagates the identity of the new processes to the rest of

the world.

2.2.1.2 Resource Mapping

In distributed computing, coarse-grained execution units (i.e. processes) collaborate

on processing the computation’s work units. The resource mapping property de-

scribes the level of user control over mapping the work units to the execution units.

It also implies the level of coupling between the logical work units and the hardware

resources that support them. The term “work unit” maps to different concepts in

different programming models. For example, it maps to an actor in the Charm++

programming model, an entire process in MPI, and a task in task-based programming

models. In the following, we explain how the resource mapping policy is crucial in

determining the resilience model a programming model can support.

Explicit Mapping

A programming model in this category gives the programmer full control over map-

ping the work units to the processes. With this control, programmers are capable

of implementing data and work placement strategies that minimize communication

and improve the scalability of their applications. They can also implement exact or

approximate mechanisms for recovering lost data given their knowledge of the role

each process is playing in evaluating the computation. Programming models that

12 Background and Related Work

require explicit resource mapping are therefore flexible to supporting generic as well

as application-specific fault tolerance techniques.

Implicit Mapping

Programming models in this category decouple the work units from the physical

resources that execute them by hiding coarse-grain parallelism from the program-

ming abstraction. The programmer expresses the computation as a graph of process-

independent work units and relies on the runtime system to implicitly map the work

units to the available processes to achieve the best performance. The runtime system

can employ locality-aware scheduling or enable the programmer to provide local-

ity hints [Mattson et al., 2016] to improve its decisions regarding work placement.

Because the work-to-process mapping knowledge is mainly owned by the runtime

system rather than the programmer, recovering from process failure may only be fea-

sible at the runtime level. Consequently, programming models that provide implicit

resource mapping are often not adequate for user-level recovery and the application

of algorithmic-based fault tolerance techniques for handling process failures.

2.2.2 Fault Tolerance

The fault tolerance part of the taxonomy covers the types of faults, the common fault

detection mechanisms, the common fault tolerance techniques, and the different fault

levels and recovery levels that runtime systems can support.

2.2.2.1 Fault Type

Faults are generally classified into hard faults or soft faults. The frequency of both

fault types is expected to rise on future exascale supercomputers. That is due to

the increasing parallelism and transistor density on these systems and the reducing

redundancy and component voltage for power saving purposes [Feng et al., 2010].

Hard Faults

A hard fault occurs when a certain component unexpectedly stops operating; the

resulting failures are called fail-stop failures. A crashed process due to a hardware

or a software error is an example of a fail-stop failure. Fail-stop failures are the most

common type of failures in distributed systems [Du et al., 2012].

Soft Faults

A soft fault occurs due to bit-flips corrupting data in disk, memory or processor

registers [Cao et al., 2015]. It impacts both shared memory systems and distributed

memory systems. Sources of soft faults include electrical noise, temperature fluctua-

tions, and electrostatic discharge [Du et al., 2011; Mukherjee et al., 2005]. Unlike hard

faults, soft faults do not necessarily interrupt the execution of the program which

§2.2 Taxonomy of Resilient Programming Models 13

makes them more difficult to detect. If not detected, they can lead the impacted

programs to silently generate wrong results or eventually terminate catastrophically.

2.2.2.2 Fault Level

In the single-core processor era, parallel processing was mainly achieved by executing

multiple sequential processes in parallel at different nodes. The advent of multi-core

and heterogeneous architectures demanded finer granularity of parallelism at the

application level to utilize the available hardware parallelism more efficiently. Nowa-

days, a typical parallel application is expected to execute multiple tasks in parallel

within each process by mapping the tasks to the available CPUs and accelerators in

the node. Adding new levels of parallelism introduces new levels of faults that the

application can experience. In this category, we classify the faults that a runtime

system can recover into task faults and process faults.

Task Faults

Individual tasks within a process may fail due to soft faults, hard faults, or program-

ming errors. The process in which the task executes is responsible for detecting and

recovering the failed task.

Process Faults

An entire process can also fail, resulting in immediate loss of the data and the tasks

it owns. Other processes communicating with the failed process can detect its failure

and trigger the recovery procedure.

2.2.2.3 Recovery Level

This property classifies the resilient programming models according to the level at

which faults are handled. The two main categories are system-level fault tolerance

and user-level fault tolerance.

System Level

System-level fault tolerance refers to embedding an application-oblivious failure re-

covery mechanism in the runtime which can be leveraged by applications transpar-

ently or semi-transparently. It is favored for programming productivity since it shifts

the burden of handling failures away from the user. However, adopting a one-size-

fits-all approach for handling failures may impose expensive overheads on certain

applications that can take advantage of algorithmic-based fault tolerance techniques.

User Level

User-level fault tolerance refers to runtimes that do not provide a built-in recovery

mechanism. Instead, the runtime provides failure detection and reporting services

14 Background and Related Work

that users rely on to implement application-specific recovery mechanisms. The main

advantage of user-level fault tolerance over system-level fault tolerance is that the

former allows users to tailor more efficient recovery methods based on their expert

knowledge of the underlying algorithmic properties.

2.2.2.4 Fault Detection

In this property, we describe the common fault detection techniques applied in dis-

tributed programming models.

Heartbeat

Heartbeating is an active failure detection mechanism. A process observes the status

of another process by exchanging periodic heartbeat messages with this process.

A process is considered alive as long as it continues acknowledging the heartbeat

messages, otherwise, it is considered dead.

Communication Errors

In this mechanism, a process is considered dead when communication actions with

it fail to complete successfully. It is a passive mechanism for failure detection.

External Notifications

This category describes runtime systems that rely on external components to detect

failures and notify the live processes about them. For example, some distributed

systems create a daemon process at each node to monitor and propagate the status of

the application processes, other systems use third-party Reliability, Availability, and

Serviceability (RAS) services to achieve the same goal.

Failure Prediction

Proactive fault tolerance techniques, such as process migration, rely on failure pre-

dictors to notify the runtime system of possible failures. When an imminent fault is

detected, the predictor sends a warning signal to the runtime system to enable it to

take failure avoidance actions. Failure prediction models are often designed based

the history of failures on a particular system using its RAS log files [Gainaru et al.,

2012; Liang et al., 2006; Sahoo et al., 2002].

Data Inspection

Inspection of the application data during execution can reveal the impact of soft faults.

Some algorithms are designed to have intrinsic properties that impose well-defined

constraints on the data values [Rizzi et al., 2016]; violations of these constraints

indicate the occurrence of a soft error. For example, adding checksum vectors to

original application data is a common mechanism for linear algebra applications to

§2.2 Taxonomy of Resilient Programming Models 15

detect and even correct data corruption errors. A more general approach for data

inspection is by using computation replication. By invoking multiple instances of the

same computation, data corruption can be detected by comparing the results of the

different instances [Ni et al., 2013].

2.2.2.5 Fault Tolerance Technique

In the following, we describe the common fault tolerance techniques used for han-

dling soft faults and hard faults.

Checkpoint/Restart

Checkpoint/Restart is the most widely used fault tolerance technique in HPC. It

prepares the application to face failures by capturing snapshots of the application

state during execution. Checkpoint/restart is a rollback-recovery mechanism — when

failures occur, the application is restarted from an old state using the latest saved

checkpoint. In a distributed execution, capturing a consistent state across several

processes in the absence of a global clock is challenging. Many protocols have been

investigated in the literature for tackling this challenge [Elnozahy et al., 2002; Maloney

and Goscinski, 2009], where the protocols are generally classified into: coordinated

protocols and uncoordinated protocols.

Coordinated checkpointing: In a coordinated protocol, checkpointing is performed

as a collective operation between all the processes. At the start of a checkpointing

phase, each process pauses executing application actions, completes any pending

communications with the other processes, then saves its local state to a reliable

storage. Because application-level communications are stopped, checkpointing does

not require capturing the communication state between the processes. A failure of

one or more processes requires restarting all the processes from the latest checkpoint.

Uncoordinated checkpointing with message logging: An uncoordinated protocol avoids

synchronizing the processes globally for checkpointing or restarting. Each process

decides the checkpointing time independently from the other processes. Upon a

failure, only the failed process is restarted using its latest checkpoint. In order to

bring the restarted process to a state that is consistent with the rest of the processes,

the other processes replay the communication events that were performed since

the checkpoint time of the restarting process. Because of that, most uncoordinated

checkpointing protocols require the processes to log the communication messages

and to store them as part of their checkpoint.

Replication

Process replication is a forward-recovery mechanism. It is based on the intuitive idea

of executing multiple instances of the same computation in parallel, so that when

one instance is impacted by a failure another instance can proceed towards normal

completion. The main challenge of this procedure is ensuring that the different

instances remain identical. This goal can be achieved using atomic broadcast protocols

16 Background and Related Work

that ensure that changes to the application state are applied on all of the replicas in the

correct order. The main drawback of process replication is introducing high resource

utilization overhead. Despite that, replication is being investigated as a more practical

fault tolerance technique for exascale systems than checkpoint/restart [Bougeret et al.,

2014; Ropars et al., 2015]. Some studies suggest that global checkpoint/restart may

not be feasible on exascale systems because checkpointing the state of an exascale

machine is likely to exceed its Mean Time Between Failures (MTBF) [Cappello et al.,

2009; Dongarra et al., 2011].

In addition to replicating processes, replication may also be performed for fine-

grained work units (e.g. actors, tasks) for failure recovery or load balancing.

Migration

Migration [Wang et al., 2008; Meneses et al., 2014] is a proactive fault tolerance tech-

nique that aims to avoid failures by predicting imminent faults and migrating the

work units (e.g. actors, tasks or processes) from nodes that are likely to fail to other

healthier nodes. The accuracy of the prediction model used is a determining factor

for the performance overhead imposed by migration and for the level of protection

it can deliver to applications. False positives lead to unnecessary migrations, while

false negatives lead to crashed executions. To mitigate for false negatives, migration is

often used with another fault tolerance technique, such as checkpoint/restart [Egwu-

tuoha et al., 2013]. The ability to predict some of the failures enables the application

to checkpoint its state less frequently, thereby enhancing the overall execution perfor-

mance.

Transactions

A distributed transaction provides atomic execution of multiple distributed actions,

such that either all the actions take effect (i.e. the transaction commits) or none of

them do (i.e. the transaction aborts). Atomic commit protocols are employed behind

the scenes to track the issued actions, acquire the needed locks, detect conflicts with

other transactions, and finalize the transaction properly by either committing or

aborting it. Handling process failure during transaction execution has been widely

studied by the database community [Skeen, 1981; Bernstein and Goodman, 1984].

Resilient transactions can simplify the development of fault tolerant applications

as they remove the burden of data consistency and failure recovery from the user to

the transactional memory system. Most HPC programming models lack support for

distributed transactions due to the scalability limitations of the distributed commit

protocols [Harding et al., 2017]. These protocols require multiple phases of com-

munication between all the transaction participants which incurs high performance

overhead.

§2.2 Taxonomy of Resilient Programming Models 17

Task Restart

Task restart is a popular fault tolerance mechanism for dataflow systems that are

represented by various big-data systems [Isard et al., 2007; Dean and Ghemawat, 2008;

Zaharia et al., 2010] and HPC task-based runtime systems [Aiken et al., 2014; Mattson

et al., 2016]. In these systems, the computation is expressed as a graph of inter-

dependent tasks. The dependencies between the tasks are explicitly defined at the

program level and passed to the runtime system. Process failures result in losing tasks

and data objects that other tasks may depend on. From the task-dependence graph,

the runtime system can identify and re-execute the set of tasks that can regenerate

the lost data in order to satisfy the dependencies of the pending tasks to direct the

execution towards successful termination. Checkpointing can be used in conjunction

with task restart to avoid restarting long-running tasks from the beginning.

Algorithmic-Based Fault Tolerance

Algorithmic-Based Fault Tolerance (ABFT) was first introduced by Huang and Abra-

ham [1984]. They designed methods for detecting and correcting soft errors in matrix

operations by adding checksum information into matrix data. The same idea has

been used later on for tolerating fail-stop failures in distributed matrix computa-

tions [Chen and Dongarra, 2008; Hakkarinen and Chen, 2010; Davies et al., 2011;

Du et al., 2012]. Such algorithmic recovery methods often outperform generic fault

tolerance techniques such as checkpoint/restart [Graham et al., 2012]. More naturally

fault tolerant algorithms can be found in the approximate computing domain. For

example, monte-carlo methods generate approximate answers using a huge number

of random samples. A process failure that causes the loss of some of these samples

can be tolerated by either ignoring the lost samples and producing a less accurate

result or replacing lost samples with new ones. Checkpointing or replication would

be unnecessarily expensive for these algorithms.

2.2.3 Performance

An ideal resilient runtime system is described by Meneses et al. [2014] as "one that

keeps the same execution speed despite the failures in the system". In the performance

part of the taxonomy, we describe common mechanisms for minimizing the impact

of failures on the overall system performance.

2.2.3.1 Performance Recovery

This property describes common mechanisms applied in distributed runtime systems

for delivering sustainable performance in the presence of process failures. It only

applies to runtime systems that support on-line recovery in which a failure does not

shutdown the system. Hence, recovering an application does not require a manual

restart.

18 Background and Related Work

Shrinking and Non-Shrinking Recovery

The failure of a process demands shifting the work of this process to one or more

other processes. Non-shrinking recovery avoids overloading the remaining processes

with additional tasks by adding new processes to compensate for the failed ones. On

the other hand, shrinking recovery continues the computation using the remaining

processes. Non-shrinking recovery is a highly favorable mechanism for statically

balanced applications, not only for achieving better performance, but also because

it relieves the programmer from the complexities of distributing the workload over

an arbitrary number of processes [Laguna et al., 2014]. However, allocating new

resources at runtime may be costly and even not required for certain applications. A

master-worker application, for example, can use shrinking recovery and rely on its

intrinsic dynamic load balancing property to achieve sustainable performance in the

presence of failures, without suffering the overhead of dynamic resource allocation.

Global Load Balancing

An unbalanced distribution of the workload has negative implications on perfor-

mance and resource utilization. For example, a process performing double the work

performed by its peers can double the execution time of the computation while caus-

ing most of the resources to remain idle. Overloaded processes not only take longer

time to compute but can also take longer time to checkpoint their state. While load

balancing is essential for achieving good performance, it comes with performance

overhead when performed dynamically. For that reason, multiple research efforts

have targeted the design of efficient load balancing techniques [Saraswat et al., 2011;

Lifflander et al., 2012; Fohry et al., 2017].

In this property of our taxonomy, we describe the programming models that

provide transparent support for global load balancing — that is done by automatically

migrating the work units from overloaded processes to underloaded processes.

Speculative Execution

Speculative execution avoids blocking future tasks whose preconditions are yet to be

satisfied by executing these tasks based on predicted values for their preconditions.

Correct predictions result in accelerating the performance, and wrong predictions

result in wasted computations. Speculative execution can be used for speeding up

failure recovery by launching the recovery tasks prior to the actual occurrence of the

failure. For example, some big-data systems, such as Hadoop and Spark, are able

to detect straggler tasks that execute at a lower speed than expected and take them

as an indication for an imminent failure of the used nodes. When a straggler task

is detected, the runtime system restarts the task on a different node and keeps the

original task and the duplicated task work together to complete the same operation.

Once one of the tasks completes, the other is killed.

§2.3 Resilience Support in Distributed Programming Models 19

2.3 Resilience Support in Distributed Programming Models

In this section, we review multiple parallel programming models and their resilience

support. We start with two programming models that are based mainly on coarse-

grained parallelism:

• the message-passing model (Section 2.3.1) and

• the Partitioned Global Address Space (PGAS) model (Section2.3.2)

Then, we move to a programming model that exposes both coarse-grained and fine-

grained parallelism:

• the Asynchronous Partitioned Global Address Space (APGAS) model (Sec-

tion 2.3.3).

Then, we move to programming models that are based mainly on fine-grained paral-

lelism:

• the actor model (Section 2.3.4) and

• the dataflow model (Section 2.3.5)

Table 2.1 summarizes the characteristics of the different implementations of the above

models according to our taxonomy.

2.3.1 Message-Passing Model

The message-passing model is a widely-used programming model for high perfor-

mance computing. It is based on the Single Program Multiple Data (SPMD) model,

which offers coarse-grain parallelism by executing multiple copies of the same pro-

gram, each having a separate process and address space. Communication between

the processes for data sharing and synchronization is performed by message pass-

ing. The standardization efforts that started in the early 1990s resulted in the MPI

standard, which now has a unique portability advantage that can hardly be found in

other runtime systems. The generality of the model has been proven by the diverse

styles of algorithms that have been implemented using it for more than two decades.

The two main open-source implementations of MPI are OpenMPI [OpenMPI, 2018]

and MPICH [MPICH, 2018].

A communicator in MPI refers to a specific group of processes that are allowed

to communicate with each other. A collective operation is a global communication

function that involves all the processes in the communicator.

A core task for an MPI programmer is distributing the application data across the

processes. Therefore, we classify MPI under the explicit resource mapping category

in our taxonomy. The first release of MPI, MPI-1, provides an application with a

fixed set of processes that cannot be extended during execution, and it supports

only two-sided communication in which a send request at the source process is

expected to be matched with a receive request at the destination process. Starting

20 Background and Related Work

from MPI-2, new functions have been added to support dynamic process creation

and one-sided communication. More advanced features have been added to MPI-3

including support for non-blocking collectives, neighborhood collectives, and an

improved one-sided communication interface.

Unfortunately, the MPI standard still lacks support for process-level fault tolerance.

By default, all errors are fatal, and they leave the runtime system in an undetermined

state. The lack of fault tolerance in MPI has captured the interest of many research

groups, and different methods have been proposed to support system-level and user-

level fault tolerance. Despite the simplicity advantage of providing fault tolerance

transparently without application changes, this approach has clear limitations. First, it

forces one fault tolerance technique on all applications, and second, it prevents the use

of algorithmic-based fault tolerance techniques. Meanwhile, the MPI programming

model is well-suited for user-level fault tolerance. That is because of adopting an

explicit resource mapping policy that makes reasoning about the lost parts of the

computation easy for the programmer.

In the following, we start by reviewing four representative frameworks that pro-

vide system-level fault tolerance for MPI applications: MPICH-V, FMI, rMPI, and

RedMPI. After that, we review three approaches for extending MPI with user-level

fault tolerance: FT-MPI, MPI-ULFM, and FA-MPI.

2.3.1.1 MPICH-V

MPICH-V is a research framework designed for studying different protocols for sup-

porting fault tolerance in MPI without requiring any application changes [Bosilca

et al., 2002]. It has been used for comparing coordinated and non-coordinated check-

pointing [Lemarinier et al., 2004], as well as comparing blocking and non-blocking

implementations of coordinated checkpointing [Coti et al., 2006]. Process failure is

detected by a heartbeat mechanism at the TCP communication layer, which can be

configured by special keep-alive parameters. Because MPICH-V is based on MPI-2,

dynamic process creation is supported; however, the application is not required to

use this capability for fault tolerance. While checkpointing is done automatically,

recovering the application requires a manual restart.

2.3.1.2 FMI

The Fault Tolerant Messaging Interface (FMI) [Sato et al., 2014] is a research prototype

implementation of MPI that uses in-memory checkpointing for recovering failed pro-

cesses. It relies on the failure detection capability of the Infiniband Verbs Application

Programming Interface (API), ibverbs, for raising communication errors at the pro-

cesses directly connected to the failed process. To propagate the failure signal to

the rest of the processes, FMI connects the processes in a so-called log-ring overlay

network that can propagate the signal in O(log(n)) messages, where n is the number

of processes. To relieve the programmer from the complexities of shrinking recovery

and to avoid degrading the performance after losing some resources, FMI supports

§2.3 Resilience Support in Distributed Programming Models 21

non-shrinking recovery by replacing a failed process with a spare process allocated

in advance. Shrinking recovery is not supported by FMI.

2.3.1.3 rMPI

Process replication was attempted for MPI for its potential to achieve better forward

progress than checkpoint/restart for highly unreliable systems and also for its ability

to tolerate both fail-stop and soft errors. rMPI [Ferreira et al., 2011] uses replication

to target fail-stop process failure. It implements a replication framework that creates

two replicas of each MPI rank, ensures the sequential consistency of the replicas, and

performs forward recovery by restarting failed replicas on pre-allocated spare nodes

using the state of the corresponding active replicas. rMPI assumes the availability of

a RAS service that notifies the active ranks when other ranks fail. Ropars et al. [2015]

propose a user-level replication scheme for MPI that aims to achieve more than 50%

resource utilization by allowing the replicas to share work rather than performing

the same work twice. Application programming interfaces are provided to enable the

programmer to define segments of the code that are eligible for work sharing.

2.3.1.4 RedMPI

RedMPI [Fiala et al., 2012] uses replication to detect and even correct soft faults cor-

rupting the MPI messages. Each send request at the application level is transparently

forwarded to all the replicas of the receiver. The receiver compares the received mes-

sages to detect data corruption. If three or more replicas per process are available,

voting is applied to discover and drop the corrupted message. Otherwise, RedMPI

terminates the application once a soft fault is detected.

2.3.1.5 FT-MPI

FT-MPI [Fagg and Dongarra, 2000] was the first significant step towards providing

failure awareness to MPI applications. The application discovers the failure from the

return code of the MPI function calls. Communications with the failed process will

always return an error. Communications with non-failed processes can be configured

to either succeed or fail based on the application requirements. When a communicator

detects a communication failure, it immediately propagates the failure information

to all the processes of the communicator. A communicator can be recovered by

creating a new communicator using existing MPI communicator creation functions

whose semantics were modified to allow the following three recovery modes: SHRINK

— removes the failed processes and updates the ranks of the remaining processes,

BLANK — replaces the failed processes with MPI_PROC_NULL, and REBUILD — replaces

the failed processes with new ones. Collective functions were significantly modified

to consider the above three modes and to ensure that a failure will not result in

producing an incorrect result at the surviving processes. By the above semantic

modifications, FT-MPI aims to provide enough flexibility to applications in defining

the appropriate method for recovery. However, the practicality of FT-MPI has been

22 Background and Related Work

criticized due to introducing significant semantic changes to MPI’s functions which

leads to difficult library composition [Gropp and Lusk, 2004; Bland et al., 2012b].

2.3.1.6 MPI-ULFM

Driven by the increasing demand for a standard fault tolerant specification for MPI,

the MPI Fault Tolerance Working Group (FTWG) was formed to meet this objective.

The FTWG studied two proposals: Run Through Stabilization (RTS) [Hursey et al.,

2011] and MPI User Level Failure Mitigation (MPI-ULFM) [Bland et al., 2012b]. In

both proposals, failure reporting is done on a per-operation basis using special error

codes as in FT-MPI. Unlike FT-MPI, both proposals avoid propagating the failures

implicitly and do not guarantee uniform failure reporting in collective operations. The

RTS proposal has been rejected by the MPI Forum citing implementation complexities

imposed by resuming communications on failed communicators [Bland et al., 2012b].

Therefore, MPI-ULFM is currently the only active fault tolerance proposal for MPI-4.

MPI-ULFM specifies the behavior of an MPI runtime in cases of process failure

and adds a minimal set of functions to provide failure propagation, process agree-

ment, and communicator recovery services. The specification covers all MPI functions

(blocking/non-blocking, point-to-point/collectives, one-sided/two-sided); however,

support for one-sided communication is still lacking in the currently released refer-

ence implementation ULFM-2. Failure detection in the reference implementation of

MPI-ULFM is based on heartbeating and communication timeout errors as detailed

in [Bosilca et al., 2016]. The new communicator recovery operation MPI_COMM_SHRINK

is added to facilitate shrinking recovery. By combining this operation with the ex-

isting standard function MPI_COMM_SPAWN, applications can implement non-shrinking

recovery using dynamically created processes.

2.3.1.7 FA-MPI

Outside of the MPI FTWG, FA-MPI (Fault-Aware MPI) [Hassani et al., 2015] proposes

the addition of a transaction concept to MPI to serve as a configurable unit for failure

detection and recovery. Unlike MPI-ULFM, which provides failure reporting at the

granularity of a single function call, FA-MPI enables the customization of the granu-

larity of failure reporting to include one or more communication functions. FA-MPI

restricts the communication within a transaction to non-blocking communications.

The transaction waits for the completion of any pending communication and aggre-

gates any detected failures. Special functions are provided to enable the application

to query for the detected failures. FA-MPI allows the application to raise algorithmic-

specific errors that will also be detected by the transaction, therefore it can be used

for handling both soft faults and hard faults. Like MPI-ULFM, performance recov-

ery is the application’s responsibility. Both shrinking and non-shrinking recovery

functions are provided to support different application requirements. The FA-MPI

prototype implementation is limited to detecting failures due to segmentation faults.

External daemon processes detect these failures and propagate them to the remaining

processes.

§2.3 Resilience Support in Distributed Programming Models 23

2.3.2 The Partitioned Global Address Space Model

Message-passing is an effective programming paradigm for exploiting locality which

is necessary for achieving scalability and good performance. However, it lacks the

simplicity of direct memory access provided by shared-memory programming mod-

els. The Partitioned Global Address Space (PGAS) model emerged from interest in

designing locality-aware shared memory programming models [Coarfa et al., 2005].

To achieve this goal, the PGAS model provides a SPMD model augmented with a

global address space that enables inter-process communication without explicit mes-

sage passing. The global address space is explicitly partitioned into local segments

each owned by a process, which gives the programmer the same control over the

locality of the data and its associated computation as given by MPI.

2.3.2.1 GASNet

Implementations of the PGAS model rely heavily on low-level networking libraries

that provide efficient and portable support for one-sided communication and active

messages, such as Global Address Space Networking (GASNet) [GASNet, 2018],

the Aggregate Remote Memory Copy Interface (ARMCI) [Nieplocha et al., 2006],

and ComEx [Daily et al., 2014]. The increasing criticality of fault tolerance in HPC

programming models has attracted multiple research efforts to extend these libraries

with fault tolerance support.

GASNet [GASNet, 2018] is widely used in many PGAS programming models. De-

spite its popularity, GASNet still lacks support for resilience against fail-stop process

failures. GASNet-Ex is an ongoing project that aims to deliver performance and fault

tolerance enhancements to GASNet. A first step towards fault tolerance has involved

integrating GASNet with the Berkeley Lab Checkpoint/Restart (BLCR) system to

enable transparent checkpointing for PGAS applications. Dynamic process creation

and support for user-level fault tolerance are among the planned features for GASNet

in the context of the GASNet-Ex project.

2.3.2.2 UPC

Unified Parallel C (UPC) [El-Ghazawi and Smith, 2006] implements the PGAS model

as an extension to ANSI C. A UPC program is organized around a fixed number

of execution units (threads or processes) that perform computations on shared data

structures. UPC extends the C language with a shared pointer type for declaring

global data that can be accessed by any of the execution units. Assignment statements

involving shared data implicitly invoke one-sided get and put operations to copy the

needed data items from their home locations. Based on shared pointers, global

arrays can be allocated and processed in parallel using the upc_forall construct.

Aggregate data transfers of shared arrays can be performed using upc_memcpy to

achieve better communication performance. A range of constructs is provided for

synchronization including locks, blocking and non-blocking barriers, and memory

fences for handling data dependences. UPC supports collective data operations

24 Background and Related Work

such as broadcast and allreduce. However, it lacks support for multidimensional

arrays and dynamic task parallelism. Zheng et al. [2014] address these limitation by

designing the UPC++ library, which provides the basic UPC features in addition to

supporting multidimensional arrays and dynamic task parallelism. The task model

is based on a restricted form of the async-finish task model of the X10 language.

Other methods for supporting dynamic task parallelism in UPC have been proposed

in [Shet et al., 2009; Min et al., 2011]. UPC does not provide any resilience support

against process failures.

2.3.2.3 Fortran Coarrays

Coarrays started as an extension to Fortran to support parallel processing by applying

the PGAS model [Numrich and Reid, 1998; Numrich, 2018]. It is now a core feature

of the Fortran 2008 and the Fortran 2018 standards. This model enables parallel exe-

cution using a fixed number of images (i.e. processes) that can share data in the form

of coarrays. A coarray is a global variable partitioned among images. Unlike UPC,

which provides uniform abstractions for accessing local and remote date, Coarrays

makes partitioning explicit in the program. To access a particular coarray item, the

dimensions of the item and the image number must be specified in the program.

The Fortran 2018 standard added the concept of failed images as a means for sup-

porting user-level fault tolerance. Programmers detect image failures by inspecting

error codes returned from coarray operations. The new interface failed_images was

added to assist programmers in identifying the failed images. Fanfarillo et al. [2019]

added these features to OpenCoarrays [OpenCoarrays, 2019] using MPI-ULFM.

2.3.2.4 GASPI

The Global Address Space Programming Interface (GASPI) [Simmendinger et al.,

2015] is a fault-tolerant library implementation of the PGAS model that is supported

for C, C++ and Python and can interoperate with MPI. GASPI aims to enable effi-

cient use of one-sided communication in high-level programming models by utilizing

the available multi-core parallelism in modern architectures. The program can reg-

ister read/write operations and notification actions in multiple queues that can be

processed in parallel by the runtime system. The notification actions are used for

synchronization and failure detection. Invoking gaspi_wait on a notification action

blocks the caller until all read/write operations started before the notification com-

plete. Each read/write operation is registered with a time-out value. Operations

that do not complete within the specified time limit indicate the possibility of a

process failure. The program can validate the status of a specific process using the

gaspi_state_healthy function. Failure knowledge is expected to be propagated im-

plicitly to all the processes, to enable the program to switch to a global recovery phase.

Bartsch et al. [2017] use GASPI failure notification to support online non-shrinking

recovery for PGAS applications by applying in-memory coordinated checkpointing.

§2.3 Resilience Support in Distributed Programming Models 25

2.3.2.5 OpenSHMEM

OpenSHMEM [OpenSHMEM, 2017] is an effort to provide a standard programming

interface for implementing the PGAS model. The execution model is based on a group

of processing elements (PEs), each having a private memory space for allocating non-

shared variables, and a so-called symmetric heap for allocating shared variables that

can be accessed by any PE. Allocating a shared variable is performed by allocating

an image of the variable in the symmetric heap of each PE. A variety of interfaces are

provided for memory management, synchronization, one-sided put/get operations,

and atomic operations. Different research groups have proposed fault tolerance exten-

sions for OpenSHMEM. Bouteiller et al. [2016] propose extensions to OpenSHMEM to

support the same user-level fault tolerance mechanism applied in MPI-ULFM. Garg

et al. [2016] use the Distributed MultiThreaded CheckPointing (DMTCP) [Ansel et al.,

2009] system to provide transparent system-level checkpointing with offline recovery.

Hao et al. [2014a] support coordinated in-memory checkpointing by adding the new

collective operation shmem_checkpoint_all, which stores a replica of each symmetric

heap at the neighboring PE and raises an error if any of the PEs is dead. The program

can respond to a reported failure by shrinking the application to the remaining PEs

or create new PEs dynamically using the proposed shmem_restart_pes operation.

2.3.2.6 Global Arrays

In addition to general-purpose programming languages, the PGAS model has been

used in libraries of distributed data structures. Global Arrays (GA) [Nieplocha et al.,

1996] extends MPI with shared array abstractions. Fault tolerance for GA applications

has been explored using checkpoint/restart [Tipparaju et al., 2008], matrix encoding

techniques [Ali et al., 2011b], and data replication [Ali et al., 2011a].

2.3.2.7 Global View Resilience

Global View Resilience (GVR) [Chien et al., 2015] is another library that provides

the same global array functionalities of the GA library. Moreover, it provides data

versioning API that supports a wider spectrum of recovery options compared to

coordinated single-version checkpointing. Users control when to create new versions

and how to use the available versions to recover the application state after a failure,

thus it provides a flexible foundation for ABFT.

2.3.3 The Asynchronous Partitioned Global Address Space Model

The coarse-grain parallelism model provided by MPI and PGAS, although suited

for many regular HPC applications, is highly limited in exploiting the available

fine-grain parallelism in mainstream architectures. The Asynchronous Partitioned

Global Address Space (APGAS) model addresses this limitation by extending the

PGAS model with general task parallelism. Each task has an affinity to a particular

partition; however, it can spawn tasks at all other partitions. In the following, we

describe two widely-known APGAS languages: Chapel and X10. Both languages

26 Background and Related Work

initially emerged as part of DARPA’s High Productivity Computing Systems (HPCS)

project, which aimed to advance the performance, programmability, portability and

robustness of high-end computing systems.

2.3.3.1 Chapel

Chapel [Chamberlain et al., 2007] is an object-oriented APGAS language developed

by Cray Inc. It provides a uniform programming model for programming shared-

memory systems and distributed-memory systems. For the latter, it supports a num-

ber of communication libraries, such as GASNet and Cray’s user Generic Network

Interface (uGNI), for performing data and active-message transfer operations.

Chapel’s execution model is organized around a group of multithreaded Locales,

on which tasks and global data structures can be created. It provides the domain data

type for describing the index set of an array, which can be dense, sparse, or in any

other user-defined format. A domain map describes how the domain is mapped to a

group of locales. Assignment statements involving remote data translate implicitly

to one-sided get/put operations. For locality control, the on construct is provided

to determine the locale on which a particular active message should execute. In

addition to locality control and global-view data-parallelism, Chapel provides simple

abstractions for expressing task-parallelism.

Task parallelism is supported by the following constructs, which can be composed

flexibility to express nested parallelism:

• begin: spawns a new task that can execute in parallel with the current task.

• cobegin: spawns a group of tasks, one for each statement in the cobegin scope,

and waits for their termination.

• (co)forall: spawns a group of parallel tasks for processing the iterations of a

loop, and waits for their termination.

• sync statement: waits for all dynamically created begins within its scope.

In addition to the sync statement described above, Chapel provides a sync variable

type that can also be used for synchronization. A sync variable has a value and a

state that can be either full or empty. Reading or writing a sync variable can cause

the enclosing task to block depending on the state of the variable [Hayashi et al.,

2017]. For example, reading an empty variable or writing to a full variable will block

execution until the state changes to the opposite state. Coordinating the different

tasks can therefore be achieved by orchestrating their access to shared sync variables.

Currently, Chapel is not resilient to process failures. A recent research effort

by Panagiotopoulou and Loidl [2015] targeted the challenges of transparently recov-

ering the control flow of a Chapel program when locales fail. A copy of each remote

task is replicated at the parent locale that spawned the task. When a locale fails, other

locales identify the lost tasks and re-execute them locally. The proposed design is

limited to tasks that have no side effects. Their future work plans include handling

§2.3 Resilience Support in Distributed Programming Models 27

general tasks that alter the data. GASNet was used as the underlying communication

layer for Chapel. Because GASNet is not resilient, this study simulated the existence

of failures rather than actually killing locales.

2.3.3.2 X10

X10 [Charles et al., 2005] is an object-oriented APGAS language developed by IBM.

The language syntax is based on the Java language, with the addition of new con-

structs for expressing task parallelism and global data. Two runtime implementations

are available for X10: native X10 (executes X10 programs translated into C++ code)

and managed X10 (executes X10 programs translated into Java code).

A place is the locality unit in X10. The program starts from a root task at the first

place and evolves by dynamically creating more tasks at the different places. The

programmer specifies the place where a certain task should execute using the at

construct. X10 supports nested task parallelism using the async-finish model. The

async construct is similar to Chapel’s begin construct; it creates an asynchronous task

at the current place. The finish construct is similar to Chapel’s sync statement; it

waits for the termination of all asyncs spawned dynamically within its scope. Using

async, finish, and at, the programmer can express not only simple fork-join task

graphs but also more complex task graphs with arbitrary synchronization patterns.

For handling global data, X10 provides a global reference type that carries a globally

unique address for an object; it is similar to the shared pointer primitive of UPC.

However, unlike all PGAS models we described above in which a global reference can

be used for transferring data implicitly between processes, X10’s global references

do not permit any implicit communication. To access an object using its global

reference, a task must be created at the home place of the object where the object will

be accessed locally. Otherwise, bulk-transfer functions are provided in the standard

library to transfer arrays using their global references. The runtime system can

implement these functions via one-sided put/get operations or normal two-sided

communications (possibly at a higher performance cost). In all cases, data transfer is

explicit, and the cost of communication is obvious in the program.

Recently, the X10 team at IBM has focused on improving the language’s resilience

to process fail-stop failures [Cunningham et al., 2014]. They adopted a flexible user-

level fault tolerance approach that enables the development of generic as well as

algorithmic-based fault tolerance techniques at the application level. Native X10,

which is designed for HPC, is currently limited to fixed resource allocation. However,

spare places can be allocated in advance for supporting non-shrinking recovery.

Hao et al. [2014b] describe X10-FT, an extension of X10 that supports transparent

disk-based checkpointing. The compiler is modified to insert checkpointing instruc-

tions at program synchronization points. The places are organized hierarchically;

when a place fails, its parent place creates a replacement place and initializes it using

the latest disk checkpoint. The PAXOS protocol is used for failure detection (via

heartbeating) and for reaching consensus on the status of places.

The X10 programming model will be described more fully in Section 2.4.

28 Background and Related Work

2.3.4 The Actor Model

The actor model represents a system as a group of concurrent objects, named actors,

each owns a private state and an inbox to receive asynchronous messages from other

objects. Based on the content of a received message, an actor may update its own

state, send messages to other actors, or create new actors. The actor model encourages

work over-decomposition to fine-grain components, which is an essential property for

harnessing the massive parallelism available in current many-core systems. Location

transparency is a common feature in many actor programming models, where map-

ping the actors to the underlying system resources is done implicitly by the runtime

system.

The actor model is an attractive model for fault tolerance. The strong encapsula-

tion of data and behavior makes an actor an autonomous entity that may be recovered

independently, depending on the level of coupling with other actions. Different im-

plementations of the actor model provide different levels of failure awareness to

applications. Some models recover lost actors transparently without any user inter-

vention, while others provide application-level mechanisms for failure detection and

recovery.

In the following, we describe Charm++, a well-known implementation of the actor

model in the HPC domain. Followed by a review of three famous non-HPC actor

implementations: Erlang, Akka and Orleans.

2.3.4.1 Charm++

Charm++ [Kale and Krishnan, 1993; Acun et al., 2014] is the most prominent im-

plementation of the actor model in HPC. It defines a computation as a collection

of migratable actors named chares. The runtime system transparently manages the

distribution of chares among the processes, and it may migrate the chares for load

balancing or for avoiding imminent faults. Charm++ applies a fixed resource allo-

cation policy; however, the applications can allocate spare processes to be used for

failure recovery. The highly adaptive execution model of the Charm++ runtime sys-

tem enables it to handle failure recovery without user intervention. Recovery from

process-level hard faults has been explored using blocking [Zheng et al., 2004] and

non-blocking [Ni et al., 2012] coordinated checkpointing, and using uncoordinated

checkpointing via pessimistic message logging [Chakravorty and Kale, 2004] and

causal message logging [Meneses et al., 2011]. Recovering from both hard faults and

soft faults by combining checkpointing and replication has been supported in the

Automatic Checkpoint/Restart (ACR) system [Ni et al., 2013] based on Charm++.

Because Charm++ masks process failures from the application, it is not a suitable

target for algorithmic-based fault tolerance. It has also been criticized for complexities

in expressing global control flows and global communications which are common in

many HPC applications [Jain et al., 2015].

Adaptive MPI (AMPI) [Huang et al., 2003] is a fault tolerant implementation of the

MPI programming model on top of Charm++. The MPI processes are implemented as

light-weight user-level threads mapped to Charm++ chares. Message passing between

§2.3 Resilience Support in Distributed Programming Models 29

the MPI processes is realized by the message-driven communication of Charm++. By

checkpointing the chares to disk, AMPI applications can be restarted after failure

using the same or a different number of nodes. Online recovery using proactive

migration has also been supported in AMPI [Chakravorty et al., 2006].

2.3.4.2 Erlang

Erlang [Vinoski, 2007] emerged originally from the need to build highly reliable

telecommunication systems. Erlang actors are mapped explicitly to the available

nodes and cannot migrate automatically for load balancing. An interesting feature in

Erlang is the organization of actors in a supervision tree that facilitates recursive fault

handling. A failing actor results in generating an error message at its parent who can

perform certain recovery actions — for example, restart the failed actor on another

node. The root actor is the main guardian that handles failures that escalate to the

top of the tree. Therefore, while Charm++ programs are oblivious to failures, Erlang

programs are aware of failures because failure handling is defined at the user level.

2.3.4.3 Akka

Akka [Akka, 2018] is a library implementation of the actor model for Scala and

Java programs. The programming model provides location transparency for actors

(similar to Charm++) and recursive failure handling using supervision trees (similar

to Erlang). Akka supports elasticity by allowing the compute nodes to join and

leave the cluster flexibly during execution. The status of nodes is monitored via a

heartbeating mechanism. Actors that were hosted at a failed node can be recreated

by their supervisors, possibly using a previously checkpointed state.

2.3.4.4 Orleans

Orleans [Bykov et al., 2011] is an actor-based elastic framework for cloud comput-

ing. Aiming to provide a higher-level programming model than Erlang and Akka,

Orleans takes full control over creating, restoring, and deleting actors. It supports

location transparency and integrates multiple mechanisms for handling process fail-

ures [Bernstein et al., 2014]. It uses in-memory replication for improving the system’s

availability, disk-based checkpointing for restoring lost actors, and resilient transac-

tions for handling atomic actions on multiple actors.

2.3.5 The Dataflow Programming Model

The dataflow programming model expresses a computation as a graph of nodes rep-

resenting tasks and edges representing dependencies between the tasks. Similar to

the actor model, the dataflow model encourages work over-decomposition and decou-

pling the work units (tasks) from the processes that execute them. However, there are

two major differences between the two models. First, in the actor model, tasks and

their data are strongly coupled and always co-located, while in the dataflow model,

tasks and data are decoupled which makes locality optimizations more challenging.

30 Background and Related Work

Second, in the actor model, the programmer implicitly encodes the dependencies

using synchronization instructions that enforce scheduling constraints on the actions,

while in the dataflow model, the programmer explicitly defines the task dependen-

cies to the runtime system [Aiken et al., 2014]. Making the runtime system aware

of the dependencies enables it to automatically handle task scheduling, synchroniza-

tion, and overlapping communication and computation. In the following, we review

different distributed dataflow systems and describe their resilience features.

2.3.5.1 OCR

The Open Community Runtime (OCR) [Mattson et al., 2016] is a dataflow runtime

system designed as a low-level target for high-level task-based programming models.

The main concepts of the OCR programming model are: event-driven tasks (EDTs),

events, datablocks, and hints. EDTs are non-blocking tasks that may have depen-

dencies on certain datablocks and/or other tasks. A datablock is the storage unit

of the application. The runtime manages the placement, access control, and replica-

tion decisions of datablocks. The location and number of copies of a datablock can

change during the runtime for locality handling, failure avoidance, or load balancing.

Events are used to represent control and dependencies between tasks. Although task

scheduling and data placement decisions can be handled automatically, OCR pro-

grammers can provide performance tuning hints to influence these decisions. OCR

is well-suited for supporting resilience; however, current implementations are not

resilient to soft faults or hard faults.

2.3.5.2 Legion

The Legion [Bauer et al., 2012] programming model makes locality control central to

its dataflow model by organizing the computation around tasks and logical regions.

The logical region abstraction enables the program to express a hierarchical view of

the application data by partitioning them into regions and sub-regions. The regions

can be disjoint or overlapping and can be accessed with a particular privilege by

different tasks (i.e. read-only, read-write, or reduce). Legion’s distributed work-

stealing scheduler takes into account the locality information of the regions, the

task dependencies, and the access privileges to extract hidden parallelism in the

program. To extract even more parallelism, Legion supports speculative execution

for predicated tasks whose execution depends on a special boolean parameter (for

example, a parameter representing the convergence status of an algorithm). Based

on the runtime’s prediction of this boolean parameter, a task can start execution

before the parameter value is evaluated. Mispredictions are handled by ignoring

the results of the speculated tasks and rolling back any changes they applied on

the regions. Bauer [2014] outlines a transparent mechanism for recovering from soft

faults and hard faults by restarting failed tasks. Failure detection is assumed to

be done by an external system. However, no performance results are reported for

Legion applications under failures. Because Legion is based on the non-resilient

§2.3 Resilience Support in Distributed Programming Models 31

communication library, GASNet, we do not expect it to survive any process failures

in practice.

2.3.5.3 NABBIT and PaRSEC

NABBIT [Kurt et al., 2014] and PaRSEC [Cao et al., 2015] are dynamic task-based

runtime systems. Both support resilience against soft errors. NABBIT uses task re-

execution without checkpointing for recovery. On the other hand, PaRSEC supports

three recovery models: task re-execution, task re-execution with checkpointing, and

ABFT. NABBIT implements a distributed work-stealing scheduler, whereas PaRSEC

lacks this feature. Tolerating fail-stop process failure has not been supported yet in

either system.

Other examples for task-based dataflow systems for HPC include HPX [Kaiser

et al., 2014], StarPU [Augonnet et al., 2011], and Realm [Aiken et al., 2014]. However,

none of them is resilient to failures.

2.3.5.4 Spark

From the cloud computing domain, Spark [Zaharia et al., 2012] is a widely-used

distributed dataflow system optimized for iterative processing and interactive data

mining. The execution of a Spark job starts at a driver node, which transforms

the job into a directed acyclic graph and submits its tasks to the available worker

nodes. Spark offers a data abstraction called Resilient Distributed Datasets (RDD),

a form of immutable distributed collections that are cached in memory. When a

worker node fails, an RDD may lose some of its partitions. In order to restore lost

partitions, Spark tracks the RDD lineage, which is the history of operations that

were performed to create an RDD. The driver node replays the lineage operations

to recover lost RDD partitions. For applications with long computation lineage,

user-controlled checkpointing can be applied to speed up recovery using the last

checkpoint rather than recomputing the RDD from the initial application state. Spark

applies speculative execution by monitoring the progress of tasks and resubmitting

the straggler tasks on other nodes.

2.3.6 Review Conclusions

Table 2.1 summarizes the resilience characteristics of distributed processing systems

discussed in this section. We make the following observations:

• user-level recovery of process hard faults is gaining increasing adoption in MPI

and PGAS, but is absent in the dataflow model.

• limited research is targeting soft faults in parallel programming models.

• non-shrinking recovery is the most adopted method for performance recovery

in SPMD programming models, and global load balancing is the most adopted

method in the actor and dataflow model. Speculative execution is more popular

in big-data systems, such as Hadoop and Spark, than in HPC systems.

32 Background and Related Work

Table 2.1: Distributed processing systems resilience characteristics.

Distributed

System

Adaptability Fault Tolerance Performance

Resource

Allocation

Resource

Mapping

Fault

Type

Fault

Level

Recovery

Level

Fault

Detection

FT

Technique

Performance

Recovery

d=dynamic
f=fixed
f*=fixed (+spare)

i=implicit
e=explicit

h=hard
h*=hard (design only)
s=soft

t=task
p=process

u=user
s=system

hb=heartbeat
ce=comm/err
ex=external
p=prediction
di=data inspect.

c/r=ckpt/restart
rep=replication
mig=migration
tr=task/restart
tx=transaction
ABFT=ABFT

sh=shrinking
nsh=non-shrinking
glb=global load balancing
spec=speculative exec.

MPI

MPI-1 f e ✗ ✗ ✗ ✗ ✗ ✗

MPI-2/3 d e ✗ ✗ ✗ ✗ ✗ ✗

MPICH-V d e h p s hb c/r ✗

FMI f* e h p s ce c/r nsh

rMPI f e h p s ex rep nsh

RedMPI f e s p s di rep ✗

AMPI f e h p s ce, p c/r, mig glb

FT-MPI d e h p u ce ABFT sh/nsh

MPI-ULFM d e h p u hb/ce ABFT sh/nsh

FA-MPI d e h/s t/p u ex tx sh/nsh

PGAS

UPC f e ✗ ✗ ✗ ✗ ✗ ✗

F2008 Coarrays f e ✗ ✗ ✗ ✗ ✗ ✗

F2018 Coarrays f e h p u ce ABFT ✗

GASPI d e h p u ce ABFT sh/nsh

GASPI (C/R) f* e h p s ce c/r nsh

OpenSHMEM d e h p u/s ce ABFT, c/r sh/nsh

APGAS

Chapel f e ✗ ✗ ✗ ✗ ✗ ✗

Chapel (prototype) f e h* p s ce/ex rep ✗

X10 f e h p u ce ABFT ✗

X10-FT d e h* p s hb c/r nsh

Actor

Charm++ f i h p s ce c/r glb

Charm++ ACR f* i h/s p s ce & di c/r & rep glb/nsh

Erlang d e h p u ex ABFT sh/nsh

Akka d i h p u hb ABFT, c/r glb

Orleans d i h p s hb c/r, tx, rep glb

Dataflow Systems

OCR f i/e ✗ ✗ ✗ ✗ ✗ ✗

Legion f i/e h* t/p s ex tr glb, spec

PaRSEC f i/e s t u/s di ABFT, c/r, tr ✗

NABBIT f i s t s di tr glb

Spark d i h p s hb c/r, tr spec

§2.3 Resilience Support in Distributed Programming Models 33

• checkpoint/restart is the most adopted fault tolerance technique. Checkpointing

frameworks that provide online recovery rely on coordinated neighbor-based

in-memory checkpointing. Examples include: FMI, GASPI, and OpenSHMEM.

• to date, PGAS and APGAS parallel programming models have not utilized

transactions for achieving fault tolerance. Recent advances in supporting re-

silient transactions for PGAS-based distributed systems are promising for ad-

dressing this gap [Dragojević et al., 2015; Chen et al., 2016].

• failure detection is typically achieved by receiving communication errors or by

heartbeating.

• there is a high demand for extending GASNet with process-level fault tolerance

due to its wide adoption in many programming models, such as UPC, Legion,

Chapel, and OCR.

We now consider the question: which programming model is more suitable for

supporting multi-resolution resilience in the presence of process-level hard faults?

Multi-resolution resilience is a special type of user-level resilience that gives the

control over optimizing the application’s resilience performance to the programmer.

Handling process-level failures at the application level requires application awareness

of the process’s boundaries, so that the application can identify the lost work when

failures occur. Process-level parallelism is an essential programming abstraction only

in the message-passing, PGAS, and APGAS models1. Therefore, we consider these

models more adequate for supporting multi-resolution resilience than the actor and

dataflow models. The other two factors of multi-resolution resilience are performance

and productivity. Only the APGAS model provides both locality-awareness and fine-

grained parallelism, which are essential features for achieving scalability. Productivity

is also a key objective for APGAS languages, which is achieved by providing a global

address space and general support for task parallelism via high-level constructs.

Therefore, we conclude that the APGAS model is the most suitable model to reconcile

resilience, performance and productivity for multi-resolution resilience.

In this thesis, we study multi-resolution resilience in the context of the X10 lan-

guage for the following reasons. The initial steps taken for supporting resilience in

X10 [Cunningham et al., 2014] make it a promising target for performing a deeper

study on the practicality of the proposed model, in terms of performance and pro-

ductivity. The lack of fault tolerant Remote Direct Memory Access (RDMA) support

in most communication libraries hinders many PGAS languages from supporting

resilience. Fortunately, X10 is not bound to using RDMA operations; its active mes-

sages and data transfers can be implemented entirely using two-sided communication

operations. This allows us to focus on the internals of control flow resilience and data

resilience, rather than the challenges of supporting fault tolerant RDMA operations.

1In other words, giving users control over mapping work units to processes is a necessary feature in
MPI, PGAS and APGAS, but optional in actor and dataflow.

34 Background and Related Work

2.4 The X10 Programming Model

X10 models a parallel computation as a directed-acyclic task graph (task-DAG) that

spans a group of places. A place is an abstraction for an operating system process

that contains a collection of data and tasks operating on these data. The X10 type

x10.lang.Place represents a place, and x10.lang.PlaceGroup represents a collection

of places. The method Place.places() returns a group of all the places currently

available for the computation. The failure of places or the creation of new places

dynamically alters this group, as we will explain in Section 2.4.5.

2.4.1 Task Parallelism

Each task has an affinity to a specific place defined by the user. A task is allowed to

spawn other tasks locally or remotely and to block during execution to wait for the

completion of other tasks. The following three constructs are provided by X10 for

expressing task parallelism.

• The async construct: for spawning a new task.

• The at construct: for specifying task affinity.

• The finish construct: for task synchronization.

An X10 program dynamically generates an arbitrary task DAG by nesting async,

at, and finish constructs. The async construct spawns a new task at the current place

such that the spawning task (the predecessor) and the new task (the successor) can

run in parallel. To spawn an asynchronous task at a remote place p, at is used with

async as follows: at (p) async S. Any values at the spawning place that are accessed

by S are automatically serialized and sent to place p. The finish block is used for

synchronization; it defines a scope of coherent tasks and waits for their termination.

Exceptions thrown from any of the tasks are collected at the finish and wrapped in

a MultipleExceptions object that is thrown after finish terminates. Note that at is a

synchronous construct, which means that at (p) S (without async) does not return

until S completes at place p. An error raised while executing S synchronously is

thrown by at in an Exception object.

2.4.2 The Happens-Before Constraint

The finish and at constructs define synchronization points in the program that force

happens-before constraints between statements at different places.

The use of finish in the following code implies that statement S must happen

before statement E. Any task created transitively by S delays the completion of the

finish statement until after the termination of the task.

1 finish S;

2 E;

§2.4 The X10 Programming Model 35

The use of at in the following code implies that statement S at place q must

happen before statement E at place p. Unlike finish, at does not wait for other

asynchronous tasks spawned by S.

1 //from place p

2 at (q) S;

3 E;

On the other hand, the async construct is used to express possible parallelism

between statements. For example, the use of async in the following code implies that

statement S at place q and statement E at place p can proceed in parallel.

1 //from place p

2 at (q) async S;

3 E;

Figure 2.2 shows a sample X10 program with the corresponding task DAG. The

first finish block F1 tracks two asynchronous tasks a and b. Task b creates the second

finish block F2 which tracks task c and its successor task d. Thanks to F2, tasks c

and d must complete before the message at Line 9 is printed. Similarly, thanks to

F1, the four tasks must complete before the message at Line 12 is printed. These

happens-before relations must always be maintained, even in the presence of failures.

1 finish { /* F1 */

2 at (p1) async { /* a */ }

3 at (p2) async { /* b */

4 finish { /* F2 */

5 at (p3) async { /* c */

6 at (p4) async { /* d */ }

7 }

8 }

9 printf(‘tasks c and d completed’);

10 }

11 }

12 printf(‘tasks a, b, c, and d completed’);

Figure 2.2: A sample X10 program and the corresponding
task graph. A dotted box represents a finish scope.

@p1
@p2

@p3

@p4

F1 @p0

F2 @p2

a b

c

d

2.4.3 Global Data

Each object has a fixed affinity to a specific place and can only be manipulated by tasks

running at the same place. A place can expose global references to its objects to enable

global data access. Two types are available for that purpose: x10.lang.GlobalRef

and x10.lang.PlaceLocalHandle. The first creates a global reference for a single

object. The second creates a global reference for a family of objects, one per place for

a certain place group.

36 Background and Related Work

X10 requires users to explicitly handle data movement, thereby making the cost

of remote access obvious in the program. Depending on the object size and other

possible criteria, a choice can be made between transferring a deep copy of the object

or only sending its global reference to the destination task. A task that holds a global

reference can reach the remote object indirectly by spawning backward tasks at the

object’s home place. The following code is an example for accessing a remote object

of type ResultContainer using a global reference. Dereferencing a global reference

or a place-local handle is done using the operator (), as shown in Line 7. The atomic

statement at Line 6 is used to guard against possible races due to accessing the result

object from concurrent tasks.

1 val result = new ResultContainer();

2 val gr = GlobalRef[Result] (result);

3 at (p) async {

4 val partial = compute_partial_result();

5 at (gr) async {

6 atomic {

7 val _result = gr();

8 _result.merge(partial);

9 }

10 }

11 }

2.4.4 Resilient X10

Resilient X10 is a recent extension to X10 adding support for user-level fault toler-

ance. It focuses on fail-stop process failures, in which a failure of a place results in

immediate loss of its tasks and data and prevents it from communicating with other

places. When such failures occur, tasks and finish objects may be lost, resulting in

disconnecting parts of the computation from the task DAG. A key contribution of the

resilient X10 work is the design of a termination detection protocol that is capable

of repairing the computation DAG after failures. It applies an adoption mechanism

that enables a grandparent finish to adopt its orphaned grandchildren tasks to at-

tach them back to the computation’s DAG. The protocol is designed to adhere to the

following principle, named the Happens-Before Invariance (HBI) principle:

failure of a place must not alter the happens-before relation between state-

ment instances at other places [Cunningham et al., 2014]

Let us examine the HBI principle in the context of Figure 2.2. Assume that place

p2 died after tasks c and d were created. Now tasks c and d are orphaned because

their parent finish F2 is lost. Suppose F1 ignored these tasks and terminated. That

would allow Line 12 to run in parallel with c and d, which breaks the happens-before

relation that the program defined. There are two options to handle tasks c and d to

keep the happens-before relation; either kill them or have their grandparent adopt

them (i.e. force F1 to wait for c and d). Because killing the tasks would leave the

§2.4 The X10 Programming Model 37

heap in an undetermined state, Cunningham et al. [2014] designed their fault-tolerant

termination detection protocol based on adoption.

2.4.5 Elastic X10

Elasticity is the system’s ability to shrink and expand the resources it uses at run-time.

It is an attractive feature for fault tolerance as it enables applications to leverge non-

shrinking recovery. Elasticity support has been added recently to the X10 language

by supporting dynamic place creation. New places can be created externally or

requested in the program by calling System.addPlaces(n) or its synchronous ver-

sion System.addPlacesAndWait(n). Currently, dynamic place creation is only imple-

mented in the Managed X10 runtime. Native X10 programs need to allocate spare

places in advance to use non-shrinking recovery. Bungart and Fohry [2017b] ad-

dressed this limitation by adding elasticity support for native X10 programs running

over MPI-ULFM. However, the implementation is not published yet.

2.4.5.1 The PlaceManager API

The typical method for identifying the group of available places in X10 is by calling

Place.places(). It returns a sorted PlaceGroup indexed by the place id. Changes

in the available places are reflected in Place.places() — failed places are removed,

and dynamically created places are included at the end of the group. For example,

in Figure 2.3, after the failure of place 1, place 5 was added to the end of the group.

The X10 runtime does not reuse the ids of failed places for the new places. Because

a newly added place has neither the same identity nor the same order, reorganizing

the places manually to make them more aligned with the structure used before the

failure might be unavoidable in many applications.

0 1 2 3 4

0 1 2 3 4

Original place

New place

Place.places() =

Place 1 failed

Place.addPlacesAndWait(1) 0 1 2 3 4 5

Place.places() = 0 2 3 4 5

Figure 2.3: Place management with Place.places().

To simplify place management for non-shrinking recovery, the X10 team added

the class PlaceManager to the standard library. A PlaceManager pm splits the avail-

able places into active places and spare places, as presented in Figure 2.4. The

program is expected to distribute its work over the group of active places identified

38 Background and Related Work

by pm.activePlaces(). When an active place fails, the program rebuilds the ac-

tivePlaces group by calling pm.rebuildActivePlaces(). This method replaces each

failed place with a spare place in the same ordinal location. When a spare place is acti-

vated, a new spare place is created asynchronously to replace it, only if the runtime

system supports dynamic place creation. The result of pm.rebuildActivePlaces() is

a ChangeDescription instance that includes the list of addedPlaces() and the list of

removedPlaces(). The program can use this knowledge to initilize the newly added

places as a precondition for resuming the computation.

0 1 2 3 4

Original place

New place

Active places

5 6

Spare places

Spare place

0 2 3 4 5 61

0 2 3 4 6

7

5

Place 1 failed

rebuildActivePlaces()

Initial state

Adds a new place asynchronously

Figure 2.4: Place management with the PlaceManager class.

Note that the three methods Place.places(), pm.rebuildActivePlaces(), and

pm.activePlaces() are all local functions. They are aimed to reflect the state of the

system as viewed by the calling place. Therefore, different results may be returned at

different places depending on when a certain place detects the failure or the addition

of a place. However, in practice, identifying the available places is often required

only by the main task at place-zero that supervises the execution of the program. The

following code shows a typical example for using the PlaceManager API in a resilient

X10 program.

1 def execute(pm:PlaceManager) {

2 var success:Boolean = false;

3 while (!success) {

4 try {

5 val pg = pm.activePlaces();

6 compute_over(pg); /*performs the computation over

7 the given place group*/

8 success = true;

9 } catch (e:DeadPlaceException) {

10 pm.rebuildActivePlaces();

11 }

12 }

13 }

§2.5 Summary 39

2.4.5.2 Place Virtualization

Because the PlaceManager preserves the order of the active places throughout the

execution, the index of a place in the activePlaces group can be used in the program

as a virtual identifier for the place, rather than using the physcial place id. By this

simple coding strategy, minimal changes will be required for adding resilience to the

existing source code. We follow this strategy in the implementation of all resilient

applications presented in the thesis.

2.5 Summary

This chapter presented a taxonomy of resilient programming models and a broad

overview of resilience features in different programming models. It described the

rationale behind the choice of the APGAS model for supporting multi-resolution

resilience and described the details of the X10 programming model. In the following

chapter, we describe how we improved the performance scalability of RX10 using

MPI-ULFM — an efficient fault tolerant implementation of MPI.

40 Background and Related Work

Chapter 3

Improving Resilient X10 Portability

and Scalability Using MPI-ULFM

This chapter describes how we enabled RX10 to scale to thousands of cores in super-

computer environments using MPI-ULFM. It details the matching semantics between

MPI-ULFM and the transport layer of RX10. It also describes the methods used to

deliver global failure detection for resilient finish, and to speed up the performance

of X10’s fault-tolerant collectives. We evaluate our implementation using microbench-

marks that demonstrate the efficiency and scalability advantages that RX10 applica-

tions can achieve by switching from the socket transport to the MPI-ULFM transport.

The experiments focus on failure-free scenarios only. We evaluate the performance of

applications in failure scenarios in Chapter 5.

After the introduction in Section 3.1, we describe how X10 uses MPI in non-

resilient mode in Section 3.2. Then we describe the MPI-ULFM specification in

Section 3.3. After that we explain how we integrated MPI-ULFM with the X10 runtime

system in Section 3.4. We conclude with the performance evaluation in Section 3.5.

This chapter is based on work published in the paper “Resilient X10 over MPI

user level failure mitigation” [Hamouda et al., 2016].

3.1 Introduction

MPI is the standard communication API on supercomputers. Compared to other

communication APIs, such as TCP sockets or Infiniband verbs, MPI is simpler to

use for writing distributed programs. For example, MPI transparently establishes the

connections between processes, assigns a rank for each process, and matches a rank to

its IP address and port on behalf of the programmer. In contrast, a socket API would

require the programmer to manually handle these details. MPI implementations are

portable over different networking hardware, and they often strive to make the best

use of the available hardware capabilities to provide optimized point-to-point and

collective operations. While supercomputers are dominated by high-performance

computing applications following MPI’s SPMD model, cloud environments have

41

42 Improving Resilient X10 Portability and Scalability Using MPI-ULFM

more diverse applications with different networking requirements. Cloud applica-

tions are more likely to use lower-level communication APIs than MPI to directly

establish, monitor, and destroy the connections between processes. TCP socket APIs

are commonly used for inter-process communication on cloud environments. When

a process fails, connections to that process are invalidated and errors are raised at the

other end of the connection. Based on this failure notification capability, fault-tolerant

applications and runtime systems can be built on top of sockets.

X10 can be used for developing high-performance computing applications as well

as cloud-based services. It supports both MPI and TCP sockets for inter-process com-

munication. Figure 3.1 shows the layered architecture of the X10 runtime. The middle

layer, X10 Runtime Transport (X10RT), is an abstract transport layer that delegates

communication requests from the runtime to one of the concrete transport implemen-

tations. The latest version of X10 at the time of writing (v2.6.1) provides three X10RT

implementations: a TCP sockets implementation, an MPI implementation, and an

implementation for the Parallel Active Message Interface (PAMI) — IBM’s proprietary

API for inter-process communication on supercomputers.

The X10 runtime executes the tasks using a pool of worker threads. The commu-

nication activities of the tasks are performed by the same worker threads. To avoid

blocking the worker threads, which may lead to deadlocks, the X10 runtime requires

non-blocking communication support from the underlying transport layer.

X10RT

Abstract runtime transport

X10RT-Sockets X10RT-MPI X10RT-PAMI

X10 Runtime

Task and memory management (local and remote)

Figure 3.1: X10 layered architecture.

The initial development of RX10 was primarily concerned with bringing X10 to

cloud computing environments. Therefore, it only made resilient the portions of the

X10 runtime stack that were appropriate for a cloud computing environment. Thus,

only X10RT-Sockets was modified to survive place failure. X10RT-Sockets opens

Secure Shell (SSH) connections to launch processes at remote nodes — a mechanism

that is often not permitted by supercomputers for security reasons. On the other hand,

the majority of supercomputers permit launching processes using MPI. Because both

MPI and PAMI are not fault-tolerant, RX10 was not portable to supercomputers.

Experimental evaluations ran on small clusters and scaled to only a few hundred X10

places.

At the same time RX10 was being implemented, the MPI FTWG and members

of the Innovative Computing Laboratory at University of Tennessee were actively

developing MPI-ULFM [Bland et al., 2012a,b, 2013], a fault tolerance specification for

MPI. The proposed specification is planned to be part of the upcoming MPI-4 [2018]

§3.2 X10 over MPI 43

standard. The MPI-ULFM team publishes the latest updates about the project on the

fault tolerance research hub (fault-tolerance.org).

A reference implementation of MPI-ULFM is available based on the open source

MPI implementation OpenMPI [2018]. The first release, ULFM-1, was based on an

old version of OpenMPI (v1.7) compatible with the MPI-2 standard, which does

not support non-blocking collectives. ULFM-1 also did not have proper support

for thread safety. ULFM-2 was released in April 2017 based on OpenMPI (v3.0),

compatible with the MPI-3 standard. It provides non-blocking collectives and lightly

tested support for fault tolerance with multiple threads. ULFM-2 is used as a basis

for our experimental analysis in Section 3.5.

The popularity of MPI-ULFM has been increasing, and many researchers started

relying on it for building resilient MPI applications. Pauli et al. [2013] used ULFM

for resilient Monte Carlo simulations. Ali et al. [2014, 2015] implemented exact and

approximate recovery methods for 2D and 3D Partial Differential Equation (PDE)

solvers over ULFM. Laguna et al. [2014] provided a programmability evaluation for

ULFM in the context of a resilient molecular dynamics application.

The development of MPI-ULFM served as a promising opportunity for us to

shift RX10 to supercomputer scale. In the following sections, we detail how we

integrated MPI-ULFM with X10 to provide failure notification and optimized fault-

tolerant collectives at large scales. To the best of our knowledge, our work is the first

to evaluate ULFM in the context of a high-level language.

3.2 X10 over MPI

In this section, we describe how X10 uses MPI with a focus on initializing X10 places,

handling active messages, and handling collective operations.

3.2.1 Initialization

X10 programs can choose between sockets, MPI, or PAMI as a compilation target.

When MPI is chosen, X10 places are launched as normal MPI processes. They start by

initializing the default communicator MPI_COMM_WORLD by calling MPI_INIT_THREAD(..)

and specifying the desired thread support. MPI provides four levels of thread sup-

port:

• MPI_THREAD_SINGLE: for single-threaded MPI processes.

• MPI_THREAD_FUNNELED: for multi-threaded MPI processes, when MPI calls are

done by the main thread only.

• MPI_THREAD_SERIALIZED: for multi-threaded MPI processes, when only one

thread at a time can call MPI.

• MPI_THREAD_MULTIPLE: for multi-threaded MPI processes, when multiple threads

can call MPI concurrently.

44 Improving Resilient X10 Portability and Scalability Using MPI-ULFM

X10 places are multi-threaded, and all the threads can invoke communication

actions. Thus only MPI_THREAD_SERIALIZED and MPI_THREAD_MULTIPLE are feasible

for X10. X10RT-MPI uses MPI_THREAD_MULTIPLE by default, unless the MPI imple-

mentation does not support it or the user explicitly chooses the serialized mode.

Due to lack of stable support for MPI_THREAD_MULTIPLE in current MPI-ULFM imple-

mentations, we changed the default behaviour of X10RT-MPI to use the serialized

threading mode for any MPI-ULFM implementation. After a successful initialization,

the default communicator MPI_COMM_WORLD is used throughout the execution of the

X10 program.

3.2.2 Active Messages

An active message encapsulates a function to be executed at a destination process.

The at construct is used to send active messages in X10. For example, at (q) async S;

sends an active message to execute statement S at place q asynchronously. X10 relies

on X10RT to perform the required communication for exchanging active messages.

at (dst) async S;

x10rt_send_msg (&msg);

err1 = MPI_Isend(&msg, …, &mpi_req);

err3 = MPI_Iprobe (MPI_ANY_SOURCE, …);

err4 = MPI_Irecv (&rcv_msg, …, &mpi_req);

msg_received(&rcv_msg);

push_to_scheduler(S);

err2 = MPI_Test (&mpi_req, &send_done, …);

err5 = MPI_Test (&mpi_req, &recv_done, …);

msg = serialize(S); S = deserialize (&rcv_msg);

X10RT

X10RT-MPI

Runtime

Sender Receiver

x10rt_mpi_send_msg (&msg);

1

2

3

4

5

10

9

8

7

6

11

Figure 3.2: X10 active messages implementation over MPI. Some of the method names shown
in the figure are slightly different from the actual implementation for more clarity. The error
variables colored in red, at steps 5, 6, and 8, mark the points at which MPI-ULFM may notify
process failures, as will be discussed in Section 3.3.2.

Figure 3.2 shows the flow of actions by the X10 runtime and its MPI transport

layer for sending an active message. On invoking at (q) async S;, the active message

S is serialised into a send buffer named msg that is then passed to the abstract method

x10rt_send_msg(&msg) in X10RT. This method invokes the corresponding concrete

implementation x10rt_mpi_send_msg(&msg), which uses MPI to send the buffer msg.

X10 uses non-blocking two-sided communication operations for transferring data

and active messages between places. The sender place invokes MPI_Isend(..) and

passes, among other parameters, the send buffer msg and a handle named mpi_req

that can be used for checking the status of this send request (see Figure 3.2-step 4).

MPI applications can use MPI_Wait(..) to block a process that issued a non-blocking

§3.2 X10 over MPI 45

request until the request completes. However, as mentioned in Section 3.1, blocking

an X10 place may lead to deadlocks. Therefore, X10 uses the alternative non-blocking

method MPI_Test(..) to check the completion status of its send and receive requests

given their handles. Each place maintains a queue of pending requests and peri-

odically checks their completion status. In Figure 3.2, the sender repeatedly calls

MPI_Test(..) in step 5 to check the completion status of the send request issued in

step 4. When the send request completes, X10RT-MPI removes its handle from the

pending requests queue and expects the message to eventually reach its destination.

Each X10 place actively probes for incoming messages from other places by re-

peatedly calling the non-blocking function MPI_Iprobe(..) and passing the wildcard

value MPI_ANY_SOURCE as the source parameter (step 6). When MPI_Iprobe detects the

arrival of a message, X10RT-MPI extracts the message’s metadata including its source

and number of bytes and then invokes the non-blocking request MPI_Irecv(..) to

receive the message (step 7). A handle to this receive request is stored in the pend-

ing requests queue and is periodically checked for completion using MPI_Test(..)

(step 8). When the message is received, X10RT-MPI passes it to the X10 runtime by

calling msg_received(&msg) (step 9). The message is then deserialised to create the

activity S (step 10), which is finally pushed to the work-stealing scheduler of X10 to

eventually execute it (step 11).

It is worth noting that MPI has its own definition of what makes a request com-

plete. A receive request is considered complete after the message is fully received.

However, a send request is considered complete when the application can reuse the

send buffer. If the send buffer is relatively small, MPI may copy it to an internal

buffer and declare the request complete before it starts sending the message. If the

send buffer is beyond MPI’s capacity, MPI will not be able to copy it to an internal

buffer; it will not declare the request complete until after the message is actually sent

to prevent the user from altering the send buffer. In the case of buffering, the source

place may fail after declaring a send request complete but before sending the message.

This possibility is taken into consideration in RX10. The protocols used for tracking

the active messages assume that a message may be lost due to the failure of its source

or its destination. These protocols will be described in details in Chapter 4.

To summarise, X10 implements active messages using non-blocking MPI functions

(MPI_Isend, MPI_Irecv, and MPI_Test). Each place is actively scanning its inbox for

incoming messages from other places using MPI_Iprobe(MPI_ANY_SOURCE,..).

3.2.3 Team Collectives

The APGAS model of X10 is well-suited for bulk-synchronous SPMD programs that

rely on collective operations for synchronization or data sharing. The following text

quoted from [Hamouda et al., 2016] briefly describes how the X10 team implemented

collective operations in X10. It refers to two types of MPI collective functions: blocking

and non-blocking. A blocking collective function blocks the calling thread until

the collective operation completes. A non-blocking collective function returns after

initiating the collective operation without waiting for the operation to complete.

46 Improving Resilient X10 Portability and Scalability Using MPI-ULFM

X10 contains a collective API similar to MPI, located in x10.util.Team,

offering collective operations such as barrier, broadcast, all-to-all, etc. Team

attempts to make use of any collective capabilities available in the underly-

ing transport. For transports that provide native collectives, Team maps its

operations to the transport collective implementations. For transports that

do not provide collectives, such as TCP/IP sockets, Team provides emulated

collective implementations. An interesting combination arises when the un-

derlying transport supports some, but not all, of the functionality needed

by X10. The X10 thread model requires non-blocking operations from the

network transport, because there may be runnable tasks in the thread’s

work queue, and a blocking network call will prevent that runnable work

from completing, leading to possible deadlock. MPI-3 offers non-blocking

collectives, but other than barrier these are optional, and MPI-2 only sup-

ports blocking collectives. For best performance we still want to make use

of these, so our implementation calls an emulated barrier immediately

before issuing the blocking collective. This allows us to line up all places

so that when they reach the blocking operation, they are all in a position

to pass through the collective immediately. [Hamouda et al., 2016]

Figure 3.3 shows an example program using Team for a reduction operation and

the three different Team implementations: emulated, native blocking and native non-

blocking.

val team = new Team(Place.places());

for (p in Place.places()) at (p) async {

val src = new Rail[Int](SIZE, (i:Long)=> i as Int);

val dst = new Rail[Int](SIZE);

team.allreduce(src, 0, dst, 0, SIZE, Team.ADD);

}

1

2

3

4

5

6

X10RT has

native

collectives?

team.emu_allreduce(..); X10RT has

non-blocking

collectives?

X10RT.allreduce(..); team.emu_barrier(..);

X10RT.allreduce(..);

No

YesNo

Yes

Figure 3.3: Team API implementation options.

§3.2 X10 over MPI 47

3.2.3.1 The Emulated Implementation

The emulated Team implementation organizes the places in a binary tree that facili-

tates recursive communication between the nodes in a unidirectional way (e.g. for

broadcast and gather) or a bidirectional way (e.g. for barrier and allreduce). The

collective starts by blocking the parent places in a busy waiting loop until they re-

ceive upward notifications from their children, as shown in Line 2 of the pseudocode

below. When a parent receives notifications from its children, it switches to the child

role and passes the notification to its own parent. A child place notifies its parent

by creating a finish that governs a remote asynchronous task at the parent place

(Line 4), which serves two purposes. First, it notifies the parent that the child has

entered the collective (Line 5), which implies that the places in the child’s sub-tree

have also entered the collective. Second, it blocks the child until the upper part of the

tree enters the collectives (Line 6). The completion of the finish returns control back

to the child indicating the completion of the upward notification phase. At this point,

the child switches to the parent role and releases its own children who are blocked

locally in Line 6 waiting for the downward notification. If the collective requires data

to be transferred, these may be piggybacked on the notification messages.

1 /*as a parent:*/

2 wait_for_upward_notification();

3 /*as a child:*/

4 finish at (parent) async {

5 deliver_upward_notification();

6 wait_for_downward_notification();

7 }

8 /*as a parent:*/

9 deliver_downward_notification();

3.2.3.2 The Native Implementation

When Team is used in native mode, it implements the collective interfaces by delegat-

ing to the underlying MPI implementation. Team surrounds each call to a native MPI

collective with a local finish that serves one purpose — ensuring the completion

of the native collective that may be non-blocking. It emulates the execution of the

MPI collective as if it is done by an async statement. It does so by first calling a

runtime function that increments the number of finish tasks, then calling the X10RT-

MPI function that invokes the MPI collective. X10RT-MPI receives a reference to the

surrounding finish and uses it to notify the termination of the emulated async state-

ment after the MPI collective completes. A notification of a blocking MPI collective is

sent immediately after the blocking call returns. On the other hand, a non-blocking

collective is notified only after MPI_Test reports its completion, in the same way

active messages are checked for completion (see Section 3.2.2). The same mechanism

is applied with the PAMI transport.

48 Improving Resilient X10 Portability and Scalability Using MPI-ULFM

3.3 MPI-ULFM Overview

As high performance computing applications run longer on larger numbers of cores,

they are more likely to experience process failures. If HPC programmers do not

prepare their applications to deal with process failures, much time and energy will

be wasted on supercomputers due to restarting failed computations. MPI-ULFM

addresses this problem by extending MPI with fault tolerance features that enable

programmers to design a variety of failure recovery mechanisms. It focuses on fail-

stop failures in which a process impacted by a hardware or a software fault crashes

or stops communicating.

The following paragraph quoted from the the ULFM specification document [MPI-

ULFM, 2018] describes its main design principles at a high level:

The expected behaviour of MPI in the case of an MPI process failure is

defined by the following statements: any MPI operation that involves a

failed process must not block indefinitely but either succeed or raise an

MPI error . . . ; an MPI operation that does not involve a failed process

will complete normally, unless interrupted by the user through provided

functionality. Errors indicate only the local impact of the failure on an

operation and make no guarantee that other processes have also been

notified of the same failure. Asynchronous failure propagation is not

guaranteed or required, and users must exercise caution when determin-

ing the set of processes where a failure has been detected and raised an

error. If an application needs global knowledge of failures, it can use the

interfaces defined in Section . . . to explicitly propagate the notification of

locally detected failures. [MPI-ULFM, 2018]

In this section we describe ULFM’s features in more detail, focusing on the aspects

most relevant to a task-based runtime system like X10. Because X10 does not use

MPI’s RDMA operations, we do not cover those operations in this thesis.

3.3.1 Fault-Tolerant Communicators

A communicator in MPI represents a group of processes that are allowed to com-

municate with each other. The main communicator MPI_COMM_WORLD includes all the

created processes at application start-up. By default, MPI communicators are not

fault-tolerant. When the first error arises, whether it is a memory error, a commu-

nication error or otherwise, the runtime system immediately halts. That is because

all MPI communicators use MPI_ERRORS_ARE_FATAL as a default error handler. MPI

provides a second error handler called MPI_ERRORS_RETURN which, instead of halting

the runtime system, reports the error to the calling process. However, for this error

handler to be useful for recovering from process failures, the behaviour of the runtime

system after a process failure must be specified.

ULFM closes the failure specification gap in MPI so that communicator error

handlers start to have a practical value for fault tolerance. By assigning an error

§3.3 MPI-ULFM Overview 49

handler to the communicator, ULFM can reliably report process failure errors to

active processes and permit them to continue communicating according to precisely

defined rules. The following three error classes are added in ULFM for reporting

process failures:

• MPI_ERR_PROC_FAILED_PENDING: for non-blocking receive operations where the

source process is MPI_ANY_SOURCE, this error indicates that no matching send is

detected yet, but one potential sender has failed.

• MPI_ERR_PROC_FAILED: for all communication operations, this error indicates

that a process involved in the communication request has failed.

• MPI_ERR_REVOKED: for all communication operations, this error indicates that

the communicator has been invalidated by the application.

3.3.2 Failure Notification

ULFM specifies the conditions that lead to notifying a process of the failure of another

process. Processes that may be notified of a failure are those communicating with

a dead process directly (through point-to-point operations) or indirectly (through

collectives). When a failure is detected by one process, it is not propagated by

default to other processes. Unless propagating the notification is requested explicitly

by one process, failure knowledge remains local and may differ between processes.

The following are the main rules governing failure notification for non-blocking

operations, collectives, and the use of MPI_ANY_SOURCE.

When non-blocking communication is used, failure notification is deferred from

the initiation functions, such as MPI_Isend or MPI_Iallreduce, to the completion

functions MPI_Test and MPI_Wait. For example, in Figure 3.2, we marked the return

values that can notify failures in red color. If the source place is dead, ULFM will

not notify X10 with that failure in step 7 where MPI_Irecv is called. However, it will

notify it in step 8 when MPI_Test is called.

ULFM provides non-uniform failure reporting for the collective operations [Bland

et al., 2013]. Depending on the collective implementation, when a process dies, some

processes may report the collective as successful, while others may report it as failed.

The wildcard value MPI_ANY_SOURCE is useful for detecting failures of any process

in a communicator. When invoking a receive or a probe operation from MPI_ANY_SOURCE,

an error is raised when MPI detects the failure of any potential sender.

3.3.3 Failure Mitigation

The user-level resilience model of MPI-ULFM provides great flexibility for applica-

tion recovery. Rather than transparently recovering applications by a single fault

tolerance mechanism, ULFM provides a few failure mitigation functions that can be

integrated in different ways to implement different recovery mechanisms. We show

these functions in Table 3.1.

50 Improving Resilient X10 Portability and Scalability Using MPI-ULFM

Table 3.1: MPI-ULFM failure mitigation functions.

Operation Type Description

1 MPI COMM FAILURE ACK(comm) local
acknowledges the notified

failures

2 MPI COMM FAILURE GET ACKED(comm, grp) local
returns the group of

acknowledged failed processes

3 MPI COMM REVOKE(comm) remote invalidates the communicator

4 MPI COMM SHRINK(comm,newcomm) collective

creates a new communicator by

excluding dead processes

from the original communicator

5 MPI COMM AGREE(comm,flag) collective
provides a fault-tolerant

agreement algorithm

When a process is notified of a failure, ULFM expects that some applications

might need to silence repeated notifications of the same failure. The first func-

tion MPI_COMM_FAILURE_ACK is added for that purpose. It enables a user to ac-

knowledge the failures notified by a communicator so far. After acknowledging

a failure, receive operations that use MPI_ANY_SOURCE and the new collective opera-

tions MPI_COMM_SHRINK and MPI_COMM_AGREE will proceed successfully even if they

involve the failed process. The second function MPI_COMM_FAILURE_GET_ACKED is

used for identifying the failed processes that were acknowledged. Figure 3.4 shows

a graphical example on these two functions. In this example, two ranks have failed,

rank 1 followed by rank 3. The failure of rank 1 was acknowledged by calling

MPI_COMM_FAILURE_ACK, but the failure of rank 3 was not acknowledged. As a result,

a call to MPI_COMM_FAILURE_GET_ACKED following the failure of rank 3 returns only

rank 1.

Failures Acknowledged Failures

{} {}

Rank 1 fails {1} {}

MPI_COMM_FAILURE_ACK {1} {1}

Rank 3 fails {1,3} {1}

MPI_COMM_FAILURE_GET_ACKED = {1}

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

Figure 3.4: Use of MPI COMM FAILURE ACK and MPI COMM FAILURE GET ACKED
for failure detection and acknowledgement.

§3.3 MPI-ULFM Overview 51

The third function MPI_COMM_REVOKE is added for explicit global failure propaga-

tion. ULFM does not implicitly propagate failure notifications to all processes in a

communicator. Thus, processes that do not communicate with the failed process will

not detect its failure as long as the communicator is valid. If failure propagation is

needed, an application may call MPI_COMM_REVOKE to invalidate the communicator.

After one process revokes a communicator, all processes sharing the same commu-

nicator will receive MPI_ERR_REVOKED when they call any non-local MPI operation,

except MPI_COMM_SHRINK and MPI_COMM_AGREE. These processes must recover the

communicator to resume execution.

Communicator recovery strategies are generally classified as shrinking or non-

shrinking (see Section 2.2.3.1 for the description of these classes). In shrinking re-

covery, a new communicator is created by excluding the dead processes in a given

communicator. The fourth function MPI_COMM_SHRINK is added for that purpose.

Non-shrinking recovery requires replacing dead processes with new ones, so that

the application can restore its state using the same number of processes. The MPI-3

standard, on which MPI-ULFM is based, supports dynamic process creation using

MPI_COMM_SPAWN. Thus by combining MPI_COMM_SHRINK and MPI_COMM_SPAWN, MPI

applications can implement non-shrinking recovery methods [Ali et al., 2014].

Figure 3.5 demonstrates the use of MPI_COMM_REVOKE and MPI_COMM_SHRINK for

performing shrinking recovery. This example presents a 6-rank communicator, where

each rank is communicating with only one other rank. When rank 1 failed, only

rank 0 can detect the failure. However, rank 0 cannot shrink the communicator

alone; the collective function MPI_COMM_SHRINK requires the participation of every

non-failed rank in the communicator. By calling MPI_COMM_REVOKE, rank 0 invalidates

the communicator, not only for itself but for all the other ranks. In this example, each

rank handles an invalid communicator by calling MPI_COMM_SHRINK. This results in

creating a 5-rank communicator for resuming the application.

A 6-rank communicator

Rank 1 fails

Rank 0 gets a process error

Rank 0 calls MPI_COMM_REVOKE

Active ranks get revoke errors

Active ranks collectively call MPI_COMM_SHRINK

A new 5-rank communicator

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4

Figure 3.5: Use of MPI COMM REVOKE and MPI COMM SHRINK to perform shrinking
recovery. Here we assume that communication is performed between pairs of processes.

52 Improving Resilient X10 Portability and Scalability Using MPI-ULFM

The fifth and last function MPI_COMM_AGREE(comm,flag) provides a fault-tolerant

agreement algorithm. It is a collective operation that results in having all the active

processes agreeing on the value of the integer in/out parameter flag and also implic-

itly agreeing on the group of failed processes. The agreed value is the bitwise-and of

the values provided by all active processes. While normal collectives may succeed at

some processes and fail at others, ULFM guarantees that MPI_COMM_AGREE will either

complete successfully at all the processes or fail at all the processes.

This concludes our overview of the MPI-ULFM specification. We find MPI-ULFM

promising for bridging the gap between performance and resilience. By providing

user-controlled resilience in a performance-oriented programming model, many opti-

mizations can be leveraged for handling failures more efficiently at scale.

3.4 Resilient X10 over MPI-ULFM

MPI-ULFM provides a flexible framework for HPC users to learn and apply different

fault tolerance concepts in their applications. However, the low-level programming

model of MPI increases the programming cost for achieving that goal. Arguably,

MPI-ULFM can play a more effective role in making fault tolerant programming more

accessible to users by being a compilation target for resilient high-level languages. In

this section, we demonstrate this approach in the context of the X10 language.

3.4.1 Resilient X10 Transport Requirements

The minimalist approach to resilience adopted by X10 reduces the resilience require-

ments needed from the underlying transport runtime. In fact, RX10 requires only

two mandatory features from X10RT to enable applications to recover from failures

correctly:

1. allowing non-failed processes to communicate.

2. allowing a place to eventually detect the failure of any other place even without

direct communication with the failed place. In other words, RX10 requires global

failure detection. This requirement is primarily needed to enable the finish

construct to detect the failure of directly and indirectly generated remote tasks

within its scope.

Other transport features that are desired but not mandatory are:

3. providing fault-tolerant collectives to speed up Team operations.

4. supporting dynamic process creation for non-shrinking recovery.

From the previous section, we conclude that MPI-ULFM provides all the manda-

tory and desired features needed by RX10. It also provides an additional feature,

fault-tolerant agreement, that resilient applications can leverage for failure recovery.

§3.4 Resilient X10 over MPI-ULFM 53

3.4.2 Global Failure Detection

One way to provide global failure detection with ULFM is by revoking the communi-

cator. However, this method is expensive since it requires, in addition to the cost of

propagating the failure to other places, the cost of collectively reconstructing a new

communicator with every failure.

The other option that is directly applicable to X10 is using MPI_ANY_SOURCE. Ac-

cording to ULFM’s semantics, an operation that uses MPI_ANY_SOURCE will raise an

error when MPI detects the failure of any potential sender (unless the failure has been

acknowledged). Each X10 place is actively probing the network for incoming mes-

sages from any other place by calling MPI_Iprobe (MPI_ANY_SOURCE, ..), as shown

in Figure 3.2. As a result, each X10 place will eventually be notified of the failure of

any other place. This feature enabled us to avoid repairing the communicator with

every failure, while meeting the requirement of providing global failure detection to

RX10.

3.4.3 Identifying Dead Places

In resilient mode, X10RT is expected to detect communication errors and to use them

to identify dead places. The design of RX10 requires each resilient implementation

of X10RT to implement the following two interfaces that the runtime uses to discover

the detected failures:

• int x10rt_ndead (): returns the number of dead places.

• bool x10rt_is_place_dead (int p): checks whether a place is dead.

Listing 3.1: MPI error handler for Resilient X10.

1 //global state

2 int ndead = 0; //number of dead places

3 int* dead_places; //array of dead places ranks

4
5 void mpiCustomErrorHandler(MPI_Comm* comm, int *errorCode, ...) {

6 MPI_Group f_group; int f_size;

7
8 //Acknowledge & query failed processes

9 MPI_Comm_failure_ack(*comm);

10 MPI_Comm_failure_get_acked(*comm, &f_group);

11 MPI_Group_size(f_group, &f_size);

12 int* f_ranks = malloc(...);

13 MPI_Group_translate_ranks(f_group,... ,f_ranks);

14
15 //Update global state

16 dead_places = f_ranks;

17 ndead = f_size;

18 }

54 Improving Resilient X10 Portability and Scalability Using MPI-ULFM

To detect dead places, we registered the error handler in Listing 3.1 to the default

communicator MPI_COMM_WORLD. The error handler uses local ULFM operations to

acknowledge and query the list of dead places (Lines 9–13). This list is stored in the

transport’s global state (Lines 16–17) which is used for implementing the two query

functions listed above. Different places can have different knowledge about the status

of other places which is permitted in RX10. X10RT-MPI serializes calls to MPI via a

lock which results in executing the error handler atomically (see Section 3.2.1).

3.4.4 Native Team Collectives

When using MPI for communication, each Team is mapped to a sub-communicator

of MPI_COMM_WORLD that is used for calling MPI collective operations only. Providing

fault-tolerant Team operations on top of MPI-ULFM mainly impacted the process of

Team creation and failure notification.

3.4.4.1 Team Construction

The interfaces for creating an X10 Team and creating an MPI communicator have

a major difference. Team creation is exposed as a centralized single-place function,

whereas communicator creation in MPI is a collective function. When X10 uses MPI,

the constructor of the Team class implicitly sends MPI messages to all the places to

trigger the collective invocation of MPI_COMM_CREATE. This function is used to create a

sub-communicator for the new Team from the parent communicator MPI_COMM_WORLD.

The root place constructing the Team waits for an acknowledgement message from

each place to detect the success or failure of communicator construction. A failure at

any place results in throwing an exception to the application.

According to the ULFM specification, if some of the communicator processes

failed, collectives over that communicator may fail at some of the participating pro-

cesses and succeed at others. As a result, if one X10 place failed, MPI_COMM_WORLD

would not be useful for constructing any new Team because MPI_COMM_CREATE would

never fully succeed over MPI_COMM_WORLD. Repairing MPI_COMM_WORLD by revoking

and shrinking it after every failure would solve this problem, but at unacceptable

performance cost for applications that do not use Team.

We solve this problem by performing a communicator repair step every time

a new Team is constructed. While this increases the cost of creating a Team, this

cost is negligible as X10 programs often create one Team object throughout their

execution. The solution is as follows: we use MPI_COMM_SHRINK to create a new

temporary communicator that excludes any dead process in MPI_COMM_WORLD. The

temporary communicator is then used to create the Team’s communicator, as shown

in the following code:

1 MPI_Comm team_comm, shrunken;

2 MPI_COMM_SHRINK(MPI_COMM_WORLD, &shrunken);

3 MPI_COMM_CREATE(shrunken, group, &team_comm);

§3.4 Resilient X10 over MPI-ULFM 55

One vulnerability that the code above does not handle is the failure of a process

in the shrunken communicator between executing Line 2 and Line 3. This failure

may still cause MPI_COMM_CREATE to succeed at some processes, but fail at others.

Calling ULFM’s MPI_COMM_AGREE function can be useful to decide whether or not all

processes succeeded in creating the communicator. However, we did not need this

agreement call thanks to the centralized nature of Team creation in X10. The root

place will notify the failure of Team creation if any of the places failed in completing

the above code snippet.

Note that the most recent release of X10 at the time of writing, X10 2.6.1, follows

the construction of the communicator with an internal fan-out finish that notifies

each place with its order among the Team places. This step results in additional

cost in resilient mode for tracking the termination of this fan-out finish resiliently.

Sharing the place’s order in the Team can be done more efficiently by piggybacking

this information in the same X10RT-MPI messages that orchestrate Team creation or

by adding the list of Team members as one of the object identifiers. For simplicity, we

implemented the latter method in our X10 repository. In X10 2.6.1, passing a Team

object to another place results in passing a small message containing the Team ID

only, whereas in our implementation passing a Team object results in passing a bigger

message containing the Team ID and an array of N values of type Long representing

the list of places. By knowing the list of places, a place can calculate its order in the

Team without additional communication. By avoiding the broadcast messages at the

time of Team creation, we also avoid the overhead of the resilient finish protocol and

make the performance of Team creation virtually equal in both X10 and RX10.

3.4.4.2 Team Failure Notification

As described in Section 3.2.3.2, Team surrounds each call to a native MPI or PAMI

collective with a local finish that waits for the completion of the underlying native

collective. We leveraged the finish construct’s failure notification support to allow

Team operations to notify process failure errors. When the native MPI collective failure

raises a process failure error, we add a DeadPlaceException to the finish block before

notifying the completion of the collective. Finish at the places experiencing the failure

will throw this exception to the calling task. Other places may complete successfully.

If successful places call another collective operation, this collective call will hang

because the places that detected the failure may not participate in it. To avoid this

problem, we revoke the Team’s communicator upon detecting a collective failure at

any place so that future Team operations fail at all participating places.

Emulated Team collectives employ a simple error propagation mechanism to avoid

deadlocks due to non-uniform error reporting. A place that detects a failure of its

parent invalidates itself and sends asynchronous messages to invalidate its grandpar-

ent, its children, and grandchildren. The invalidation messages propagate to the top

and bottom of the collective tree until all members are notified that the Team object is

no longer valid.

56 Improving Resilient X10 Portability and Scalability Using MPI-ULFM

3.4.4.3 Team Agreement

Reaching agreement between processes as they switch between phases is often re-

quired in SPMD applications. Agreement algorithms are also useful for failure recov-

ery, as they enable surviving distributed processes to agree on the state of the system

after unexpected failures [Herault et al., 2015]. X10 and ULFM provide different

methods for facilitating agreement.

The finish construct in X10 can be used as a centralized agreement coordinator

as shown in Listing 3.2. Running multiple phases requires creating a fan-out finish,

i.e. a finish that forks a remote task at each place, for each phase. Finish super-

vises the execution of one phase and reports any detected place failures. All places

pass their results to the finish home place in which agreement can be decided by

comparing the results. Unfortunately, performing phase agreement using a fan-out

finish causes high performance overhead for resilient applications because tracking

the creation and termination of remote tasks comes with additional communication

cost in resilient mode. We explain and quantify the resilience overhead of a fan-out

finish in Section 4.11 in the next chapter.

Listing 3.2: Centralized agreement between three phases using finish (failure han-

dling is not shown for simplicity). We assume having a PhaseResult class with two

methods: addResult which reports the phase result of one place and agree which

decides if the results of all places are the same then deletes the results.

1 //gr used for collecting the results of all places at each phase

2 val gr = GlobalRef[PhaseResult](new PhaseResult());

3 finish for (p in places) at (p) async {

4 val a = phase1();

5 //send the result to the home place

6 at (gr) async gr().addResult(a);

7 }

8 if (gr().agree()) {

9 print("phase 1 agreement reached");

10 finish for (p in places) at (p) async {

11 val b = phase2();

12 at (gr) async gr().addResult(b);

13 }

14 if (gr().agree()) {

15 print("phase 2 agreement reached");

16 finish for (p in places) at (p) async {

17 val c = phase3();

18 at (gr) async gr().addResult(c);

19 }

20 if (gr().agree()) {

21 print("phase 3 agreement reached");

22 }

23 }

24 }

§3.4 Resilient X10 over MPI-ULFM 57

On the other hand, ULFM supports distributed agreement using the collective

function MPI_COMM_AGREE. Coordinating three phases of execution, such that agreeing

on the state of the previous phase is established before starting the next phase, can

be done using one fan-out finish with longer-lived tasks as shown in Listing 3.3.

By avoiding the unnecessary creation of new remote tasks at each phase, resilient

applications can execute more efficiently. To enable X10 programmers to exploit

distributed agreement in their applications, we added the function Team.agree(int)

which directly maps to MPI_COMM_AGREE. The integer parameter can represent a phase

result, the number of dead places known to a place, or whatever value all places need

to agree on. If one place failed, Team.agree(int) would fail at all Team members —

a feature that is not guaranteed in any other collective function. In Section 5.3.2.2, we

show how we used this function to reduce the checkpointing overhead of the iterative

application framework.

Listing 3.3: Distributed agreement between three phases (failure handling is not

shown for simplicity).

1 val team = new Team(places);

2 finish for (p in places) at (p) async {

3 val a = phase1();

4 if (a == team.agree(a)) {

5 print("phase 1 agreement reached");

6 val b = phase2();

7 if (b == team.agree(b)) {

8 print("phase 2 agreement reached");

9 val c = phase3();

10 if (c == team.agree(c)) {

11 print("phase 3 agreement reached");

12 }

13 }

14 }

15 }

3.4.5 Non-Shrinking Recovery

Our implementation did not use the feature of dynamically creating MPI processes

to replace dead places with new ones. However, resilient X10 applications can still

perform non-shrinking recovery by pre-allocating spare processes at application start

time. Bungart and Fohry [2017a] extended our implementation by supporting dy-

namic process creation over MPI-ULFM. However, their implementation is not pub-

licly available yet.

58 Improving Resilient X10 Portability and Scalability Using MPI-ULFM

3.5 Performance Evaluation

The objective of this section is to demonstrate the efficiency and scalability advantages

that resilient X10 applications can achieve by switching from the socket transport

to the MPI-ULFM transport. We give more focus on the performance of the Team

APIs because collective communication is a key mechanism in the widely used bulk-

synchronous model. Team also gives us the flexibility to exercise both MPI’s point-to-

point interfaces as well as its collective interfaces through the emulated and native

Team implementations, respectively.

The following experiments aim to answer the following questions:

1. What is the failure-free resilience overhead of MPI-ULFM?

2. What is the performance advantage of using MPI-ULFM as a transport layer for

RX10 applications as opposed to using the sockets transport layer?

3. What is the performance advantage of replacing the emulated collectives with

native MPI collectives for RX10 applications?

3.5.1 Experimental Setup

We conducted the following experiments on the Raijin supercomputer at NCI, the

Australian National Computing Infrastructure, and on on a cluster of 30 virtual

machines from the Australian NECTAR research cloud. Each of the virtual machines

has 12 virtual cores, providing a total of 360 virtual cores for our experiments.

Each compute node in Raijin has a dual 8-core Intel Xeon (Sandy Bridge 2.6 GHz)

processors and connects to the other nodes using an Infiniband FDR network. We

configured our jobs to allocate 10 GiB of memory per node. Our NECTAR virtual ma-

chines are hosted at the NCI zone and were installed using the ‘m2.xlarge’ template,

which allocates 45 GiB of memory and 12 virtual cores for each virtual machine.

Our MPI jobs on both platforms statically bound each process to a separate core.

Our X10 jobs allocate one place per core and oversubscribe each core with two internal

place threads: a worker thread1 for handling user tasks and an immediate thread2 for

handling low-level runtime communication. Although an X10 place can be mapped

to an entire node, the microbenchmarks used in this chapter create one task per place.

Therefore, using one core per place is sufficient.

The reference implementation of MPI-ULFM used across the whole thesis is

ULFM-2. When we mention ULFM without any version number, we refer to the

ULFM-2 implementation. ULFM was built from revision e87f595 of the master

branch of the repository at https://bitbucket.org/icldistcomp/ulfm2.git.

The X10 compiler and runtime were built from source revision 36ca628 of the

optimistic branch of our repository https://github.com/shamouda/x10.git,

which is based on release 2.6.1 of the X10 language.

1One worker thread is configured by setting the environment variable X10 NTHREADS=1
2One immediate thread is configured by setting the environment variable X10 NUM IMMEDIATE

THREADS=1

§3.5 Performance Evaluation 59

Each of the experiments below was conducted 30 times. The tables report the

median value in black color, and the 25th and 75th percentiles within brackets in gray

color.

3.5.2 Performance Factors

In order to better understand the performance results in this section, we explain two

important factors that impact the performance of our experiments.

3.5.2.1 The Immediate Thread

The X10 language provides the @Immediate annotation to give higher priority to

certain async statements. An immediate async is expected to execute small non-

blocking tasks, mostly used for low-level runtime communications. A special thread,

called the immediate thread, is created by the scheduler to continuously probe for

incoming immediate tasks and to execute them in order. While an immediate thread

is limited to executing immediate tasks only, a worker thread can execute normal and

immediate tasks.

X10RT-Sockets implements the immediate thread more efficiently than X10RT-

MPI. X10RT-Sockets suspends the immediate thread until an immediate task is received

using the blocking poll() interface from the pthreads library. On the other hand,

X10RT-MPI uses a busy waiting loop for the immediate thread to continuously scan the

network for incoming immediate tasks. Although MPI provides a blocking MPI_PROBE

interface, this interface is not safe for X10 to use with the MPI_THREAD_SERIALIZED

mode. This mode serializes the communication calls from the different threads, thus

blocking one thread will prevent others from progressing. Unfortunately, this busy

waiting behaviour may slow down the progress of the worker threads, especially

when the immediate thread competes with the worker threads over the same core.

Starting the X10 places without any immediate thread over MPI is mostly safe for

non-resilient executions. However, the absence of the immediate thread can cause

the resilient executions to deadlock because RX10 makes extensive use of immediate

tasks for the resilient finish protocol. For fair comparison between X10 and RX10,

we start all X10 places with one worker thread and one immediate thread.

3.5.2.2 Emulated Team versus Native Team

As described in Section 3.2.3 and Section 3.4.4, the Team class is designed to use

the collective interfaces provided by the underlying transport layer. For transport

layers that don’t provide collective interfaces, Team provides emulated collectives.

The emulated collectives exchange active messages between the X10 places — using

finish, at, and async — to achieve their intended goal. On the other hand, the native

collectives delegate their functions to the MPI layer, thereby avoiding the need for

sending or tracking active messages by the X10 runtime. We expect this difference to

be influential in RX10, because tracking the remote active messages with a resilient

finish requires additional control messages compared to a non-resilient finish,

60 Improving Resilient X10 Portability and Scalability Using MPI-ULFM

which is the main cause for the resilience overhead in X10. Therefore, it is expected

that the emulated collectives will be sensitive to the resilience overhead of finish,

while the native collectives won’t. The native collectives are, however, expected to be

sensitive to the resilience overhead of ULFM.

3.5.3 MPI-ULFM Failure-Free Resilience Overhead

Fault tolerance may be expected to come at a performance cost. When we use ULFM

as a transport layer for X10, any resilience overhead imposed by ULFM will be

inherited by all X10 applications. To study the resilience overhead of ULFM, we

compared its performance to 1) ULFM without fault tolerance and to 2) Open MPI

v3.0.0. ULFM without fault tolerance is built from the ULFM source code using the

configuration option --without-ft. This option disables the code paths related

to fault tolerance in ULFM and therefore compiles an almost standard Open MPI

implementation. Open MPI v3.0.0 (OMPI for short) is a standard release of Open MPI

that does not provide any fault tolerance support. We choose this version because

its release date is the closest to the ULFM revision that we used. Table 3.2 shows

the performance of three Team operations, barrier, broadcast, and allreduce, over 360

places running on Raijin.

Team collectives are used as microbenchmarks since they can be configured to

activate either MPI collectives or MPI point-to-point communications. MPI point-to-

point communications can be activated by forcing Team to use the emulated collectives

despite the availability of native collectives, by setting the environment variable

X10RT X10 FORCE COLLECTIVES=1.

Since we are concerned with the communication overhead rather than the mem-

ory management overhead, we use a small array of 2048 doubles in the broadcast

and allreduce collectives. The array size (16384 bytes) exceeds MPI’s eager limit

(12288 bytes) on both Raijin and NECTAR platforms, therefore sending messages is

performed using the rendezvous protocol rather than the eager protocol on both

systems [Squyres, 2011].

The first three rows in Table 3.2 show the performance of the three collectives in

pure MPI benchmarking programs. The programs invoke the non-blocking collectives:

MPI_Ibarrier, MPI_Ibcast, and MPI_Iallreduce followed by a busy waiting loop

that checks the completion of the collective call using MPI_Test. That is, in principle,

the same mechanism applied by X10RT-MPI for executing Team collectives natively.

The bare MPI performance of each of the collectives is indifferentiable with ULFM

and ULFM without fault tolerance, indicating the absence of a measurable resilience

overhead by ULFM in failure-free collective executions. OMPI’s barrier performance

is comparable to the ULFM implementations; however, its bcast and allreduce per-

formance is slower. This could result from unavoidable implementation differences

between the source code of OMPI and ULFM due to their independent parallel de-

velopment. The variability of the results, as shown in the side brackets, is reasonable

using the three MPI implementations directly.

§3.5 Performance Evaluation 61

Table 3.2: Performance of Team collectives with different MPI implementations on Raijin with
360 places.

Runtime Transport Team Impl. barrier bcast allreduce

Pure MPI

OMPI - 0.1 ms [00.1
00.1] 0.6 ms [00.8

00.5] 2.8 ms [02.9
02.8]

ULFM without FT - 0.1 ms [00.2
00.1] 0.1 ms [00.1

00.1] 0.4 ms [00.4
00.4]

ULFM - 0.1 ms [00.2
00.1] 0.1 ms [00.2

00.1] 0.4 ms [00.4
00.4]

X10

OMPI Native 5.6 ms [15.2
01.6] 0.6 ms [00.7

00.6] 3.0 ms [03.0
02.9]

ULFM without FT Native 8.2 ms [16.3
00.7] 0.1 ms [00.1

00.1] 6.7 ms [16.0
01.2]

ULFM Native 7.6 ms [14.8
02.4] 9.6 ms [12.4

05.2] 9.1 ms [14.7
03.4]

OMPI Emulated 81.5 ms [87.5
77.3] 89.6 ms [99.5

81.5] 80.5 ms [89.1
78.7]

ULFM without FT Emulated 76.0 ms [82.9
70.1] 83.2 ms [92.9

78.4] 85.8 ms [88.8
80.0]

ULFM Emulated 80.0 ms [86.2
75.5] 89.6 ms [99.3

79.9] 84.3 ms [87.9
77.8]

The second part of the table shows the performance of the Team collectives us-

ing the X10 runtime over the three MPI implementations. Comparing the bare MPI

performance to the performance of X10 Team collectives in native mode shows high

performance overhead and variability introduced by the X10 runtime. The overhead

ranges between 0% to 12826% considering the three MPI implementations. It is ex-

pected for managed runtime systems like X10 to pay additional performance cost to

raise the level of programming abstraction. Our experiment shows that the manage-

ment activities of X10, which include task scheduling, garbage collection, handling

termination detection, data serialization, and progressing immediate tasks, adds up

to 10 ms to the performance of MPI collective operations. Due to the high variability

of the performance of native Team operations, it is hard to draw conclusions from

them on the resilience overhead of ULFM. For the native Team barrier collective, the

median performance of ULFM without FT is slower than ULFM. However, the overlap

between the variability ranges suggests a comparable performance between the two

configurations. The same applies to the emulated allreduce collective.

The emulated Team collectives depend on MPI’s point-to-point communication.

The results show comparable performance using the three MPI implementations

and no significant resilience overhead by ULFM. The results also show a significant

performance advantage for native Team collectives over emulated collectives. With

ULFM, the emulated collectives were 11×, 9×, 9× slower than native collectives for

barrier, bcast, and allreduce, respectively.

From this experiment, we conclude that MPI-ULFM does not introduce a sig-

nificant resilience overhead on failure-free executions. This makes it a promising

transport layer for resilient high-level languages.

62 Improving Resilient X10 Portability and Scalability Using MPI-ULFM

3.5.4 Resilient X10 over MPI-ULFM versus TCP Sockets

Resilience was initially supported in X10 over the X10RT-Sockets layer only. In this

experiment, we study the potential speedup for X10 applications by switching from

using sockets to using MPI-ULFM on a cluster of virtual machines connected by an

IP over Infiniband network in the NECTAR cloud. With X10RT-Sockets, the only

available option for Team is to use the emulated implementation. Although it is

possible to use either emulated or native collectives with X10RT-MPI, the previous

experiment indicates that the proper option to use for achieving better performance

is the native collectives. That is why Table 3.3 compares the results of using sockets

with emulated collectives against ULFM with native collectives. The top two rows

show the performance results using the default X10 runtime, and the bottom two

rows show the results with the resilient X10 runtime.

The results show that the ULFM backend results in significant performance gains

in both non-resilient and resilient modes. In non-resilient mode, the emulated barrier,

broadcast, and allreduce over sockets are respectively 1.7×, 2.5×, and 2.5× slower

than the corresponding native collectives over ULFM. The slowdown is more signif-

icant in resilient mode, where the emulated collectives in the same order are 14.0×,

23.3×, and 14.9× slower than the native collectives. The native collectives did not

introduce any measurable resilience overhead, since they avoid creating remote X10

asyncs that require expensive tracking by the resilient finish protocol. On the other

hand, the emulated collectives suffered high resilience overhead: 703% for barrier,

747% for broadcast, and 482% for allreduce.

This experiment demonstrates that RX10 applications can benefit by switching

from the socket backend to the ULFM backend to avoid the high resilience overhead

of X10’s emulated collectives. That is in addition to the direct benefit of scaling

applications to larger core counts by utilizing the ever-growing parallelism in super-

computers. The next experiment evaluates the scalability of different Team operations

in a supercomputer environment.

Table 3.3: Performance of Team collectives with sockets and ULFM on NECTAR with 360
places.

Runtime Transport Team Impl. barrier bcast allreduce

X10
ULFM Native 13.4 ms [018.1

010.5] 12.4 ms [017.7
002.9] 18.4 ms [022.2

014.7]

Sockets Emulated 22.7 ms [028.4
013.6] 31.5 ms [041.1

025.0] 46.3 ms [057.8
036.2]

RX10
ULFM Native 13.0 ms [016.3

011.4] 11.5 ms [015.8
004.0] 18.1 ms [023.8

015.3]

Sockets Emulated 182.0 ms [195.8
166.7] 267.1 ms [287.1

243.1] 269.5 ms [291.8
248.4]

§3.5 Performance Evaluation 63

3.5.5 Team Construction Performance

In this experiment, we evaluate the performance of creating a Team object in both

emulated and native modes, with X10 and RX10. In the emulated mode, constructing

a Team object is performed using a remote finish that sends an async to each place

to create place-local data strucutres for holding the new Team state. The performance

of this remote finish varies between X10 and RX10 due to the additional book-keeping

actitivites of the resilient finish protocol.

In the native mode, constructing a Team object results in creating a corresponding

MPI communicator using the blocking collective operation MPI_Comm_Create. An

additional call to MPI_Comm_Shrink is used if the X10 runtime is running in resilient

mode. Orchestrating the places to create a new Team collectively is done at the X10RT-

MPI layer through low-level messages. As explained in Section 3.4.4, we avoid the

overhead of the resilient finish protocol by avoiding broadcasting remote tasks while

creating a native Team object.

Table 3.4 shows the bare performance of MPI_Comm_Create and MPI_Comm_Shrink

over ULFM. The results show a favourable sub-linear scalability for both operations,

and that the cost of calling the two operations is less than 2 ms with 1024 places.

On the other hand, constructing a native Team object takes up to 150 ms with 1024

places. That is because of the internal communication required to line up the places

for invoking the communicator collectives, in addition to other runtime management

activities that can cause processing delays.

In non-resilient mode, the performance of the emulated Team is comparable to the

performance of the native Team with up to 256 places3. With larger place counts, the

native Team outperforms the emulated Team. In resilient mode, the native Team signif-

icantly outperforms the emulated Team — creating an emulated Team took 505.1 ms

with 109% resilience overhead, compared to only 147.8 ms for creating a native Team

with 1024 places.

In resilient X10 applications, failure of places mandates reconstructing the Team

objects. The performance improvement achieved by using ULFM’s fault-tolerant

collectives is therefore significant for speeding up the recovery process of applications.

Table 3.4: Team construction performance on Raijin with ULFM.

MPI Comm Create MPI Comm Shrink Native Emulated

Places X10/RX10 X10 RX10

128 0.26 ms [0.27
0.25] 0.38 ms [0.39

0.37] 117.7 ms [135.6
024.5] 64.5 ms [68.2

60.1] 190.0 ms [198.9
180.2]

256 0.31 ms [0.34
0.31] 0.43 ms [0.43

0.43] 131.4 ms [135.6
122.4] 74.2 ms [168.4

66.9] 338.9 ms [339.0
330.0]

512 0.39 ms [0.40
0.38] 0.51 ms [0.53

0.51] 135.6 ms [137.5
135.3] 218.4 ms [225.5

209.3] 369.7 ms [376.7
359.1]

1024 0.49 ms [0.53
0.49] 0.73 ms [0.75

0.73] 147.8 ms [148.8
145.9] 241.5 ms [248.1

232.6] 505.1 ms [527.5
496.8]

3The emulated mode was faster than the native mode with 128 and 256 places. However, we
observed large variability in the performance results at these points which suggests that this result is
not significant.

64 Improving Resilient X10 Portability and Scalability Using MPI-ULFM

 0

 100

 200

 300

 400

 500

 600

128 256 512 1024

T
im

e
 (

m
s
)

places

X10/RX10 Native
RX10 Emulated

X10 Emulated

Figure 3.6: Team construction performance.

3.5.6 Team Collectives Performance

In this section, we evaluate the scalability of four Team operations: barrier, broadcast,

allreduce, and agree. Where possible, we measured the bare MPI performance, the

emulated performance, and the native performance. For the emulated collectives we

report the performance using X10 and RX10. For the native collectives we report the

same value for both X10 and RX10 since they are not subject to the resilience overhead

of the finish termination detection protocol.

The agree interface uses the fault-tolerant agreement implementation provided

by ULFM. We did not implement a corresponding emulated implementation for the

agree interface due to time limitation. That is why we only report the bare MPI

performance and the native Team performance of the agree interface.

The results are shown in Tables 3.5-3.8. Aligned with the results of the previous

subsections, using the fault-tolerant MPI interfaces accelerates the performance of

Team operations significantly compared to X10’s emulated collectives. X10’s bulk-

synchronous applications can use optimized MPI collectives and execute resiliently

with virtually no resilience overhead from the RX10 runtime.

Table 3.5: Team.Barrier performance on Raijin.

Team.barrier()

MPI Ibarrier/ Native Emulated Emulated

Places MPI Test X10/RX10 X10 RX10

128 0.10 ms [0.11
0.10] 1.7 ms [15.0

00.3] 57.9 ms [62.0
50.1] 61.9 ms [071.4

057.6]

256 0.10 ms [0.18
0.10] 6.1 ms [16.1

00.5] 69.5 ms [70.8
64.3] 189.9 ms [198.6

175.1]

512 0.12 ms [0.22
0.11] 7.7 ms [15.3

02.0] 80.0 ms [86.7
70.6] 212.9 ms [221.2

201.1]

1024 0.17 ms [0.23
0.11] 9.3 ms [16.2

01.4] 88.1 ms [98.7
83.0] 246.7 ms [308.0

229.0]

§3.5 Performance Evaluation 65

Table 3.6: Broadcast performance on Raijin.

Team.bcast()

MPI Ibcast/ Native Emulated Emulated

Places MPI Test X10/RX10 X10 RX10

128 0.03 ms [0.14
0.02] 7.6 ms [15.0

00.4] 64.6 ms [073.8
052.1] 100.0 ms [110.0

090.8]

256 0.03 ms [0.19
0.02] 9.7 ms [13.9

01.7] 73.4 ms [080.6
064.5] 120.0 ms [130.0

110.5]

512 0.04 ms [0.24
0.03] 10.6 ms [15.1

02.2] 96.1 ms [101.0
089.5] 270.0 ms [278.9

257.4]

1024 0.04 ms [0.11
0.03] 11.5 ms [16.3

01.6] 103.8 ms [109.9
095.4] 316.0 ms [363.7

292.5]

Table 3.7: Allreduce performance on Raijin.

Team.allreduce()

MPI Iallreduce/ Native Emulated Emulated

Places MPI Test X10/RX10 X10 RX10

128 0.27 ms [0.30
0.27] 4.4 ms [16.1

00.4] 64.8 ms [069.3
060.1] 110.2 ms [117.8

102.0]

256 0.33 ms [0.35
0.33] 5.8 ms [14.8

01.4] 76.7 ms [080.5
072.1] 130.1 ms [134.0

129.0]

512 0.39 ms [0.40
0.37] 9.4 ms [16.0

01.4] 92.4 ms [099.6
087.3] 269.4 ms [274.3

258.7]

1024 0.45 ms [0.47
0.44] 11.9 ms [17.7

01.3] 101.3 ms [109.6
095.5] 306.8 ms [331.4

299.6]

Table 3.8: Agreement performance on Raijin.

Team.agree()

MPI Comm Iagree/ Native Emulated

Places MPI Test X10/RX10 X10/RX10

128 0.11 ms [0.11
0.11] 6.4 ms [16.6

00.1] NA

256 0.11 ms [0.11
0.11] 7.1 ms [15.7

01.2] NA

512 0.12 ms [0.13
0.12] 8.4 ms [14.8

03.5] NA

1024 0.12 ms [0.13
0.12] 10.6 ms [15.2

02.9] NA

66 Improving Resilient X10 Portability and Scalability Using MPI-ULFM

 0

 50

 100

 150

 200

 250

 300

 350

 400

128 256 512 1024

T
im

e
 (

m
s
)

places

X10/RX10 Native
RX10 Emulated

X10 Emulated

Figure 3.7: Team.Barrier performance.

 0

 50

 100

 150

 200

 250

 300

 350

 400

128 256 512 1024

T
im

e
 (

m
s
)

places

X10/RX10 Native
RX10 Emulated

X10 Emulated

Figure 3.8: Team.Broadcast performance.

 0

 50

 100

 150

 200

 250

 300

 350

 400

128 256 512 1024

T
im

e
 (

m
s
)

places

X10/RX10 Native
RX10 Emulated

X10 Emulated

Figure 3.9: Team.Allreduce performance.

 0

 5

 10

 15

 20

 25

 30

128 256 512 1024

T
im

e
 (

m
s
)

places

X10/RX10 Native

Figure 3.10: Team.Agree performance.

§3.6 Related Work 67

3.6 Related Work

To the best of our knowledge, our work is the first to explore the use of ULFM

as a runtime system for high-level programming models. The closest to our work

is related to the Fortran Coarrays programming model (Section 2.3.2.3). Fortran

2018 added new features to allow Coarrays programs to detect image failures and

reform the remaining images for post-failure processing4. Fanfarillo et al. [2019]

used ULFM to add these features to the OpenCoarrays framework [OpenCoarrays,

2019]. Failure recovery is performed collectively by the active processes using the

revoke, shrink, and agreement functions of ULFM. In contrast, our work avoids global

synchronization for recovery.

More explorations of ULFM have been done in the context of MPI applications

and frameworks, which we review next.

Laguna et al. [2016] present an evaluation of ULFM’s programmability in two

common patterns of HPC applications: bulk-synchronous with static load balancing

and master-worker with dynamic load balancing. They concluded that the absence

of a non-shrinking communicator recovery interface in ULFM complicates the recov-

ery procedures of statically balanced computations, since it requires updating the

domain decomposition to map to an arbitrary number of ranks, which is complex

for many applications and may even be infeasible. They also reported complexities

in developing local recovery procedures for computations that rely on non-blocking

computation, since ULFM does not report failures while initiating a non-blocking

communication. Although detecting failures through return codes enables applica-

tions to determine the location of the failure in the code, they reported that this

method results in significant changes and complications to the non-resilient code.

Gamell et al. [2016] used ULFM as a basis for comparing two in-memory check-

pointing mechanisms implemented in the Fenix library. The first is neighbor-based

— each process saves a copy of its own data and a copy of its neighbor’s data. The

second is checksum-based — each process saves a copy of its own data, and one

process saves the checksum of the data of all the processes. In their experiments,

neighbor-based checkpointing achieved better performance at the expense of higher

memory footprint.

Teranishi and Heroux [2014] used ULFM to implement the Local Failure Local

Recovery programming model, which aims to support the possible transition from

global to local rollback recovery in certain HPC applications. The programming

model provides simple abstractions for handling data and communicator recovery

to enable MPI applications to adopt local non-shrinking recovery more easily. Three

abstractions are provided: 1) a resilient communicator that uses spare processes

to repair its internal structure, 2) a redundant storage interface that implements in-

memory checksum-based checkpointing, and 3) an extendable programming template

for building recoverable distributed data structures.

4Coarrays uses the name image to refer to a Fortran process.

68 Improving Resilient X10 Portability and Scalability Using MPI-ULFM

Losada et al. [2017] used ULFM to deliver transparent non-shrinking recovery for

MPI applications using the ComPiler for Portable Checkpointing (CPPC) [Rodríguez

et al., 2010]. CPPC is a source-to-source compiler capable of transparently inject-

ing checkpointing instructions in MPI programs at safe points discovered using static

code analysis and variable liveness analysis. The above paper improved the generated

code from CPPC to automatically handle failure detection, global failure propaga-

tion using MPI_COMM_REVOKE, communicator recovery using MPI_COMM_SHRINK and

MPI_COMM_SPAWN, and computation restart.

In addition to the checkpoint/restart frameworks, other research groups have

used MPI-ULFM for implementing algorithmic-based fault-tolerant applications.

Rizzi et al. [2016] used ULFM to design an approximate PDE solver that can

tolerate both hard and soft faults. Algorithmic reformations were performed to the

PDE to introduce filters for corrupt data and to add more task-parallelism that can

fit a master-worker execution model. They favoured the master-worker model as it

does require global communicator repair it the event of a worker failure. Depending

on the computation stage, the described algorithm handles failure of a worker either

by ignoring its results or by resubmitting its work to another worker. As in our work,

the master detects the failure of any of the workers by continuously probing the

communicator using MPI_ANY_SOURCE. The master is assumed to be fully reliable.

Ali et al. [2015] applied an algorithmic fault-tolerant adaptation of the sparse grid

combination technique (SGCT) [Harding and Hegland, 2013] in the GENE (Gyroki-

netic Electromagnetic Numerical Experiment) plasma application. Through data re-

dundancy, introduced by the adapted SGCT, their implementation is capable of recov-

ering lost sub-grids from existing ones more efficiently than using checkpoint/restart.

Synchronous non-shrinking recovery of the MPI communicator is facilitated using

ULFM.

3.7 Summary

This chapter has focused on the MPI backend of the X10 language, and how we

extended it to support fault-tolerant execution using MPI-ULFM. We outlined the

fault tolerance features that RX10 requires from the underlying communication layer

to meet the requirements of the resilient async-finish model. We described the details

of the integration between X10 and MPI-ULFM, including the use of MPI-ULFM

fault-tolerant collectives by X10’s Team collectives.

The experimental evaluation demonstrated strong performance and scalability

advantages to RX10 applications by switching from the sockets backend to the

MPI-ULFM backend. Most importantly, the performance of native Team collectives

showed that RX10 bulk-synchronous applications can avoid most of the resilience

overhead of the RX10 runtime system by using MPI-ULFM collectives. We will

present a performance evaluation of a suite of resilient bulk-synchronous applica-

tions in Section 5.4.4.

In the next chapter, we describe another performance enhancement to RX10 by

providing an optimistic termination detection protocol for resilient finish.

Chapter 4

An Optimistic Protocol for

Resilient Finish

This chapter describes how we reduced the resilience overhead of RX10 applications

by designing a message-optimal resilient termination detection (TD) protocol for the

async-finish task model. We refer to this protocol as ‘optimistic finish’ since it favors

the performance of failure-free executions over the performance of failure recovery.

In this chapter, we evaluate the performance of this protocol using microbenchmarks

of X10 programs representing different task graphs that are common in resilient

X10 programs. In the next chapter, we evaluate the protocol using realistic X10

applications (see Section 5.4).

After an introduction in Section 4.1, we give an overview about different nested

task parallelism models in Section 4.2, and different approaches to resilient TD in

Section 4.3. After that, we prove the optimality limits of non-resilient and resilient

async-finish TD protocols in Section 4.4 and highlight the challenges of adding fail-

ure awareness to the async-finish model in Section 4.5. We then describe the data

structures and APIs used by the X10 runtime system for control-flow tracking in

Section 4.6. The following sections explain different async-finish TD protocols: non-

resilient finish (Section 4.7), pessimistic resilient finish (Section 4.8), and our proposed

optimistic resilient finish (Section 4.9). Section 4.10 describes two resilient stores that

can be used for maintaining critical TD metadata and Section 4.11 concludes with a

performance evaluation.

This chapter is based on our paper “Resilient Optimistic Termination Detection

for the Async-Finish Model” [Hamouda and Milthorpe, 2019].

4.1 Introduction

Dynamic nested-parallel programming models present an attractive approach for

exploiting the available parallelism in modern HPC systems. A dynamic computation

evolves by generating asynchronous tasks that form an arbitrary directed acyclic

graph. A key feature of such computations is TD — determining when all tasks

69

70 An Optimistic Protocol for Resilient Finish

in a subgraph are complete. In an unreliable system, additional work is required

to ensure that termination can be detected correctly in the presence of component

failures. Task-based models for use in HPC must therefore support resilience through

efficient fault-tolerant termination detection protocols.

The standard model of termination detection is the diffusing computation model [Di-

jkstra and Scholten, 1980]. In that model, the computation starts by activating a

coordinator process that is responsible for signaling termination. The status of the

other processes is initially idle. An idle process becomes active only by receiving a

message from an active process. An active process can become idle at any time. The

computation terminates when all processes are idle, and no messages are passing to

activate an idle process [Venkatesan, 1989].

Most termination detection algorithms for diffusing computations assign a parental

responsibility to the intermediate tasks, requiring each intermediate task to signal

its termination only after its successor tasks terminate [Dijkstra and Scholten, 1980;

Lai and Wu, 1995; Lifflander et al., 2013]. The root task detects global termination

when it receives the termination signals from its direct children. This execution

model is very similar to Cilk’s spawn-sync model [Blumofe et al., 1995], where a

task calling ‘sync’ waits for join signals from the tasks it directly spawned. It is also

similar to the execution model of the cobegin and coforall constructs of the Chapel

language [Chamberlain et al., 2007]. While having the intermediate tasks as implicit

TD coordinators is favorable for balancing the traffic of TD among tasks, it may add

unnecessary blocking at the intermediate tasks that is not needed for correctness. The

async-finish model does not impose this restriction; a task can spawn other asyn-

chronous tasks without waiting for their termination. Unlike Cilk’s sync construct,

the finish construct waits for join signals from a group of tasks that are spawned

directly or transitively from it.

To the best of our knowledge, the first resilient termination detection protocol for

the async-finish model was designed by [Cunningham et al., 2014] as part of the RX10

project. This protocol does not force the intermediate tasks to wait for the termination

of their direct successors. It maintains a consistent view of the task graph across

multiple processes, which can be used to reconstruct the computation’s control flow

in case of a process failure. It adds more termination signals over the optimal number

of signals needed in a resilient failure-free execution for the advantage of simplified

failure recovery. Since it favors failure recovery over normal execution, we describe

this protocol as ‘pessimistic’.

In this chapter, we review the pessimistic finish protocol and demonstrate that

the requirement for a consistent view results in a significant performance overhead

for failure-free execution. We propose the ‘optimistic finish’ protocol, an alternative

message-optimal protocol that relaxes the consistency requirement, resulting in a

faster failure-free execution with a moderate increase in recovery cost.

§4.2 Nested Task Parallelism Models 71

4.2 Nested Task Parallelism Models

Computations that entail nested termination scopes are generally classified as fully-

strict or terminally-strict [Blumofe and Leiserson, 1999] (Figure 4.1). Blumofe and

Leiserson [1999] describe a fully-strict task DAG as one that has fork edges from a task

to its children and join edges from each child to its direct parent. In other words, a task

can only wait for other tasks it directly forked. On the other hand, a terminally-strict

task DAG allows a join edge to connect a child to any of its ancestor tasks, including

its direct parent, which means a task can wait for other tasks it directly or transitively

created. Cilk’s spawn-sync programming model and X10’s async-finish programming

model are the most prominent representations of the fully-strict and terminally-strict

computations, respectively 1. By relaxing the requirement to have each task to wait

for its direct successors, the async-finish model avoids unnecessary synchronization

while creating dynamic irregular task trees, that would otherwise be imposed by

spawn-sync. Guo et al. [2009] provide more details on X10’s implementation of the

async-finish model, contrasting it with Cilk’s spawn-sync model.

When failures occur, nodes in the computation tree are lost, resulting in sub-trees

of the failed nodes breaking off the computation structure. Fault-tolerant termination

detection protocols aim to reattach those sub-trees to the remaining computation to

facilitate termination detection.

(a) fully-strict computation

(spawn-sync)

f

c d

e

a

sync

b

sync

g h

(b) terminally-strict computation

(async-finish)

g h

f

c d

e

a

finish

b

finish

Figure 4.1: Nested parallelism models. A dotted-box represents a single termination scope.
Circles represent tasks.

1Terminally-strict task graphs are also supported by the Chapel language using the sync statement.

72 An Optimistic Protocol for Resilient Finish

4.3 Related Work

Termination detection is a well-studied problem in distributed computing, having

multiple protocols proposed since the 1980s. Interested readers can refer to [Matocha

and Camp, 1998] for a comprehensive survey of many TD algorithms.

The DS protocol, presented by Dijkstra and Scholten [1980], was one of the earliest

TD protocols for diffusing computations and has been extended in different ways for

adding resilience. It is a message-optimal protocol such that for a computation that

sends M basic messages, DS adds exactly M control messages to detect termination.

The control messages are acknowledgements that a process must send for each mes-

sage it receives. DS enforces the following constraints to ensure correct termination

detection. First, it requires each process to take as its parent the origin of the first

message it received while being idle. Second, a child process must delay acknowl-

edging the parent messages until after it has acknowledged all other predecessors

and received acknowledgements from its successors. By having each parent serve

as an implicit coordinator for its children, DS ensures that termination signals flow

correctly from the leaves to the top of the tree. That also transforms the diffusing com-

putation to a spawn-sync computation. Fault-tolerant extensions of the DS algorithm

are presented in [Lai and Wu, 1995; Lifflander et al., 2013].

Lai and Wu [1995] describe a resilient protocol that can tolerate the failure of

almost the entire system without adding any overhead for failure-free execution. The

idea is that each process (idle and active) detecting a failure must detach from its

parent, adopt the coordinator as its new parent, and share its local failure knowledge

with its parent and the coordinator. On detecting a failure, the coordinator expects

all processes to send termination signals directly to it. The protocol introduces a

sequential bottleneck at the coordinator process when failures occur, which limits its

applicability to large-scale HPC applications.

Venkatesan [1989] presented a TD algorithm that relies on replicating the local

termination state of each process on k leaders to tolerate k -process failures. The

protocol assumes that the processes are connected via first-in-first-out channels, and

that a process can send k messages atomically to guarantee replication consistency.

Unfortunately, these assumptions limit the algorithm’s applicability to specialized

systems.

Lifflander et al. [2013] took a practical approach for resilient TD of a diffusing

computation. Based on the assumption that multi-node failures are rare in practice

and that the probability of a k -node failure decreases as k increases [Meneses et al.,

2012; Moody et al., 2010], they designed three variants of the DS protocol that can

tolerate most but not all failures. The INDEP protocol tolerates the failure of a single

process or multiple unrelated processes. It requires each parent to have a consistent

view of its successors and their successors. To achieve this goal, each process notifies

its parent of its potential successor before sending a message to it. Two more protocols

were proposed to address related-process failures. In addition to the notifications

required in INDEP, these protocols also require each process to notify its grandparent

when its state changes from interior (non-leaf node) to exterior (leaf node) or vice

§4.4 Resilient Async-Finish Optimality Limit 73

versa. A failure that affects both an interior node and its parent is fatal in these

protocols. Two special network services are required for correct implementation of

the three protocols: a network send fence and a fail-flush service.

To the best of our knowledge, the only prior work addressing resilient termination

detection for the async-finish model is that of Cunningham et al. [2014]. They describe

a protocol which separates the concerns of termination detection and survivability.

They use a finish resilient store to maintain critical TD data for each finish construct.

As the computation evolves, signals are sent to the resilient store to keep it as updated

as possible with respect to potential changes in the control structure. The used

signals enable the resilient store to independently recover the control structure when

failures occur; however, they impose significant performance overhead in failure-free

execution. Unlike previous work, this protocol does not require any special network

services other than failure detection.

Our work combines features from [Lifflander et al., 2013] and [Cunningham et al.,

2014] to provide a practical low-overhead termination detection protocol for the async-

finish model. Assuming multi-node failures are rare events, we designed a message-

optimal ‘optimistic’ protocol that significantly reduces the resilience overhead in

failure-free scenarios.

4.4 Resilient Async-Finish Optimality Limit

In this section, we consider the optimal number of control messages required for

correct async-finish termination detection in both non-resilient and resilient imple-

mentations.

We assume a finish block which includes nested async statements that create

distributed tasks, such that each task and its parent (task or finish) are located at

different places. Messages sent to fork these tasks at their intended locations are

referred to as basic messages. For example, in the task graphs in Figure 4.2, three

basic messages are sent to fork tasks a, b, and c. The additional messages used

by the system for the purpose of termination detection are referred to as control

messages (shown as dotted lines in the figures). We consider the basic messages as the

baseline for any termination detection protocol, thus an optimal protocol will add

the minimum number of control messages as overhead. In resilient mode, we build

on Cunningham et al.’s design Cunningham et al. [2014] in which the TD metadata

of the finish constructs are maintained safely in a resilient store. A finish and the

resilient store exchange two signals: the PUBLISH signal is sent from the finish to

the store to create a corresponding ResilientFinish object, and the RELEASE signal

flows in the other direction when the finish scope terminates (see Figure 4.2-b).

As a finish scope evolves by existing tasks forking new tasks, finish needs to

update its knowledge of the total number of active tasks so that it can wait for their

termination. We refer to this number as the global count or gc. Finish forks the first

task and sets gc = 1. A task must notify finish when it forks a successor task to

allow finish to increase the number of active tasks (by incrementing gc). When a task

terminates, it must notify finish to allow it to decrease the number of active tasks

74 An Optimistic Protocol for Resilient Finish

R
e

m
o

te
 F

o
rk

 S
ig

n
a

ls

b c

Finish

a

-b

-c

-a

+a

+b

+c

R
e

m
o

te
 J

o
in

 S
ig

n
a

ls

ResilientFinish

PublishRelease

b c

Finish

a

-b

{-a, +b, +c}

-c

R
e

m
o

te
 J

o
in

 S
ig

n
a

ls

+a

Lo
ca

l
F
o

rk
 S

ig
n

a
ls

+b
+c

a) Non-resilient Mode b) Resilient Mode

Resilient Store

Figure 4.2: Message-optimal async-finish TD protocols.

(by decrementing gc). When the last task terminates, gc reaches zero, and the finish

is released. We use the terms FORK and JOIN to refer to the control signals used to

notify finish when a new task is forked and when a running task terminates. Multiple

signals from the same source may be packed in one message for better performance.

Lemma 1. A correct non-resilient finish requires one TD control message per task.

Proof. Finish detects termination only after all forked tasks terminate. Thus sending

a JOIN signal when a task terminates is unavoidable for correct termination detection.

During execution, a parent task may fork N successor tasks, and therefore it must

notify finish with N FORK signals for these tasks. Assuming that failures do not occur,

each task must eventually terminate and send its own JOIN signal. A task can buffer

the FORK signals of its successor tasks locally and send them with its JOIN signal in the

same message. Thus, with only one message per task, finish will eventually receive

a FORK signal and a JOIN signal for each task, which guarantees correct termination

detection.

Figure 4.2-a illustrates this method of non-resilient termination detection. We use

(+) as a FORK signal, and (−) as a JOIN signal. When task a forks tasks b and c, it

delays sending their FORK signals (+b, +c) until it joins. At this point, it packs its JOIN

signal (−a) with the delayed FORK signals and sends one message containing the three

signals (−a, +b, +c). Note that delaying the fork signals may result in tasks joining

before their FORK signals are received by finish. A correct implementation must delay

termination until each FORK is matched by a JOIN and each JOIN is matched by a

FORK.

Lemma 2. A correct resilient finish requires two TD control messages per task.

Proof. In the presence of failures, tasks may fail at arbitrary times during execution.

For correct termination detection, finish must be aware of the existence of each forked

task. If a parent task fails in between forking a successor task and sending the FORK

§4.5 Async-Finish Termination Detection Under Failure 75

signal of this task to finish, finish will not track the successor task since it is not aware

of its existence, and termination detection will be incorrect. Therefore, a parent task

must eagerly send the FORK signal of a successor task before forking the task and may

not buffer the FORK signals locally. For correct termination detection, each task must

also send a JOIN signal when it terminates. As a result, correct termination detection

in the presence of failures requires two separate TD messages per task — a message

for the task’s FORK signal, and a message for the task’s JOIN signal. The absence of

either message makes termination detection incorrect.

Figure 4.2-b demonstrates this method of resilient termination detection, which

ensures that a resilient finish is tracking every forked task. Assuming that a resilient

finish can detect the failure of any node in the system, it can cancel forked tasks

located at failed nodes to avoid waiting for them indefinitely. Note that in counting

the messages, we do not consider the messages that the resilient store may generate

internally to guarantee reliable storage of resilient finish objects. While a centralized

resilient store may not introduce any additional communication, a replication-based

store will introduce communication to replicate the objects consistently.

Lemma 3. Optimistic resilient finish is a message-optimal TD protocol.

Proof. Our proposed optimistic finish protocol (Section 4.9) uses exactly two messages

per task to notify task forking and termination. Since both messages are necessary for

correct termination detection, the optimistic finish protocol is message-optimal.

4.5 Async-Finish Termination Detection Under Failure

4.5.1 Failure Model

We focus on process (i.e. place) fail-stop failures. A failed place permanently ter-

minates, and its data and tasks are immediately lost. We assume that each place

will eventually detect the failure of any other place, and that a corrupted message

due to the failure of its source will be dropped either by the network module or the

deserialization module of the destination place. We assume that a message can be

lost only if its source or destination has failed. We assume non-byzantine behavior.

We do not assume any determinism in the order the network delivers messages.

4.5.2 Recovery Challenges

In this section, we use the following sample program to illustrate the challenges of

async-finish TD under failure and the possible solutions. In Section 4.8 and Section 4.9,

we describe how these challenges are addressed by the pessimistic protocol and the

optimistic protocol, respectively.

1 finish /*F1*/ {

2 at (p2) async { /*a*/ at (p3) async { /*c*/ } }

3 at (p4) async { /*b*/ finish /*F2*/ at (p5) async { /*d*/ } }

4 }

76 An Optimistic Protocol for Resilient Finish

Tasks[F1] = {a, b, [c]}

Tasks[F2] = {d}

Tasks[F1] = {a, [c], d}

Tasks[F2] = {d}

Tasks[F1] = {a, b}

Tasks[F2] = {d}

Tasks[F1] = {b} or {b, [c]} (?)

Tasks[F2] = {d}

(a) Normal execution (b) Loss of a live task and a

child finish

(c) Loss of the destination

of an in-transit task
(d) Loss of the source

of an in-transit task

F1

F2

a

d

b

c
1 2 3

4 5

F1

F2

a

d

b

c
1 2 3

4 5

adopted

F1

F2

a

d

b

c
1 2 3

4 5

F1

F2

a

d

b

c
1 2 3

4 5

Figure 4.3: Task tracking under failure. The square brackets mark in-transit tasks. A dead
place is covered by a gray rectangle.

Challenge 1 - Loss of termination detection metadata: As a computation evolves,

finish objects are created at different places to maintain the TD metadata (e.g. the

active tasks of each finish). Losing one of these objects impairs the control flow and

prevents correct termination detection. To address this challenge, Cunningham et

al. Cunningham et al. [2014] proposed using a resilient store that can save the data

reliably and survive failures. The design of the resilient store is orthogonal to the

termination detection protocol, thus different stores (i.e. centralized/distributed, disk-

based/memory-based, native/out-of-process) can be used. However, the survivability

of the protocol implementation is limited by the survivability of the store. For the

above program, we assume that F1 and F2 have corresponding resilient finish objects

in the resilient store.

Challenge 2 - Adopting orphan tasks: When the finish home place fails, the

finish may leave behind active tasks that require tracking. We refer to these tasks as

orphan tasks. According to the semantics of the async-finish model, a parent finish

can only terminate after its nested (children) finishes terminate. A parent finish can

maintain this rule by adopting the orphan tasks of its dead children to wait for their

termination. Figure 4.3-b shows the adoption of task d by F1 after the home place of

F2 failed.

Challenge 3 - Loss of in-transit and live tasks: Each task has a source place and

a destination (home) place, which are the same for locally generated tasks. The active

(non-terminated) tasks of the computation can be either running at their home place

(live tasks) or transiting from a source place towards their home place (in-transit

tasks).

The failure of the destination place has the same impact on live and in-transit tasks.

For both categories, the tasks are lost and their parent finish must exclude them from

its global task count. For example, the failure of place 4 in Figure 4.3-b results in

losing the live task b, and the failure of place 3 in Figure 4.3-c results in losing the

in-transit task c, because its target place is no longer available.

The failure of the source place has a different impact on live and in-transit tasks.

Live tasks proceed normally regardless of the failure, because they already started

execution at their destinations. However, in-transit tasks are more difficult to handle

§4.6 Distributed Task Tracking 77

(Figure 4.3-d). Based on Lemma 2, in resilient mode, a source place must notify

its finish of a potential remote task before sending the task to its destination. If the

source place died after the finish received the notification, the finish cannot determine

whether the potential task was: 1) never transmitted, 2) fully transmitted and will

eventually be received by the destination, or 3) partially transmitted and will be

dropped at the destination due to message corruption. A unified rule that allows

finish to tolerate this uncertainty is to consider any in-transit task whose source place

has died as a lost task and exclude it from the global task count. The finish must also

direct the destination place to drop the task in case it is successfully received in the

future.

To summarize, recovering the control flow requires the following:

1. adopting orphan tasks,

2. excluding live tasks whose destination place is dead,

3. excluding in-transit tasks whose source place or destination place is dead, and

4. preventing a destination place from executing an in-transit task whose source

place is dead.

The optimistic finish protocol achieves these goals using the optimal number of TD

messages per task, unlike the pessimistic protocol which uses one additional message

per task.

4.6 Distributed Task Tracking

In this section, we describe an abstract framework that can be used to implement

termination detection protocols, based on the X10 runtime implementation. The

essence of X10’s TD framework can be described using the pseudocode in Listing 4.1

and Figure 4.4. In Sections 4.7, 4.8, and 4.9, we will describe three termination

detection protocols based on this framework.

Listing 4.1: Finish TD API.

1 abstract class Finish(id:Id) {

2 val latch:Latch;

3 val parent:Finish;

4 def wait() { latch.wait(); }

5 def release() { latch.release(); }

6 }

7 abstract class LocalFinish(id:Id) {

8 val gr:GlobalRef[Finish];

9 def fork(src, dst):void;

10 def begin(src, dst):bool;

11 def join(src, dst):void;

12 }

78 An Optimistic Protocol for Resilient Finish

Finish

LocalFinish

@src @dst

1 LF.fork(src, dst);

2 send (S);

3 receive (S);

4 if (LF.begin(src, dst)) {

5 execute(S);

6 LF.join(src, dst);

7 }

@finish_home

finish { … @src at (dst) async { S; } … }

LocalFinish

globalRefglobalRef

Figure 4.4: Tracking remote task creation.

4.6.1 Finish and LocalFinish Objects

A termination detection protocol is defined by providing concrete implementations

of the abstract classes Finish and LocalFinish shown in Listing 4.1. One instance of

Finish with a globally unique id is created for each finish block to maintain a global

view of the distributed task graph. It includes a latch that is used to block the task

that started a finish block until all the tasks within that block terminate. The function

wait will be called at the end of the finish block, after the finish creates all its direct

tasks. When all tasks (direct and transitive) terminate, the function release will be

called to release the blocked task. The runtime system links the finish objects in a

tree structure by providing to each finish object a reference to its parent finish.

Each visited place within a finish block will create an instance of type LocalFinish

to track task activities done locally. It holds a global reference to the global Finish

object to notify it when changes in the task graph occur so that the Finish has an

up-to-date view of the global control structure.

4.6.2 Task Events

The abstract class LocalFinish defines three interfaces to track task events: fork,

begin, and join. Figure 4.4 shows the invocation of the three task events when a

source place src spawns a task at a destination place dst.

On forking a new task, the source place calls fork to notify finish of a potential

new task, then it sends the task to the destination place. On receiving a task, the des-

tination place calls begin to determine whether or not the task is valid for execution.

If the task is valid, the destination place executes it, then calls join to notify task

termination. If the task is invalid, the destination place drops it. In a non-resilient TD

protocol, begin may assume that all incoming tasks are valid. On the other hand, a

resilient termination detection protocol may consider any task sent by a dead place as

§4.7 Non-Resilient Finish Protocol 79

invalid, even if the task is successfully received by the destination. Therefore, when

failures are expected, begin may need to consult its governing ResilientFinish

object to determine the validity of the received task.

In this chapter, we describe each protocol in terms of the variables of the Finish

and LocalFinish objects and the implementations of the three task events fork,

begin, and join. In the included pseudocode, we use the notation @F[id], @LF[id],

and @RF[id] to refer to accessing a remote Finish object, LocalFinish object and

ResilientFinish object, respectively.

4.7 Non-Resilient Finish Protocol

The default TD protocol in X10 is non-resilient. It assumes that the finish and local

finish objects are available for the lifetime of the finish block, and that each spawned

task will eventually join. Ignoring the garbage collection messages that the runtime

uses to delete the LocalFinish objects at the end of a finish block, the non-resilient

finish protocol is message-optimal. It applies the reporting mechanism described in

Figure 4.2-a to use a maximum of one TD message per task.

Listing 4.2: Non-resilient finish pseudocode.

1 class NR_Finish(id) extends Finish {

2 gc:int=0; // global count

3 def merge(remoteLive) {

4 for (p in places) {

5 gc += remoteLive[p];

6 }

7 if (gc == 0)

8 release();

9 }

10 }

11 class NR_LocalFinish(id) extends LocalFinish {

12 lc:int=0; //local count

13 live:int[places]={0};

14 def fork(src, dst) {

15 live[dst]++;

16 }

17 def begin(src, dst) {

18 lc++;

19 return true;

20 }

21 def join(src, dst) {

22 live[dst]--;

23 lc--;

24 if (lc == 0)

25 @F[id].merge(live);

26 }

27 }

80 An Optimistic Protocol for Resilient Finish

The pseudocode in Listing 4.2 captures the details of the protocol implementation.

The finish object maintains a global count, gc, and an array live stating the number

of live tasks at each place. The LocalFinish object maintains a local count lc stating

the number of tasks that began locally, and a local live array that states the number

of spawned tasks to other places. The begin event, called at the receiving place,

increments the local count without consulting the finish object, because this protocol

is not prepared for receiving invalid tasks due to failures. When all the local tasks

terminate (i.e. when lc reaches zero), LocalFinish passes its local live array to the

finish object. Finish merges the passed array with its own live array and updates gc

to reflect the current number of tasks. Termination is signaled when gc reaches zero.

4.7.1 Garbage Collection

The non-resilient finish implementation in X10 persists the LocalFinish objects in

memory until the finish scope terminates. This enables the same object to be reused

when tasks are repeatedly sent to the same place. When finish terminates, it sends

asynchronous garbage collection messages to every place visited within the finish

scope to delete the LocalFinish objects.

4.8 Resilient Pessimistic Finish

The pessimistic resilient finish protocol requires the resilient finish objects to track the

tasks and independently repair their state when a failure occurs. Independent repair

requires advance knowledge of the status of each active task (whether it is in-transit

or live) and the set of children of each finish for adoption purposes.

Classifying active tasks into in-transit and live is necessary for failure recovery,

because the two types of tasks are treated differently with respect to the failure of

their source, as described in Section 4.5. Using only the FORK and the JOIN signals

(see Section 4.4), a resilient finish can track a task as it transitions between the not-

existing, active, and terminated states. However, these two signals are not sufficient to

distinguish between in-transit or live tasks. The pessimistic protocol adds a third task

signal that we call VALIDATE to perform this classification. Although the classification

is only needed for recovery, the application pays the added communication cost even

in failure-free executions.

The resilient finish object uses three variables for task tracking: gc to count the

active tasks, live[] to count the live tasks at a certain place, and trans[][] to count

the in-transit tasks between any two places. On receiving a FORK signal for a task

moving from place s to place d, the resilient finish object increments trans[s][d] and

the global count gc. When the destination place receives a task, it sends a VALIDATE

message to resilient finish to check if the task is valid for execution. If both the source

and the destination of the task are active, resilient finish declares the task as valid

and transforms it from the transit state to the live state. That is done by decrementing

trans[s][d] and incrementing live[d]. On receiving a JOIN signal for a task that

lived at place d, the resilient finish decrements live[d] and gc (see Figure 4.5-a).

§4.8 Resilient Pessimistic Finish 81

Resilient F1 Place 2 Place 3live[2]=1

live[4]=1

gc=2
FORK(2,3)

transit[2][3]=1

gc=3 OK
Send c

VALIDATE(2,3)

OKtransit[2][3]=0

live[3]=1
JOIN(2,3)

live[3]=0

gc=2

Recv c

Exec c

sent/transOrLive[1][2]=1

sent/transOrLive[1][4]=1

gc=2

sent/transOrLive[2][3]=1

gc=3

transOrLive[2][3]=0

gc=2

recv[2]=0

deny[2]=false

recv[2]=1

(a) The pessimistic protocol (b) The optimistic protocol

Resilient F1 Place 2 Place 3

FORK(2,3)

OK
Send c

JOIN(2,3)

Recv c

Exec c

Assert !deny[2]Assert !dead[2,3]

Figure 4.5: Task tracking events as task c transitions from place 2 to place 3, based on
Figure 4.3-a.

4.8.1 Adopting Orphan Tasks

Tracking the parental relation between finishes is key to identifying orphaned tasks.

The pessimistic finish protocol requires each new finish not only to publish itself

in the resilient store, but also to link itself to its parent. Thus, in addition to the

PUBLISH and the RELEASE signals (see Section 4.4), a pessimistic finish uses a third

signal ADD_CHILD to connect a new resilient finish to its parent. When a parent finish

adopts a child finish, it deactivates the resilient finish object of the child and adds the

child’s task counts to its own task counts. A deactivated finish forwards the received

task signals to its adopter. The FORWARD_TO_ADOPTER directive in Listing 4.3 refers to

this forwarding procedure.

4.8.2 Excluding Lost Tasks

When place P fails, the live tasks at P and the in-transit tasks from P and to P are

considered lost. The number of lost tasks is the summation of live[P], trans[*][P],

and trans[P][*]. After calculating the summation, the pessimistic finish object resets

these counters and deducts the summation from the global count gc (see the recover

method in Listing 4.3-Line 57). If the source place of an in-transit task fails, the finish

requests the destination place to drop the task using the response of the VALIDATE

signal.

4.8.3 Garbage Collection

The pessimistic finish protocol recovers the control structure without collaboration

with the LocalFinish objects. Therefore, it allows a LocalFinish object to be deleted

automatically once its tasks terminate. Explicit garbage collection messages from a

resilient finish to the LocalFinish objects are not required.

82 An Optimistic Protocol for Resilient Finish

Listing 4.3: Pessimistic finish pseudocode.

1 abstract class P_ResilientStore {

2 def PUBLISH(id):void;

3 def ADD_CHILD(parentId, childId):void;

4 }

5 class P_Finish(id:Id) extends Finish {

6 def make(parent:Finish) {

7 @store.ADD_CHILD(parent.id, id);

8 @store.PUBLISH(id);

9 }

10 }

11 class P_LocalFinish(id:Id) extends LocalFinish {

12 def fork(src, dst) {

13 @RF[id].FORK(src, dst);

14 }

15 def join(src, dst){

16 @RF[id].JOIN(src, dst);

17 }

18 def begin(src, dst) {

19 return @RF[id].VALIDATE(src, dst);

20 }

21 }

22 class P_ResilientFinish(id:Id) {

23 gc:int=0;

24 live:int[places];

25 trans:int[places][places];

26 children:Set[Id];

27 adopter:Id;

28 def FORK(src, dst){

29 FORWARD_TO_ADOPTER;

30 if (bothAlive(src, dst)) {

31 trans[src][dst]++;

32 gc++;

33 }

34 }

35 def JOIN(src, dst) {

36 FORWARD_TO_ADOPTER;

37 if (!dst.isDead()) {

38 live[dst]--;

39 gc--;

40 if (gc == 0)

41 @F[id].release();

42 }

43 }

44 def VALIDATE(src, dst) {

45 FORWARD_TO_ADOPTER;

46 if (bothAlive(src, dst)) {

47 trans[src][dst]--;

48 live[dst]++;

§4.9 Resilient Optimistic Finish 83

49 return true;

50 }

51 else

52 return false;

53 }

54 def addChild(cId) {

55 children.add(cId);

56 }

57 def recover(dead) {

58 // adopt orphaned tasks

59 for (c in children) {

60 if (c.home == dead) {

61 trans += @RF[c].trans;

62 live += @RF[c].live;

63 gc += @RF[c].gc;

64 @RF[c].adopter = id;

65 }

66 }

67 // exclude lost tasks

68 gc -= trans[dead][*] + trans[*][dead] + live[dead];

69 trans[dead][*] = 0;

70 trans[*][dead) = 0;

71 live[dead] = 0;

72
73 if (gc == 0)

74 @F[id].release();

75 }

76 }

4.9 Resilient Optimistic Finish

The main drawback of the pessimistic finish protocol is the assumption that all system

components except the resilient store are unreliable, and that they cannot be used for

recovery. Because of this, it requires the places to consult the resilient store before

making any change in the task DAG to keep it synchronized with the state of tasks

at all places. The optimistic finish protocol makes the more practical assumption that

a failure will impact a small minority of the system components [Lifflander et al.,

2013; Sato et al., 2012; Meneses et al., 2012; Moody et al., 2010], and that the majority

of components will be available and capable of collaborating to recover the control

structure when failures occur.

The optimistic finish protocol aims to provide reliable execution of async-finish

computations using the minimum number of TD messages. It optimizes over the

pessimistic protocol by removing from the critical path of task execution any commu-

nication that is needed only for failure recovery. In particular, it removes the VALIDATE

signal which classifies active tasks into in-transit and live, and removes the ADD_CHILD

signal which synchronously tracks the children of each finish. It compensates for the

84 An Optimistic Protocol for Resilient Finish

missing information due to removing these signals by empowering the places with

additional metadata that can complete the knowledge of the resilient store at failure

recovery time.

A resilient optimistic finish object uses the following variables for task tracking:

gc to count the active tasks, transOrLive[][] to count the active tasks, which may be

in-transit or live, given their source and destination, and sent[][] to count the total

number of sent tasks between any two places, which includes active and terminated

tasks. Each visited place within a finish scope records the following variables in its

LocalFinish object: recv[] to count the number of received tasks from a certain

place, and deny[] to check whether it can accept in-transit tasks from a certain place.

Initially, tasks can be accepted from any place.

When a source place s forks a task to a destination place d, transOrLive[s][d],

sent[s][d], and the global count gc are incremented (see Listing 4.4-Line 38). When

the destination place receives the task, it locally determines whether or not the task is

valid for execution using its deny table (see Listing 4.4-Line 21). If the task is valid, the

place executes it and sends a JOIN signal when the task terminates. The JOIN signal

carries both the source and the destination of the task and results in decrementing

transOrLive[s][d] and gc (see Figure 4.5-b). Note that sent[][] and recv[] are

never decremented. We will show in Section 4.9.2 how the sent[][] and the recv[]

tables are used for resolving the number of lost in-transit tasks due to the failure of

their source.

4.9.1 Adopting Orphan Tasks

The optimistic protocol does not use the ADD_CHILD signal, but rather calculates the

set of children needing adoption at failure recovery time.

Each resilient finish object records the id of its parent, which was given in the

PUBLISH signal that created the object. The protocol relies on the fact that a child

finish at place x will be created by one of the living tasks at place x governed by

the parent finish. When a place P dies, each resilient finish object checks the value

of transOrLive[*][P] to determine whether it has any active tasks at that place. If

there are no active tasks at P, then there are no children needing adoption due to

the failure of place P. Otherwise, it consults the resilient store to retrieve the list of

children whose home place is P and therefore require adoption. The parent finish

records these children in a set called ghosts. Termination is detected when gc reaches

zero and the ghosts set is empty (see the condition of tryRelease() in Listing 4.4). A

valid resilient store implementation of the optimistic finish protocol must implement

the FIND_CHILDREN function. This function is reduced to a search in a local set of

resilient finish objects in a centralized resilient store, or a query to the backup of the

dead place in a replication-based resilient store.

The reason why we refer to the adopted children as ‘ghosts’ in this protocol is

because we keep them active after their corresponding finish dies. The ghost finishes

continue to govern their own tasks as normal, unlike the pessimistic finish protocol

which deactivates the adopted children. When a ghost finish determines that all

§4.9 Resilient Optimistic Finish 85

its tasks have terminated, it sends a REMOVE_CHILD signal to its parent (Line 58 in

Listing 4.4). When the parent receives this signal, it removes the child finish from its

ghosts set and checks for the possibility of releasing its corresponding finish.

4.9.2 Excluding Lost Tasks

Like the pessimistic protocol, we aim to exclude all transiting tasks from and to a

dead place and all live tasks at a dead place. However, because transiting and live

tasks are not distinguished in our protocol, more work is required for identifying lost

tasks.

For a destination place P, transOrLive[s][P] is the number of the in-transit tasks

from s to P and the live tasks executing at P. If P failed, both categories of tasks are lost

and must be excluded from the global count. After determining the ghost children (as

described in Section 4.9.1), the resilient finish object can deduct transOrLive[*][P]

from the global count and reset transOrLive[*][P] for each failed place P. Any JOIN

messages received from the dead place P must be discarded, otherwise they may

incorrectly alter the global count 2. Handling the failure of both the source and the

destination reduces to handling the failure of the destination.

For a source place P, transOrLive[P][d] is the number of the in-transit tasks

from P to d and the live tasks sent by P and are executing at d. If P failed, only

the in-transit tasks are lost and must be excluded from the global count; the live

tasks proceed normally. An optimistic resilient finish can only identify the number

of in-transit tasks through communication with the destination place d. Place d

records the total number of received tasks from P in recv[P]. At the same time, the

resilient finish object records the total number of sent tasks from P to d in sent[P][d].

The difference between sent[P][d] and recv[P] is the number of transiting tasks

from P to d. The resilient finish object relies on a new signal COUNT_TRANSIT to

calculate this difference and to stop place d from receiving future tasks from place P

by setting deny[P] = true (see the COUNT_TRANSIT method in Listing 4.4 and its call

in Listing 4.4-Line 78).

4.9.3 Garbage Collection

The optimistic finish protocol requires the places visited within a finish scope

to maintain their LocalFinish objects until finish terminates. That is because the

LocalFinish objects collaborate with the resilient finish object during failure recov-

ery as described above. When a resilient finish detects the termination of all its tasks,

it sends explicit asynchronous garbage collection messages to all visited places to

delete the LocalFinish objects.

2We do not assume any determinism in the order the network delivers messages. The cut of time for
a resilient finish object to accept or ignore a JOIN message from a place is the time it detects the place’s
failure.

86 An Optimistic Protocol for Resilient Finish

Listing 4.4: Optimistic finish pseudocode.

1 abstract class O_ResilientStore {

2 def PUBLISH(id, parentId):void;

3 def FIND_CHILDREN(id, place):Set[Id];

4 }

5 class O_Finish(id:Id) extends Finish {

6 def make(parent:Finish) {

7 @store.PUBLISH(id, parent.id);

8 }

9 }

10 class O_LocalFinish(id:Id) extends LocalFinish {

11 deny:bool[places];

12 recv:int[places];

13 def fork(src, dst) {

14 @RF[id].FORK(src, dst);

15 }

16 def join(src, dst){

17 @RF[id].JOIN(src, dst);

18 }

19 def begin(src, dst) {

20 if (deny[src]) {

21 return false;

22 } else {

23 recv[src]++;

24 return true;

25 }

26 }

27 def COUNT_TRANSIT(nSent, dead) {

28 deny[dead] = true;

29 return nSent - recv[dead];

30 }

31 }

32 class O_ResilientFinish(id:Id) {

33 gc:int=0;

34 parent:Id;

35 transOrLive:int[places][places];

36 sent:int[places][places];

37 ghosts:Set[Id]; isGhost:bool;

38 def FORK(src, dst){

39 if (bothAlive(src, dst)){

40 transOrLive[src][dst]++;

41 gc++;

42 sent[src][dst]++;

43 }

44 }

45 def JOIN(src, dst){

46 if (!dst.isDead()) {

47 transOrLive[src][dst]--;

48 gc--;

§4.9 Resilient Optimistic Finish 87

49 tryRelease();

50 }

51 }

52 def removeChild(ghostId) {

53 ghosts.remove(ghostId); tryRelease();

54 }

55 def tryRelease() {

56 if (gc == 0 && ghosts.empty()) {

57 if (isGhost)

58 @RF[parent].removeChild(id);

59 else

60 @F[id].release();

61 }

62 }

63 def recover(dead) {

64 // adopt orphaned tasks

65 if (transOrLive[*][dead] > 0) {

66 val c = @store.FIND_CHILDREN(id, dead);

67 ghosts.addAll(c);

68 for (g in c)

69 @RF[g].isGhost = true;

70 }

71
72 // exclude lost tasks

73 gc -= transOrLive[*][dead];

74 transOrLive[*][dead] = 0;

75 for (p in places) {

76 if (transOrLive[dead][p] > 0) {

77 val s = sent[dead][p];

78 val t = @LF[id].COUNT_TRANSIT(s, dead);

79 transOrLive[dead][p] -= t;

80 gc -= t;

81 }

82 }

83
84 tryRelease();

85 }

86 }

4.9.4 Optimistic Finish TLA Specification

Temporal Logic of Actions (TLA) [The TLA Home Page] is a language for specifying

and automatically verifying software systems. The system’s specification includes an

initial state, a set of actions that can update the system’s state, and a set of safety and

liveness properties that describe the correctness constraints of the system. The TLA

model checker tool, named TLC, tests all possible combinations of actions and reports

any detected violations of the system’s properties. The TLC tool has a distributed

implementation and a centralized implementation with different capabilities.

88 An Optimistic Protocol for Resilient Finish

We developed a formal model for the optimistic finish protocol using TLA to

verify the protocol’s correctness. The model simulates all possible n-level task graphs

that can be created on a p-place system, where each node of the task graph has at

most c children. It can also simulate the occurrence of one or more place failures as

the task graph evolves.

The full specification is included in Appendix B. It defines the protocol behaviour

using the 22 actions listed in Table 4.1. We defined a guard on each action that

determines the preconditions that must be satisfied before the action is activated.

A correct execution occurs only if the guard of the action ProgramTerminating is

eventually satisfied, which indicates the termination of the root finish of the graph.

Table 4.1: TLA+ actions describing the optimistic finish protocol.

Type Actions list

Task actions CreatingFinish

Finish actions

CreatingRemoteTask

TerminatingTask

ReceivingPublishDoneSignal

ReceivingReleaseSignal

LocalFinish actions

CreatingRemoteTask

TerminatingTask

MarkingDeadPlace

DroppingTask

Communication actions
SendingTask

ReceivingTask

ResilientFinish actions

ReceivingPublishSignal

ReceivingTransitSignal

ReceivingTerminateTaskSignal

ReceivingTerminateGhostSignal

FindingGhostChildren

AddingGhostChildren

CancellingTasksToDeadPlace

SendingCountTransitSignalToLocalFinish

CancellingTransitTasksFromDeadPlace

Failure actions KillingPlace

Program termination action ProgramTerminating

The distributed TLC tool currently cannot validate liveness properties, such as ‘the

system must eventually terminate’, which we needed to guarantee in our protocol.

The centralized TLC tool can perform this validation; however, it is not scalable.

Using the centralized tool, it was infeasible for us to simulate large graph structures

without getting out-of-memory errors due to the large number of actions in our

model. Therefore, we decided to use a small graph configuration that can simulate

all scenarios of our optimistic protocol.

§4.10 Finish Resilient Store Implementations 89

In order to verify the case when a parent finish adopts the tasks of a dead child,

we need at least a 3-level graph, such that the finish at the top level can adopt the

tasks at the third level that belong to a lost finish at the second level. In our protocol,

separate cases handle the failure of the source place of a task and the failure of the

destination place of a task. With one place failure we can simulate either case. The

case when a task loses both its source and destination requires killing two places.

However, in our protocol, handling the failure of both the source and destination

is equivalent to handling the failure of the destination alone. Therefore, one place

failure is sufficient to verify all the rules of our protocol. Because we use the top

finish to detect the full termination of the graph, we do not kill the place of the top

finish. Therefore, we need two places or more in order to test the correctness of the

failure scenarios. We used three places in our testing.

Testing was performed on an 8-core Intel i7-3770 3.40GHz system running Ubuntu

14.04 operating system. It took a total of 2 hours and 59 minutes to verify the

correctness of our protocol over a 3-level task tree with a branching factor of 2 using 3

places, where a failure can impact one place at any point in the execution. Interested

readers can check the specification and the outputs of verification in the public GitHub

repository [X10 Formal Specifications].

Based on the challenges described in Section 4.5, we believe the used graph

configuration is sufficient for detecting any errors in the protocol. The model will

not reach the ProgramTerminating state if handling the loss of in-transit and live

tasks is incorrect, because the root finish will wait indefinitely for tasks that has died.

Similarly, if the adoption mechanism is incorrect, the root finish will wait indefinitely

for the REMOVE_CHILD signal from its ghost child. The TLC tool verified that the

ProgramTerminating state is eventually reached, which means that the root finish

does not block indefinitely and is eventually released. This result demonstrates that

the optimistic protocol can recover the control flow of a computation correctly.

4.10 Finish Resilient Store Implementations

The resilient store is a key factor in the performance and the survivability of the TD

implementation. Cunningham et al. [2014] used three resilient store types to evaluate

the overhead of RX10 using the pessimistic finish protocol. One of the stores is based

on an off-the-shelf Java-based resilient store called ZooKeeper [Hadoop/ZooKeeper],

which is not suitable for HPC platforms. The two other stores are writen in X10

itself, therefore, they can execute on HPC platforms by compiling them to Native X10

programs over MPI-ULFM 3.

One of the two HPC-suitable stores is a centralized store that keeps all resilient

finish objects at place-zero assuming that place-zero will survive all failures. The

centralized nature of the store simplifies the implementation of the resilient protocol.

However, it results in a performance bottleneck with large numbers of concurrent

3Cunningham et al. [2014] evaluated the three stores over X10RT-Sockets, which was the only trans-
port layer with resilience support at that time.

90 An Optimistic Protocol for Resilient Finish

finish objects and tasks. The other store is a distributed store that replicates the state

of each finish object at two places — the home place of the finish, which holds the

master replica, and the next place, which holds a backup replica. Each task and finish

signal is synchronously replicated on both replicas. When the master replica fails, the

backup replica detects the failure and triggers the adoption mechanism defined by

the protocol. Unfortunately, this implementation was later removed from the code

base of RX10 due to its complexity and instability. As a result, users of RX10 are

currently limited to using the non-scalable centralized place-zero finish store.

4.10.1 Reviving the Distributed Finish Store

Because a centralized place-zero finish store can significantly limit the performance

of RX10, we decided to reimplement a distributed finish store for RX10 for both

optimistic and pessimistic protocols. Using TLA’s model checker, we identified a

serious bug in the replication protocol described in [Cunningham et al., 2014] for

synchronizing the master and the backup replicas of a finish. The problem in their

implementation is that the master replica is in charge of forwarding task signals to

the backup replica on behalf of the tasks. If the master dies, a task handles this failure

by sending its signal directly to the backup. In cases when the master fails after

forwarding the signal to the backup, the backup receives the same signal twice — one

time from the dead master and one time from the task itself. This mistake corrupts

the task counters at the backup and results in incorrect termination detection.

Using TLA, we designed a replication protocol that requires each task to com-

municate directly with the master and the backup. The protocol ensures that each

signal will be processed only once by each replica in failure-free and failure scenarios.

When one replica detects the failure of the other replica, it recreates the lost replica on

another place using its state. The protocol ensures that if both replicas are lost before

a recovery is performed, the active tasks will reliably detect this catastrophic failure,

which should lead the RX10 runtime to terminate. Otherwise, the distributed store

can successfully handle failures of multiple unrelated places. Because the failure of

place-zero is unrecoverable in the X10 runtime system, our distributed finish imple-

mentations do not replicate the finish constructs of place zero (the same optimization

is used in [Cunningham et al., 2014]). The full specification of the replication protocol

is available in Appendix C.

In the performance evaluation section, we use these acronyms to refer to the

different implementations of the optimistic and pessimistic protocols: pessimistic

place-zero finish (P-p0), optimistic place-zero finish (O-p0), pessimistic distributed

finish (P-dist), and optimistic distributed finish (O-dist).

4.11 Performance Evaluation

In this chapter, we evaluate the optimistic and pessimistic finish protocols using micro-

benchmarks that represent patterns of task graphs with different communication

intensities. We compare the centralized and distributed implementations of these

§4.11 Performance Evaluation 91

protocols, aiming to identify the protocol-implementation combination that delivers

best performance for certain task graphs. In the next chapter, in Section 5.4.4, we

perform the same evaluation using representative applications from the molecular

dynamics and machine learning domains.

4.11.1 Experimental Setup

We conducted the following experiments on Raijin supercomputer at NCI, the Aus-

tralian National Computing Infrastructure. Each compute node in Raijin has a dual

8-core Intel Xeon (Sandy Bridge 2.6 GHz) processors and uses an Infiniband FDR

network. We allocated 10 GiB of memory per node and statically bound each place to

a separate core. Each core is oversubscribed with two internal place threads: a worker

thread4 for handling user tasks, and an immediate thread5 for handling low-level

runtime communication.

We use one core per place because most of the evaluated distributed task patterns

create one task at the majority of places (i.e. single remote task, flat fan-out, flat

fan-out message back, tree fan-out, and ring around). Only two distributed patterns

(the all-to-all patterns) create large number of local parallel tasks per place. For consis-

tency, we decided to evaluate all the patterns using the same mapping configuration.

We believe that one mapping strategy is sufficient for the purpose of the experiments,

which is comparing the overhead of the different TD protocols.

We built MPI-ULFM from revision e87f595 of the master branch of the repos-

itory at https://bitbucket.org/icldistcomp/ulfm2.git. We built the X10

compiler and runtime from source revision 36ca628 of the optimistic branch of

our repository https://github.com/shamouda/x10.git, which is based on re-

lease 2.6.1 of the X10 language.

4.11.2 BenchMicro

We use the BenchMicro.x10 program, designed by Cunningham et al. [2014] for

evaluating the resilience overhead of X10 in representative computation patterns6.

We modified the program to start all the computations from the middle place, rather

than from place-zero. This avoids giving an unfair advantage to the centralized

implementations by allowing them to handle most of the signals locally. We also

modified the warm-up procedure to only execute the all-to-all pattern, rather than

executing all the patterns, to save execution time on Raijin. The all-to-all pattern

puts each place in communication with each other place, which we find sufficient for

warming up the transport layer at all places.

4One worker thread is configured by setting the environment variable X10 NTHREADS=1
5One immediate thread is configured by setting the environment variable X10 NUM IMMEDIATE

THREADS=1
6The source code of BenchMicro is available at x10/x10.dist/samples/resiliency/BenchMicro.x10

92 An Optimistic Protocol for Resilient Finish

For each computation pattern, we measure its execution time with the following

runtime configurations:

• non-resilient: X10 with the default non-resilient finish implementation available

in the X10 2.6.1 release.

• P-p0: RX10 using the place-zero pessimistic finish available in the X10 2.6.1

release.

• O-p0: RX10 using our proposed place-zero optimistic finish.

• P-dist: RX10 using our proposed distributed pessimistic finish.

• O-dist: RX10 using our proposed distributed optimistic finish.

We measured the performance using 256, 512 and 1024 places, with one place

per core. Each pattern in each configuration was executed 30 times. In the following

figures, we show the median with error bars representing the range between the 25th

percentile, and the 75th percentile. Table 4.2 and Table 4.3 summarize the performance

results with 1024 places.

4.11.2.1 Performance Factors

To clarify the performance results obtained by the different finish implementations,

we review two important performance factors:

Garbage Collection Messages: The pessimistic finish implementations do not

maintain remote references to the LocalFinish objects created at places visited within

a finish scope. The local garbage collector of each place eventually deletes these

objects after their tasks complete. On the other hand, the non-resilient finish and the

optimistic resilient finish implementations maintain remote references to the local

finish objects for future use. After a finish terminates, explicit garbage collection

messages are sent asynchronously to clean up the LocalFinish objects. The absence

of Garbage Collection (GC) messages in the pessimistic implementations gives them

a performance advantage over the optimistic implementations. The GC messages can

also be a source of performance variability for the optimistic finish implementations.

In the BenchMicro program for example, running multiple iterations of the same

pattern to obtain aggregate performance results is likely to cause GC messages from

a previous iteration to interfere with TD messages of a current iteration.

Releasing a Finish: Depending on the finish implementation, releasing a finish

can be done locally or through a remote communication. The non-resilient implemen-

tation and the resilient distributed implementations release a finish locally, whereas

the resilient place-zero implementations release a finish remotely. The non-resilient

finish can directly release itself because it handles its termination detection indepen-

dently. A resilient place-zero finish delegates termination detection to the resilient

finish object at place zero; therefore, releasing a finish requires a remote message from

place zero to the finish home place. On the other hand, a resilient distributed finish

delegates termination detection to the master replica located at the same place as the

§4.11 Performance Evaluation 93

finish; therefore, releasing a finish is done locally. To conclude, as the number of

concurrent finishes increases, the cost of releasing a finish is expected to grow linearly

with the place-zero implementations and to remain constant with the distributed

implementations.

4.11.2.2 Performance Results

In the following sections, we analyse the scalability and the resilience overhead of

different computation patterns.

1. Local Finish

The first pattern represents a local finish governing 100 local activities, as performed

by this code:

1 finish { for (i in 1..100) async S; }

Spawning local parallel tasks is commonly used in X10 programs for exploiting

multi-core parallelism within a node. The first release of RX10, in version 2.4.1,

did not differentiate tasks spawned locally from tasks spawned remotely; all tasks

involved interactions with the resilient store for tracking their state. As a result,

a local finish governing 100 tasks could suffer a slowdown of up to 1000x with a

centralized resilient finish implementation [Grove et al., 2019].

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

256 512 1024

T
im

e
 (

s
e
c
o
n
d
s
)

places

non-resilient
P-p0
O-p0

P-dist
O-dist

Figure 4.6: BenchMicro: local finish performance.

A major enhancement to RX10, in version 2.6.1, was achieved by the X10 team by

omitting interactions with the resilient store for tasks spawned locally [Grove et al.,

2019]. Since the failure of a place results in the immediate loss of its local tasks, using

the resilient store to track the exact number of local tasks at each place is not useful.

Hence, a non-resilient local counter is sufficient for tracking a local fragment of the

94 An Optimistic Protocol for Resilient Finish

task tree at a certain place. When the counter reaches zero, the place sends a single

message to the resilient store to report the termination of the root task of the local

fragment, only if the root task was received from another place. Following the same

concept, a finish does not need to be recorded in the resilient store until it spawns a

remote task. Consequently, the resilience overhead of a local finish can be virtually

eliminated regardless of how many local tasks it controls.

All four resilient finish implementations under evaluation in this chapter include

the local task and finish optimizations. The results in Figure 4.6 show comparable

performance between the different finish configurations. Minor implementation dif-

ferences are behind the slight variation in performance. As shown in Table 4.2, with

1024 places, there is no significant slowdown for the place-zero finish implementations

versus non-resilient finish. The distributed implementations are slower by a factor

of 1.2 not due to a communication overhead, but due to a minor implementation

difference in the way the finish objects are created and recorded locally.

2. Single Remote Task

The second pattern is for a finish that spawns a single asynchronous remote task at

the next place, as performed by the following code:

1 val home = here;

2 val next = Place.places().next(home);

3 finish at (next) async S;

This pattern creates a Finish object at the home place and a LocalFinish object

at the next place. Despite the additional asynchronous GC message for deleting the

LocalFinish object, optimistic finish outperforms pessimistic finish in this pattern,

as shown in Figure 4.7. With 1024 places, the performance improvement achieved by

the optimistic protocol is 18% with a place-zero finish and 29% with a distributed

finish.

Because the number of spawned tasks does not depend on the number of places,

this pattern is expected to achieve a constant scaling. However, the results show an

unexpected increase in the execution time as the number of places increases, even in

non-resilient mode. The same trend was observed when we assigned two cores per

place on Raijin to reduce the possible jitter due to oversubscribing each core with two

threads, and when testing this pattern using native X10 over sockets on the NECTAR

cloud. In contrast, the expected non-increasing performance was achieved using the

managed X10 runtime (i.e. X10 compiled to Java) over sockets on the NECTAR cloud.

Therefore, we conjecture that there is a limitation in the native X10 runtime that

causes it to suffer a slight decrease in performance as the number of places increases,

and that the increasing execution time in the “single remote task” pattern is not due

to the implementation of finish.

3. Flat Fan-Out

A typical X10 program uses a flat fan-out at least once during execution to distribute

the work over the available places. In a flat fan-out, a finish spawns an asynchronous

§4.11 Performance Evaluation 95

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

256 512 1024

T
im

e
 (

s
e
c
o
n
d
s
)

places

non-resilient
P-p0
O-p0

P-dist
O-dist

Figure 4.7: BenchMicro: single remote task performance.

task directly at each place, as shown in the following code:

1 finish { for (p in places) at (p) async S; }

This pattern is expected to achieve linear scalability as the number of places

increases. Figure 4.8 shows that the different finish implementations indeed scale lin-

early, and that the optimistic finish outperforms pessimistic finish in most cases. With

1024 places, the performance improvement achieved by the optimistic protocol is 59%

with a place-zero finish and only 14% with a distributed finish. We conjecture that

the high performance variability with P-p0 with 1024 places is due to the interference

of the immediate thread with the worker thread at place zero.

Assuming the number of places is N , the expected total number of messages for

tracking the tasks is: 3 ∗N for P-p0 (N to fork, N to begin, and N to terminate) and

2 ∗ N for O-p0 (N to fork and N to terminate). In a distributed finish, the master

replica is hosted at the home place of the finish. Thus tasks originating from the

finish home execute the fork signal at the master replica locally. The fork signals of

the backup replica and all the begin and terminate signals generate remote messages.

Therefore, the total number of TD messages for a flat fan-out is 5 ∗N for P-dist (N

to fork, 2N to begin, and 2N to terminate) and 3 ∗ N for O-dist (N to fork and 2N

to terminate). The increase in number of TD messages and the use of synchronous

replication causes a distributed finish to suffer significant resilience overhead in this

pattern. Moreover, since this pattern creates only one finish, the scalability advantage

of a distributed finish store is not leveraged.

X10 applications usually contain multiple task patterns, of which flat fan-out is

only one. The cost of the fan-out pattern in the distributed modes may result in

high performance penalty for applications that can benefit from the scalability of

a distributed finish in other patterns. One possible optimization for a distributed

96 An Optimistic Protocol for Resilient Finish

finish is to avoid replicating the finishes whose home is place zero [Cunningham

et al., 2014]. While in BenchMicro we start all the patterns from the middle place, in

practice, most (if not all) X10 applications start a flat fan-out from place zero. Because

the failure of place zero is considered catastrophic in RX10, resilient termination

detection for a finish hosted at place zero is simply wasted work. This optimization

is available implicitly in the resilient place-zero finish implementations, because a

finish belonging to place zero is not replicated elsewhere. Therefore, it is fair to

add this optimization to the distributed finish implementations as well. We used

this optimization to achieve better performance with distributed finish for some

applications that we evaluate in the next chapter.

p q r s

finish

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

256 512 1024

T
im

e
 (

s
e
c
o
n
d
s
)

places

non-resilient
P-p0
O-p0

P-dist
O-dist

 0

 0.05

 0.1

 0.15

 0.2

256 512 1024

T
im

e
 (

s
e
c
o
n
d
s
)

places

non-resilient
P-p0
O-p0

Figure 4.8: BenchMicro: flat fan-out performance. The left figure shows the scaling pefor-
mance for all finish modes; The right figure zooms in on the same results for place-zero
modes only.

4. Flat Fan-Out Message Back

In this pattern, a finish governs a flat fan-out to all places, and each place responds

back by spawning an asynchronous message at the finish home, as performed by this

code:

1 val home = here;

2 finish {

3 for (p in places) at (p) async {

4 at (home) async S;

5 }

6 }

This pattern is often used for gathering partial results computed by individual

places at one place. Its scaling performance, as shown in Figure 4.9, is generally

similar to the scaling performance of the fan-out pattern in Figure 4.8. However,

doubling the number of tasks governed by the finish makes the pessimistic resilience

§4.11 Performance Evaluation 97

overhead more evident in this pattern than in the fan-out pattern, especially with a

distributed finish. The performance improvement achieved by the optimistic protocol

is 15% with a place-zero finish and 68% with a distributed finish. We conjecture

that the high performance variability with O-p0 with 512 and 1024 places is due to

interference from garbage collection messages and/or the immediate thread.

p q s

finish

r

r

r r r

@ place r

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

256 512 1024

T
im

e
 (

s
e
c
o
n
d
s
)

places

non-resilient
P-p0
O-p0

P-dist
O-dist

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

256 512 1024

T
im

e
 (

s
e
c
o
n
d
s
)

places

non-resilient
P-p0
O-p0

Figure 4.9: BenchMicro: flat fan-out message back performance. The left figure shows the
scaling peformance for all finish modes; The right figure zooms in on the same results for
place-zero modes only.

5. Tree Fan-Out

The tree fan-out pattern traverses the places recursively assuming a binary tree topol-

ogy of the places. The root place creates the top most finish which spawns two

asynchronous tasks at its direct children. The child receives the task and creates a

nested finish that spawns two other tasks at its children, and so on. The following

code demonstrates this pattern:

1 def traverse() {

2 if (noChildren()) return;

3 finish {

4 at (getChild1(here)) async { traverse(); }

5 at (getChild2(here)) async { traverse(); }

6 }

7 }

With only three points, the performance results in Figure 4.10 seem to show an

almost constant scaling; however, this pattern is expected to achieve a logarithmic

scaling as the number of places increases. The tree fan-out pattern creates a finish at

each intermediate place, governing two tasks only. Because the task-to-finish ratio is

small, the relative advantage of the optimistic finish is not significant. Meanwhile, the

98 An Optimistic Protocol for Resilient Finish

results show a strong advantage for the distributed finish implementations compared

to the centralized implementations. The large number of concurrent finishes created

by this pattern generates a sequential bottleneck at place zero, which significantly

slows down the execution. On the other hand, the distributed finish achieves better

performance by balancing the termination detection load among the places. With

1024 places, the slowdown factor versus non-resilient finish is 8.6, 8.5, 1.4, 1.1 for P-p0,

O-p0, P-dist, O-dist, respectively. The performance improvement achieved by the

optimistic protocol is 2% with a place-zero finish and 27% with a distributed finish.

p

finish

r s

finish

q

t u

finish

 0

 0.05

 0.1

 0.15

 0.2

 0.25

256 512 1024

T
im

e
 (

s
e
c
o
n
d
s
)

places

non-resilient
P-p0
O-p0

P-dist
O-dist

Figure 4.10: BenchMicro: tree fan-out performance.

6. All-To-All

The all-to-all pattern creates a single finish that governs a fan-out to all the places,

followed by a fan-out from each place to all the places. The following code demon-

strates this process:

1 finish {

2 for (p in places) at (p) async {

3 for (q in places) at (q) async S;

4 }

5 }

§4.11 Performance Evaluation 99

A graphical demonstration for this pattern using four places is in Figure 4.11.

If the number of places is N , a single finish will track a total of N 2 + N tasks

directly. Reducing the task-level TD signals by adopting the optimistic finish protocol

results in significant performance improvement for this pattern. With 1024 places,

the performance improvement achieved by the optimistic protocol is 53% with a

place-zero finish and 59% with a distributed finish.

p q r s

finish

p q r s p q r s p q r s p q r s

 0

 20

 40

 60

 80

 100

 120

 140

256 512 1024

T
im

e
 (

s
e
c
o
n
d
s
)

places

non-resilient
P-p0
O-p0

P-dist
O-dist

Figure 4.11: BenchMicro: all-to-all performance.

7. All-To-All With Nested Finish

This pattern is similar to the all-to-all pattern with the exception that each internal

fan-out is governed by its own finish. As shown in the code below, the top finish in

the first line governs N nested finishes, one per place.

1 finish {

2 for (p in places) at (p) async {

3 finish {

4 for (q in places) at (q) async S;

5 }

6 }

7 }

100 An Optimistic Protocol for Resilient Finish

p q r s

finish

p q r s p q r s p q r s p q r s

finish finish finish finish

 0

 10

 20

 30

 40

 50

 60

 70

256 512 1024

T
im

e
 (

s
e
c
o
n
d
s
)

places

non-resilient
P-p0
O-p0

P-dist
O-dist

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

256 512 1024

T
im

e
 (

s
e
c
o
n
d
s
)

places

non-resilient
P-dist
O-dist

Figure 4.12: BenchMicro: all-to-all with nested finish performance. The left figure shows the
scaling peformance for all finish modes; The right figure zooms in on the same results for
distributed modes only.

Decomposing a large finish to multiple concurrent finishes at different places can

improve the performance by allowing the TD logic to be executed in parallel at dif-

ferent places. Our results show that adding the nested finish to the all-to-all pattern

improves the performance by 40% in non-resilient mode. A more significant im-

provement is achieved in resilient mode using the distributed finish implementations:

97% with P-dist and 94% with O-dist. In contrast, the centralized implementations,

P-p0 and O-p0, are respectively 7% and 105% slower due to the sequential bottleneck

imposed by place-zero and the added cost of creating and releasing the concurrent

finish objects.

Modest improvement is credited to the optimistic finish protocol in this pattern.

With 1024 places, the performance improvement due to the optimistic protocol is 11%

with a place-zero finish and 7% with a distributed finish. The “all-to-all with nested

finish” pattern basically executes N parallel “flat fan-outs”. To put the numbers in

context, remember that the improvement in the flat fan-out pattern with 1024 places is

59% with a place-zero finish and 14% with a distributed finish. The centralized nature

of the place-zero implementations prevents the “all-to-all with nested finish” pattern

from exploiting the available distributed parallelism and results in less performance

efficiency. On the other hand, the improvement achieved with a distributed finish is

comparable to the “flat fan-out” pattern.

§4.11 Performance Evaluation 101

8. Ring Around Via At

Assuming a ring topology for the places, this pattern traverses the places in a clock-

wise direction using the at construct, as shown below:

1 def ring(destination:Place):void {

2 if (destination == here) return;

3 val next = Place.places().next(here);

4 at (next) ring(destination);

5 }

For N places, this pattern creates N tasks, one per place, all chained together such

that a left task is pending on the termination of the right task. Blocking is achieved

by the at construct, which implicitly creates a finish to track the task executing the

body of the at. The choice of the resilient finish implementation has little effect in

this pattern due to sequential nature of the execution and the small task-to-finish

ratio. Figure 4.13 shows that the four resilient implementations achieve almost the

same performance. With 1024 places, the slowdown factor versus non-resilient finish

is 1.8, 1.7, 1.8, 1.8 for P-p0, O-p0, P-dist, O-dist, respectively.

p q r sat at at

 0

 2

 4

 6

 8

 10

 12

256 512 1024

T
im

e
 (

s
e
c
o
n
d
s
)

places

non-resilient
P-p0
O-p0

P-dist
O-dist

Figure 4.13: BenchMicro: ring around via at performance.

102 An Optimistic Protocol for Resilient Finish

4.11.3 Conclusions

From the previous analysis, we can draw the following conclusions:

1. Our proposed optimistic protocol is successfully reducing the resilience over-

head of RX10. Implementing more efficient GC mechanisms for deleting remote

LocalFinish objects may further improve the performance of the optimistic

finish implementations.

2. The effect of the optimistic protocol is more evident as the number of remote

tasks managed by a finish increases.

3. The more concurrent and distributed the finish scopes are in the program, the

better the performance of the resilient distributed finish implementations.

Table 4.2: Execution time in seconds for BenchMicro patterns with 1024 places.

Pattern Non-resilient P-p0 O-p0 P-dist O-dist

1 Local finish 3.20E-05 3.35E-05 3.20E-05 3.70E-05 3.75E-05

2 Single remote task 1.20E-04 2.80E-04 2.30E-04 3.10E-04 2.20E-04

3 Flat fan-out 7.25E-02 1.67E-01 6.87E-02 6.69E-01 5.74E-01

4 Flat fan-out message back 1.51E-01 2.05E-01 1.76E-01 3.37E+00 1.09E+00

5 Tree fan-out 1.76E-02 1.52E-01 1.49E-01 2.52E-02 1.85E-02

6 All-to-all 1.12E+00 5.77E+01 2.69E+01 1.07E+02 4.40E+01

7 All-to-all with nested finish 6.81E-01 6.19E+01 5.50E+01 2.81E+00 2.60E+00

8 Ring around via at 5.67E+00 1.00E+01 9.88E+00 1.02E+01 1.01E+01

Table 4.3: Slowdown factor versus non-resilient finish with 1024 places. Slowdown factor
= (time resilient / time non-resilient). The “Opt. %” columns show the percentage of
performance improvement accredited to the optimistic finish protocol.

Pattern P-p0 O-p0 Opt. % P-dist O-dist Opt. %

1 Local finish 1.0 1.0 0% 1.2 1.2 0%

2 Single remote task 2.3 1.9 18% 2.6 1.8 29%

3 Flat fan-out 2.3 0.9 59% 9.2 7.9 14%

4 Flat fan-out message back 1.4 1.2 15% 22.3 7.2 68%

5 Tree fan-out 8.6 8.5 2% 1.4 1.1 27%

6 All-to-all 51.4 23.9 53% 95.6 39.2 59%

7 All-to-all with nested finish 90.9 80.8 11% 4.1 3.8 7%

8 Ring around via at 1.8 1.7 1% 1.8 1.8 0%

§4.12 Summary 103

4.12 Summary

This chapter presented optimistic finish, a termination detection protocol for the async-

finish programming model. By reducing the signals required for tracking tasks

and finish scopes, our protocol reduces the resilience overhead of communication-

intensive and highly-decomposed task-parallel kernels. Our BenchMicro analysis,

which evaluates the resilience overhead of different computation patterns, gives

insights into the performance of RX10 with different TD implementations and en-

courages certain task decomposition patterns for achieving better performance. For

example, the ‘tree fan-out’ pattern and the ‘all to all with nested finish’ pattern demon-

strate the advantage of decomposing large finish scopes into nested distributed finish

scopes assuming a distributed finish implementation is available. The task patterns

frequently used in an application should guide the user’s choice of a specific TD

protocol and implementation.

Moving to the next chapter, we change the focus from improving the efficiency

of the resilient async-finish model to improving its productivity. We demonstrate

how we exploited the composability and failure awareness capabilities of this model

to build resilient abstractions that can reduce the programming effort required for

building resilient applications in X10.

104 An Optimistic Protocol for Resilient Finish

Chapter 5

Towards Data Resilience in X10

Multi-resolution resilience — our approach to reconciling resilience, performance,

and productivity — depends on the availability of efficient and composable low-level

resilient constructs that can be used for building productive higher-level resilient con-

structs. In Chapter 4, we focused on the efficiency of resilient finish as a low-level

resilient construct for the APGAS model. In this chapter, we focus on its compos-

ability. We demonstrate the advantage of providing resilient nested parallelism in

the APGAS model for building composable resilient frameworks that can reduce the

programming complexity required to create fault-tolerant applications.

Data resilience — the ability to preserve data in spite of failure — is a challenging

aspect in the development of resilient applications. In order to remove this burden

from the programmer, we designed two resilient stores that can be used by applica-

tions for saving critical data or used as a foundation for building higher-level resilient

frameworks.

Section 5.1 describes and justifies the adopted design principles for adding data

resilience in the APGAS model. Section 5.2 describes a novel extension to the async-

finish programming model to support resilient data atomicity that enabled us to

provide a transactional resilient store for RX10 applications. Following that, we

dedicate Section 5.3 to describing productive resilient application frameworks for

X10. In particular, in Section 5.3.1, we describe the implementation details of the

two resilient stores; in Section 5.3.2, we describe a resilient iterative framework for

bulk-synchronous applications; and in Section 5.3.3, we describe a parallel workers

framework suitable for embarrassingly parallel applications. We conclude in Sec-

tion 5.4 with a performance evaluation using a suite of resilient applications.

This chapter is based on work described in the following publications:

• “A resilient framework for iterative linear algebra applications in X10” [Hamouda

et al., 2015], which describes the initial implementation of the iterative applica-

tion framework.

• “Resilient X10 over MPI user level failure mitigation” [Hamouda et al., 2016],

which describes, among other things, enhancements to the performance of

iterative applications by exploiting MPI-ULFM capabilities.

105

106 Towards Data Resilience in X10

• “Failure recovery in resilient X10” [Grove et al., 2019], which is the outcome

of a close collaboration with the X10 team on designing and implementing a

generic resilient store for X10. While I focused on developing a native resilient

store that is built entirely using X10 constructs, Olivier Tardieu provided an-

other implementation of the store based on an of-the-shelf resilient store called

Hazelcast [Hazelcast, Inc., 2014] for use only by Managed X10. Both the native

store and the Hazelcast-based store of X10 lack support for distributed transac-

tions 1. The work described in this chapter related to extending finish with

atomicity support and the consequent support for distributed transactions was

done without significant collaboration with the X10 team. These capabilities

have not yet been contributed to the X10 open-source code repository. The work

in [Grove et al., 2019] focuses the performance evaluation on Managed X10

and the Hazelcast-based store, except for the LULESH experiment which used

the native store. The focus of my thesis is on high-performance computing,

therefore I focus my evaluation in this chapter on Native X10 over MPI-ULFM

and on the native resilient store. Finally, the iterative framework described

in previous publications [Hamouda et al., 2015, 2016] was enhanced by David

Grove by integrating it with the PlaceManager class (see Section 2.4.5.1) first

described in [Grove et al., 2019].

5.1 A Resilient Data Store for the APGAS Model

The APGAS model represents a computation as a control flow of nested parallel tasks

and global data partitioned among the places. Failures result in gaps in the control

flow and the application data. A resilient APGAS programming model must, there-

fore, enable restoring a consistent state of both the control flow and the data of the

application to enable it to complete successfully after failures. Initial development of

RX10 [Cunningham et al., 2014] focused mainly on recovering the control flow and

left the burden of protecting application data to the programmer. Although the pro-

vided failure-awareness semantics allow implementing a variety of data redundancy

techniques, this requires considerable programming effort to ensure the correctness

and efficiency of the implementation.

In collaboration with the X10 team in IBM, we addressed this limitation by extend-

ing RX10 with a resilient data store abstraction in the form of a distributed concurrent

key-value map. We developed two implementations of the store: a place-local store

that is suitable for coordinated checkpointing (Section 5.3.1.1) and a transactional

store that is suitable for dynamic applications with arbitrary data access patterns

(Section 5.3.1.2). Reads and writes to the resilient store can be mixed arbitrarily with

normal reads and writes to other memory locations; however, data preservation and

atomicity are guaranteed only to the resilient store data.

Our resilient stores provide a high degree of reliability; however, certain failure

scenarios, which are rare in practice, can lead to loss of resilient data. We refer to

1The Hazelcast-based store of X10 does not expose the transaction functionality available in Hazelcast.

§5.1 A Resilient Data Store for the APGAS Model 107

failures that result in losing data from the resilient store as catastrophic failures. Our

implementations guard each data access operation with validations that guarantee

reliable detection and reporting of catastrophic failures.

The following four sections describe the underlying design principles of our

APGAS resilient store.

5.1.1 Strong Locality

Aligned with the strong locality feature of the APGAS model, the resilient store is

partitioned among the places such that each key-value record explicitly belongs to one

place. The store’s data at a certain place can be accessed via resilient get(key) and

set(key, value) operations that can nest freely with other X10 constructs. Thanks

to the Happens-Before Invariance (HBI) principle underlying the semantics of RX10,

the programmer can use the store with the guarantee that, before the failure is raised

to the application, orphan tasks updating the store will either complete successfully

or never start. In other words, orphan tasks and the application’s recovery tasks will

not race, which simplifies reasoning about the state of the store’s data in the presence

of failure.

Each key in the store has a version, a value, and a lock that guards concurrent

access to it. The features of the lock are described in Section 5.2.3.2.

5.1.2 Double In-Memory Replication

The storage medium used by the resilient store is a critical factor for determining its

survivability and performance. Based on the type of storage medium, resilient stores

can be classified into disk-based or diskless stores.

A disk-based resilient store for an HPC environment typically writes its data in a

Parallel File System (PFS), which is available in most large-scale infrastructures. It can

survive the failure of the entire computation thanks to the durability of disk storage.

However, the high I/O latency of the PFS can slow down data access operations and

make the resilient store a performance bottleneck at scale. As the load of disk access

increases, the PFS itself can be a source of failures, reducing the reliability of the

application [Sato et al., 2014].

A diskless resilient store leverages the low latency of memory access by writing

the data in memory while protecting against data loss by employing a data redun-

dancy mechanism, such as replication or data encoding [Cappello, 2009]. The data

redundancy mechanism places an upper bound on the survivability of the store. For

example, replicating the data at two processes (i.e. double in-memory replication)

enables the store to only survive failures that do not kill these two processes at the

same time. Increasing the number of replicas improves the store’s survivability at

a higher performance and memory cost. Because, in practice, most failures impact

one or a few nodes simultanously [Lifflander et al., 2013; Sato et al., 2012; Meneses

et al., 2012; Moody et al., 2010], a double in-memory resilient store can protect the

application from the majority of failures.

108 Towards Data Resilience in X10

We designed the X10 resilient store based on double in-memory replication. As

shown in Figure 5.1, each place owns a master replica of its data and a slave replica

of its left neighbor’s data.

Master 0 Master 1

Slave 0

Master 2

Slave 1Slave 3

Place 0 Place 1 Place 2 Place 3

Master 3

Slave 2

Figure 5.1: Resilient store replication.

5.1.3 Non-Shrinking Recovery

As previously described in our taxonomy in Section 2.2.3.1, resilient runtime systems

can support shrinking and/or non-shrinking recovery. For statically partitioned

applications, which represent a wide class of HPC applications, shrinking recovery

is challenging to use because it requires the programmer not only to adjust the

communication topology to accommodate fewer processes, but also to handle possible

load imbalance when the workload of the failed process shifts to other processes. Non-

shrinking recovery avoids these complexities by resuming the computation on the

same number of processes. See Figure 5.2 for a demonstration of shrinking and

non-shrinking recovery strategies for a statically partitioned 2D domain.

Our earliest work with RX10, as published in [Hamouda et al., 2015], evaluates

the performance of shrinking and non-shrinking recovery for three machine learning

benchmarks: linear regression, logistic regression, and PageRank. Linear regression

and logistic regression store the input classification examples in a dense matrix par-

titioned into N horizontal blocks, where N is the number of places. Each block

holds 50K classification examples, with 500 features each. PageRank stores the in-

put document graph in a sparse matrix and follows the same partitioning strategy

above. Each block holds 2M edges of the graph. The applications achieved data

resilience by checkpointing each block both in local memory and in the memory of

one neighboring place. Figure 5.3 shows the performance of the three applications

after experiencing one place failure using an old version of X10 (v2.5.2).

Non-shrinking recovery results in the fastest performance for the three applica-

tions. It maintains the balance between the places and limits the need for communica-

tion during recovery to the new place only. Shrinking recovery without repartitioning,

in our implementation, assigns the blocks of the failed process to only one live pro-

cess (similar to the example in Figure 5.2-b). Similar to non-shrinking recovery, only

one process needs remote communication for recovery. The rest of the processes

recover their blocks from their local memory. Unlike non-shrinking recovery, the load

between the places is not balanced, which results in slower performance. Finally,

§5.1 A Resilient Data Store for the APGAS Model 109

Place 0

b0 b1

Initial matrix partitioning

a) Initial partition mapping

b) Shrinking recovery without repartitioning, consequently, load balancing is sacrificed

c) Shrinking recovery with repartitioning for load balancing

d) Non-shrinking recovery

b2 b3

b4 b5

b0 b1

Place 1

b2 b3

Place 2

b4 b5

Place 0

b0 b1

New Place

b2 b3

Place 2

b4 b5

Place 0 Place 2

b4 b5b0 b1

b2 b3

Place 0 Place 2

c0 c1 c3 c3

Figure 5.2: Shrinking recovery versus non-shrinking recovery for a 2-dimensional data grid.

shrinking recovery with load balancing results in the slowest performance and the

highest performance variability. Changing the block partitioning to achieve load

balancing means that the content of a new block may have been distributed among

multiple processes before the failure (similar to the example in Figure 5.2-c). Dur-

ing recovery, each place communicates with a group of other places to restore the

contents of its blocks, which explains the resulting performance overhead. Many

optimizations have been done to RX10 and the iterative framework since publishing

this paper. However, the results are still useful as a demonstration of the benefit of

non-shrinking recovery for statically balanced bulk-synchronous applications.

Our store supports non-shrinking recovery. Lost replicas due to a place failure

are recovered on a spare place using the redundancy available in the store, as shown

in Figure 5.4. The PlaceManager class provides a logical group of places, named the

active places, that maintains a fixed size despite failures as long as spare resources

are available. By replacing a failed place with a new place at the same location, it

automatically supports place virtualization by allowing the program to use the place

order as its identifier, rather than using the physical place id (see Section 2.4.5.1). Our

store spans over the group of active places and recovers the data with the awareness

that a failed place will be replaced with a new place in the same order.

110 Towards Data Resilience in X10

 0

 10

 20

 30

 40

 50

 60

 0 4 8 12 16 20 24 28 32 36 40 44

to
ta

l
ti
m

e
 (

s
)

places

Linear Regression, weak scaling
50K examples per place, 500 features, Native X10 v2.5.2

shrinking with load balancing
shrinking

non-shrinking
non-resilient (no failure)

 0

 10

 20

 30

 40

 50

 60

 0 4 8 12 16 20 24 28 32 36 40 44

to
ta

l
ti
m

e
 (

s
)

places

Logistic Regression, weak scaling
50K examples per place, 500 features, Native X10 v2.5.2

shrinking with load balancing
shrinking

non-shrinking
non-resilient (no failure)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 4 8 12 16 20 24 28 32 36 40 44

to
ta

l
ti
m

e
 (

s
)

places

PageRank, weak scaling
2M edges per place, Native X10 v2.5.2

shrinking with load balancing
shrinking

non-shrinking
non-resilient (no failure)

Figure 5.3: Weak scaling performance for three GML benchmarks with non-shrinking and
shrinking recovery (see [Hamouda et al., 2015] for more details).

Master 0 Master 1

Slave 0

Master 2

Slave 1Slave 3

Place 0 Place 1 Place 2 Place 3

Master 3

Slave 2

Place 4

Active Places Spare Place

Create Slave 1

Create Master 2

Figure 5.4: Resilient store recovery.

§5.1 A Resilient Data Store for the APGAS Model 111

5.1.4 Distributed Transactions

While many applications can use the resilient store for single-place get/set operations,

other applications may require atomic multi-place operations. For example, a global

load balancing application may require a two-place write operation to steal work

from an overloaded place and assign it to an underloaded place atomically. Figure 5.5

shows another example representing a graph clustering problem where parallel tasks

perform atomic multi-place write operations to acquire remote vertices to their clus-

ters. Conflicts arise when two parallel tasks attempt to allocate the same vertex (e.g.

when task 1 and task 3 attempt to acquire their fifth vertex). The goal is to ensure

that the execution of a group of operations on a shared data structure in parallel with

other groups is serializable (i.e. equivalent to a serial execution of these groups), and

atomic (i.e. either all the operations in a group commit or none.) [Herlihy and Moss,

1993].

Task 1 Task 3Task 2

Figure 5.5: Distributed graph clustering example.

A transaction is a productive concurrency control mechanism that aims to hide

the serializability challenges from the programmer. The programmer groups a set

of read/write operation in a transaction and relies on a Transactional Memory (TM)

system to execute it, possibly with other concurrent transactions, while ensuring

serializability. A conflict happens when two concurrent transactions access the same

data item and at least one is writing. In that case, the TM system aborts at least one

of them and rolls back any performed changes. Non-conflicting parallel transactions

commit successfully and apply their changes permanently.

A Distributed Transactional Memory (DTM) system [Bernstein and Goodman,

1981] can guarantee serializable execution of transactions spanning multiple nodes

(we refer to these nodes as transaction participants). A DTM system relies on two

main modules to ensure atomic execution of distributed transactions:

• a concurrency control mechanism executing locally at each participant that can

detect conflicts, commit, or abort a piece of a transaction running at a certain

participant (see Section 5.2.3.3 for details on our implementation).

112 Towards Data Resilience in X10

• a distributed commit protocol that ensures, via a transaction coordinator, that

the effects of a transaction will persist either at all participants or at none, despite

the occurrence of failures (see Section 5.2.3.4 for details on our implementation).

Failures impose a major challenge for DTM systems. Without proper failure

awareness, a distributed commit protocol may indefinitely delay terminating trans-

actions impacted by a failure as well as other transactions depending on them. To

avoid that, DTM systems use fault tolerant commit protocols, which guarantee that

every started transaction will eventually terminate despite the failure of a transaction

coordinator or any of its participants.

Currently X10 lacks support for distributed transactions, which forces program-

mers of non-resilient and resilient applications to handle atomic multi-place opera-

tions by manually orchestrating data access via locks. However, using locks is prone

to programming errors, complicates writing composable codes, and may lead to poor

performance if concurrent access is aggressively limited [Harris et al., 2010; Saad and

Ravindran, 2011]. These problems are exacerbated when failures are considered.

To enable X10 programmers to easily apply atomic multi-place operations in their

programs, we extended X10 with support for distributed transactions over the re-

silient store (in non-resilient mode, data replication is disabled assuming the absence

of failures). A transaction can originate from any place and asynchronously span

multiple places using the nested parallelism support of X10. In the next section, we

describe the transactional finish construct — our approach for combining termination

detection and transaction commitment while allowing the full flexibility of nested

parallelism. We also detail how we relied on existing mechanisms in the RX10 run-

time to provide resilient transactions that can maintain the integrity and availability

of the resilient store in the presence of failures.

5.2 From Finish to Transaction

Similarities between the coordination mechanism used by finish for termination

detection and the coordination mechanism used by distributed commit protocols

inspired us to design a combined coordination protocol that achieves both termination

detection and distributed transaction commitment. Moreover, it turns out that RX10

already provides the required infrastructure for implementing coordination protocols

that are resilient to the loss of a coordinator and/or the loss of any coordinated place.

Many DTM systems tolerate the failure of a coordinator by writing a log of its

decisions to disk, assuming that a recovery process will eventually start and terminate

the pending transactions using the failed coordinator’s log [Mohan et al., 1986]. Other

systems avoid delaying transaction termination due to the failure of the coordinator

by requiring the participants to elect one of them as a new coordinator [Garcia-Molina,

1982; Keidar and Dolev, 1998]. In both cases, the availability of the coordinator is

critical for transaction termination. RX10 has the same requirement for the finish

objects, and for that reason, it uses a resilient store for maintaining the finish objects.

§5.2 From Finish to Transaction 113

By providing the finish resilient store, RX10 guarantees the availability of the

termination detectors throughout the execution of their tasks, which consequently

guarantees that failures will not indefinitely delay the termination of a finish. These

guarantees are of course subject to the survivability of the finish resilient store itself.

A resilient finish engages in communication with every place used within its scope,

which gives it a full and accurate knowledge of its subordinates. Finally, the network

layer provides a resilient finish with global failure detection, which enables it to take

the necessary recovery actions upon detecting the failure of any of its subordinates.

We decided to exploit these powerful capabilities for supporting resilient distributed

transactions in RX10.

We propose a transactional finish construct that handles, in addition to the normal

termination detection, atomic multi-place operations. A transactional finish eventu-

ally terminates while guaranteeing data consistency and availability in the absence

of catastrophic failures. The following subsections describe the transactional fin-

ish in more detail. When we use the term “finish”, without preceding it with the

word “transactional”, we refer to the default finish provided by X10 that is used for

synchronization only.

5.2.1 Transactional Finish Construct

Assuming that Tx is a class representing a transaction associated with a certain data

store, we propose the construct finish (tx:Tx) S;, which is used as follows:

try { finish (tx:Tx) S; } catch (e:MultipleExceptions) { E; }

By parameterizing a finish with a Tx instance, this finish works as a transactional

finish that not only waits for the termination of all asynchronous tasks created by

S, but also ensures that all data access operations, in the form of tx.get(key) and

tx.set(key, value), invoked by S are executed atomically.

The runtime system implicitly creates an instance of type Tx and attaches it to the

finish. Each transaction has a globally unique identifier accessed by tx.id.

5.2.1.1 Nesting Semantics

A transactional finish can include within its scope nested invocations of finish, async

and at. Although syntactically, we also allow a transactional finish to include nested

transactional finishes, our current implementation lacks proper support for nested

transactions [Moss and Hosking, 2006]. Therefore, the runtime system currently

executes nested transactions as independent transactions. We aim to address this

limitation in the future by exploring the diverse mechanisms proposed in the literature

for handling nested transactions.

The code in Listing 5.1 demonstrates the nesting feature of a transactional finish.

The transactional finish starting at Line 1 spawns three asynchronous tasks at places

p, s , and t . Place p sets D = 100, and place q sets C = A + B , where A is hosted

at place r , and B is hosted at place s . The finish at Line 5 is a synchronization-only

finish used to ensure that reading A and B completes before C is updated. Place t

114 Towards Data Resilience in X10

does not perform any updates on the data store. X10’s atomic construct provides

atomicity protection within a place. It is used in Line 8 and Line 12 to guard from

race conditions due to updating the shared variable gr() by the two asynchronous

tasks created by place r and place s (see Section 2.4.3 for a description of GlobalRef).

Listing 5.1: Transactional finish code example.

1 finish (tx:Tx) {

2 at (p) async tx.set("D", 100);

3 at (q) async {

4 val gr = GlobalRef[Box](new Box());

5 finish {

6 at (r) async {

7 val a = tx.get("A");

8 at (q) async atomic { gr().add(a); }

9 }

10 at (s) async {

11 val b = tx.get("B");

12 at (q) async atomic { gr().add(b); }

13 }

14 }

15 tx.set("C", gr().getValue()); // the sum of a and b

16 }

17 at (t) async { print("Hello"); }

18 }

The transactional finish at Line 1 is the transaction coordinator. After all nested

tasks complete, it implicitly starts a commit protocol that includes places p, q , r , and

s only. There is no need to include place t because it does not perform any read

or write operation on the data store. Normally, an outer finish lacks the knowledge

about the places visited within the scope of an inner finish. However, as a transaction

coordinator, a transactional finish must know all the places that accessed the data

store either directly or through a nested finish. Section 5.2.2.2 describes how we

enable a transactional finish to gain this knowledge.

5.2.1.2 Error Reporting Semantics

Like a normal finish, a transactional finish also records the exceptions thrown

within its scope and reports them through an instance of type MultipleExceptions.

A transactional finish that terminates successfully without an exception indicates a

successfully committed transaction. In contrast, a transactional finish that terminates

with an exception indicates an aborted transaction. The root cause of aborting the

transaction can be detected by inspecting the list of the reported exceptions. The list

can include: 1) instances of type DeadPlaceException (DPE) reporting the failure of a

used place (can be a participant or a non-participant in the transaction), 2) instances

of type ConflictException (CE) reporting conflicts detected at participants, or 3) any

other application-related exceptions.

While the user can catch exceptions thrown by an inner finish, doing so does

§5.2 From Finish to Transaction 115

not prevent the parent transactional finish from aborting the transaction if any of the

participants died or experienced a conflict. Therefore, the use of finish within a

transaction should be for synchronization purposes only and not for handling CEs or

DPEs.

In resilient mode, committing a transaction attempts to apply its updates on the

master and slave replicas of each participant. Depending on the specification of the

commit protocol, a transactional finish can mask a failure that impacts one of the

replicas assuming that the surviving replica will recover the lost replica using its own

state. Section 5.2.3.4 describes how our implementation handles the failure of one of

the replicas during the commit protocol.

5.2.1.3 Compiler-Free Implementation

To avoid the complexities involved in modifying the X10 compiler, we currently

provide a compiler-free implementation of the transactional finish construct. It

requires manual construction of a Tx object and manual binding of this object to a

finish as shown in the code below. The method store.makeTransaction creates a

Tx object, and the method Runtime.registerTransaction registers a transaction for

a finish. The store variable is an instance of the TxStore class that we will describe

in Section 5.3.1.2.

1 val tx = store.makeTransaction();

2 finish {

3 //must be the first action in the finish block

4 Runtime.registerTransaction(tx);

5 S;

6 }

5.2.2 Finish Atomicity Awareness

A transactional finish is a special type of finish that acts as a distributed transaction.

It runs through two phases: execution and commitment. The execution phase is when

tasks are being evaluated and spawned within the finish scope. When all tasks ter-

minate, the commitment phase starts by invoking a commit protocol to terminate

the transaction by either committing it or aborting it. Table 5.1 describes three differ-

ences between a finish and a transactional finish — all the differences are related

to tracking the participants of a transaction. In the following, we describe how we

amended the finish protocol to enable accurate tracking of transaction participants.

5.2.2.1 The Join Signal

While finish considers all places equal, a transactional finish distinguishes transaction

participants from non-participants. This distinction enables it to speed up the com-

mitment phase by ignoring non-participants. According to Mohan et al. [1986], one

of the desirable characteristics in a commit protocol is “exploitation of completely

or partially read-only transactions”. Thus, a transactional finish aims to distinguish

116 Towards Data Resilience in X10

Table 5.1: Comparison between finish and transactional finish.

Finish Transactional Finish

1 all visited places are equal

performance optimizations can be achieved by

1) distinguishing participants from non-participants and

2) distinguishing read-only participants

2
finish can forget a place once all its tasks

have terminated

a transactional finish must not forget a transaction

participant

3

an outer finish is unaware of places

visited by an inner finish

(an adopted pessimistic finish is an exception)

a transactional finish must identify all participants,

even those visited by an inner finish

read-only participants from write participants to exploit more opportunities for per-

formance optimizations.

We used the ‘join’ signal as a means of identifying the transaction participants

and their types. Each task is modified to hold two properties: whether it accessed

the resilient store, and if so, whether it accessed the store for reading only. These

properties are implicitly set by tx.get(key) and tx.set(key, value) when called by

a task. When a task terminates, it includes these properties as part of its ‘join’ signal

to the coordinating finish, which uses this information to identify the participants

and their types.

Depending on the termination detection protocol, it may be possible for a trans-

actional finish to forget the identity of a non-participant to save memory; however,

it must keep the identities of the participants available until after the commitment

phase completes.

5.2.2.2 The Merge Signal

An inner finish normally hides details about the places it is tracking from its parent. If

this inner finish is part of a transaction, it may be tracking a subset of the transaction

participants, and in that case, it must share this knowledge with the transaction

coordinator (which is the nearest outer transactional finish). We added the ‘merge’

signal to achieve this goal.

Each finish is modified to hold the following properties: a property to indicate

whether the finish is part of a transaction, a property to indicate whether the finish

is the root of a transaction, and a property that holds a Tx instance. The Tx instance

records the participants (if any) and their types. A finish that is not part of a transac-

tion or that did not detect any transaction participant terminates normally. Otherwise,

if this finish is not the root of the transaction, it shares the list of participants with its

direct parent by sending a ‘merge’ signal to it. The chain of finish objects recursively

delivers the participants set to the nearest transactional finish construct. In resilient

mode, details about the transaction participants are stored as part of the resilient

finish object which is expected to survive failures.

§5.2 From Finish to Transaction 117

5.2.2.3 Extended Finish Protocols

We successfully extended the non-resilient finish implementation and the optimistic

finish implementations (place-zero and distributed) with atomicity awareness as de-

scribed above. We did not use the pessimistic finish protocol, not only because it

is slower than optimistic finish, but also because its adoption mechanism is more

complex. In the pessimistic protocol, when a finish is lost, its corresponding resilient

finish is disabled, and the tasks associated with it are merged with the tasks of its

parent. If the lost finish is a transaction, the parent finish must carry the responsibility

of terminating the transaction on behalf of the lost finish. The optimistic protocol,

on the other hand, does not disable the resilient finish object corresponding to a lost

finish. It keeps it active as a ghost finish that continues to carry the responsibility of

tracking its tasks (see Section 4.9.1), and if it is a transaction, it handles the transaction

commitment as usual. We found this approach simpler to implement and easier for

integrating the transaction-related changes.

5.2.3 Implementation Details

5.2.3.1 Transaction Identifier and Log

Each transaction is assigned a globally unique eight-byte transaction identifier. The

first four bytes store the physical id of the transaction coordinator place. The second

four bytes store a place-local sequence number.

The transaction log maintains the readset and writeset of the transaction. Each

participant holds a partition of the log describing the set of read and written keys in

its place. The transaction log is used by the local concurrency control (CC) mechanism

for tracking used keys and detecting conflicts (see Section 5.2.3.3). In section 5.2.3.4,

we explain how the transaction log is central to tolerating the failure of a participant

during the execution of the commit protocol.

5.2.3.2 Lock Specification

The internal implementation of our concurrency control mechanism is lock-based.

We assign an upgradable read-write lock to each key. Locking and unlocking are

performed according to the CC mechanism used by the store, which we will describe

in Section 5.2.3.3.

Lock-based TM systems often employ a deadlock detection or avoidance scheme

to guarantee system progress [Moss, 1981]. Deadlock avoidance schemes are more

attractive in distributed systems as they avoid the extra communication required in

deadlock detection schemes to discover circular dependencies between transactions.

Wait-Die and Wound-Wait are two types of locks that can be used for deadlock

avoidance [Rosenkrantz et al., 1978]. The first word refers to the action the older

transaction makes, and the second word refers to the action the younger transaction

makes. In the wait-die lock, an older transaction waits if a younger transaction is

acquiring the lock, and a younger transaction dies if an older transaction is acquiring

the lock. In the wound-wait lock, an older transaction forces a younger transaction to

118 Towards Data Resilience in X10

release the lock, and a younger transaction waits if an older transaction is acquiring

the lock.

We prefer wait-die over wound-wait as we found it easier to design our system

with the knowledge that a transaction that acquired a lock will continue to hold it

until it voluntarily commits or aborts. Otherwise, with wound-wait, we need to check

if the lock is still held before accessing every key that we previously acquired. Thus

our lock can be described more precisely as an upgradable read-write wait-die lock.

A reader or a writer waits only if the lock is being acquired by a younger writer or

reader, respectively. A waiting transaction aborts when an older transaction requests

the lock. A waiting writer has a higher priority than a waiting reader.

The priority of a transaction is decided based on its identifier. When comparing

transactions to find out which one is older, we first compare their place-local sequence

number. If the sequence numbers are identical, we compare the place numbers. The

transaction with the smaller sequence number or place number is considered the

older transaction.

5.2.3.3 Concurrency Control Mechanism

The essence of a CC mechanism can be captured by describing how reads and writes

are performed. Bocchino et al. [2008] provide a comprehensive list of design aspects

for TM systems, three of which relate to handling reads and writes: read synchroniza-

tion (read versioning or read locking), write acquire time (early or late), and write

recovery (undo-logging or write-buffering). In the following paragraphs, we describe

these choices based on the description in [Bocchino et al., 2008] and how they are

implemented in our store.

Read Versioning vs. Read Locking

In Read Versioning (RV), a version is assigned to each key. Each reading transaction

records the version of the key the first time it reads the key. It compares that version

with the current version of the key at commit preparation time. A different version

indicates a conflict: another transaction has updated the key since it was read, and

the current transaction must abort. Read Locking (RL) prevents other transactions

from writing by acquiring the key lock at read time. A writer may not acquire the

lock until all readers have released it.

Early Acquire vs. Late Acquire

In Early Acquire (EA), a writing transaction acquires an exclusive lock to the key the

first time it writes the key. Late Acquire (LA) delays acquiring the lock until commit

preparation time. In both cases, if RL is used and the key was previously locked

for read, the lock is upgraded from read to write. If RV was used, the key version

is compared directly after acquiring the write lock. If the version is different, the

transaction aborts.

§5.2 From Finish to Transaction 119

Write-Buffering vs. Undo-Logging

These are two methods for recovering failed writes. In Write-Buffering (WB), a

transaction performs its writes on a shadow copy of the value. Subsequent reads from

the same transaction return the buffered value. Changes made by one transaction

are not visible to other transactions until the change is committed. Write buffering

can be used with EA or LA. In Undo-Logging (UL), writes are done in-place. The

transaction records the old value to undo its changes in case of abort. Undo-Logging

can only be used with EA.

According to the above choices, six different mechanisms are formed: RL EA UL,

RL EA WB, RL LA WB, RV EA UL, RV EA WB, RV LA WB. We implemented the

six mechanisms to give the flexibility of selecting a suitable mechanism based on the

workload properties.

5.2.3.4 Two Phase Commit

A transactional finish starts the commit protocol only after all tasks have terminated

and the full list of participants has been captured. In this section, we describe two

variants of the Two-Phase Commit (2PC) [Mohan et al., 1986] protocol that we used

for coordinating transaction termination in non-resilient and resilient modes.

In order for a commit protocol to guarantee reaching a consistent decision at

all participants, the following requirements must be satisfied. We quote these re-

quirements from [Keidar and Dolev, 1998], who obtained this list from Chapter 7

of [Bernstein et al., 1987].

AC1: Uniform Agreement: All the sites that reach a decision reach the

same one.

AC2: A site cannot reverse its decision after it has reached one.

AC3: Validity: The commit decision can be reached only if all sites voted

Yes.

AC4: Non-triviality: If there are no failures and all sites voted Yes, then

the decision will be to commit.

AC5: Termination: At any point in the execution of the protocol, if all

existing failures are repaired and no new failures occur for sufficiently

long, then all sites will eventually reach a decision.

Non-Resilient 2PC Protocol

Assuming the absence of failures, the 2PC protocol satisfies the above commitment

requirements using two phases. In the first phase, the coordinator sends a PREPARE

message to all participants in parallel asking them to vote on whether to commit

or abort the transaction. Each participant validates its transaction log according to

the used CC mechanism to check for conflicts. If the participant detects a conflict,

120 Towards Data Resilience in X10

it aborts the transaction locally and votes to abort, otherwise, it votes to commit.

If all participants voted to commit, the coordinator sends a COMMIT message to all

participants. Otherwise, the coordinator sends an ABORT message to participants that

voted to commit (the other participants have already aborted before sending the abort

vote). The transaction is considered terminated only after the coordinator receives

acknowledgements for all the COMMIT/ABORT messages. Figure 5.6 and Figure 5.7

demonstrate the protocol for a committed transaction and an aborted transaction,

respectively.

CoordinatorA

PREPARE

B

YES VOTE

PREPARE

COMMIT

ACK

YES VOTE

ACK

COMMIT

Figure 5.6: Two-phase commit: a committing transaction.

CoordinatorA

PREPARE

B

YES VOTE

PREPARE

NO VOTE

ABORT

ACK

Figure 5.7: Two-phase commit: an aborting transaction.

We exploit the following optimizations in the non-resilient protocol:

• Checkpointing the decisions taken by the coordinator or the participants is not

needed since all the parties are assumed to be alive throughout the commit

protocol.

• As described in [Bocchino et al., 2008], the prepare phase may be omitted in CC

mechanisms that eagerly acquire locks of accessed keys, namely the RL EA *.

These mechanisms detect the conflicts during the execution phase. Completing

the execution phase successfully indicates to the coordinator that all participants

are willing to commit, and consequently it can start the second phase directly.

The mechanisms that use RV attempt to acquire the read locks in the prepare

phase. Similarly, mechanisms that use LA attempt to acquire the write locks

in the prepare phase. Therefore, the prepare phase cannot be omitted in these

mechanisms.

§5.2 From Finish to Transaction 121

• There is no special handling for read-only transactions.

Fault Tolerance Features

Failures have critical impacts on the availability of a DTM system. A failed coordi-

nator may leave behind active participants that acquired data locks and are waiting

for the transaction to progress to release these locks. Not only would this transaction

hang, but would other transactions that depend on the acquired locks. A failure

of a participant results in data loss if data replication is not employed. Meanwhile,

ensuring replication consistency in the presence of failures is challenging to achieve.

We addressed these complexities in a resilient variant of the 2PC protocol that

aims to guarantee transaction atomicity on the resilient APGAS data store. Our design

relies on the finish resilient data store to guarantee the survivability of the transac-

tional finish objects serving as transaction coordinators. Our design also exploits

the replication mechanism of the APGAS data store to protect data availability.

A common mechanism to allow a 2PC protocol to tolerate the loss of a coordinator

or its subordinates is by checkpointing critical transaction decisions in disk. For

example, in [Mohan et al., 1986], during the prepare phase, a participant persists

its prepare decision on disk to ensure that a recovering process will not reverse this

decision (to satisfy requirement AC2). A participant that is prepared to commit also

persists a prepare-log with the data changes required should the transaction commit.

Similarly, the coordinator persists the decision to commit or abort the transaction on

disk to force the recovering coordinator to take the same decision. We follow the

same strategy; however, rather than persisting on disk, we persist critical data in two

in-memory replicas.

We start by describing the resilient 2PC protocol in normal operation when failures

are absent, then we describe how the protocol handles failures.

Resilient 2PC Under Normal Operation

The protocol can be described with respect to four actors: the coordinator, the backup

coordinator, the participant’s master, and the participant’s slave. While the transaction

is executing, the only actors that are used are the coordinator and the masters of the

participants. In the commitment phase, the other actors are also used subject to

certain conditions.

The coordinator uses its local knowledge of the active places in the system to build

a presumed master-slave mapping. This mapping may be inaccurate if one of the

masters asynchronously recovered its slave replica. The coordinator (or the backup

coordinator) detects this inaccuracy through the masters in the prepare phase, and

consequently aborts the transaction. Retrying this transaction will eventually succeed

when the coordinator’s place detects the new slave replica (see the Handshaking

description in Section 5.3.1.2).

Each participant can accurately identify the coordinator’s place from the transac-

tion id. However, they cannot accurately identify the place of the backup coordinator.

Knowing the places of the coordinator and its backup enables a participant and its

122 Towards Data Resilience in X10

slave to detect a catastrophic failure when both places fail. We require the coordinator

to share the place of its backup with the participants during the prepare phase.

Assuming a full-write transaction, in which all participants are writers, the com-

mittment protocol works as follows. In the first phase, the coordinator sends a

PREPARE message to each master carrying the identity of the slave known to the coor-

dinator and the identity of the backup coordinator. In return, the coordinator expects

to receive two acknowledgements — one from the master and one from the slave.

The master place can take one of the following two paths when handling a PREPARE

message:

• If the master detects that the given slave’s identity is incorrect (because the old

slave died and a new slave was created) or if the master detects a conflict, it

aborts the transaction and sends a message with two acknowledgements — one

for itself to send the abort vote and one emulating an acknowledgement from

the dead slave. An aborted master and its slave are ignored in the second phase.

• If the master detects that the slave’s identity is correct and that no conflicts exist,

it prepares to commit by sending two messages — a message to its slave carrying

a prepare-log and the identity of the backup coordinator and a message to the

coordinator to vote for commit. The slave stores the backup’s identity and the

prepare-log, which includes, for each modified key, the expected version before

write and the new value. After that, the slave sends an acknowledgement to the

coordinator. The provided version number for each key is used by the slave at

commit time only to guarantee committing the transactions in the same order

applied by the master.

The second phase starts after the coordinator receives two acknowledgements for

each participant.

If all masters voted to commit, the coordinator sends a commit-log to its backup

that carries the commit decision and the master-slave mapping. After receiving an

acknowledgement from its backup, the coordinator sends direct COMMIT messages

to each master and slave and waits for acknowledgements from them. Because

the coordinator sends the COMMIT message to a master and its slave in parallel, it

is possible that the master commits the transaction, releases the transaction locks,

and starts a second transaction on the same keys, before the slave commits the first

transaction. If the master prepares the second transaction to commit before the slave

commits the first transaction, the slave will hold two transaction logs that may be

altering the same keys. If the second transaction aborts, the risk of inconsistency

disappears. However, if the second transaction commits, the slave may receive the

COMMIT message of the second transaction before the first. Using the versions of the

keys, the slave detects this problem and handles it by committing the first transaction

before the second. Thanks to the lock-based CC mechanism applied by the master,

which ensures that the version of a key is incremented only after its transaction

commits, requesting a slave to commit a key with version v + 1, occurs only if the

transaction that sets the version to v has committed. This guarantee makes it safe

§5.2 From Finish to Transaction 123

for the slave to commit the first transaction even before receiving its COMMIT message.

The master and the slave acknowledge the coordinator after handling the COMMIT

message.

If any of the masters voted to abort, the coordinator decides to abort the transac-

tion without notifying the backup coordinator (the backup coordinator restarts the

prepare phase to recover any non-committed transaction). The coordinator sends

direct ABORT messages to each master and slave that voted to commit and waits for

acknowledgements from them. The transaction terminates after receiving the re-

quired acknowledgements. At this point, the coordinator sends a message to delete

the backup coordinator. Figure 5.8 and Figure 5.9 demonstrate the protocol for a

committed transaction and an aborted transaction, respectively.

Backup CoordinatorCoordinatorAA’s Slave

PREPARE
PREPARE (log)

ACK

ACK

B’s SlaveB

YES VOTE

ACK

TX_COMMITTING

PREPARE (log)
PREPARE

YES VOTE
ACK

COMMIT
COMMIT

ACK

COMMIT
COMMIT

ACK ACK

DELETE

Figure 5.8: Resilient two-phase commit: a committing write transaction.

Backup CoordinatorCoordinatorAA’s Slave

PREPARE
PREPARE (log)

ACK

B’s SlaveB

YES VOTE

ACK

PREPARE

NO VOTE + ACK

ABORT
ABORT

ACK

DELETE

Figure 5.9: Resilient two-phase commit: an aborting write transaction.

We exploit the following optimizations in the resilient protocol:

• In the prepare phase, a read-only participant does not need to generate a

prepare-log because none of its actions require updating the store. Therefore,

the slave of a read-only participant is completely ignored by the coordinator.

• While in the non-resilient protocol, the prepare phase can be omitted when RL

124 Towards Data Resilience in X10

EA * is used for both read-only and write transactions, in the resilient protocol,

PREPARE can only be omitted in read-only transactions. That is because the

purpose of PREPARE in the resilient protocol is not limited to detecting conflicts,

but it also replicates the prepare-log of the write operations.

Note that the implementation of the resilient finish store determines how the

backup coordinator will be created. In the place-zero resilient store, the coordinator

and its backup are basically the same object saved at place-zero. In the distributed

resilient store, the coordinator is the master finish object located at the finish home

place, and the backup coordinator is the backup finish object located at the next place.

Resilient 2PC Under Coordinator Failure

When the place-zero resilient finish store is used, we assume that the coordinators will

never fail. That is because all coordinators are hosted at place-zero, which is assumed

to survive failures. Therefore, we focus the following discussion on the distributed

finish store that creates for each finish object, a backup finish at the next place. In

this store, a coordinator failure occurs when the place from which the transaction has

originated fails before the transaction terminates. As long as the failed place is not

place-zero and the backup place is alive, coordinator recovery is possible.

By default, transaction commitment is handled by the master finish object repre-

senting the transaction coordinator. A coordinator can be lost during the execution

phase of a transaction before 2PC starts. When the optimistic finish protocol is used, a

failed coordinator that is in the execution phase is recreated at another place using the

backup coordinator’s state (i.e. backup finish object). The new coordinator completes

the execution phase and then handles transaction commitment normally.

The loss of a coordinator during the commitment phase makes the backup coor-

dinator in charge of transaction commitment. If the backup coordinator received a

commit-log from the master finish, it starts the second phase of the 2PC protocol by

sending a COMMIT message to all participants and their slaves. Otherwise, the backup

coordinator starts from the first phase by sending the PREPARE messages.

The participants are prepared to handle duplicated messages due to coordinator

recovery under the following rules:

• A committed master must not receive a duplicated PREPARE message. That is

guaranteed using the commit-log that is given to the backup coordinator before

any place commits.

• An aborted master may receive a duplicated PREPARE message. Handling the

first message concludes by deleting the transaction log. The absence of a trans-

action log directs the place to vote to abort.

• A committed (An aborted) master or slave may receive a duplicated COMMIT

(ABORT) message. Handling the first message concludes by deleting the trans-

action log. The absence of a transaction log directs the place to ignore the

duplicated message.

§5.2 From Finish to Transaction 125

Resilient 2PC Under Backup Coordinator Failure

Assuming the coordinator is active, the backup coordinator may also fail during the

execution phase or the commitment phase. A failure during the execution phase is

handled by recreating the backup coordinator at another place. A failure during the

commitment phase can only be detected by the coordinator while sending the commit-

log. We ignore this failure and allow the coordinator to commit the transaction

assuming that a coordinator’s failure is unlikely to occur within a short time interval

from the failure of its backup.

Resilient 2PC Under Participant Failure

When a transaction commit is initiated, the transaction coordinator builds a master-

slave mapping for the participants and checks their status. The failure of both a

master and its slave is an indication of a catastrophic failure. Otherwise, the commit

protocol proceeds as usual. During the two phases of the commit protocol, the

coordinator blocks to wait for acknowledgements from masters and slaves. Using

failure notifications from the runtime system, it can adjust the number of pending

acknowledgements to avoid waiting for them unnecessarily.

During the prepare phase, the following rules are used for handling master and

slave failures:

• On detecting the failure of a master, the coordinator drops the pending ac-

knowledgement of the master and its slave. The reason why we drop the slave’s

acknowledgement although it is still alive is because the slave joins the prepare

phase through its master (by receiving the prepare-log). If the master dies be-

fore sending the prepare-log to the slave, the slave will never acknowledge the

coordinator. The coordinator drops the slave’s acknowledgement if it was still

pending to avoid waiting for a message that may never be sent.

• On detecting the failure of a slave, the coordinator drops the slave’s pending

acknowledgement.

• The failure of a master or a slave during the prepare phase causes the transaction

to abort.

In the second phase, the coordinator communicates directly with the masters

and the slaves (of the writing masters only) to send the COMMIT or ABORT messages.

On detecting the failure of a master or a slave, it drops the associated pending

acknowledgement and proceeds normally, as long as at least one replica for each

participant is alive.

We rely on the replication recovery mechanism of the store to recover the lost

replica using the consistent content of the other replica. A replica is considered to

be in an inconsistent state if it holds unterminated transactions. The store must wait

until all unterminated transactions on the replica terminate by committing or aborting

before starting the recovery process. The coordinator does not prevent a transaction

from terminating at one replica if the other replica has failed.

126 Towards Data Resilience in X10

If the transaction is committing, the coordinator masks failures during the second

phase from the programmer, and the transactional finish construct completes success-

fully. If the transaction is aborting, the programmer receives a MultipleExceptions

error that includes DPEs for the failed places.

5.2.3.5 Transaction Termination Guarantee

We claim that, in the absence of a catastrophic failure, any started transaction will

eventually terminate. The rationale behind this claim is based on the following

guarantees provided by RX10 for detecting failures and protecting the finish objects

and the described resilient 2PC protocol:

1. Failure detection: the failure of any place is eventually detected by the RX10

network layer.

2. Coordinator availability: with a place-zero finish resilient store, a coordinator

is assumed to never die because the failure of place-zero is catastrophic. The

distributed resilient store provides, for each finish, a backup finish at another

place that may recreate the master (if the transaction is in the execution phase)

or takeover terminating the transaction (if the transaction is in the commitment

phase). In both cases, there is always a coordinator in charge of terminating any

started transaction.

3. Master and slave migratability: recovering a lost replica is performed by mi-

grating the data of the surviving replica to a new place. The surviving replica

cannot migrate its content if it is in the middle of handling transactions that can

alter its state. It needs to reach a state in which all pending transactions that

have the potential to modify its data have completed. Because every started

transaction is guranteed to terminate thanks to the coordinator’s availability

gurantee (point 2), a replica aiming to migrate will reach a migratable state

within a bounded waiting time.

Unfortunately, due to time limitation, we could not develop a formal model of

the transactional finish to prove its correctness within the time-frame of the thesis.

Our design mainly applies mechanisms that are widely studied in the literature, i.e.

2PC and strong-consistency of replicated data, without innovating new features to

them. Assuming the correctness of these mechanisms, the correctness of the optimistic

finish protocol (see Section 4.9.4), the correctness of the finish replication protocol (see

Section 4.10), and the soundness of the measures we took to guarantee transaction

termination and master/backup consistency, we believe that we have covered the

vast majority, if not all, of the flaws that may cause incorrect behavior. Proving that

formally is left as a possible future extension to this work.

Based on the above features, we designed a transactional store application frame-

work for X10 and RX10 applications. The store implements an asynchronous recovery

mechanism that is based on the above transaction termination guarantees. We will

describe the transactional store framework and the used replica migration protocol

§5.3 Resilient Application Frameworks 127

in Section 5.3.1.2. For applications that do not require asynchronous recovery and

atomic multi-place operations, we designed a simpler resilient store that avoids all

transaction handling complexities. We describe this simple store in Section 5.3.1.1.

5.3 Resilient Application Frameworks

In this section, we demonstrate X10’s multi-resolution resilience by building resilient

frameworks at different levels of abstraction. Using finish as a low-level construct,

we built two resilient stores. We then built two application frameworks, based on the

resilient stores, that hide most of the fault tolerance details from the user.

All the frameworks support non-shrinking recovery, by replacing a failed place

with a new place. We utilize X10’s PlaceManager utility, provided by the X10 team, to

manage the group of active places available to the application. As a reminder, we list

the PlaceManager APIs in Table 5.2. Detailed description of these APIs can be found

in Section 2.4.5.1. X10 uses the keyword this for defining the class constructor.

Table 5.2: The PlaceManager APIs.

Class Function Returns

PlaceManager

this(numSpares:Long, allowShrinking:Boolean) PlaceManager

activePlaces() PlaceGroup

rebuildActivePlaces() ChangeDescription

ChangeDescription
addedPlaces() PlaceGroup

removedPlaces() PlaceGroup

5.3.1 Application Resilient Stores

5.3.1.1 Place Local Store

The PlaceLocalStore class provides a resilient store that a place can use to save its

local data resiliently. It saves the data of each place in a master replica located at

the same place, and a slave replica located at the next place. The store’s APIs are

summarized in Table 5.3 and described here:

• make(activePlaces): creates a store for the given group of places.

• set(key, value): atomically updates the master and the slave replicas of the

calling place with the provided key-value pair.

• get(key): returns the value associated with the given key.

• recover(changes): recovers the store given a description of the changes im-

pacting the places.

128 Towards Data Resilience in X10

The store does not support distributed transactions because it is intended for use

for single-place operations only. Its recovery is user-driven and global; therefore,

it is most convenient for use by bulk-synchronous applications. Fortunately, the

resilient finish construct provides all the capabilities required to implement the

above functions, as we will describe below.

Table 5.3: The PlaceLocalStore APIs.

Class Function Returns

PlaceLocalStore[K,V]

make(activePlaces:PlaceGroup) PlaceLocalStore[K,V]

get(key:K) V

set(key:K, value:V) void

recover(changes:ChangeDescription) void

Resilient Atomic Updates Using Finish

We use synchronous replication to guarantee that updates to the store are applied

in the correct order on both replicas. Using finish, we ensure that each update is

applied at the slave replica before applying it at the master replica. A failing slave

causes finish to throw an exception that skips over the update operation of the

master, as shown in the code below:

1 def set(key:K, value:V) {

2 finish at (slave) async slave.set(key, value);

3 master.set(key, value);

4 }

The get operation uses the master replica only; therefore, it does not involve any

communication. Parallel invocations of get and set requests are serialized at the

master replica using an exclusive lock.

Replication Recovery Using Finish

The PlaceLocalStore applies a simple recovery mechanism that is convenient for

bulk-synchronous applications. When some places fail, the program is expected to en-

ter a recovery phase in which updates to the store are avoided. One place, usually the

first place, uses the PlaceManager to rebuild the active places and obtain a description

of place changes. The new group of active places will include previously uninitialized

spare places. To initialize the spare places, the program invokes recover(changes),

which initializes each spare place with a master replica (obtained from its right neigh-

bor) and a slave replica (obtained from its left neighbor), as outlined in Listing 5.2.

The recovery procedure starts by checking that at least one replica of each place

is still available (Line 2). Violation of this condition results in throwing a fatal error

to the application. The finish at Line 4 waits for all recovery tasks to complete and

reports any detected failures while initializing the spare places. After successfully

§5.3 Resilient Application Frameworks 129

recovering the store, the application proceeds with the guarantee that saved data

before the failure are available.

Listing 5.2: PlaceLocalStore recovery.

1 def recover(changes:ChangeDescription) {

2 checkIfBothMasterAndSlaveDied(changes);

3 var i:Long = 0;

4 finish for (deadPlace in changes.removedPlaces) {

5 val spare = changes.addedPlaces.get(i++);

6 val left = changes.oldActivePlaces.prev(deadPlace);

7 val right = changes.oldActivePlaces.next(deadPlace);

8 //create the spare’s master replica

9 at (right) async slave.copyToMaster(spare);

10 //create the spare’s slave replica

11 at (left) async master.copyToSlave(spare);

12 }

13 }

The PlaceLocalStore simplifies the implementation of coordinated and uncoor-

dinated checkpointing protocols by hiding the replication and recovery complexities

from the programmer. However, global recovery is inefficient and difficult to imple-

ment for dynamic applications where synchronization between the places is limited or

unnecessary. In Section 5.3.1.2, we describe a more sophisticated store that supports

asynchronous recovery of the places and also supports distributed transactions.

5.3.1.2 Transactional Store

The TxStore class provides a resilient store that supports distributed transactions

and ensures data consistency and availability in the presence of non-catastrophic

failures. It supports both global synchronous recovery (in the same way applied in

PlaceLocalStore) and local asynchronous recovery. Table 5.4 lists the store’s APIs.

Table 5.4: The TxStore APIs.

Class Function Returns

TxStore[K,V]

make(pg:PlaceGroup, asyncRec:Boolean, cc:String, work:(TxStore[K,V])=>void) TxStore[K,V]

activePlaces() PlaceGroup

recover(changes:ChangeDescription) void

makeTransaction() Tx[K,V]

executeTransaction(closure:(Tx[K,V])=>void) void

Tx[K,V]

get(key:Key) V

set(key:K, value:V) void

asyncAt(virtualId:Long, closure:()=>void) void

130 Towards Data Resilience in X10

The program creates an instance of TxStore by calling TxStore.make and provid-

ing the initialization parameters. The first parameter pg is the initial group of active

places, the second parameter asyncRec states whether asynchronous recovery should

be used, the third parameter cc states the chosen concurrency control mechanism

(see Section 5.2.3.3), and the fourth parameter work defines the work to be done by a

new joining place (used in asynchronous recovery only). We will show how the work

closure is invoked during the recovery in Listing 5.3-Line 29.

Each active place receives a copy of the activePlaces group at start-up time. The

method activePlaces() evaluates locally and returns the activePlaces known to the

current place at the time of invocation. When asynchronous recovery is used, updates

to the active places occur asynchronously and are not reflected at all places at the

same time. Thus, calling activePlaces() at different places may return different

values depending on what updates each place discovered.

When synchronous recovery is used, place failure events are reported to the

application through exceptions. The application may react to these failures by call-

ing recover(changes) to initiate a global synchronous recovery in the same way

described in Section 5.3.1.1.

Transaction Processing

All read and write operations on the store are invoked by transactions. The function

makeTransaction creates a new transaction of type Tx. The executeTransaction

function executes a closure representing the body of a transaction within a trans-

actional finish scope. Although it is acceptable for the application to execute the

transaction directly, executeTransaction provides the advantage of handling trans-

action exceptions transparently. It captures errors raised during execution, such as

ConflictExceptions and DeadPlaceExceptions, and consequently restarts the exe-

cution until it succeeds or a catastrophic failure occurs.

The Tx class provides the functions get and set for reading and writing resilient

data at the calling place. Expanding the transaction scope to other places can be

done using the asyncAt function, which identifies the target place using its virtual

id. The following code uses the transaction store APIs to perform a bank transaction

by moving $100 from account A located at place 1, to account B located at place 2.

Using the virtual place identifiers enable executeTransaction to seamlessly execute

the transaction even if the physical places change during execution.

1 def bank(store:TxStore[String,Long]) {

2 val tx = store.makeTransaction();

3 store.executeTransaction((tx:Tx[String,Long]) => {

4 tx.asyncAt(1, ()=> { tx.set ("A", tx.get("A") - 100) });

5 tx.asyncAt(2, ()=> { tx.set ("B", tx.get("B") + 100) });

6 });

7 }

§5.3 Resilient Application Frameworks 131

Asynchronous Recovery

When a TxStore is created, an instance of it is registered in the runtime system at

every place (active and spare). Normally in RX10, the network layer notifies the

runtime layer when a place fails. We modified the notification handler to not only

recover the control flow by updating the finish objects, but to also notify the local

instance of the transactional store of the failure. If the TxStore is configured to

recover asynchronously and the failed place is the current place’s slave (i.e. its right

neighbor), the current place immediately starts the recovery protocol concurrently

with other place tasks.

While the recovery protocol is executing, read and write actions at places that

were not impacted by the failure proceed normally. However, actions targeted to the

dead place and/or its two direct neighbors (its master place at the left and its slave

place at the right) may temporarily fail until the recovery completes.

Replica Migratability

A challenging aspect of asynchronous recovery is how to handle data migration

concurrently with the store’s read/write actions. This challenge is avoided in the

PlaceLocalStore by requiring the program to stop using the store while it is being

recovered. Because no write actions are performed on any of the replicas during

recovery, all the replicas are in a migratable state and can be safely copied to the

spare places, as shown in Listing 5.2. However, in the TxStore, the replicas at the

neighboring places of the dead place may not be in a migratable state immediately

after the failure.

The master of the dead place can be in the middle of handling read/write trans-

actions either as a transaction coordinator or a transaction participant. Some of these

transactions may have passed the prepare phase of the 2PC protocol and are waiting

for the final COMMIT or ABORT message. The master has no choice but to wait for these

transactions to terminate. It cannot abort them in order to start the recovery, because

the 2PC protocol does not permit a place to abort a transaction after it has voted to

commit it. For transactions that did not yet receive the PREPARE message, the master

has the choice to abort them or allow them to terminate.

On the other hand, the slave of the dead place maintains prepare-logs for the

transactions of its master that are prepared to commit. When the master dies, some

of the transaction logs may be in transit to the slave place and will eventually be

received by it. Unfortunately, the slave cannot independently determine whether to

commit or abort these pending transactions. The slave, therefore, has no choice but

to wait for these transactions to terminate by receiving a COMMIT or ABORT message

from their coordinators. Because the transaction coordinator is always available (see

Section 5.2.3.5), the slave will eventually receive these required messages.

The state diagrams in Figure 5.10 describe how a master or a slave place make a

transition from a non-migratable state to a migratable state.

132 Towards Data Resilience in X10

Active Paused Read Only

Dead

Pending Tx No Pending Tx

Dead

a) master states b) slave states

Figure 5.10: Master replica and slave replica state diagrams. A solid line means a non-
migratable state, and a dotted line means a migratable state.

A master place can be in one of four states:

1. Active: the default state in which all actions are accepted normally.

2. Paused: a temporary state for preparing the master to be migratable. In this

state, the master aims to finalize any transactions prepared to commit and

pauses accepting write transactions temporarily. It accepts COMMIT and ABORT

messages for prepared transactions and aborts any non-prepared write trans-

actions. Read-only transactions are kept active unless they attempt to upgrate

from read-only to write; in that case, they will be aborted.

3. Read-only: no prepared write transaction is pending, and only read actions are

permitted on the master replica. The read-only state is the only migratable state

for a master place.

4. Dead: the master has died. We assume the master can reach a dead state from

the active state only, because the other states imply that the slave is also dead.

A failure of both a master and its slave is unrecoverable in our system.

A slave place can be in one of three states:

1. No pending transactions: the slave does not hold prepare-logs for any transac-

tion. It is the only migratable state for a slave place.

2. Pending transactions: the slave holds pending prepare-logs and is expecting

COMMIT/ABORT messages regarding them from the transaction coordinators.

3. Dead: the slave has died. It is reachable from the two other states.

Note that the waiting time for a transaction to terminate is limited due to the

transaction termination guarantee described in Section 5.2.3.5.

Replication Recovery Using Finish

In Listing 5.3, we outline the pseudocode for the asynchronous recovery procedure.

Three places are involved in the recovery of a place: its master (left neighbor), its

slave (right neighbor), and the spare place that will replace it.

§5.3 Resilient Application Frameworks 133

The entire recovery procedure is performed using one finish block (Lines 7–26)

that controls three tasks. The first task is sent to the slave place (Lines 9–12); it enters

a busy loop waiting to reach the migratable state “no pending transactions” (Line 10),

after that, it sends a copy of its data to the spare place (Line 11). The slave place

will not receive new pending requests until after the spare place is fully recovered,

therefore, the slave place is automatically paused. The second task is created at the

master place (Lines 14–19); it starts by pausing the master replica (Line 15) to prepare

it to reach the read-only state. It waits until the read-only state is reached (Line 16),

before sending a copy of the master replica to the spare place (Line 17). Finally, it

activates the master replica to continue processing the transactions normally (Line 18).

The third task is sent to the spare place (Lines 21–25); it aims to activate the spare

place after ensuring that it received the replicas successfully from the master and

slave places. Since it knows their identities, it can break its busy waiting and throw a

DeadPlaceException if it detects that either the master or the slave has died.

Listing 5.3: TxStore asynchronous recovery.

1 /*called by the master of the dead place*/

2 def recover(deadPlace:Place) {

3 val left = here;

4 val right = store.activePlaces().next(deadPlace);

5 assert !right.isDead();

6 val spare = store.allocateSpare();

7 finish {

8 //create the spare’s master replica

9 at (right) async {

10 slave.waitUntilMigratable();

11 slave.copyToMaster(spare);

12 }

13 //create the spare’s slave replica

14 at (left) async { //local task (left = here)

15 master.pause();

16 master.waitUntilMigratable();

17 master.copyToSlave(spare);

18 master.activate();

19 }

20 //activate the spare after receiving its replicas

21 at (spare) async {

22 slave.waitForReplicaFrom(left);

23 master.waitForReplicaFrom(right);

24 master.activate();

25 }

26 }

27
28 //assign work to the spare place

29 at (spare) @Uncounted async { store.work(store); }

30 }

134 Towards Data Resilience in X10

After the spare place has been initialized, it can participate in the computation by

performing a user-defined task. The user provides this task in the work closure given

to the store at construction time (see the parameters of TxStore.make in Table 5.4).

The recover function invokes the work closure asynchronously at the spare place

(Line 29), only after the finish block terminates successfully.

The @Uncounted annotation, used in Line 29, makes the spawned async not

tracked by any finish. However, the application can programmatically integrate

this async with existing application tasks, for example, by exchanging certain notifi-

cation messages. We will demonstrate this mechanism in the context of the parallel

workers framework in Section 5.3.3.

Handshaking

When a spare place takes the role of a dead place, the other places need to recognize

this change. A simple mechanism to achieve this goal is to perform a global handshak-

ing operation from the spare to all other places. However, eagerly notifying all places

not only slows down the store’s recovery, but may be unnecessary for some places

that do not need to communicate with that place. For this reason, we implemented

an on-demand handshaking mechanism that works as follows: when a place detects

the failure of another place, it queries its master for the physical identity of the dead

place given its virtual id and updates its local activePlaces group accordingly. If the

master of the dead place is also dead, a catastrophic failure is detected, and the entire

application terminates.

Summary

The TxStore provides a simple programming interface for the application to store

critical application data that require atomic multi-place updates. The asynchronous

recovery mechanism minimizes the impact of failures to only the places in direct

communication with the dead place. Transactions targeted to the dead place and only

write transactions targeted to the master of the dead place are temporarily aborted.

By retrying these transactions, they will eventually succeed after the dead place has

been recovered. Spare places can automatically join the computation without global

synchronization with other places. In Section 5.3.3, we describe the parallel workers

application framework that uses the TxStore as its foundation for data resilience.

5.3.2 Resilient Iterative Framework

The resilient iterative framework can be used to implement fault tolerant iterative

algorithms based on coordinated in-memory checkpointing. It enables the developer

to focus on the algorithmic aspects of the application and rely on the framework

to orchestrate the fault tolerance aspects. Meanwhile, it makes it possible for the

application to optimize the performance by controlling the checkpointing scope.

§5.3 Resilient Application Frameworks 135

We applied multi-resolution resilience by building the iterative framework based

on the PlaceLocalStore (Section 5.3.1.1). We chose this particular store type be-

cause atomic multi-place updates are not needed and because global recovery is

well-aligned with coordinated checkpointing. Table 5.5 lists the APIs of the iterative

framework.

Table 5.5: The resilient iterative application framework APIs.

Class Function Returns

IterativeApp

isFinished() Boolean

step() void

checkpoint() HashMap[K,V]

restore(ckptState:HashMap[K,V]) void

remake(changes:ChangeDescription) Any

GlobalIterativeExecutor

make(ckptInterval:Long, spareCount:Long) IterativeExecutor

activePlaces() PlaceGroup

execute(app:IterativeApp) void

SPMDIterativeExecutor

make(ckptInterval:Long, spareCount:Long) IterativeExecutor

activePlaces() PlaceGroup

execute(app:IterativeApp) void

The programmer implements an iterative algorithm according to the specification

of the IterativeApp interface:

• isFinished(): defines the application’s convergence condition.

• step(): defines the logic of a single iteration.

• checkpoint(): inserts critical application data in a key-value map for check-

pointing.

• restore(ckptState): updates the program state given the last checkpointed

state.

• remake(changes): provides the program with information about changes im-

pacting the places, to rebuild its distributed data structures.

The programmer implements the above methods without attention to failures.

The step and isFinished functions are the same in non-resilient and resilient modes.

X10 applications use global data structures mapped to a group of places. The remake

method is provided to enable the program to reconfigure its global data structures to

adapt to the new place organization.

The framework provides two classes that execute an IterativeApp resiliently:

GlobalIterativeExecutor and SPMDIterativeExecutor. Both are initialized with a

user-defined checkpointing interval and a number of spare places. The framework

manages the group of active places, which the program can obtain by calling the

function activePlaces().

136 Towards Data Resilience in X10

5.3.2.1 The Global Iterative Executor

The GlobalIterativeExecutor can be used for applications with arbitrary commu-

nication patterns. It expects the programmer to define the step function as a global

function that internally distributes the step work across the active places in any way.

Listing 5.4 outlines the execution procedure followed by the global executor:

Listing 5.4: The global executor.

1 def execute(app:IterativeApp) {

2 var i:Long = 1;

3 var err:Boolean = false;

4 while (true) {

5 try {

6 if (err) {

7 handlePlaceChanges(app);

8 globalRestore(app);

9 i = 1;

10 err = false;

11 }

12 if(app.isFinished()) break;

13 finish app.step(); // global step

14 i++;

15 if(i % ckptInterval == 0) globalCheckpoint(app);

16 } catch (e:Exception) {

17 if(e.isDPE()) err = true; else throw e;

18 }

19 }

20 }

The finish at Line 13 waits for the completion of all child tasks created by the

step function and raises any detected exceptions during step execution to the frame-

work. The executor aims to guard the application from failures occurring during

step execution, checkpointing, or restoration as long as the failure is not catastrophic.

Detected exceptions that are not of type DeadPlaceException are considered catas-

trophic and cause the executor to stop and raise the error to the program (Listing 5.4-

Line 17).

Checkpointing

Using a PlaceManager pm, a PlaceLocalStore rs, and a checkpoint identifier key,

checkpointing is performed as follows:

21 def globalCheckpoint(app:IterativeApp) {

22 // alternating key for double-buffering

23 val k = key.equals("red") ? "black" : "red";

24 finish (for p in pm.activePlaces()) at (p) async {

25 rs.set(k, app.checkpoint());

26 }

27 key = k;

28 }

§5.3 Resilient Application Frameworks 137

Double-buffering is used to guard against failures that occur during checkpointing.

We maintain the last two checkpoints of each place identified as black and red in

Line 23. The color of the last valid checkpoint is stored in key. On creating a new

checkpoint, the other color is used for checkpointing the state of all the active places

(Line 24-Line 26). Only after checkpointing successfully completes, the key variable

is modified to carry the color of the new checkpoint (Line 27). A failure during

checkpointing causes the code to skip over Line 27, thereby leaving the previous

checkpoint as the valid one for recovery.

Recovery

When a recoverable failure is detected in Line 17, the err variable is set to true to

direct the execution towards the recovery path. The executor recovers the application

by first calling the handlePlaceChanges function in Line 7. As shown in the code

below, this function rebuilds the group of active places (Line 30), recovers the resilient

store (Line 31 — a catastrophic error will be raised if both replicas of a place are lost),

and calls the remake function to allow the application to reconfigure its global data

structures (Line 32). However, it does not handle rolling back the application state. To

recover the application state, the executor calls the globalRestore function outlined

below. It creates a task at each place that retrieves the last checkpoint from the resilient

store and feeds it to the program by calling the restore function (Line 36). As now

both the structure of the application and its data have been recovered, execution can

resume normally.

29 def handlePlaceChanges(app:IterativeApp) {

30 val changes = pm.rebuildActivePlaces();

31 rs.recover(changes);

32 app.remake(changes);

33 }

34 def globalRestore(app:IterativeApp) {

35 finish for(p in pm.activePlaces()) at(p) async {

36 app.restore(rs.get(key));

37 }

38 }

5.3.2.2 The SPMD Iterative Executor

The SPMDIterativeExecutor is optimized for a bulk-synchronous application, which

executes as a series of synchronized steps across all the active places. A global step

for such an application would create a fan-out finish at all the places to execute

only one iteration. The repeated creation of remote micro tasks for each step would

unnecessarily harm the performance. Listing 5.5 shows how the SPMD executor

avoids this overhead by creating a coarse-grained task at each place that can execute

multiple iterations, take periodic checkpoints, and perform part of the recovery work

(Lines 14–28). Note that a program that uses the SPMD executor needs to implement

the step function as a local function handling the work of a single place.

138 Towards Data Resilience in X10

Listing 5.5: The SPMD executor.

1 def execute(app:IterativeApp) {

2 var err:Boolean = false;

3 while (true) {

4 try {

5 val res:Boolean;

6 if (err) {

7 handlePlaceChanges(app);

8 res = true;

9 err = false;

10 } else {

11 res = false;

12 }

13 val team = new Team(pm.activePlaces());

14 finish for (p in pm.activePlaces()) at(p) async {

15 if (res) {

16 app.restore(rs.get(key));

17 }

18 var i:Long = 1;

19 while (!app.isFinished()) {

20 finish app.step(); // local step

21 i++;

22 if(i % ckptInterval == 0) {

23 val k = key.equals("red") ? "black" : "red";

24 rs.set(k, app.checkpoint());

25 team.agree(1);

26 key = k;

27 }

28 }

29 }

30 break;

31 } catch (e:Exception) {

32 if(e.isDPE()) err = true; else throw e;

33 }

34 }

35 }

In a failure-free execution, only one fan-out finish (Line 14) will be used for

the entire computation. Otherwise, when a failure occurs, all the tasks terminate,

and a new fan-out finish will be created after recovering the application’s structure.

Recovering the application data is done by the main fan-out finish (at Line 16).

Checkpointing

When a place reaches a checkpointing iteration, it independently saves its state in the

resilient store using the opposite color of the last checkpoint (Lines 23–24). Before the

places switch to the new checkpoint (by updating the key variable in Line 26), global

coordination is needed to ensure the successful creation of the new checkpoint at all

the places. That is achieved using the fault tolerant collective agreement function

§5.3 Resilient Application Frameworks 139

provided by MPI-ULFM (see Section 3.4.4.3). This function is the only collective

function that provides uniform failure reporting across all places. If one place is dead,

the call to team.agree in Line 25 will throw a DeadPlaceException at all the places,

and the recovery steps will consequently start.

Recovery

When a global failure is reported by team.agree, the fan-out finish at Line 14 termi-

nates, and the control returns to the executor’s main thread. Handling a recoverable

failure starts by recovering the application’s structure by calling handlePlaceChanges.

After that, a new fan-out finish starts, in which the first step to be performed at

all places is recovering the application’s state. That is more efficient than calling the

global executor’s globalRestore method, which creates a separate fan-out finish for

data recovery only.

5.3.3 Resilient Parallel Workers Framework

The resilient parallel workers framework can be used to implement an embarrassingly

parallel computation that uses a group of asynchronous workers to process global

data. A worker is implemented as a place. A failed worker is asynchronously

recovered by assigning its data and work to a new worker. To boost the programmer’s

productivity, the framework completely hides the details of failure detection, data

recovery, and failed worker replacement from the programmer.

We applied multi-resolution resilience by building the parallel workers framework

based on the TxStore (Section 5.3.1.2). We chose this particular store type because it

supports asynchronous recovery and enables the workers to perform resilient trans-

actions on global data.

Table 5.6: The parallel workers application framework APIs.

Class Function Returns

ParallelWorkersApp[K,V] startWorker(store:TxStore[K,V], recover:Boolean) void

ParallelWorkersExecutor[K,V]

make(pg:PlaceGroup, cc:String

, app:ParallelWorkersApp[K,V])
ParallelWorkersExecutor[K,V]

execute() void

activePlaces() PlaceGroup

Table 5.6 lists the APIs of the parallel workers framework. To use the framework,

the programmer implements the ParallelWorkersApp interface, which defines one

function startWorker. This function encapsulates the work of a single worker. It

takes as parameters an instance of TxStore and a flag to indicate whether the worker

is a normal worker or a recovered worker.

To invoke the execution of the application, the programmer needs to create an

instance of the framework’s executor by calling ParallelWorkersExecutor.make. It

140 Towards Data Resilience in X10

takes as parameters the initial group of active places, the chosen CC mechanism (see

Sections 5.2.3.3), and an instance of ParallelWorkersApp. The executor uses these

parameters to construct a transactional store by calling TxStore.make (see Table 5.4

for the parameters of this function). One of the parameters of TxStore is the recovery

closure work that defines the work to be done by a joining spare place that is replacing

a dead place. The executor defines the work as a call to the executeWorker function

shown in Listing 5.6 (Lines 11–20), which we will explain next.

Listing 5.6: The parallel workers executor.

1 def execute() {

2 pending = store.activePlaces().size();

3 for (p in store.activePlaces()) at (p) @Uncounted async {

4 executeWorker(false);

5 }

6 //block until all workers notify

7 latch.await();

8 if (recordedErrors() != null)

9 throw recordedErrors();

10 }

11 def executeWorker(recover:Boolean) {

12 var err:Exception = null;

13 try {

14 finish app.startWork(store, recover);

15 } catch (ex:Exception) {

16 err = ex;

17 }

18 //notify work completion

19 at (executor) @Uncounted async executor().notify(err);

20 }

21 def notify(err:Exception) {

22 if (err != null) recordError(err);

23 var finished:Boolean = false;

24 atomic {

25 pending --;

26 if (pending == 0)

27 finished = true;

28 }

29 if (finished) latch.release();

30 }

5.3.3.1 Parallel Workers Executor

We turn now to explaining how the parallel worker executor tracks the execution of

the workers, and why we could not use finish for this purpose.

To start the execution, the program calls the execute function shown in Listing 5.6

(Lines 1–10). This function starts an asynchronous task at each active place to execute

the function executeWorker (Lines 11–20). The executor then waits for the completion

of these tasks; however, rather than using finish to track their termination, it tracks

§5.3 Resilient Application Frameworks 141

them manually by blocking on a latch (Line 7). finish can only track tasks created

within its scope. If the executor surrounds the worker tasks with a finish, and

then later the TxStore creates a recovery task at the spare place, there is no way to

attach this recovery task to the scope of that finish. One can solve this problem, by

disabling the TxStore’s recovery and making the executor itself create the recovery

tasks after the original tasks complete. However, this can significantly delay the

recovery because finish will not complete until all the surviving workers complete.

For this reason, we avoided the use of finish and used manual tracking instead. The

@Uncounted annotation, used in Line 3 and Line 19, makes the spawned async not

tracked by any finish, which we need in this framework.

For N active places, the executor expects to receive N notification messages for

the execution to complete. The function executeWorker, called by each worker, is

designed to notify the executor after completing its work (Line 19) either successfully

or unsuccessfully. Every notification decrements the number of pending workers,

and when this number reaches zero, the latch is released (at Line 29). If one worker

dies before sending its notification, the spare place that will take its place will invoke

executeWorker and therefore send the notification. A usage example of the parallel

workers framework is shown in Listing 5.7.

We used the parallel workers framework for implementing two benchmarks:

ResilientTxBench, which is used for evaluating the throughput of the transactional

store (Section 5.4.2.1), and SSCA2 kernel-4, which implements a graph clustering

algorithm (Section 5.4.2.2).

Listing 5.7: A usage example of the parallel workers framework.

1 class PlaceWorker[String,Long] extends

2 ParallelWorkersApp[String,Long] {

3 val WORK_SIZE = 10;

4 def startWorker(store:TxStore[String,Long], recover:Boolean) {

5 //identify the scope of the worker’s task

6 val indx = store.activePlaces().indexOf(here);

7 val first = indx * WORK_SIZE;

8 val end = first + WORK_SIZE;

9 //process the task and save the result in the store

10 val result = do_something(first, end);

11 store.put("result:" + indx, result);

12 }

13 static def main(args:Rail[String]) {

14 val SPARE_PLACES = 1;

15 val pm = new PlaceManager(SPARE_PLACES, false);

16 val pg = pm.activePlaces();

17 val app = new PlaceWorker[String,Long]();

18 val executor = ParallelWorkersExecutor[String,Long].make(

19 pg, "RL_EA_UL" , app);

20 executor.execute();

21 }

22 }

142 Towards Data Resilience in X10

5.4 Performance Evaluation

The objective of this section is to gain insight into the throughput that transac-

tional finish can deliver for different classes of applications in non-resilient and

resilient modes. We also aim to evaluate the performance of transactional and non-

transactional RX10 applications that use our application frameworks for adding re-

silience.

Section 5.4.2 focuses on transactions. Using a micro-benchmark program, called

ResilientTxBench, we measure the resilient store’s throughput with transactions of

different sizes, different writing load, and using different CC mechanisms. After

that, we evaluate the performance of transactions using a realistic application that

performs a graph clustering algorithm.

Section 5.4.4 focuses on iterative applications with global checkpointing. We eval-

uate the performance of three widely-known machine learning applications (linear

regression, logistic regression, and PageRank) and a scientific simulation application

(LULESH).

5.4.1 Experimental Setup

We conducted the following experiments on the Raijin supercomputer at NCI, the

Australian National Computing Infrastructure. Each compute node in Raijin has a

dual 8-core Intel Xeon (Sandy Bridge 2.6 GHz) processors and uses an Infiniband

FDR network. Unless otherwise specified, we configured our jobs to allocate 10 GiB

of memory per node. We used core binding and mapped the places to the nodes

in a round-robin manner to ensure that neighboring places are located at different

nodes. Each X10 place was configured to use one immediate thread by setting the

environment variable X10 NUM IMMEDIATE THREADS=1. Killing places for evaluating

failure scenarios is achieved by invoking the operating system’s SIGKILL signal at the

victim places. MPI-ULFM was built from revision e87f595 of the master branch of

the repository at https://bitbucket.org/icldistcomp/ulfm2.git. Unless oth-

erwise specified, the code of the benchmarks is available in revision 8f03771 of the

optimistic branch of our repository https://github.com/shamouda/x10.git,

which is based on release 2.6.1 of the X10 language.

5.4.2 Transaction Benchmarking

We start by the performance evaluation results related to the use of distributed trans-

action in a micro-benchmark program called ResilientTxBench, and in a graph clus-

tering algorithm from the Scalable Synthetic Compact Application (SSCA) benchmark

suite, number 2.

5.4.2.1 ResilientTxBench

Using the parallel workers framework, we designed the ResilientTxBench program

as a flexible framework for evaluating the throughput of the transactional store with

§5.4 Performance Evaluation 143

different configurations. The program is located at x10.dist/samples/txbench

in our repository. Table 5.7 lists available parameters in ResilientTxBench and the

values used in our evaluation.

Table 5.7: ResilientTxBench parameters.

Description Used values

p number of worker places

16

32

64

128

t number of producer threads per place 4

d duration in ms for a benchmark execution 5000

c the concurrency control mechanism
RL EA UL

RV LA WB

r the range of keys in the store 218

u percent of update operations
0

50

h,o

h × o is the transaction size.

h is the number of participating places

and o is the number of operations per participant

2×8

4×4

8×2

f transaction coordinator is one of the participants true

The program starts p ∗ t transaction producer threads, where p is the number of

worker places and t is the number of producer threads per place. Each producer

thread starts a loop that generates one transaction per iteration and terminates after d

milliseconds have elapsed. According to the given transaction size, a producer thread

selects h different participants and o random keys at each participant. The readset and

the writeset of the transaction are randomly selected from the range of r keys of the

store, based on the configured update percentage u . The keys are evenly partitioned

among the places. By setting f = true , we request that the first participant is always

the place initiating the transaction; the remaining h − 1 participants are selected

randomly. We believe this strategy is well aligned with the PGAS paradigm, as users

are expected to favor locality by initiating transactions from one of the participating

places.

Each producer thread records the number of completed transactions Tij and the

exact elapsed time in milliseconds Eij , where i is the place id and j is the thread

id within that place. On completion, the first place collects these values from each

thread and estimates the throughput (operations per millisecond) as:

throughput =
∑

p

i=1 ∑
t
j=1 Tij ∗h∗o

∑
p

i=1 ∑
t
j=1 Eij

× p × t

144 Towards Data Resilience in X10

Although we implemented the six CC mechanisms described in Section 5.2.3.3, we

focus our evaluation on only two of these mechanisms: RL EA UL and RV LA WB,

which, respectively, represent the two extremes of pessimism and optimism in lock-

based concurrency control. RL EA UL acquires the read locks and write locks before

accessing any key and keeps acquiring the locks until the transaction terminates. On

the other hand, RV LA WB does not acquire any locks until the commit preparation

phase, which provides more concurrency to the application. In non-resilient mode,

RL EA UL has an advantage over RV LA WB, since the former does not require a

preparation phase for non-resilient transaction [Bocchino et al., 2008]. In resilient

mode, RL EA UL can only avoid the preparation phase in read-only transactions.

We started four producer threads per place and allocated two cores per producer

thread. Therefore, each X10 place was configured with 8 worker threads using X10

NTHREADS=8. We found that this level of parallelism is necessary for achieving

scalable performance, because it provides enough capacity to a place to coordinate

its own transactions and participate in transactions originated at other places. We

measured the throughput with increasing numbers of producer threads: 64, 128,

256, and 512, and we expect the ideal performance to result in an increase in the

throughput that is proportional to the number of worker threads. We evaluated the

transactional store throughput in non-resilient mode and in resilient mode using the

two implementations of the optimistic finish protocol: optimistic place-zero (O-p0)

and optimistic distributed (O-dist).

Figure 5.11 shows the throughput results for read-only transactions, and Fig-

ure 5.12 shows the throughput results for transactions performing 50% update opera-

tions. For each configuration, we report the median, the 25th and the 75th percentile.

Table 5.8 shows a summary of the results with 512 producer threads.

From these results, we draw the following conclusions:

• The centralized optimistic finish implementation scales very poorly in this

benchmark, due to the large number of concurrent transactions. The distributed

implementation achieves much better scaling performance for this benchmark.

• Read-only transactions scale well in both non-resilient and resilient (O-dist)

modes with both CC mechanisms.

• The scalability with write transactions varies depending on the CC mechanism

used. While RV LA WB scales reasonably well, RL EA UL struggles to scale

as the number of threads increases.

• With read-only transactions, RL EA UL enables the program to achieve higher

throughput than with RV LA WB. For example, with 512 threads, RL EA UL

achieves an increase in throughput between 16% to 33% compared to RV LA

WB. However, the situation is reversed with write transactions.

• With write transactions, RV LA WB enables the program to achieve higher

throughput than with RL EA UL. For example, with 512 threads, RV LA WB

§5.4 Performance Evaluation 145

achieves an increase in throughput between 80% to 222% throughput increase

compared to RL EA UL.

• With 512 threads, the throughput loss due to the resilience overhead of the X10

runtime and the resilient two-phase commit protocol ranges between 40%–49%

for read-only transactions and between 41%–65% for write transactions. The

overhead increases as the number of transaction participants increases.

Bocchino et al. [2008] performed comparative evaluation between the six CC

mechanisms for a non-resilient DTM system for the Chapel language. They found that

RL EA * mechanisms were always superior to other mechanisms because they avoid

the commit preparation phase. On the other hand, our results demonstrate that the

relative efficiency of different CC mechanisms depends on the application worload.

Write-intensive applications can benefit more from an optimistic concurrency control

mechanism where locking is delayed to the commitment time. The performance of the

SSCA2-k4 clustering application, which we will explain in the next section, confirms

this finding and provides more detailed analysis. Our work also demonstrates that

RL EA * cannot always avoid the preparation phase when used in resilient mode.

There are many implementation differences that prevent direct comparison with

the work in Bocchino et al. [2008]. For example, they propose a low-level implementa-

tion at the memory manager level, while our implementation is done at the runtime

and application level. While we use a read-write wait-die lock, they use an exclusive

write lock. Also, fault tolerance is not among their design goals.

We believe the achieved resilience overhead is acceptable, given the underlying

tracking and commitment mechanisms on replicated data. We expect the use of small-

sized transactions in compute-intensive applications to result in minimal resilience

overhead in realistic application scenarios. The SSCA2-k4 application, which we will

explain next, does not fit in this category; it is a communication intensive application

that relies heavily on distributed transactions.

Table 5.8: ResilientTxBench transaction throughput (operations per ms) with 512 threads, in
non-resilient and resilient mode with O-dist. The resilience overhead is shown in parentheses.

2x8 4x4 8x2

non-res. O-dist non-res. O-dist non-res. O-dist

RL EA UL (u=0%) 7678 4278 (44%) 3951 2129 (46%) 2077 1064 (49%)

RV LA WB (u=0%) 5776 3464 (40%) 2974 1714 (42%) 1570 914 (42%)

RL EA UL (u=50%) 1082 533 (51%) 628 341 (46%) 489 214 (56%)

RV LA WB (u=50%) 2893 1715 (41%) 1669 960 (42%) 1085 385 (65%)

5.4.2.2 Graph Clustering: SSCA2 Kernel-4

The SSCA benchmark suite is used for studying the performance of computations

on graphs with arbitrary structures and arbitrary data access patterns. In order

146 Towards Data Resilience in X10

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

64 128 256 512

th
ro

u
g
h
p
u
t
(o

p
e
ra

ti
o
n
s
/m

s
)

producer threads (cores=2X, places=X/4)

(a) RL_EA_UL 2x8 u=0%

non-resilient
O-p0

O-dist

 0

 1000

 2000

 3000

 4000

 5000

 6000

64 128 256 512

th
ro

u
g
h
p
u
t
(o

p
e
ra

ti
o
n
s
/m

s
)

producer threads (cores=2X, places=X/4)

(d) RV_LA_WB 2x8 u=0%

non-resilient
O-p0

O-dist

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

64 128 256 512

th
ro

u
g
h
p
u
t
(o

p
e
ra

ti
o
n
s
/m

s
)

producer threads (cores=2X, places=X/4)

(b) RL_EA_UL 4x4 u=0%

non-resilient
O-p0

O-dist

 0

 500

 1000

 1500

 2000

 2500

 3000

64 128 256 512

th
ro

u
g
h
p
u
t
(o

p
e
ra

ti
o
n
s
/m

s
)

producer threads (cores=2X, places=X/4)

(e) RV_LA_WB 4x4 u=0%

non-resilient
O-p0

O-dist

 0

 500

 1000

 1500

 2000

 2500

64 128 256 512

th
ro

u
g
h
p
u
t
(o

p
e
ra

ti
o
n
s
/m

s
)

producer threads (cores=2X, places=X/4)

(c) RL_EA_UL 8x2 u=0%

non-resilient
O-p0

O-dist

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

64 128 256 512

th
ro

u
g
h
p
u
t
(o

p
e
ra

ti
o
n
s
/m

s
)

producer threads (cores=2X, places=X/4)

(f) RV_LA_WB 8x2 u=0%

non-resilient
O-p0

O-dist

Figure 5.11: ResilientTxBench transaction throughput with 0% update.

§5.4 Performance Evaluation 147

 0

 200

 400

 600

 800

 1000

 1200

64 128 256 512

th
ro

u
g
h
p
u
t
(o

p
e
ra

ti
o
n
s
/m

s
)

producer threads (cores=2X, places=X/4)

(a) RL_EA_UL 2x8 u=50%

non-resilient
O-p0

O-dist

 0

 500

 1000

 1500

 2000

 2500

 3000

64 128 256 512
th

ro
u
g
h
p
u
t
(o

p
e
ra

ti
o
n
s
/m

s
)

producer threads (cores=2X, places=X/4)

(d) RV_LA_WB 2x8 u=50%

non-resilient
O-p0

O-dist

 0

 100

 200

 300

 400

 500

 600

 700

64 128 256 512

th
ro

u
g
h
p
u
t
(o

p
e
ra

ti
o
n
s
/m

s
)

producer threads (cores=2X, places=X/4)

(b) RL_EA_UL 4x4 u=50%

non-resilient
O-p0

O-dist

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

64 128 256 512

th
ro

u
g
h
p
u
t
(o

p
e
ra

ti
o
n
s
/m

s
)

producer threads (cores=2X, places=X/4)

(e) RV_LA_WB 4x4 u=50%

non-resilient
O-p0

O-dist

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

64 128 256 512

th
ro

u
g
h
p
u
t
(o

p
e
ra

ti
o
n
s
/m

s
)

producer threads (cores=2X, places=X/4)

(c) RL_EA_UL 8x2 u=50%

non-resilient
O-p0

O-dist

 0

 200

 400

 600

 800

 1000

 1200

64 128 256 512

th
ro

u
g
h
p
u
t
(o

p
e
ra

ti
o
n
s
/m

s
)

producer threads (cores=2X, places=X/4)

(f) RV_LA_WB 8x2 u=50%

non-resilient
O-p0

O-dist

Figure 5.12: ResilientTxBench transaction throughput with 50% update.

148 Towards Data Resilience in X10

to evaluate the performance of distributed transactions in a realistic application,

we implemented kernel-4 of the SSCA benchmark number 2 [Bader and Madduri,

2005]. SSCA2-k4 is a graph clustering problem that aims to create clusters of a

certain size within a graph. For graph generation, we used the SSCA2 graph gen-

erator provided in X10’s benchmarking suite [X10 Benchmarks], located at x10-

benchmarks/PERCS/SSCA2/Rmat.x10. The graph generation algorithm is based

on the R-Mat model [Chakrabarti et al., 2004], which uses four parameters to config-

ure the structure of the graph (a , b, c, and d) such that a + b + c + d = 1. Each of

these parameters represents the probability that a vertex will be located in a specific

area in the graph. We partitioned the graph vertices evenly among the places; how-

ever, the graph structure itself is replicated at all places to speed up neighbor-vertex

queries, which are extensively used in this benchmark.

Using the parallel workers framework, we developed a lock-based implementation

and a transactional implementation of SSCA2-k4. The source code of these implemen-

tations is available in x10/x10.dist/samples/ssca2. The two implementations

process the graph using N ∗ t parallel threads, where N is the number of places, and

t is the number of clustering threads in each place. Each thread is assigned a partition

of the graph vertices, where a vertex represents a local potential root for a new cluster.

A thread tries to create a cluster by first allocating the root vertex, then allocating all

neighboring vertices of that root that are not already allocated. After allocating the

neighbors, a heuristic is applied to pick one of them and use it for further expanding

the cluster by allocating the neighbors of the picked vertex. This process continues

until the cluster reaches a target size, or no more vertices are available for allocation.

In that case, the thread switches to the next root vertex to create a new cluster.

The lock-based implementation uses non-blocking tryLockRead and tryLockWrite

functions provided by the same lock class used by transactions (see Section 5.2.3.2

for a description of the lock specification). The clustering thread first attempts to

read-lock a target vertex to check if it is part of a cluster. If locking is successful and

the vertex is free, it attempts to lock the vertex for writing. If locking is successful

and the vertex is still free, it marks the vertex with its cluster id and moves on to

another vertex. All acquired vertices remain exclusively locked until cluster creation

completes. Failure to acquire a lock for read or write forces the thread to clear all

allocated vertices, unlock the acquired locks, and restart processing the same root

vertex. Similar to [Bocchino et al., 2008], our lock-based implementation does not

protect against livelocks. The transactional implementation avoids explicit locking by

handling each cluster creation as a transaction. The runtime system implicitly checks

for conflicts and performs the consequent rollback of obtained vertices.

The lock-based implementation is not resilient; however, we use it as an indicative

baseline for comparison with non-resilient transactions. Although adding resilience

to the lock-based version is possible, we found that the implementation would be

complex as it would require handling data replication and lock tracking at the ap-

plication level. With transactions, however, we receive these features transparently

by the runtime system. In the transaction implementation, we don’t checkpoint the

progress of each thread. Therefore, the threads of a recovering worker restart process-

§5.4 Performance Evaluation 149

ing their assigned vertices from the beginning. However, because the root vertices of

the clusters are locally located, checking the status of previously locked vertex is not

expensive as it generates a local read-only transaction.

We performed our experiment on a balanced graph of size 218 vertices, with equal

probability for the four graph parameters (a = 0.25, b = 0.25, c = 0.25, d = 0.25),

and a target cluster size of 10. We started four clustering threads at each worker

(place) and allocated two cores per clustering thread, for the same reason described

in the ResilientTxBench experiment (Section 5.4.2.1). Therefore, each X10 place was

configured with 8 worker threads using X10 NTHREADS=8. Experiments running in

resilient mode use the optimistic distributed finish implementation (O-dist).

We report the median of five measurements for each configuration scenario for

this application. The 95% confidence interval of the reported processing time is less

than 8% of the mean for experiments running in non-resilient mode, less than 4% of

the mean for experiments running in resilient mode without failure, and less than

14% of the mean for experiments running in resilient mode with failure.

Table 5.9 compares the performance of the application using different concurrency

control mechanisms. Because this application is a write-intensive application, the lock-

based implementation and RL EA UL suffer significantly more conflicts than RV

LA WB. Assuming the conflict cost is the ratio of processing time to the number

of conflicts: in non-resilient mode with 64 threads, the conflict cost is 0.08, 0.57,

and 6.93 for lock-based, RL EA UL, and RV LA WB, respectively. The conflict cost

in RV LA WB is much higher because conflict detection is delayed to the commit

preparation time, after the transaction has fully expanded. The other two mechanisms

detect conflicts much faster, but the negative consequence of their low conflict cost is

retrying the acquisition of the same lock within a short time interval, which results in

more repeated conflicts than RV LA WB. Overall, in non-resilient mode, the number

of conflicts offsets the conflict cost for the two transactional implementations, and

their performance is comparable. Locking outperforms the transactional mechanisms

with small numbers of threads. However, this advantage is gradually lost as the

number of threads increases.

In resilient mode, the cost of the transaction resilience overhead and the large gap

in the total number of processed transactions increase the performance gap between

RL EA UL and RV LA WB. Overall, RV LA WB achieves better scalability and

lower resilience overhead than RL EA UL in this application. With 64 threads, the

resilience overhead is 117% and 141% for RV LA WB and RL EA UL, respectively.

With 512 threads, the overhead of RV LA WB reduces to only 75%, while it increases

to 242% with RL EA UL due to the massive increase in the number of conflicts.

Using the transactional implementation, we performed an experiment using RV

LA WB to evaluate the overhead of failure recovery for this application. We config-

ured the middle place as a victim and forced its first clustering thread to kill the

process after completing half of its assigned vertices. Table 5.10 shows the impact of

the failure on the total processing time and the number of conflicts. It also shows

the time consumed for replication recovery by the resilient store. As expected, the

failure results in generating more conflicts by the transactions that interact with the

150 Towards Data Resilience in X10

Table 5.9: SSCA2-k4 performance with different concurrency control mechanisms.

Conflicts Processing time

threads 64 128 256 512 64 128 256 512

Non-res.

lock-based 82831 147793 310540 986013 6.3s 4.2s 3.4s 3.6s

RL EA UL 15848 42284 70933 207199 9.1s 5.2s 3.3s 3.1s

RV LA WB 1414 2557 5881 13803 9.8s 5.0s 3.4s 3.6s

Res. (O-dist)
RL EA UL 22924 50858 186940 592674 21.9s 12.7s 11.6s 10.6s

RV LA WB 1127 2382 5543 12745 21.3s 10.9s 8.7s 6.3s

dead place. The number of conflicts is proportional to the replication recovery time.

With small numbers of places (16 and 32), the recovery time ranged between 1.2–3.4

seconds, and with larger numbers of places (64 and 128), the recovery time ranged

between 0.3–0.4 seconds. In this strong scaling experiment, as the number of places

increases, the data assigned to each place shrinks and the transfer time of replicas

reduces. However, there are factors other than the replica size that can also impact the

recovery performance and cause high performance variability (the 95% confidence

interval of the processing time under failure is between 5%–14% of the mean). These

factors include the possible delay in allocating the spare place due to high processing

load at the master of the dead place and the wait time experienced by the master and

the slave replicas to reach a migratable state (see Section 5.3.1.2). We expect the load

at the master place to be a determining factor for the recovery performance due to

performing the recovery process asynchronously with normal application tasks.

To summarize, as shown in Figure 5.13 our transactional finish implementation re-

sults in good strong-scaling performance for the SSCA2-k4 application in failure-free

and failure scenarios. The performance is comparable to the lock-based implementa-

tion in non-resilient mode. We counted the number of lines of the code that performs

the actual cluster generation function in both implementations, excluding the main

function, definition of classes, debug messages, and code related to killing the victim

places. The lock-based implementation takes 171 lines of code without any fault

tolerance support, while the resilient transactional implementation uses only 80 lines

of code2.

5.4.3 Iterative Applications Benchmarking

In this section, we evaluate the performance of a suite of applications that we en-

hanced with resilience support using the iterative application framework. As de-

scribed in Section 5.3.2, the underlying fault tolerance mechanism of this framework

is periodic global checkpointing based on the PlaceLocalStore. We performed weak

scaling experiments using 128, 256, 512, and 1024 places, with one core per place

(except for LULESH, which uses 343, 512, 729, and 1000 places). Each place is config-

2The lines of code was counted using David A. Wheeler’s ’SLOCCount’

§5.4 Performance Evaluation 151

Table 5.10: SSCA2-k4 strong scaling performance with RV LA WB under failure.

threads 64 128 256 512

Failure free Processing time 21.3s 10.9s 8.7s 6.3s

Conflicts 1127 2382 5543 12745

One failure Processing time 23.4s 15.6s 10.8s 7.3s

Replication recovery time 1.2s 3.4s 0.4s 0.3s

Conflicts 3500 5786 7021 13861

 0

 5

 10

 15

 20

 25

 30

64 128 256 512

p
ro

c
e
s
s
in

g
 t
im

e
 (

s
e
c
o
n
d
s
)

clustering threads (cores=2X, places=X/4)

non-resilient lock-based
non-resilient Tx

resilient Tx
resilient Tx with 1 failure

Figure 5.13: SSCA2-k4 strong scaling performance with RV LA WB under failure using
O-dist finish.

152 Towards Data Resilience in X10

ured to start one worker thread, using X10 NTHREADS=1, and one immediate thread,

using X10 NUM IMMEDIATE THREADS=1. We allocated 60 GiB of memory per Raijin

node to have sufficient space for the application data and the in-memory checkpoints.

All the applications were configured to execute 60 iterations. When resilience is

enabled, checkpointing is performed every 10 iterations, with the first checkpoint

taken at iteration 0. To evaluate the failure recovery performance, we simulated

three failures during the execution of each application. The victim places are N /4,

N /2, and 3N /4, where N is the number of places. We forced a place failure every

20 iterations, exactly at iterations 5, 35, and 55. Therefore, a recovered application

executes a total of 75 iterations, because each failure causes the application to re-

execute 5 iterations. In our experiments, we measure different sources of resilience

overhead impacting the applications, including the resilient finish overhead, the

checkpointing overhead, and the recovery overhead.

The resilient finish overhead depends on the termination detection implemen-

tation used by the runtime system. In Chapter 4, we demonstrated the superior

performance of our proposed optimistic finish protocol compared to RX10’s pes-

simistic finish protocol using micro-benchmarks that represent different computation

patterns (see Section 4.11). In addition to micro-benchmarks, we also aim to evaluate

the performance of optimistic finish in realistic applications. Therefore, one of the

objectives of our experiments in this section is to compare the resilience overhead of

the applications using the four resilient finish implementations: O-p0, O-dist, P-p0,

and P-dist. By default, the distributed implementations avoid replicating any finish

originating from place-zero, thereby avoiding the cost of synchronously replicating

the task signals. Because currently the failure of place-zero is unrecordable in RX10,

replicating the state of these finishes is useless. However, we can disable this opti-

mization to measure the performance when all the finish constructs are replicated.

We use the modes O-dist-slow and P-dist-slow to refer to the configuration when all

the finish constructs, including those hosted at place zero, are replicated.

5.4.3.1 X10 Global Matrix Library

The X10 Global Matrix Library (GML) provides a rich set of matrix formats and

routines for implementing distributed linear algebra operations. It includes a suite of

benchmarking applications performing common data analytic and machine learning

algorithms. To simplify the development of resilient GML applications, we extended

key matrix classes with snapshot and restore methods that make checkpointing and

recovering easier to implement in the application [Hamouda et al., 2015]. Most of

the distributed matrix operations in GML rely on collective communication between

places. Initially, GML contained a custom implementation of collectives. We replaced

these custom collective operations with calls to the collective operations of the Team

class. This is done to exploit the performance and resilience capabilities provided by

the Team class, including the use of fault tolerant collective functions from MPI-ULFM

(see Section 3.4.4). Our enhancements have been contributed to the X10 code base,

and they are currently available in the X10 release v2.6.1.

§5.4 Performance Evaluation 153

In this section, we evaluate the cost of resilience for three GML applications:

Linear Regression, Logistic Regression, and PageRank. These applications follow

the SPMD bulk-synchronous model; therefore, we enhanced them with resilience

support using the SPMD iterative executor described in Section 5.3.2.2. The code of

the three applications is available as part of X10 release v2.6.1 and can be located at

x10/x10.gml/examples.

The initialization procedure of the three applications is done using a fan-out

finish that instructs the places to initialize their partition of the input data. After ini-

tialization, the SPMD executor also uses a fan-out finish to supervise the execution

of the steps. The three applications execute a series of coordinated steps that perform

communication between places only through collective operations. Therefore, the

used communication patterns in these applications is limited to fan-out finish and

collective operations.

The BenchMicro results of the fan-out finish pattern show that the centralized im-

plementations (O-p0 and P-p0) are more efficient for this pattern than the distributed

implementations (see Section 4.11.2.2), because this pattern requires resilient tracking

of only one finish. Luckily, all the applications evaluated in this chapter start their

fan-out finishes from place-zero, which is expected in most X10 applications. Because

replicating place-zero finishes is avoided by the O-dist and P-dist modes, their perfor-

mance is expected to be similar to the performance of the centralized modes. On the

other hand, the O-dist-slow and P-dist-slow are expected to suffer higher resilience

overhead.

5.4.3.2 Linear Regression

The Linear Regression (LinReg) benchmark trains a linear regression model against a

set of labeled training examples. We trained a model of 100 features with a training

set size of 1,000,000 examples per place. The training data is generated randomly

using a certain seed and partitioned evenly among the places. We configured our

experiments to exclude the input training data from the checkpointing state. When

a failure occurs, the active places collectively regenerate the input data using the

same random seed. This avoids the high cost of serializing and checkpointing the

large input matrix. Approximately 86 lines of codes out of 414 total lines were added

or modified from the original implementation to conform with the IterativeApp

interface.

Figure 5.14 shows a detailed break-down of the execution time (in seconds) with

different numbers of places. Table 5.11 focuses on the results of the smallest and

largest problem sizes (with 128 and 1024 places, respectively) and focuses on the

O-dist mode, which achieves either the same or better performance than the other

resilient modes in most of the results in this chapter. The resilient execution times

mentioned in the following discussion are for the O-dist mode only.

The execution time of a single step is almost the same in non-resilient and resilient

modes. Since we are using the MPI-ULFM backend, the Team class maps its collective

operations to efficient fault tolerant MPI collectives and entirely avoids the resilience

154 Towards Data Resilience in X10

overhead of finish. The resilience cost of the fan-out finish used during initialization

is only measurable in the O-dist-slow and P-dist-slow modes, where the optimistic

finish is about 2 seconds faster with 1024 places.

LinReg has a modest checkpointing state per place that includes only four dense

vectors of 100 elements. The dense vector format enables efficient data serialization

while checkpointing and restoring the data. The resulting overhead of in-memory

checkpointing using the PlaceLocalStore is negligible for this application (only 1 ms

with 1024 places). Using MPI_COMM_AGREE to guarantee the successful generation

of a checkpoint at all places costs LinReg only 15 ms with 1024 places. That is

mainly because the places take very short time to checkpoint their state. Places that

take a long time for serializing and checkpointing their state delay the termination

of the agreement protocol and cause the application to suffer longer checkpoint

agreement times. The results of the LogReg and PageRank applications demonstrate

this effect. Because LinReg checkpointing is fast, a resilient failure-free execution with

six checkpoints experiences less than 0.2% resilience overhead.

When a failure occurs, the first place that detects the failure implicitly invalidates

the Team communicator by calling MPI_COMM_REVOKE. The invalidated communicator

causes the places to fail while executing their next collective function. The fan-out

finish used by the iterative executor will report the failure to the executor only after

all the places stop processing and raise errors. With 1024 places, the cost of failure

detection and recovery is as follows. Failure detection costs LinReg about 662 ms.

Replacing the failed Team with a new one for recovery takes about 200 ms in the

three GML applications. Recovering the resilient store takes only 17 ms, thanks to the

limited checkpoint state and the simplicity of dense vector serialization. The major

cost for application recovery results from the app.remake() method. This method

reorganizes the structure of the input matrix and other vectors to map to the new

group of active places and reinitializes the input data at all places3. As a result, it

costs the application about 2 seconds. Restoring the last checkpoint state at each place

results in unmeasurable performance overhead. This is because each place restores

its state from its local master replica, and because the checkpointed state is very small

for this application. The total time for recovering the application from one failure,

including the time to re-execute the last 5 steps, is about 6 seconds (15% of the total

execution time in non-resilient mode).

5.4.3.3 Logistic Regression

The Logistic Regression (LogReg) benchmark trains a binary classification model

against a set of labeled training examples. We trained a model of 100 features with

a training set size of 1,000,000 examples per place. The training data is generated

randomly using a certain seed and partitioned evenly among the places. Like LinReg,

the input data is excluded from the checkpoint state and is regenerated using the

same random seed for failure recovery. Approximately 110 lines of codes out of 585

3It is possible to optimize this method to initialize the input data only at the new added places;
however, the version used in the evaluation does not perform this optimization.

§5.4 Performance Evaluation 155

Figure 5.14: Linear regression weak scaling performance (1 core per place).

Table 5.11: Linear regression performance.

128 places 1024 places

Non-res.
initialization 3016 ms 4042 ms

step 503 ms 573 ms

total 33176 ms 38422 ms

Res. (O-dist)

initialization 3038 ms 4369 ms

step 501 ms 567 ms

checkpoint data (1 ckpt) 1 ms 1 ms

checkpoint agree (1 ckpt) 5 ms 15 ms

failure detection (1 failure) 512 ms 662 ms

store recovery (1 failure) 17 ms 17 ms

application remake (1 failure) 1583 ms 1892 ms

team remake (1 failure) 168 ms 206 ms

restore data (1 failure) 0 ms 0 ms

total (6 ckpts, 3 failures) 47489 ms 55321 ms

156 Towards Data Resilience in X10

total lines were added or modified from the original implementation to conform with

the IterativeApp interface.

LogReg performance results are shown in Figure 5.15 and Table 5.12. The resilient

execution times mentioned in the following discussion are for the O-dist mode only.

As in LinReg, resilient execution of LogReg steps incurs no resilience overhead,

due to using MPI-ULFM’s collectives. The O-dist-slow and P-dist-slow cause high

resilience overhead while initializing and reinitializing the application for recovery.

The other resilient modes have negligible resilience overhead.

LogReg checkpoint at each place includes a large vector with 1,000,000 elements

and two small vectors with 100 elements. The vectors are stored in a dense format as

in LinReg. With 1024 places, LogReg takes 76 ms for saving the data in the resilient

store and takes 46 ms for checkpoint agreement. The resulting resilience overhead for

a failure-free execution with six checkpoints is less than 2% with 1024 places.

The resilient executor detects the failure of a place in about 705 ms. Because the

checkpoint state is larger than LinReg, recovering the resilient store by transferring

the checkpointed data to a new spare place is more expensive in LogReg, at 204 ms.

Similar to LinReg, Team recovery takes about 200 ms. The most expensive part of

failure recovery is remaking the application, which takes about 3 seconds in LogReg.

Restoring the application state using the last checkpoint takes 26 ms. The total time

for recovering the application from one failure, including the time to re-execute the

last 5 steps, is about 11 seconds (12% of the total execution time in non-resilient

mode).

Table 5.12: Logistic regression performance.

128 places 1024 places

Non-res.
initialization 6561 ms 8272 ms

step 1194 ms 1365 ms

total 78201 ms 90192 ms

Res. (O-dist)

initialization 6649 ms 8875 ms

step 1179 ms 1341 ms

checkpoint data (1 ckpt) 75 ms 76 ms

checkpoint agree (1 ckpt) 26 ms 46 ms

failure detection (1 failure) 535 ms 705 ms

store recovery (1 failure) 202 ms 204 ms

application remake (1 failure) 2437 ms 2918 ms

team remake (1 failure) 179 ms 206 ms

restore data (1 failure) 24 ms 26 ms

total (6 ckpts, 3 failures) 105811 ms 122359 ms

§5.4 Performance Evaluation 157

Figure 5.15: Logistic regression weak scaling performance (1 core per place).

158 Towards Data Resilience in X10

5.4.3.4 PageRank

The PageRank benchmark computes a measure of centrality for each vertex in a graph.

Our experiments use a randomly generated graph of 10 million vertices per place

stored in a sparse matrix with a density of 0.001. Similar to LinReg and LogReg, we

do not checkpoint the input graph but rather recompute it during failure recovery.

Approximately 65 lines of codes out of 383 total lines were added or modified from

the original implementation to conform with the IterativeApp interface.

PageRank performance results are shown in Figure 5.16 and Table 5.13. The

resilient execution times mentioned in the following discussion are for the O-dist

mode only.

The scaling pattern of PageRank is less efficient than LinReg and LogReg. We

believe that this is due to inefficient representation of sparse matrices in the GML

library. A sparse matrix in GML is based on a deep hierarchy of nested objects that

complicates processing the matrix and may result in inefficient memory management

overhead. Because PageRank steps use collective operations only, we expect the

step execution time to be similar in non-resilient and resilient modes. However, we

observed a resilience overhead between 10%–27% in experiments that used 128, 256,

and 512 places. The root cause of this overhead is unclear to us at this stage. Because

this problem does not occur in the applications that use dense matrix format, we aim

to investigate in the future whether inefficiencies in sparse matrix representation and

processing can influence the performance of RX10 applications. With 1024 places,

PageRank steps do not incur any resilience overhead, as expected.

With 1024 places, PageRank checkpoint state at each place includes a large vector

with about 3,000,000 elements. PageRank takes about 324 ms for saving this vector in

the resilient store. Because PageRank checkpointing is more expensive than LinReg

and LogReg, the checkpoint agreement time is also more expensive at 236 ms. The

resulting resilience overhead for a failure-free execution with six checkpoints is less

than 9% with 1024 places.

The resilient executor detects the failure of a place in about 380 ms. Because the

checkpoint state is larger than LogReg, recovering the resilient store is also more

expensive in PageRank at 445 ms. Similar to LinReg and LogReg, Team recovery

takes about 200 ms. Reinitializing the application using the app.remake method takes

about 2 seconds. Restoring the application state using the last checkpoint takes 68 ms.

The total time for recovering the application from one failure, including the time to

re-execute the last 5 steps, is about 6 seconds (16% of the total execution time in

non-resilient mode).

5.4.3.5 LULESH

X10 provides an implementation of the LULESH proxy application [Karlin et al.,

2013], which simulates shock hydrodynamics through a series of time steps. Each step

executes a series of stencil operations on a block of elements and nodes that define

these elements. The elements and their nodes are evenly partitioned among the places.

Therefore, exchanging ghost regions between neighboring places is required for the

§5.4 Performance Evaluation 159

Figure 5.16: PageRank weak scaling with number of places (1 core per place).

Table 5.13: PageRank performance.

128 places 1024 places

Non-res.
initialization 1384 ms 3385 ms

step 232 ms 570 ms

total 15324 ms 37565 ms

Res. (O-dist)

initialization 1237 ms 3546 ms

step 259 ms 563 ms

checkpoint data (1 ckpt) 89 ms 324 ms

checkpoint agree (1 ckpt) 53 ms 236 ms

failure detection (1 failure) 129 ms 380 ms

store recovery (1 failure) 165 ms 445 ms

application remake (1 failure) 831 ms 2029 ms

team remake (1 failure) 183 ms 201 ms

restore data (1 failure) 19 ms 68 ms

total (6 ckpts, 3 failures) 25495 ms 58500 ms

160 Towards Data Resilience in X10

stencil computations at each step. Reduction and barrier collective operations are also

invoked by LULESH steps for synchronization and evaluating the convergence state.

We enhanced LULESH with resilience support using the SPMD iterative executor. Our

resilient implementation has been contributed to the X10 applications repository [X10

Applications] in the lulesh2 resilient folder. Approximately 200 lines of codes

out of 4100 total lines were added or modified from the original implementation to

conform with the IterativeApp interface.

We evaluate the performance of LULESH with a problem size of 303 elements per

place. The number of places is 343, 512, 729, and 1000, because LULESH requires a

perfect cube number of places. The performance results are shown in Figure 5.17 and

Table 5.14.

LULESH uses a communication-intensive initialization kernel that generates a

large number of concurrent finish objects and remote tasks. Each place pre-allocates

buffers for holding the ghost regions and communicates with 26 neighboring places

using remote asyncs for exchanging references to these buffers. When places die,

some of these references will dangle and require updating. On recovering the ap-

plication, the initialization kernel is re-executed at all places for updating the buffer

references. Using an efficient termination detection protocol is crucial for achiev-

ing acceptable performance for LULESH initialization and recovery kernels. The

initialization kernel incurs the following resilience overhead with 1000 places: 482%

for P-p0, 335% for O-p0, 45% for P-dist, and only 40% for O-dist. When tracking

place-zero finishes, the overhead is: 475% for P-dist-slow and 377% for O-dist-slow.

Unlike the GML applications, LULESH steps are subject to the finish resilience

overhead as they generate pair-wise remote tasks for exchanging ghost regions. The

measured resilience overhead of a single step with 1000 places is: 13% for P-p0, 8% for

O-p0, 10% for P-dist, and only 4% for O-dist. The optimistic protocol is successfully

reducing the resilience overhead for LULESH during initialization and step execution.

As initializing the places and exchanging the ghost regions execute in parallel at all

places, the distributed implementations outperform the centralized implementations

in this application.

The following analysis focuses on the O-dist performance results shown in Ta-

ble 5.14. LULESH has a modest checkpointing state that takes 24 ms for saving in the

resilient store and 35 ms for checkpoint agreement with 1000 places. The resulting

resilience overhead for a failure-free execution with six checkpoints is less than 19%

(the high percentage is due to the small execution time of LULESH steps, compared

to the GML applications).

The failure recovery performance with 1000 places is as follows. The resilient

executor detects the failure of a place in about 364 ms. Recovering the resilient store

takes only 60 ms because the checkpointed state is limited in size. Similar to the GML

applications, Team recovery takes about 200 ms. The most expensive part of failure

recovery is reinitializing the application, which takes about 2 seconds. Restoring

the application state using the last checkpoint takes only 3 ms. The total time for

recovering the application from one failure, including the time to re-execute the last

5 steps, is about 3 seconds (50% of the total execution time in non-resilient mode).

§5.4 Performance Evaluation 161

Figure 5.17: Resilient LULESH weak scaling with number of places (1 core per place).

Table 5.14: LULESH performance.

343 places 1000 places

Non-res.
initialization 973 ms 1720 ms

step 73 ms 85 ms

total 5333 ms 6820 ms

Res. (O-dist)

initialization 1355 ms 2410 ms

step 82 ms 89 ms

checkpoint data (1 ckpt) 24 ms 24 ms

checkpoint agree (1 ckpt) 31 ms 35 ms

failure detection (1 failure) 123 ms 364 ms

store recovery (1 failure) 48 ms 60 ms

application remake (1 failure) 1146 ms 2243 ms

team remake (1 failure) 198 ms 194 ms

restore data (1 failure) 3 ms 3 ms

total (6 ckpts, 3 failures) 12362 ms 18005 ms

162 Towards Data Resilience in X10

Table 5.15: Changed lines of code for adding resilience using the iterative application frame-
work.

Total LOC Changed LOC Changed %

Linear regression 414 86 21%

Logistic regression 585 110 19%

PageRank 383 65 17%

LULESH 4100 200 5%

LULESH with DMTCP

At the early stage of developing the iterative application framework, we conducted a

preliminary experiment to compare the performance of application-level checkpoint-

ing versus transparent checkpointing with the DMTCP [Ansel et al., 2009] tool. The

DMTCP tool does not require any code changes. It checkpoints all the application

data on disk even if part of this data is not needed for recovery or is computable from

other values. On the other hand, our framework checkpoints in memory and relies on

users to specify the values to be checkpointed. We measured the time to checkpoint

LULESH with a problem size of 303 elements per place using 216 places on NECTAR

virtual machines. The size of the user-defined checkpointing state is about 2.6 MB per

place. The non-resilient X10 mode was used with the DMTCP runs and the resilient

P-p0 mode, the only resilient mode available at that time, was used with our resilient

framework runs. DMTCP took 6.67 seconds to checkpoint the entire application

state, while our framework took only 0.35 seconds (19X faster than DMTCP). With

DMTCP the application stops when it faces a place failure and should be restarted

for recovery (ideally on the same nodes to avoid moving the checkpointing files to

new locations). This limitation is avoided by our resilient framework which does

not kill the application upon a failure and encapsulates the checkpoints within the

application’s memory.

X10 was compiled from revision 41ab27e of the br07 dmtcp branch of the lan-

guage repository https://github.com/shamouda/x10.git. LULESH was com-

piled from revision 8439557 of the br07 dmtcp branch of the applications reposi-

tory https://github.com/shamouda/x10-applications. The X10 places used

1 worker thread by setting X10 NTHREADS=1 and did not use any immediate threads.

The MPI threading level was configured as MPI_THREAD_MULTIPLE. MPICH was used

as the transport layer of X10 due to technical difficulties integrating MPI-ULFM and

DMTCP at that time. Because MPICH is not resilient, we could not simulate a failure

recovery scenario in this experiment.

5.4.4 Summary of Performance Results

The experiments of the transactional store showed the importance of choosing the CC

mechanism based on the workload characteristics. While a read-intensive application

is expected to benefit more from a pessimistic concurrency control mechanism, such

§5.5 Summary 163

as RL EA UL, a write-intensive application is expected to benefit more from an

optimistic concurrency control mechanism, such as RV LA WB. Applications pay

considerable performance cost for using resilient transactions; this cost increases as

the transaction size and the number of write operations increase. However, this result

is not surprising given the need for data replication and consensus for ensuring data

availability and consistency in the presence of failures. The use of small transactions

less frequently in the application is expected to result in minimal resilience overhead.

The experiments of the iterative applications demonstrated the successful role

of MPI-ULFM and the optimistic termination detection protocol in reducing the re-

silience overhead of RX10 applications. Using native Team collectives does not add

any measurable resilience overhead to the applications. The impact of the finish

protocol on the overall performance varies between applications. The GML appli-

cations which depend only on the fan-out finish pattern do not gain a significant

advantage from using the optimistic finish protocol or the distributed finish store. On

the other hand, LULESH improves significantly with the optimistic finish protocol

due to the communication intensity of its initialization and recovery kernels. It also

scales significantly better with a distributed finish store due to creating large number

of concurrent finish constructs. As expected, applications with larger checkpoint

state take longer time to save a checkpoint, to agree on the checkpoint status, and to

recover the resilient store.

Productivity-wise, we showed how the transaction interface has enabled us to

provide atomicity and resilience to the SSCA2-k4 application with less than half the

lines of code used in a non-resilient lock-based implementation. For the iterative ap-

plications, Table 5.15 shows the productivity advantage of using the resilient iterative

application framework for adding resilinece to existing X10 applications with limited

code changes.

5.5 Summary

This chapter presented multiple contributions that aim at reducing the burden of

handling data resilience in APGAS applications.

Adding failure-awareness to the async-finish model, although necessary for re-

covering the control flow, is not sufficient for recovering all applications. Stateful ap-

plications often require a data resilience mechanism that preserves the application’s

state in spite of failures. Because handling data resilience at the application-level

is a tedious and error prone task, we extended the RX10 model with resilient data

stores that can protect critical application data. We described the design of two in-

memory data stores that enable X10 applications to persist critical application data

with minimal programming effort.

We addressed the challenge of handling atomic operations on a distributed store

efficiently and correctly. This chapter described our proposed transactional finish

construct, which transparently handles termination detection and transaction commit-

ment. The availability of a transaction interface not only improves the programmer’s

productivity, but can also result in more trusted implementations compared to man-

164 Towards Data Resilience in X10

ually tuned lock-based alternatives. The CC mechanism used by the transaction

implementation is an important factor in the application’s performance. The chapter

presented a comparative performance evaluation using two CC mechanisms and two

types of workloads executing in non-resilient and resilient modes. To the best of

our knowledge, this is the first evaluation of resilient transactions in any PGAS and

APGAS languages.

Towards the goal of supporting data resilience in RX10, we put multi-resolution

resilience into practice. We showed how the resilient async-finish model, with failure

awareness and composability, enables the nesting of resilient components for building

high-level resilient frameworks. Two frameworks were presented; an iterative frame-

work for bulk-synchronous applications and a parallel workers framework suitable for

embarrassingly parallel applications. The performed application studies confirm the

productivity advantage of these frameworks. The chapter concluded with a thorough

performance analysis for these applications that evaluated the various techniques de-

veloped in this thesis for improving the scalability and efficiency of RX10 applications.

In particular, it highlights the resulting performance gains from using MPI-ULFM,

the optimistic finish protocol, and the distributed finish implementations.

Chapter 6

Conclusion

This thesis addressed the challenges of designing high-level parallel programming

models that can exploit the massive parallelism available in modern supercomputers,

while supporting programmer productivity and resilience to process failures. It

proposed multi-resolution resilience as an approach for reaching a balance between

the productivity of transparent system-level resilience and the potential performance

scalability of user-level resilience. Multi-resolution resilience enables the construction

of productive resilient frameworks at different levels of abstraction based on efficient

composable resilient constructs in high-level parallel programming languages.

A common property in high-level parallel programming models is support for

nested task-parallelism via composable task-parallel constructs. Such task constructs

can provide a flexible base for supporting multi-resolution resilience. However, or-

chestrating the control flow of nested task graphs in the presence of failure while

guaranteeing correctness and scalability is challenging. This thesis addressed this

challenge in the context of Resilient X10 (RX10) — a resilient APGAS programming

language. RX10 provides user-level resilience support by extending the async-finish

model with failure-awareness semantics that facilitate reasoning about the applica-

tion’s control flow under failures. Our experience using RX10 shows that extending

async-finish with structured failure reporting via exceptions enables adding fault

tolerance to existing codes in a modular and understandable way, and also facilitates

the hierarchical composition of fault tolerance strategies.

Our work identified and addressed performance and productivity limitations in

RX10 that hindered its support for large-scale HPC applications. First, the resilient

async-finish model imposes high failure-free resilience overhead. Second, RX10 sacri-

ficed portability and scalability advantages available in emerging fault-tolerant com-

munication libraries, such as MPI-ULFM, which provide optimized implementations

of common communication patterns in HPC applications. Third, RX10 did not pro-

vide productive mechanisms for protecting the availability and consistency of the

application data in the presence of failures, which limits the productivity of the RX10

model.

In the following, we summarize how we addressed the above limitations by an-

swering the thesis research questions.

165

166 Conclusion

6.1 Answering the Research Questions

Q1: How to improve the resilience efficiency of the async-finish task model?

We identified two main reasons for the high resilience overhead of the async-finish

model in RX10. The first reason is due to using a pessimistic termination detection

(TD) protocol for the finish construct that favors the simplicity of failure recovery

over the performance of failure-free execution. This pessimistic protocol uses two

additional messages per task, compared to non-resilient finish, to capture every

transition in the task state to avoid any uncertainty about the control flow structure

when a failure occurs. The second reason is due to using a non-scalable resilient

store for maintaining critical TD metadata. As an example, executing an all-to-all

computation over 1024 places can result in a resilience overhead of about 5000% with

the above limitations.

Our work demonstrated that the efficiency of the resilient async-finish model can

be improved by adopting message-optimal TD protocols that favor the performance

of failure-free execution over the performance and simplicity of failure recovery. By

avoiding the communication of certain task and finish events, our proposed ‘opti-

mistic finish’ protocol allows uncertainty about the global structure of the computa-

tion which can be resolved correctly at failure time, thereby reducing the overhead

for failure-free execution. Compared to non-resilient finish, the optimistic protocol

uses one additional message per task. By switching from the pessimistic protocol to

the optimistic protocol, an all-to-all computation over 1024 places can achieve up to

50% performance improvement.

Our work demonstrated that the efficiency of the resilient async-finish model can

also be improved by using a scalable resilient store for maintaining critical TD meta-

data (the resilient finish store). This optimization is mainly useful for computations

that use large numbers of concurrent finish scopes. For example, a tree fan-out

computation over 1024 places can achieve up to 88% performance improvement by

switching from a centralized implementation of the optimistic finish protocol to a

distributed one. However, our performance evaluation showed that a distributed

resilient finish implementation is not always the most efficient option for certain

applications. Computations that use one or a few finish constructs, such as flat

fan-out and all-to-all, execute more efficiently using a centralized store in which

replicating the TD signals is not required. For example, the all-to-all pattern, which

uses a single finish to track a large number of tasks, achieves up to 39% perfor-

mance improvement by switching from a distributed to a centralized optimistic finish

implementation.

It is worth noting that the survivability of the optimistic protocol and the pes-

simistic protocol is limited to the survivability of the resilient finish store. With the

centralized store, the runtime can survive all failures except the failure of place zero,

which is used for saving all TD metadata. With the distributed store, the runtime can

survive all failures except the simultaneous failure of a place and its backup.

§6.1 Answering the Research Questions 167

The performance of different computation patterns, as summarized in Table 4.3,

can guide the choice of the most suitable protocol-implementation combination for

RX10 applications. For the shock hydrodynamics application LULESH, the best per-

formance was achieved using the optimistic distributed finish implementation. By

switching from the centralized pessimistic finish implementation (P-p0) to our pro-

posed distributed optimistic finish implementation (O-dist), the resilience overhead

of a single step of LULESH reduced from 13% to only 4% (see Section 5.4.3.5).

Q2: How to exploit the fault tolerance capabilities of MPI-ULFM to improve the

scalability of resilient APGAS languages?

Our work found the following benefits in MPI-ULFM that make it a suitable base for

resilient APGAS languages:

• The asynchronous execution model of APGAS languages makes global synchro-

nization for failure detection or runtime recovery inefficient or even infeasible

for some languages. While global failure propagation and global failure re-

covery are supported, MPI-ULFM does not impose such synchronous failure

handling mechanisms on its clients by default. Asynchronous programming

languages can achieve global failure detection while avoiding global synchro-

nization by periodically checking for incoming messages from any other process

using MPI_Iprobe and MPI_ANY_SOURCE.

• Many APGAS applications follow the SPMD execution model and express their

algorithms using collective operations. As an extension of MPI-3, MPI-ULFM

provides efficient fault-tolerant collective functions, which can be used by

bulk-synchronous APGAS applications for achieving better performance.

• MPI-ULFM provides an efficient fault-tolerant agreement interface that applica-

tions can leverage for implementing different fault tolerance mechanisms.

• Finally, our experimental evaluation shows that MPI-ULFM does not impose a

significant resilience overhead on applications in failure-free executions.

The above capabilities facilitated the integration between RX10 and MPI-ULFM as

described in Chapter 3. A direct advantage of using MPI-ULFM as a communication

runtime for RX10 is enabling applications to utilize the superior networking and com-

pute capabilities of large-scale supercomputers in which MPI is widely supported.

More importantly, exploiting the optimized fault-tolerant collective operations pro-

vided by MPI-ULFM enabled us to eliminate most of the resilience overhead of X10’s

bulk-synchronous applications, which would otherwise use emulated collectives that

are subject to the resilience overhead of the async-finish model. For example, the

Linear Regression and Logistic Regression benchmarks, which rely entirely on col-

lective operations for step execution, achieve almost the same step execution time in

non-resilient and resilient modes (see Section 5.4.3.2 and Section 5.4.3.3). By using

the fault-tolerant agreement capability of MPI-ULFM, coordinated checkpointing has

been supported for RX10 applications with minimal resilience overhead.

168 Conclusion

At the time of writing, implementation of fault-tolerant one-sided communica-

tion functions in MPI-ULFM has not been completed yet. Because X10 relies on

two-sided communication functions, evaluating MPI-ULFM’s support for one-sided

communication has been out of the scope of this thesis.

Q3: How to improve the productivity of resilient APGAS languages that support

user-level fault tolerance?

This thesis highlighted two main sources of complexities that face developers of fault-

tolerant applications: protecting the availability and consistency of the application

data and handling application recovery using fewer resources (i.e. shrinking recovery).

We demonstrated that these complexities can be greatly simplified by providing

resilient data store abstractions that support the following features: strong locality, in-

memory replication, non-shrinking recovery, and support for distributed transactions.

This thesis demonstrated that the composable task-parallel constructs provided by

APGAS languages, if extended with failure awareness, enable the composition of high-

level resilient frameworks that hide most of the fault tolerance complexities from the

programmer. It also showed that the resilient TD protocols used by the async-finish

model can easily be extended to coordinate distributed transaction commitment.

To the best of our knowledge, support for resilient distributed transactions has not

been attempted for PGAS or APGAS languages prior to our work. This thesis filled

this gap by proposing a transactional finish construct as productive mechanism for

handling resilient atomic updates on global data. The transactional finish construct

enables the expression of dynamic transactions of arbitrary sizes and is flexible to

different CC mechanisms. Our performance evaluation showed that the overhead

of resilient transactions depends on the number of transaction participants and the

number of conflicts that impact a transaction. We implemented a variety of CC

mechanisms to enable programmers to control the conflict rate of their applications.

Our results showed that write-intensive transactions can achieve higher throughput

by relying on an optimistic concurrency control mechanism that delays acquiring data

locks to commitment time (see Figure 5.12). In contrast, read-intensive transactions

can achieve higher throughput by eagerly acquiring data locks during transaction

processing (see Figure 5.11).

6.2 Future Work

6.2.1 Fault-Tolerant One-Sided Communication

An untouched problem in this thesis is exploiting recent advances in fault-tolerant

one-sided communication libraries for building high-level resilient languages. Unlike

X10, which is implemented entirely using two-sided communication operations, most

PGAS languages provide productive data access operations based on implicit transfer

of remote data using one-sided get/put operations. Unfortunately, GASNet, the most

commonly used communication library for PGAS programming models, still lacks

§6.2 Future Work 169

fault tolerance support. The availability of a resilient GASNet implementation could

enable many PGAS languages to add support for resilience. Meanwhile, research in

the GASPI [Simmendinger et al., 2015] library is promising. GASPI provides fault-

tolerant one-sided communication functions that could be used for building resilient

PGAS models. One research direction that we aim to investigate is the design of

user-level fault tolerance in PGAS languages, such as Chapel and UPC, based on

GASPI, and comparing the performance of these models to the performance of RX10.

6.2.2 Hardware Support for Distributed Transactions

Improving the performance of the transactional finish construct is an interesting area

for future investigation. Emerging approaches for supporting distributed transactions

in PGAS-based distributed systems rely on exploiting hardware capabilities, such as

hardware transactional memory (HTM) and RDMA, for achieving higher processing

throughput [Dragojević et al., 2015; Chen et al., 2016]. While we currently implement

transaction management at the user level, the transactional finish construct could

transparently leverage such hardware techniques for achieving higher throughput.

6.2.3 Beyond X10

Although the thesis has focused on X10, its contributions can be applied to other

programming languages. The optimistic finish protocol can be used in dynamic

task-based systems that require termination detection. For example, Chapel’s sync

statement and begin construct can express async-finish-like task graphs. We expect

applying the optimistic finish protocol to be straightforward in this context. The trans-

actional finish construct, the design of the resilient store, and the resilient application

frameworks are also generic and can be easily implemented in other languages. We

provided a fully functional implementation of RX10 over MPI-ULFM, which serves

as a basis for future performance comparisons as more languages start to support

resilience. We expect future development of MPI-ULFM to include implementations

of fault tolerant one-sided communication functions. This will provide an opportu-

nity for evaluating the suitability of the fault tolerance model of MPI-ULFM to more

PGAS languages.

170 Conclusion

Appendices

171

Appendix A

Evaluation Platforms

Evaluation was performed on two different parallel machines:

• Raijin: a supercomputer hosted at the Australian National Computing Infras-

tructure (NCI), at the Australian National University. Each compute node in

Raijin has two 8-core Intel Xeon (Sandy Bridge 2.6 GHz) sockets, and uses an

Infiniband FDR network. Each core has two hardware threads; however, Rai-

jin disables hyper-threading for the PBS jobs by default to keep one hardware

thread available for the operating system tasks on each core.

• NECTAR: a cloud service provider that assembles compute nodes from multiple

Australian instituations, including NCI. An NCI NECTAR node has an Intel

Xeon CPU E5-2670 @ 2.60GHz processor and connects to other nodes through

an Infiniband 56 GbE (Mellanox) network. We have access to 30 virtual machines

of size ‘m2.xlarge’, all hosted at the NCI zone. An m2.xlarge virtual machine

has 45 GiB of memory and 12 virtual cores, providing a total of 360 virtual cores

for our experiments. Our virtual machines use NECTAR Ubuntu 14.04 (Trusty)

amd64 operating system.

In our experiments on Raijin: we allocated 10 GiB of memory per node (unless

otherwise stated), and used the default hyper-threading configuration. Our MPI

jobs used the OpenIB byte transfer layer , used static core binding, and mapped the

processes over the nodes in a round-robin manner using the following mpirun pa-

rameters: -bind-to core -map-by node -mca btl openib,vader,self. Both

OpenMPI 3.0.0, and MPI-ULFM2 on Raijin use the default eager limit btl openib

eager limit as 12288 bytes.

In our experiments on NECTAR: MPI-ULFM2 used the TCP byte transfer layer,

used static core binding, and mapped the processes over the nodes in a round-robin

manner using the following mpirun parameters: -bind-to core -map-by node.

We modified the eager limit btl tcp eager limit to be 12288 bytes, to match

Raijin’s configuration.

For all reported results, we used the Native (C++ backend) version of X10 com-

piled using gcc 4.4.7. Unless otherwise specified, each X10 place was configured to

173

174 Evaluation Platforms

use only one worker thread by setting the environment variable X10 NTHREADS=1.

Experiments that used MPI as a transport layer used an additional ‘immediate thread’

per place to handles low-level non-blocking active messages invoked by the finish pro-

tocols by setting X10 NUM IMMEDIATE THREADS=1. The MPI threading level was con-

figured as MPI_THREAD_SERIALIZED by setting X10RT MPI THREAD SERIALIZED=1.

MPI-ULFM2 was installed from revision e87f595 of the master repository at

https://bitbucket.org/icldistcomp/ulfm2.git

Appendix B

TLA+ Specification of the

Optimistic Finish Protocol

1 module Optimistic

This specification models the ’optimistic finish ′ protocol used for detecting the termination of async-

finish task graphs. We model the graph as connected nodes of tasks. Finish objects do not represent

separate nodes in the task graph, but implicit objects attached to tasks.

The model simulates all possible n-level task graphs that can be created on a p-place system, where

each node of the task graph has c children. The variables LEVEL, NUM PLACES and WIDTH can be

used to configure the graph. The model also permits simulating 0 or more failures by configuring the

MAX KILL variable.

For the model checker to generate all possible execution scenarios, it can run out of memory, especially

when activating failure recovery actions. We introduced the variables KILL FROM and KILL TO to

control the range of steps at which failures can occur, so that we can cut the verification process into

multiple phases. For example, we used 4 phases to simulate all possible execution scenarios for a 3-level

3-place task tree with width 2, that takes around 50 steps in total:

Phase 1: kills a place between steps 0 and 20.

Phase 2: kills a place between steps 20 and 30.

Phase 3: kills a place between steps 30 and 50.

Phase 4: kills a place between steps 50 and 100.

See the run figures at: https://github.com/shamouda/x10-formal-spec/tree/master/async-finish-

optimistic/run figures

31 extends Integers

33 constants

34 LEVEL, task tree levels

35 WIDTH , task tree branching factor

36 NUM PLACES , number of places

37 MAX KILL, maximum number of failures to simulate

38 KILL FROM , KILL TO the range of steps to simulate a failure at

40 variables

175

176 TLA+ Specification of the Optimistic Finish Protocol

41 exec state, execution state

42 tasks , set of tasks

43 f set , finish objects

44 lf set , local finish objects

45 rf set , resilient finish objects

46 msgs , msgs

47 nxt finish id , sequence of finish ids

48 nxt task id , sequence of task ids

49 nxt remote place , next place to communicate with

50 killed , set of killed places

51 killed cnt , size of the killed set

52 rec child , pending recovery actions: ghosts queries

53 rec to, pending recovey actions: ignoring tasks to dead places

54 rec from , pending recovey actions: counting messages from dead places

55 rec from waiting , pernding recovery actions: receiving counts of messages from dead places

56 lost tasks , debug variable: set of lost tasks due to a failure

57 lost f set , debug variable: set of lost finishes

58 lost lf set , debug variable: set of lost local finishes

59 step the exectution step of the model

61 Vars
∆
= 〈exec state, tasks , f set , lf set , rf set , msgs ,

62 nxt finish id , nxt task id , nxt remote place ,

63 killed , killed cnt ,

64 lost tasks , lost f set , lost lf set ,

65 rec child , rec to, rec from , rec from waiting , step〉

67

68 C
∆
= instance OptimisticCommons

69

70 TypeOK
∆
=

Variables type constrains

74 ∧ exec state ∈ {“running”, “success”}

75 ∧ tasks ⊆ C !Task

76 ∧ f set ⊆ C !Finish

77 ∧ lf set ⊆ C !LFinish

78 ∧ rf set ⊆ C !RFinish

79 ∧ nxt finish id ∈ C !FinishID

80 ∧ nxt task id ∈ C !TaskID

81 ∧ nxt remote place ∈ C !Place1D

82 ∧ killed ⊆ C !PlaceID

83 ∧ killed cnt ∈ 0 . . (NUM PLACES − 1)

84 ∧ rec child ⊆ C !GetChildrenTask

85 ∧ rec to ⊆ C !ConvTask

86 ∧ rec from ⊆ C !ConvTask

177

87 ∧ rec from waiting ⊆ C !ConvTask

88 ∧ step ∈ Nat

90

91 MustTerminate
∆
=

Temporal property: the program must eventually terminate successfully

95 ✸(exec state = “success”)

97

98 Init
∆
=

Initialize variables

102 ∧ exec state = “running”

103 ∧ tasks = {C !RootTask , C !RootFinishTask}

104 ∧ f set = {C !RootFinish}

105 ∧ lf set = {}

106 ∧ rf set = {}

107 ∧msgs = {}

108 ∧ nxt finish id = 2

109 ∧ nxt task id = 2

110 ∧ nxt remote place = [i ∈ C !PlaceID 7→ i]

111 ∧ killed = {}

112 ∧ killed cnt = 0

113 ∧ lost tasks = {}

114 ∧ lost f set = {}

115 ∧ lost lf set = {}

116 ∧ rec child = {}

117 ∧ rec to = {}

118 ∧ rec from = {}

119 ∧ rec from waiting = {}

120 ∧ step = 0

122

Utility actions: creating instances of task, finish, resilient finish and local finish

127 NewFinish(task)
∆
=

128 [id 7→ nxt finish id ,

129 pred id 7→ task .id ,

130 home 7→ task .dst ,

131 origin 7→ task .src,

132 parent finish id 7→ task .finish id ,

133 status 7→ “active”,

134 lc 7→ 1 the main finish task

135]

137 NewResilientFinish(finish)
∆
=

138 [id 7→ finish .id ,

178 TLA+ Specification of the Optimistic Finish Protocol

139 home 7→ finish .home ,

140 origin 7→ finish .origin ,

141 parent finish id 7→ finish .parent finish id ,

142 transOrLive 7→ C !Place2DInitResilientFinish(finish .home),

143 sent 7→ C !Place2DInitResilientFinish(finish .home),

144 gc 7→ 1,

145 ghost children 7→ {},

146 isAdopted 7→ false]

148 NewLocalFinish(fid , dst)
∆
=

149 [id 7→ fid ,

150 home 7→ dst ,

151 lc 7→ 0,

152 reported 7→ C !Place1DZeros ,

153 received 7→ C !Place1DZeros ,

154 deny 7→ C !Place1DZeros]

156 NewTask(pred , fid , s , d , t , l , st , fin type)
∆
=

157 [id 7→ nxt task id ,

158 pred id 7→ pred ,

159 src 7→ s ,

160 dst 7→ d ,

161 finish id 7→ fid ,

162 level 7→ l ,

163 last branch 7→ 0,

164 status 7→ st ,

165 type 7→ t ,

166 finish type 7→ fin type]

168

Finish Actions

172 Task CreatingFinish
∆
=

173 ∧ exec state = “running”

174 ∧ let task
∆
= C !FindRunningTask (LEVEL− 1)

175 task updated
∆
= if task = C !NOT TASK then C !NOT TASK

176 else [task except ! .last branch = task .last branch + 1,

177 ! .status = “blocked”]

178 finish
∆
= if task 6= C !NOT TASK

179 then NewFinish(task)

180 else C !NOT FINISH

181 finish task
∆
= if task 6= C !NOT TASK

182 then NewTask(task .id , finish .id , task .dst , task .dst ,

183 “finishMainTask”, task .level + 1, “running”, “global”)

184 else C !NOT TASK

185 in ∧ task 6= C !NOT TASK

179

186 ∧ nxt finish id ′ = nxt finish id + 1

187 ∧ nxt task id ′ = nxt task id + 1

188 ∧ f set ′ = f set ∪ {finish}

189 ∧ tasks ′ = (tasks \ {task}) ∪ {task updated , finish task}

190 ∧ step ′ = step + 1

191 ∧ unchanged 〈exec state, lf set , rf set , msgs ,

192 nxt remote place ,

193 killed , killed cnt ,

194 lost tasks , lost f set , lost lf set ,

195 rec child , rec to, rec from , rec from waiting〉

197 Finish CreatingRemoteTask
∆
=

198 ∧ exec state = “running”

199 ∧ let task
∆
= C !FindRunningTaskWithFinishType(LEVEL− 1, “global”)

200 task updated
∆
= if task = C !NOT TASK then C !NOT TASK

201 else [task except ! .last branch = task .last branch + 1,

202 ! .status = “blocked”]

203 finish
∆
= if task = C !NOT TASK then C !NOT FINISH

204 else C !FindFinishById(task .finish id)

205 new finish status
∆
= if C !IsPublished(task .finish id)

206 then finish .status

207 else “waitingForPublish”

208 finish updated
∆
= if task = C !NOT TASK then C !NOT FINISH

209 else [finish except ! .status = new finish status]

210 src
∆
= task .dst

211 dst
∆
= C !NextRemotePlace(src)

212 new task status
∆
= if C !IsPublished(task .finish id)

213 then “waitingForTransit”

214 else “waitingForPublish”

215 new task
∆
= if task = C !NOT TASK then C !NOT TASK

216 else NewTask(task .id , task .finish id , src, dst ,

217 “normal”, task .level + 1, new task status , “local”)

218 msg transit
∆
= [from 7→ “src”, to 7→ “rf”, tag 7→ “transit”,

219 src 7→ new task .src, dst 7→ new task .dst ,

220 finish id 7→ new task .finish id ,

221 task id 7→ new task .id]

222 msg publish
∆
= [from 7→ “f”, to 7→ “rf”, tag 7→ “publish”,

223 src 7→ finish .home ,

224 finish id 7→ finish .id]

225 in ∧ task 6= C !NOT TASK

226 ∧ finish .status = “active”

227 ∧ nxt task id ′ = nxt task id + 1

228 ∧ tasks ′ = (tasks \ {task}) ∪ {task updated , new task}

229 ∧ f set ′ = (f set \ {finish}) ∪ {finish updated}

180 TLA+ Specification of the Optimistic Finish Protocol

230 ∧C !ShiftNextRemotePlace(src)
231 ∧ if C !IsPublished(task .finish id)
232 then C !SendMsg(msg transit)
233 else C !SendMsg(msg publish)
234 ∧ step ′ = step + 1

235 ∧ unchanged 〈exec state, lf set , rf set ,

236 nxt finish id ,

237 killed , killed cnt ,

238 lost tasks , lost f set , lost lf set ,

239 rec child , rec to, rec from , rec from waiting〉

241 Finish ReceivingPublishDoneSignal
∆
=

242 ∧ exec state = “running”

243 ∧ let msg
∆
= C !FindMessageToActivePlaceWithTag(“f”, “publishDone”)

244 finish
∆
= if msg = C !NOT MESSAGE then C !NOT FINISH

245 else C !FindFinishById(msg .finish id)
246 finish updated

∆
= if msg = C !NOT MESSAGE then C !NOT FINISH

247 else [finish except ! .status = “active”]
248 pending task

∆
= C !FindPendingRemoteTask (finish .id , “waitingForPublish”)

249 pending task updated
∆
= if msg = C !NOT MESSAGE then C !NOT TASK

250 else [pending task except ! .status = “waitingForTransit”]
251 msg transit

∆
= [from 7→ “src”, to 7→ “rf”, tag 7→ “transit”,

252 src 7→ pending task .src, dst 7→ pending task .dst ,

253 finish id 7→ pending task .finish id ,

254 task id 7→ pending task .id]
255 in ∧msg 6= C !NOT MESSAGE

256 ∧C !ReplaceMsg(msg , msg transit)
257 ∧ f set ′ = (f set \ {finish}) ∪ {finish updated}
258 ∧ tasks ′ = (tasks \ {pending task}) ∪ {pending task updated}
259 ∧ step ′ = step + 1

260 ∧ unchanged 〈exec state, lf set , rf set ,

261 nxt finish id , nxt task id , nxt remote place ,

262 killed , killed cnt ,

263 lost tasks , lost f set , lost lf set ,

264 rec child , rec to, rec from , rec from waiting〉

266 Finish TerminatingTask
∆
=

267 ∧ exec state = “running”

268 ∧ let task
∆
= C !FindTaskToTerminate(“global”)

269 finish
∆
= if task = C !NOT TASK then C !NOT FINISH

270 else C !FindFinishById(task .finish id)
271 task updated

∆
= if task 6= C !NOT TASK

272 then [task except ! .status = “terminated”]
273 else C !NOT TASK

274 finish updated
∆
= if task = C !NOT TASK then C !NOT FINISH

181

275 else if finish .lc = 1 ∧C !IsPublished(finish .id)

276 then [finish except ! .lc = finish .lc − 1,

277 ! .status = “waitingForRelease”]

278 else if finish .lc = 1 ∧ ¬C !IsPublished(finish .id)

279 then [finish except ! .lc = finish .lc − 1,

280 ! .status = “released”]

281 else [finish except ! .lc = finish .lc − 1]

282 in ∧ task 6= C !NOT TASK

283 ∧ finish 6= C !NOT FINISH

284 ∧ f set ′ = (f set \ {finish}) ∪ {finish updated}

285 ∧ if finish updated .status = “waitingForRelease”

286 then msgs ′ = msgs ∪

287 {[from 7→ “f”, to 7→ “rf”, tag 7→ “terminateTask”,

288 src 7→ finish .home ,

289 finish id 7→ finish .id ,

290 task id 7→ task .id ,

291 term tasks by src 7→ C !Place1DTerminateTask(finish .home , 1),

292 term tasks dst 7→ finish .home]}

293 else msgs ′ = msgs

294 ∧ if finish updated .status = “released”

295 then let task blocked
∆
= C !FindBlockedTask (finish .pred id)

296 task unblocked
∆
= [task blocked except ! .status = “running”]

297 in tasks ′ = (tasks \ {task , task blocked})

298 ∪ {task updated , task unblocked}

299 else tasks ′ = (tasks \ {task}) ∪ {task updated}

300 ∧ step ′ = step + 1

301 ∧ unchanged 〈exec state, lf set , rf set ,

302 nxt finish id , nxt task id , nxt remote place ,

303 killed , killed cnt ,

304 lost tasks , lost f set , lost lf set ,

305 rec child , rec to, rec from , rec from waiting〉

307 Finish ReceivingReleaseSignal
∆
=

308 ∧ exec state = “running”

309 ∧ let msg
∆
= C !FindMessageToActivePlaceWithTag(“f”, “release”)

310 finish
∆
= if msg = C !NOT MESSAGE then C !NOT FINISH

311 else C !FindFinishToRelease(msg .finish id)

312 finish updated
∆
= if msg = C !NOT MESSAGE then C !NOT FINISH

313 else [finish except ! .status = “released”]

314 task blocked
∆
= if msg = C !NOT MESSAGE then C !NOT TASK

315 else C !FindBlockedTask (finish .pred id)

316 task unblocked
∆
= if msg = C !NOT MESSAGE then C !NOT TASK

317 else [task blocked except ! .status = “running”]

318 in ∧msg 6= C !NOT MESSAGE

182 TLA+ Specification of the Optimistic Finish Protocol

319 ∧C !RecvMsg(msg)

320 ∧ f set ′ = (f set \ {finish}) ∪ {finish updated}

321 ∧ tasks ′ = (tasks \ {task blocked}) ∪ {task unblocked}

322 ∧ step ′ = step + 1

323 ∧ unchanged 〈exec state, lf set , rf set ,

324 nxt finish id , nxt task id , nxt remote place ,

325 killed , killed cnt ,

326 lost tasks , lost f set , lost lf set ,

327 rec child , rec to, rec from , rec from waiting〉

329

Actions applicable to Finish and Local Finish

333 DroppingTask
∆
=

334 ∧ exec state = “running”

335 ∧ let msg
∆
= C !FindMessageToActivePlaceWithTag(“src”, “transitNotDone”)

336 task
∆
= if msg = C !NOT MESSAGE then C !NOT TASK

337 else C !FindTaskById(msg .task id)

338 task updated
∆
= if task = C !NOT TASK then C !NOT TASK

339 else [task except ! .status = “dropped”]

340 blocked task
∆
= C !FindTaskById(task .pred id)

341 blocked task updated
∆
= [blocked task except ! .status = “running”]

342 in ∧msg 6= C !NOT MESSAGE

343 ∧ task .status = “waitingForTransit”

344 ∧ blocked task .status = “blocked”

345 ∧ tasks ′ = (tasks \ {task , blocked task}) ∪

346 {task updated , blocked task updated}

347 ∧C !RecvMsg(msg)

348 ∧ step ′ = step + 1

349 ∧ unchanged 〈exec state, f set , lf set , rf set ,

350 nxt finish id , nxt task id , nxt remote place ,

351 killed , killed cnt ,

352 lost tasks , lost f set , lost lf set ,

353 rec child , rec to, rec from , rec from waiting〉

355 SendingTask
∆
=

356 ∧ exec state = “running”

357 ∧ let msg
∆
= C !FindMessageToActivePlaceWithTag(“src”, “transitDone”)

358 task
∆
= if msg = C !NOT MESSAGE then C !NOT TASK

359 else C !FindTaskById(msg .task id)

360 task updated
∆
= if task = C !NOT TASK then C !NOT TASK

361 else [task except ! .status = “sent”]

362 blocked task
∆
= C !FindTaskById(task .pred id)

363 blocked task updated
∆
= [blocked task except ! .status = “running”]

364 in ∧msg 6= C !NOT MESSAGE

183

365 ∧ task .status = “waitingForTransit”

366 ∧ blocked task .status = “blocked”

367 ∧ tasks ′ = (tasks \ {task , blocked task}) ∪

368 {task updated , blocked task updated}

369 ∧C !ReplaceMsg(msg , [from 7→ “src”, to 7→ “dst”, tag 7→ “task”,

370 src 7→ task .src, dst 7→ task .dst ,

371 finish id 7→ task .finish id ,

372 task id 7→ task .id])

373 ∧ step ′ = step + 1

374 ∧ unchanged 〈exec state, f set , lf set , rf set ,

375 nxt finish id , nxt task id , nxt remote place ,

376 killed , killed cnt ,

377 lost tasks , lost f set , lost lf set ,

378 rec child , rec to, rec from , rec from waiting〉

380 ReceivingTask
∆
=

381 ∧ exec state = “running”

382 ∧ let msg
∆
= C !FindMessageToActivePlaceWithTag(“dst”, “task”)

383 src
∆
= msg .src

384 dst
∆
= msg .dst

385 finish id
∆
= msg .finish id

386 lfinish
∆
= if msg = C !NOT MESSAGE then C !NOT FINISH

387 else if C !LocalFinishExists(dst , finish id)

388 then C !FindLocalFinish(dst , finish id)

389 else NewLocalFinish(finish id , dst)

390 lfinish updated
∆
= [lfinish except

391 ! .received [src] = lfinish .received [src] + 1,

392 ! .lc = lfinish .lc + 1]

393 task
∆
= if msg = C !NOT MESSAGE then C !NOT TASK

394 else C !FindTaskById(msg .task id)

395 task updated
∆
= if task = C !NOT TASK then C !NOT TASK

396 else [task except ! .status = “running”]

397 in ∧msg 6= C !NOT MESSAGE

398 ∧C !RecvMsg(msg)

399 ∧ if lfinish .deny [src] = 1

400 then ∧ lf set ′ = lf set

401 ∧ tasks ′ = tasks

402 else ∧ lf set ′ = (lf set \ {lfinish}) ∪ {lfinish updated}

403 ∧ tasks ′ = (tasks \ {task}) ∪ {task updated}

404 ∧ step ′ = step + 1

405 ∧ unchanged 〈exec state, f set , rf set ,

406 nxt finish id , nxt task id , nxt remote place ,

407 killed , killed cnt ,

408 lost tasks , lost f set , lost lf set ,

184 TLA+ Specification of the Optimistic Finish Protocol

409 rec child , rec to, rec from , rec from waiting〉

411

Local Finish Actions

415 LocalFinish CreatingRemoteTask
∆
=

416 ∧ exec state = “running”

417 ∧ let task
∆
= C !FindRunningTaskWithFinishType(LEVEL− 1, “local”)

418 task updated
∆
= if task = C !NOT TASK then C !NOT TASK

419 else [task except ! .last branch = task .last branch + 1,

420 ! .status = “blocked”]

421 finish
∆
= if task = C !NOT TASK then C !NOT FINISH

422 else C !FindFinishById(task .finish id)

423 src
∆
= task .dst

424 dst
∆
= C !NextRemotePlace(src)

425 new task
∆
= if task = C !NOT TASK then C !NOT TASK

426 else NewTask(task .id , task .finish id , src, dst ,

427 “normal”, task .level + 1,

428 “waitingForTransit”, “local”)

429 msg transit
∆
= [from 7→ “src”, to 7→ “rf”, tag 7→ “transit”,

430 src 7→ new task .src, dst 7→ new task .dst ,

431 finish id 7→ new task .finish id ,

432 task id 7→ new task .id]

433 in ∧ task 6= C !NOT TASK

434 ∧ nxt task id ′ = nxt task id + 1

435 ∧ tasks ′ = (tasks \ {task}) ∪ {task updated , new task}

436 ∧C !ShiftNextRemotePlace(src)

437 ∧C !SendMsg(msg transit)

438 ∧ step ′ = step + 1

439 ∧ unchanged 〈exec state, f set , lf set , rf set ,

440 nxt finish id ,

441 killed , killed cnt ,

442 lost tasks , lost f set , lost lf set ,

443 rec child , rec to, rec from , rec from waiting〉

445 LocalFinish TerminatingTask
∆
=

446 ∧ exec state = “running”

447 ∧ let task
∆
= C !FindTaskToTerminate(“local”)

448 task updated
∆
= if task = C !NOT TASK then C !NOT TASK

449 else [task except ! .status = “terminated”]

450 here
∆
= task .dst

451 finish id
∆
= task .finish id

452 lfinish
∆
= if task = C !NOT TASK then C !NOT FINISH

453 else C !FindLocalFinish(here , finish id)

454 lfinish updated
∆
= if task = C !NOT TASK then C !NOT FINISH

185

455 else [lfinish except ! .lc = lfinish .lc − 1]

456 term tasks
∆
= if task = C !NOT TASK then C !NOT FINISH

457 else [i ∈ C !PlaceID 7→

458 if i = lfinish .home then 0

459 else lfinish .received [i]− lfinish .reported [i]]

460 lfinish terminated
∆
= if task = C !NOT TASK then C !NOT FINISH

461 else [lfinish except

462 ! .lc = 0,

463 ! .reported = lfinish .received]

464 in ∧ task 6= C !NOT TASK

465 ∧ lfinish 6= C !NOT FINISH

466 ∧ if lfinish updated .lc = 0

467 then ∧msgs ′ = msgs ∪

468 {[from 7→ “f”, to 7→ “rf”, tag 7→ “terminateTask”,

469 src 7→ here ,

470 finish id 7→ finish id ,

471 task id 7→ task .id ,

472 term tasks by src 7→ term tasks ,

473 term tasks dst 7→ here]}

474 ∧ lf set ′ = (lf set \ {lfinish}) ∪ {lfinish terminated}

475 else ∧msgs ′ = msgs

476 ∧ lf set ′ = (lf set \ {lfinish}) ∪ {lfinish updated}

477 ∧ tasks ′ = (tasks \ {task}) ∪ {task updated}

478 ∧ step ′ = step + 1

479 ∧ unchanged 〈exec state, f set , rf set ,

480 nxt finish id , nxt task id , nxt remote place ,

481 killed , killed cnt ,

482 lost tasks , lost f set , lost lf set ,

483 rec child , rec to, rec from , rec from waiting〉

485 LocalFinish MarkingDeadPlace
∆
=

486 ∧ exec state = “running”

487 ∧ let msg
∆
= C !FindMessageToActivePlaceWithTag(“dst”, “countDropped”)

488 finish id
∆
= msg .finish id

489 here
∆
= msg .dst

490 dead
∆
= msg .src

491 lfinish
∆
= if msg = C !NOT MESSAGE then C !NOT FINISH

492 else if C !LocalFinishExists(here , finish id)

493 then C !FindLocalFinish(here , finish id)

494 else NewLocalFinish(finish id , here)

495 lfinish updated
∆
= if msg = C !NOT MESSAGE then C !NOT FINISH

496 else [lfinish except ! .deny [dead] = 1]

497 resp
∆
= if msg = C !NOT MESSAGE then C !NOT MESSAGE

498 else [from 7→ “dst”, to 7→ “rf”, tag 7→ “countDroppedDone”,

186 TLA+ Specification of the Optimistic Finish Protocol

499 finish id 7→ msg .finish id ,

500 src 7→ msg .src, dst 7→ msg .dst ,

501 num dropped 7→ msg .num sent − lfinish .received [dead]]

502 in ∧msg 6= C !NOT MESSAGE

503 ∧C !ReplaceMsg(msg , resp)

504 ∧ lf set ′ = (lf set \ {lfinish}) ∪ {lfinish updated}

505 ∧ step ′ = step + 1

506 ∧ unchanged 〈exec state, tasks , f set , rf set ,

507 nxt finish id , nxt task id , nxt remote place ,

508 killed , killed cnt ,

509 lost tasks , lost f set , lost lf set ,

510 rec child , rec to, rec from , rec from waiting〉

512

Resilient Store Actions

516 Store ReceivingPublishSignal
∆
=

517 ∧ exec state = “running”

518 ∧ let msg
∆
= C !FindMessageToActivePlaceWithTag(“rf”, “publish”)

519 finish home
∆
= msg .src

520 finish
∆
= if msg = C !NOT MESSAGE ∨ finish home ∈ killed

521 then C !NOT FINISH

522 else C !FindFinishById(msg .finish id)

523 in ∧msg 6= C !NOT MESSAGE

524 ∧ if finish home /∈ killed

525 then ∧C !ReplaceMsg(msg , [from 7→ “rf”, to 7→ “f”,

526 tag 7→ “publishDone”,

527 dst 7→ msg .src,

528 finish id 7→ msg .finish id])

529 ∧ rf set ′ = rf set ∪ {NewResilientFinish(finish)}

530 else ∧C !RecvMsg(msg)

531 ∧ rf set ′ = rf set

532 ∧ step ′ = step + 1

533 ∧ unchanged 〈exec state, tasks , f set , lf set ,

534 nxt finish id , nxt task id , nxt remote place ,

535 killed , killed cnt ,

536 lost tasks , lost f set , lost lf set ,

537 rec child , rec to, rec from , rec from waiting〉

539 Store ReceivingTransitSignal
∆
=

540 ∧ exec state = “running”

541 ∧ let msg
∆
= C !FindMessageToActivePlaceWithTag(“rf”, “transit”)

542 rf
∆
= if msg = C !NOT MESSAGE then C !NOT FINISH

543 else C !FindResilientFinishById(msg .finish id)

544 s
∆
= msg .src

187

545 d
∆
= msg .dst

546 rf updated
∆
= if msg = C !NOT MESSAGE then C !NOT FINISH

547 else [rf except

548 ! .sent [s][d] = rf .sent [s][d] + 1,

549 ! .transOrLive [s][d] = rf .transOrLive [s][d] + 1,

550 ! .gc = rf .gc + 1]

551 msg tag
∆
= if s ∈ killed ∨ d ∈ killed

552 then “transitNotDone”

553 else “transitDone”

554 in ∧msg 6= C !NOT MESSAGE

555 ∧ ¬C !IsRecoveringTasksToDeadPlaces(rf .id)

556 ∧ if s ∈ killed ∨ d ∈ killed

557 then rf set ′ = rf set

558 else rf set ′ = (rf set \ {rf }) ∪ {rf updated}

559 ∧C !ReplaceMsg(msg , [from 7→ “rf”, to 7→ “src”, tag 7→ msg tag ,

560 dst 7→ s ,

561 finish id 7→ msg .finish id ,

562 task id 7→ msg .task id])

563 ∧ step ′ = step + 1

564 ∧ unchanged 〈exec state, tasks , f set , lf set ,

565 nxt finish id , nxt task id , nxt remote place ,

566 killed , killed cnt ,

567 lost tasks , lost f set , lost lf set ,

568 rec child , rec to, rec from , rec from waiting〉

570 Store ReceivingTerminateTaskSignal
∆
=

571 ∧ exec state = “running”

572 ∧ let msg
∆
= C !FindMessageToActivePlaceWithTag(“rf”, “terminateTask”)

573 term tasks
∆
= msg .term tasks by src

574 dst
∆
= msg .term tasks dst

575 rf
∆
= if msg = C !NOT MESSAGE ∨ dst ∈ killed then C !NOT FINISH

576 else C !FindResilientFinishById(msg .finish id)

577 trans live updated
∆
= [i ∈ C !PlaceID 7→ [j ∈ C !PlaceID 7→

578 if j = dst then rf .transOrLive [i][j]− term tasks [i]

579 else rf .transOrLive [i][j]

580]]

581 total
∆
= C !Sum(term tasks)

582 rf updated
∆
= if msg = C !NOT MESSAGE ∨ dst ∈ killed then C !NOT FINISH

583 else [rf except ! .transOrLive = trans live updated ,

584 ! .gc = rf .gc − total]

585 in ∧msg 6= C !NOT MESSAGE

586 ∧ total 6= − 1 see C !Sum() definition

587 ∧ if dst /∈ killed

588 then ∧ ¬C !IsRecoveringTasksToDeadPlaces(rf .id)

188 TLA+ Specification of the Optimistic Finish Protocol

589 ∧C !ApplyTerminateSignal(rf , rf updated , msg)
590 else C !RecvTerminateSignal(msg)
591 ∧ step ′ = step + 1

592 ∧ unchanged 〈exec state, tasks , f set , lf set ,

593 nxt finish id , nxt task id , nxt remote place ,

594 killed , killed cnt ,

595 lost tasks , lost f set , lost lf set ,

596 rec child , rec to, rec from , rec from waiting〉

598 Store ReceivingTerminateGhostSignal
∆
=

599 ∧ exec state = “running”

600 ∧ let msg
∆
= C !FindMessageToActivePlaceWithTag(“rf”, “terminateGhost”)

601 rf
∆
= if msg = C !NOT MESSAGE then C !NOT FINISH

602 else C !FindResilientFinishById(msg .finish id)
603 ghost child

∆
= msg .ghost finish id

604 rf updated
∆
= if msg = C !NOT MESSAGE then C !NOT FINISH

605 else [rf except ! .ghost children =
606 rf .ghost children \ {ghost child}]
607 in ∧msg 6= C !NOT MESSAGE

608 ∧ ¬C !IsRecoveringTasksToDeadPlaces(rf .id)
609 ∧C !ApplyTerminateSignal(rf , rf updated , msg)
610 ∧ step ′ = step + 1

611 ∧ unchanged 〈exec state, tasks , f set , lf set ,

612 nxt finish id , nxt task id , nxt remote place ,

613 killed , killed cnt ,

614 lost tasks , lost f set , lost lf set ,

615 rec child , rec to, rec from , rec from waiting〉

617 Store FindingGhostChildren
∆
=

618 ∧ exec state = “running”

619 ∧ let req
∆
= C !FindMarkGhostChildrenRequest

620 rf
∆
= if req = C !NOT REQUEST then C !NOT FINISH

621 else C !FindResilientFinishById(req .finish id)
622 ghosts

∆
= if req = C !NOT REQUEST then {}

623 else C !GetNonAdoptedGhostChildren(rf .id)
624 grf

∆
= C !ChooseGhost(ghosts)

625 grf updated
∆
= if grf = C !NOT FINISH then C !NOT FINISH

626 else [grf except ! .isAdopted = true]
627 req updated

∆
= if req = C !NOT REQUEST then C !NOT REQUEST

628 else [req except ! .markingDone = true]
629 in ∧ req 6= C !NOT REQUEST

630 ∧ rf 6= C !NOT FINISH

631 ∧ if ghosts = {}
632 then ∧ rf set ′ = rf set

633 ∧ rec child ′ = (rec child \ {req}) ∪ {req updated}

189

634 else ∧ rf set ′ = (rf set \ {grf }) ∪ {grf updated}
635 ∧ rec child ′ = rec child

636 ∧ step ′ = step + 1

637 ∧ unchanged 〈exec state, tasks , f set , lf set , msgs ,

638 nxt finish id , nxt task id , nxt remote place ,

639 killed , killed cnt ,

640 lost tasks , lost f set , lost lf set ,

641 rec to, rec from , rec from waiting〉

643 Store AddingGhostChildren
∆
=

644 ∧ exec state = “running”

645 ∧ let req
∆
= C !FindAddGhostChildrenRequest

646 rf
∆
= if req = C !NOT REQUEST then C !NOT FINISH

647 else C !FindResilientFinishById(req .finish id)
648 ghosts

∆
= C !GetAdoptedGhostChildren(rf .id)

649 rf updated
∆
= if req = C !NOT REQUEST then C !NOT FINISH

650 else [rf except ! .ghost children =
651 rf .ghost children ∪ ghosts]
652 in ∧ req 6= C !NOT REQUEST

653 ∧ rf 6= C !NOT FINISH

654 ∧ rf set ′ = (rf set \ {rf }) ∪ {rf updated}
655 ∧ rec child ′ = rec child \ {req}
656 ∧ step ′ = step + 1

657 ∧ unchanged 〈exec state, tasks , f set , lf set , msgs ,

658 nxt finish id , nxt task id , nxt remote place ,

659 killed , killed cnt ,

660 lost tasks , lost f set , lost lf set ,

661 rec to, rec from , rec from waiting〉

663 Store CancellingTasksToDeadPlace
∆
=

664 ∧ exec state = “running”

665 ∧ let req
∆
= C !FindToDeadRequest

666 rf
∆
= if req = C !NOT REQUEST then C !NOT FINISH

667 else C !FindResilientFinishById(req .finish id)
668 rf updated

∆
= if req = C !NOT REQUEST then C !NOT FINISH

669 else [rf except ! .transOrLive [req .from][req .to] = 0,

670 ! .gc = rf .gc − rf .transOrLive [req .from][req .to]]
671 in ∧ req 6= C !NOT REQUEST

672 ∧ rf 6= C !NOT FINISH

673 ∧C !ApplyTerminateSignal2(rf , rf updated)
674 ∧ rec to ′ = rec to \ {req}
675 ∧ step ′ = step + 1

676 ∧ unchanged 〈exec state, tasks , f set , lf set ,

677 nxt finish id , nxt task id , nxt remote place ,

678 killed , killed cnt ,

190 TLA+ Specification of the Optimistic Finish Protocol

679 lost tasks , lost f set , lost lf set ,

680 rec child , rec from , rec from waiting〉

682 Store SendingCountTransitSignalToLocalFinish
∆
=

683 ∧ exec state = “running”

684 ∧ let req
∆
= C !FindFromDeadRequest

685 rf
∆
= if req = C !NOT REQUEST then C !NOT FINISH

686 else if ¬C !ResilientFinishExists(req .finish id)
687 then C !NOT FINISH

688 else C !FindResilientFinishById(req .finish id)
689 msg

∆
= if req = C !NOT REQUEST then C !NOT MESSAGE

690 else [from 7→ “rf”, to 7→ “dst”, tag 7→ “countDropped”,

691 finish id 7→ rf .id ,

692 src 7→ req .from , dst 7→ req .to,

693 num sent 7→ rf .sent [req .from][req .to]]
694 in ∧ req 6= C !NOT REQUEST

695 ∧ rec from ′ = rec from \ {req}
696 ∧ if rf 6= C !NOT FINISH

697 then ∧C !SendMsg(msg)
698 ∧ rec from waiting ′ = rec from waiting ∪ {req}
699 else ∧msgs ′ = msgs resilient finish has been released already

700 ∧ rec from waiting ′ = rec from waiting

701 ∧ step ′ = step + 1

702 ∧ unchanged 〈exec state, tasks , f set , lf set , rf set ,

703 nxt finish id , nxt task id , nxt remote place ,

704 killed , killed cnt ,

705 lost tasks , lost f set , lost lf set ,

706 rec child , rec to〉

708 Store CancellingTransitTasksFromDeadPlace
∆
=

709 ∧ exec state = “running”

710 ∧ let msg
∆
= C !FindMessageToActivePlaceWithTag(“rf”, “countDroppedDone”)

711 from
∆
= msg .src

712 to
∆
= msg .dst

713 finish id
∆
= msg .finish id

714 req
∆
= if msg = C !NOT MESSAGE then C !NOT REQUEST

715 else C !FindFromDeadWaitingRequest(finish id , from , to)
716 rf

∆
= if msg = C !NOT MESSAGE then C !NOT FINISH

717 else if ¬C !ResilientFinishExists(req .finish id) then C !NOT FINISH

718 else C !FindResilientFinishById(finish id)
719 rf updated

∆
= if rf = C !NOT FINISH then C !NOT FINISH

720 else [rf except

721 ! .transOrLive [from][to] =
722 rf .transOrLive [from][to]−msg .num dropped ,

723 ! .gc = rf .gc −msg .num dropped]

191

724 in ∧msg 6= C !NOT MESSAGE

725 ∧ rec from waiting ′ = rec from waiting \ {req}

726 ∧ if msg .num dropped > 0

727 then C !ApplyTerminateSignal(rf , rf updated , msg)

728 else C !RecvCountDroppedResponse(msg)

729 ∧ step ′ = step + 1

730 ∧ unchanged 〈exec state, tasks , f set , lf set ,

731 nxt finish id , nxt task id , nxt remote place ,

732 killed , killed cnt ,

733 lost tasks , lost f set , lost lf set ,

734 rec child , rec to, rec from〉

736

737 KillingPlace
∆
=

738 ∧ exec state = “running”

739 ∧ killed cnt < MAX KILL

740 ∧ let victim
∆
= choose x ∈ (C !PlaceID \ killed) : x 6= 0

741 victim tasks
∆
= C !FindLostTasks(victim)

742 victim finishes
∆
= C !FindLostFinishes(victim)

743 victim local finishes
∆
= C !FindLostLocalFinishes(victim)

744 rf to
∆
= C !FindImpactedResilientFinishToDead(victim)

745 rf from
∆
= C !FindImpactedResilientFinishFromDead (victim)

746 in ∧ step ≥ KILL FROM

747 ∧ step < KILL TO

748 ∧ killed ′ = killed ∪ {victim}

749 ∧ killed cnt ′ = killed cnt + 1

750 ∧ lost tasks ′ = lost tasks ∪ victim tasks

751 ∧ tasks ′ = tasks \ victim tasks

752 ∧ lost f set ′ = lost f set ∪ victim finishes

753 ∧ f set ′ = f set \ victim finishes

754 ∧ lost lf set ′ = lost lf set ∪ victim local finishes

755 ∧ lf set ′ = lf set \ victim local finishes

756 ∧ rec child ′ = rec child ∪ {

757 task ∈ C !GetChildrenTask : ∧ task .finish id ∈ rf to

758 ∧ task .victim = victim

759 ∧ task .markingDone = false

760 }

761 ∧ rec to ′ = rec to ∪ {

762 task ∈ C !ConvTask : ∃ rf ∈ rf set : ∃ p ∈ C !PlaceID :

763 ∧ task .finish id = rf .id

764 ∧ task .finish id ∈ rf to

765 ∧ rf .transOrLive [p][victim] > 0

766 ∧ task .from = p

767 ∧ task .to = victim

192 TLA+ Specification of the Optimistic Finish Protocol

768 }

769 ∧ rec from ′ = rec from ∪ {

770 task ∈ C !ConvTask : ∃ rf ∈ rf set : ∃ p ∈ C !PlaceID :

771 ∧ task .finish id = rf .id

772 ∧ task .finish id ∈ rf to

773 ∧ rf .transOrLive [victim][p] > 0

774 ∧ task .to = p

775 ∧ task .from = victim

776 }

777 ∧ step ′ = step + 1

778 ∧ unchanged 〈exec state, rf set , msgs ,

779 nxt finish id , nxt task id , nxt remote place ,

780 rec from waiting〉

783 Program Terminating
∆
=

784 ∧ exec state = “running”

785 ∧ let root task
∆
= choose task ∈ tasks : task .id = C !ROOT TASK ID

786 root task updated
∆
= [root task except ! .status = “terminated”]

787 in ∧ root task .status = “running” root task unblocked

788 ∧ tasks ′ = (tasks \ {root task}) ∪ {root task updated}

789 ∧ exec state ′ = “success”

790 ∧ step ′ = step + 1

791 ∧ unchanged 〈f set , lf set , rf set , msgs ,

792 nxt finish id , nxt task id , nxt remote place ,

793 killed , killed cnt ,

794 lost tasks , lost f set , lost lf set ,

795 rec child , rec to, rec from , rec from waiting〉

797

Possible next actions at each state

801 Next
∆
=

802 ∨ Task CreatingFinish

803 ∨ Finish CreatingRemoteTask

804 ∨ Finish TerminatingTask

805 ∨ Finish ReceivingPublishDoneSignal

806 ∨ Finish ReceivingReleaseSignal

807 ∨ LocalFinish CreatingRemoteTask

808 ∨ LocalFinish TerminatingTask

809 ∨ LocalFinish MarkingDeadPlace

810 ∨ SendingTask

811 ∨ DroppingTask

812 ∨ ReceivingTask

813 ∨ Store ReceivingPublishSignal

814 ∨ Store ReceivingTransitSignal

193

815 ∨ Store ReceivingTerminateTaskSignal

816 ∨ Store ReceivingTerminateGhostSignal

817 ∨ Store FindingGhostChildren

818 ∨ Store AddingGhostChildren

819 ∨ Store CancellingTasksToDeadPlace

820 ∨ Store SendingCountTransitSignalToLocalFinish

821 ∨ Store CancellingTransitTasksFromDeadPlace

822 ∨ KillingPlace

823 ∨ Program Terminating

825

We assume weak fairness on all actions (i .e . an action that remains forever enabled, must eventually be

executed).

830 Liveness
∆
=

831 ∧ WFVars(Task CreatingFinish)

832 ∧ WFVars(Finish CreatingRemoteTask)

833 ∧ WFVars(Finish TerminatingTask)

834 ∧ WFVars(Finish ReceivingPublishDoneSignal)

835 ∧ WFVars(Finish ReceivingReleaseSignal)

836 ∧ WFVars(LocalFinish CreatingRemoteTask)

837 ∧ WFVars(LocalFinish TerminatingTask)

838 ∧ WFVars(LocalFinish MarkingDeadPlace)

839 ∧ WFVars(SendingTask)

840 ∧ WFVars(DroppingTask)

841 ∧ WFVars(ReceivingTask)

842 ∧ WFVars(Store ReceivingPublishSignal)

843 ∧ WFVars(Store ReceivingTransitSignal)

844 ∧ WFVars(Store ReceivingTerminateTaskSignal)

845 ∧ WFVars(Store ReceivingTerminateGhostSignal)

846 ∧ WFVars(Store FindingGhostChildren)

847 ∧ WFVars(Store AddingGhostChildren)

848 ∧ WFVars(Store CancellingTasksToDeadPlace)

849 ∧ WFVars(Store SendingCountTransitSignalToLocalFinish)

850 ∧ WFVars(Store CancellingTransitTasksFromDeadPlace)

851 ∧ WFVars(KillingPlace)

852 ∧ WFVars(Program Terminating)

854

Specification

858 Spec
∆
= Init ∧✷[Next]Vars ∧ Liveness

860 theorem Spec =⇒ ✷(TypeOK)

861

194 TLA+ Specification of the Optimistic Finish Protocol

1 module OptimisticCommons

2 Constants and common utility actions

3 extends Integers

5 constants LEVEL,

6 WIDTH ,

7 NUM PLACES ,

8 MAX KILL

10 variables exec state,

11 tasks ,

12 f set ,

13 lf set ,

14 rf set ,

15 msgs ,

16 nxt finish id ,

17 nxt task id ,

18 nxt remote place ,

19 killed ,

20 rec child ,

21 rec to,

22 rec from ,

23 rec from waiting

25

27 FIRST PLACE ID
∆
= 0

28 PlaceID
∆
= FIRST PLACE ID . . (NUM PLACES − 1)

29 NOT PLACE ID
∆
= − 1

31 ROOT FINISH ID
∆
= 0

32 MAX FINISH ID
∆
= ((1 − (WIDTH)(LEVEL+1))÷ (1 −WIDTH)) the power series

33 NOT FINISH ID
∆
= − 1

34 FinishID
∆
= ROOT FINISH ID . . MAX FINISH ID

36 ROOT TASK ID
∆
= 0

37 MAX TASK ID
∆
= MAX FINISH ID

38 NOT TASK ID
∆
= − 1

39 TaskID
∆
= ROOT TASK ID . . MAX TASK ID

41 BranchID
∆
= 0 . . WIDTH

42 LevelID
∆
= 0 . . LEVEL

44 TASK STATUS
∆
= {“waitingForPublish”, “waitingForTransit”, “sent”, “dropped”,

45 “running”, “blocked”, “terminated”}

47 TASK TYPE
∆
= {“normal”, terminates at any time

48 “finishMainTask” terminates after finish creates all its branches

195

49 }

51 FINISH STATUS
∆
= {“active”, “waitingForPublish”, “waitingForRelease”, “released”}

53 Task
∆
= [id : TaskID ,

54 pred id : TaskID ∪ {NOT TASK ID}, predecessor task, used for debugging only

55 src : PlaceID , dst : PlaceID ,

56 finish id : FinishID ,

57 level : LevelID ,

58 last branch : BranchID ,

59 status : TASK STATUS ,

60 type : TASK TYPE ,

61 finish type : {“global”, “local”, “N/A”}]

63 RootTask
∆
= [id 7→ ROOT TASK ID ,

64 pred id 7→ NOT TASK ID ,

65 src 7→ FIRST PLACE ID ,

66 dst 7→ FIRST PLACE ID ,

67 finish id 7→ ROOT FINISH ID ,

68 level 7→ 0,

69 last branch 7→ WIDTH ,

70 status 7→ “blocked”,

71 type 7→ “normal”,

72 finish type 7→ “global”]

74 NOT TASK
∆
= [id 7→ NOT TASK ID ,

75 src 7→ NOT PLACE ID ,

76 dst 7→ NOT PLACE ID ,

77 level 7→ − 1,

78 finish id 7→ NOT FINISH ID ,

79 finish type 7→ “N/A”]

82 Place1D
∆
= [PlaceID → Nat]

83 Place2D
∆
= [PlaceID → [PlaceID → Nat]]

85 Place1DZeros
∆
= [i ∈ PlaceID 7→ 0]

86 Place2DZeros
∆
= [i ∈ PlaceID 7→ [j ∈ PlaceID 7→ 0]]

88 Place1DTerminateTask(src, cnt)
∆
= [i ∈ PlaceID 7→

89 if i = src then cnt else 0]

91 Place2DInitResilientFinish(home)
∆
= [i ∈ PlaceID 7→ [j ∈ PlaceID 7→

92 if i = home ∧ j = home then 1 else 0]]

94 Finish
∆
= [id : FinishID \ {ROOT FINISH ID},

95 pred id : TaskID ∪ {NOT TASK ID}, predecessor task

96 home : PlaceID ,

196 TLA+ Specification of the Optimistic Finish Protocol

97 origin : PlaceID ,

98 parent finish id : FinishID ,

99 status : FINISH STATUS ,

100 lc : Nat]

102 RootFinish
∆
= [id 7→ ROOT FINISH ID + 1,

103 pred id 7→ RootTask .id ,

104 home 7→ FIRST PLACE ID ,

105 origin 7→ FIRST PLACE ID ,

106 parent finish id 7→ ROOT FINISH ID ,

107 status 7→ “active”,

108 lc 7→ 1]

110 RootFinishTask
∆
= [id 7→ ROOT TASK ID + 1,

111 pred id 7→ ROOT TASK ID ,

112 dst 7→ FIRST PLACE ID ,

113 src 7→ FIRST PLACE ID ,

114 finish id 7→ RootFinish .id ,

115 status 7→ “running”,

116 level 7→ 1,

117 last branch 7→ 0,

118 type 7→ “finishMainTask”,

119 finish type 7→ “global”]

121 NOT FINISH
∆
= [id 7→ NOT FINISH ID ,

122 home 7→ NOT PLACE ID ,

123 origin 7→ NOT PLACE ID ,

124 parent finish id 7→ NOT FINISH ID ,

125 status 7→ “”,

126 lc 7→ 0]

128 LFinish
∆
= [id : FinishID \ {ROOT FINISH ID},

129 home : PlaceID ,

130 lc : Nat ,

131 reported : Place1D ,

132 received : Place1D ,

133 deny : Place1D]

135 RFinish
∆
= [id : FinishID \ {ROOT FINISH ID},

136 home : PlaceID ,

137 origin : PlaceID ,

138 parent finish id : FinishID ,

139 transOrLive : Place2D ,

140 sent : Place2D ,

141 gc : Nat ,

142 ghost children : subset FinishID ,

197

143 isAdopted : boolean]

145 Message
∆
= [from : {“f”, “rf”, “src”, “dst”, “lf”},

146 to : {“f”, “rf”, “src”, “dst”, “lf”},

147 tag : {“transit”, “transitDone”, “transitNotDone”,

148 “terminateTask”, “terminateGhost”,

149 “task”,

150 “publish”, “publishDone”,

151 “release”,

152 “countDropped”, “countDroppedDone”},

153 src : PlaceID ,

154 dst : PlaceID ,

155 finish id : FinishID ,

156 ghost finish id : FinishID ,

157 task id : TaskID ,

158 term tasks by src : Place1D , termination only

159 term tasks dst : PlaceID , termination only

160 num sent : Nat ,

161 num dropped : Nat

162]

164 NOT MESSAGE
∆
= [from 7→ “N/A”, to 7→ “N/A”, tag 7→ “N/A”,

165 src 7→ NOT PLACE ID , dst 7→ NOT PLACE ID ,

166 finish id 7→ NOT FINISH ID ,

167 task id 7→ NOT TASK ID ,

168 ghost finish id 7→ NOT FINISH ID ,

169 term tasks by src 7→ Place1DZeros ,

170 term tasks dst 7→ NOT PLACE ID]

172 FindRunningTask (maxLevel)
∆
=

173 let tset
∆
= {task ∈ tasks : ∧ task .status = “running”

174 ∧ task .last branch < WIDTH

175 ∧ task .level ≤ maxLevel}

176 in if tset = {} then NOT TASK

177 else choose t ∈ tset : true

179 FindRunningTaskWithFinishType(maxLevel , fin type)
∆
=

180 let tset
∆
= {task ∈ tasks : ∧ task .status = “running”

181 ∧ task .last branch < WIDTH

182 ∧ task .level ≤ maxLevel

183 ∧ task .finish type = fin type}

184 in if tset = {} then NOT TASK

185 else choose t ∈ tset : true

187 FindFinishById(id)
∆
=

188 choose f ∈ f set : f .id = id

198 TLA+ Specification of the Optimistic Finish Protocol

190 FindResilientFinishById(id)
∆
=

191 choose f ∈ rf set : f .id = id

193 FindTaskById(id)
∆
=

194 choose t ∈ tasks : t .id = id

196 ActiveFinishSet
∆
= {“active”, “waitingForRelease”}

198 FindActiveFinish(id , home)
∆
=

199 let fset
∆
= {finish ∈ f set : ∧ finish .status ∈ ActiveFinishSet

200 ∧ finish .id = id

201 ∧ ∨ ∧ home 6= NOT PLACE ID

202 ∧ finish .home = home

203 ∨ ∧ home = NOT PLACE ID}

204 in if fset = {} then NOT FINISH

205 else choose f ∈ fset : true

207 FindPendingRemoteTask (finish id , status)
∆
=

208 let tset
∆
= {task ∈ tasks : ∧ task .status = status

209 ∧ task .src 6= task .dst

210 ∧ task .finish type = “local”

211 ∧ task .finish id = finish id

212 }

213 in if tset = {} then NOT TASK

214 else choose t ∈ tset : true

216 IsPublished(finish id)
∆
=

217 ∃ rf ∈ rf set : ∧ rf .id = finish id

218 ∧ ∃ f ∈ f set : ∧ f .id = finish id

219 ∧ f .status ∈ ActiveFinishSet

220 LocalFinishExists(place , finish id)
∆
=

221 ∃ lf ∈ lf set : ∧ lf .id = finish id

222 ∧ lf .home = place

224 ResilientFinishExists(finish id)
∆
=

225 ∃ rf ∈ rf set : rf .id = finish id

227 FindLocalFinish(place , finish id)
∆
=

228 choose f ∈ lf set : f .home = place ∧ f .id = finish id

230 FindFinishToRelease(finish id)
∆
=

231 choose f ∈ f set : f .id = finish id ∧ f .status = “waitingForRelease”∧ f .lc = 0

233 a task can terminate if cannot branch further - at last level or at last branch number

234 FindTaskToTerminate(fin type)
∆
=

235 let tset
∆
= {task ∈ tasks : ∧ task .status = “running”

236 ∧ task .finish type = fin type

237 ∧ ∨ task .level = LEVEL

199

238 ∨ task .last branch = WIDTH

239 ∧ if fin type = “global”

240 then FindActiveFinish(task .finish id , task .src)

241 6= NOT FINISH

242 else true

243 }

244 in if tset = {} then NOT TASK

245 else choose t ∈ tset : true

247 FindBlockedTask (task id)
∆
=

248 let tset
∆
= {task ∈ tasks : ∧ task .status = “blocked”

249 ∧ task .id = task id

250 }

251 in if tset = {} then NOT TASK

252 else choose t ∈ tset : true

254 SendMsg(m)
∆
=

Add message to the msgs set

258 msgs ′ = msgs ∪ {m}

260 RecvMsg(m)
∆
=

Delete message from the msgs set

264 msgs ′ = msgs \ {m}

266 ReplaceMsg(toRemove , toAdd)
∆
=

Remove an existing message and add another one

270 msgs ′ = (msgs \ {toRemove}) ∪ {toAdd}

272 FindMessageToActivePlaceWithTag(to, tag)
∆
=

Return a message matching the given criteria, or NOT MESSAGE otherwise

276 let mset
∆
= {m ∈ msgs : ∧m .to = to

277 ∧m .tag = tag

278 ∧ if m .to = “rf”

279 then true

280 else m .dst /∈ killed}

281 in if mset = {} then NOT MESSAGE

282 else (choose x ∈ mset : true)

284 Sum(place1D)
∆
=

285 if NUM PLACES = 0 then 0

286 else if NUM PLACES = 1 then place1D [0]

287 else if NUM PLACES = 2 then place1D [0] + place1D [1]

288 else if NUM PLACES = 3 then place1D [0] + place1D [1] + place1D [2]

289 else if NUM PLACES = 4 then place1D [0] + place1D [1] + place1D [2]

290 + place1D [3]

291 else if NUM PLACES = 5 then place1D [0] + place1D [1] + place1D [2]

200 TLA+ Specification of the Optimistic Finish Protocol

292 + place1D [3] + place1D [4]

293 else if NUM PLACES = 6 then place1D [0] + place1D [1] + place1D [2]

294 + place1D [3] + place1D [4] + place1D [5]

295 else − 1

297 NextRemotePlace(here)
∆
=

298 if nxt remote place [here] = here

299 then (nxt remote place [here] + 1)%NUM PLACES

300 else nxt remote place [here]

302 ShiftNextRemotePlace(here)
∆
=

303 if nxt remote place [here] = here

304 then nxt remote place ′ = [nxt remote place except ! [here] =

305 (nxt remote place [here] + 2)%NUM PLACES]

306 else nxt remote place ′ = [nxt remote place except ! [here] =

307 (nxt remote place [here] + 1)%NUM PLACES]

308

309 FindLostTasks(dead)
∆
=

310 {

311 task ∈ tasks : ∨ ∧ task .status ∈ {“waitingForPublish”,

312 “waitingForTransit”}

313 ∧ task .src = dead

314 ∨ ∧ task .status ∈ {“running”, “blocked”}

315 ∧ task .dst = dead

316 }

318 FindLostFinishes(dead)
∆
=

319 {

320 finish ∈ f set : ∧ finish .status 6= “released”

321 ∧ finish .home = dead

322 }

324 FindLostLocalFinishes(dead)
∆
=

325 {

326 local fin ∈ lf set : ∧ local fin .home = dead

327 }

329 FindImpactedResilientFinish(victim)
∆
=

330 {

331 id ∈ FinishID : ∃ rf ∈ rf set : ∧ rf .id = id

332 ∧ ∨ ∃ i ∈ PlaceID

333 : rf .transOrLive [i][victim] > 0

334 ∨ ∃ j ∈ PlaceID

335 : rf .transOrLive [victim][j] > 0

336 }

201

338 FindImpactedResilientFinishToDead(victim)
∆
=

339 {

340 id ∈ FinishID : ∃ rf ∈ rf set : ∧ rf .id = id

341 ∧ ∃ i ∈ PlaceID

342 : rf .transOrLive [i][victim] > 0

343 }

345 FindImpactedResilientFinishFromDead (victim)
∆
=

346 {

347 id ∈ FinishID : ∃ rf ∈ rf set : ∧ rf .id = id

348 ∧ ∃ j ∈ PlaceID

349 : rf .transOrLive [victim][j] > 0

350 }

352 GetSrc(rf)
∆
=

353 choose i ∈ PlaceID : choose j ∈ killed : rf .transOrLive [i][j] > 0

355 GetDst(rf , src)
∆
=

356 choose j ∈ killed : rf .transOrLive [src][j] > 0

358 GetAdoptedGhostChildren(fin id)
∆
=

359 {

360 id ∈ FinishID : ∃ rf ∈ rf set : ∧ rf .id = id

361 ∧ rf .home ∈ killed

362 ∧ rf .parent finish id = fin id

363 ∧ rf .isAdopted = true

364 }

366 GetNonAdoptedGhostChildren(fin id)
∆
=

367 {

368 id ∈ FinishID : ∃ rf ∈ rf set : ∧ rf .id = id

369 ∧ rf .home ∈ killed

370 ∧ rf .parent finish id = fin id

371 ∧ rf .isAdopted = false

372 }

374 IsRecoveringTasksToDeadPlaces(fin id)
∆
=

375 ∨ ∃ task ∈ rec child : task .finish id = fin id

376 ∨ ∃ task ∈ rec to : task .finish id = fin id

378 ConvTask
∆
= [finish id : FinishID , from : PlaceID , to : PlaceID]

380 GetChildrenTask
∆
= [finish id : FinishID , victim : PlaceID , markingDone : boolean]

382 NOT REQUEST
∆
= [finish id 7→ NOT FINISH ID]

384 ChildRequestExists(fin id)
∆
=

385 ∃ creq ∈ rec child : fin id = creq .finish id

202 TLA+ Specification of the Optimistic Finish Protocol

387 ToRequestExists(fin id)
∆
=

388 ∃ treq ∈ rec to : fin id = treq .finish id

390 FindMarkGhostChildrenRequest
∆
=

391 let rset
∆
= {r ∈ rec child : r .markingDone = false}

392 in if rset = {} then NOT REQUEST

393 else (choose x ∈ rset : true)

395 FindAddGhostChildrenRequest
∆
=

396 let rset
∆
= {r ∈ rec child : r .markingDone = true}

397 in if rset = {} then NOT REQUEST

398 else (choose x ∈ rset : true)

400 ChooseGhost(ghosts)
∆
=

401 if ghosts = {} then NOT FINISH else choose x ∈ rf set : x .id ∈ ghosts

403 FindToDeadRequest
∆
=

404 if rec to = {} then NOT REQUEST

405 else if ∃ a ∈ rec to : ¬ChildRequestExists(a .finish id)

406 then (choose b ∈ rec to : ¬ChildRequestExists(b.finish id))

407 else NOT REQUEST

409 FindFromDeadRequest
∆
=

410 if rec from = {} then NOT REQUEST

411 else if ∃ a ∈ rec from : ∧ ¬ChildRequestExists(a .finish id)

412 ∧ ¬ToRequestExists(a .finish id)

413 then (choose b ∈ rec from : ∧ ¬ChildRequestExists(b.finish id)

414 ∧ ¬ToRequestExists(b.finish id))

415 else NOT REQUEST

417 FindFromDeadWaitingRequest(fin id , from , to)
∆
=

418 choose x ∈ rec from waiting : ∧ x .finish id = fin id

419 ∧ x .from = from

420 ∧ x .to = to

422 ApplyTerminateSignal(rf , rf updated , msg)
∆
=

423 if rf updated .gc = 0 ∧ rf updated .ghost children = {}

424 then if rf .isAdopted

425 then ∧ReplaceMsg(msg , [from 7→ “rf”, to 7→ “rf”, tag 7→ “terminateGhost”,

426 finish id 7→ rf .parent finish id ,

427 ghost finish id 7→ rf .id ,

428 dst 7→ NOT PLACE ID]) rf .id is enough

429 ∧ rf set ′ = rf set \ {rf }

430 else ∧ReplaceMsg(msg , [from 7→ “rf”, to 7→ “f”, tag 7→ “release”,

431 finish id 7→ rf .id ,

432 dst 7→ rf .home])

433 ∧ rf set ′ = rf set \ {rf }

203

434 else ∧RecvMsg(msg)
435 ∧ rf set ′ = (rf set \ {rf }) ∪ {rf updated}

437 ApplyTerminateSignal2(rf , rf updated)
∆
=

438 if rf updated .gc = 0 ∧ rf updated .ghost children = {}
439 then if rf .isAdopted

440 then ∧ SendMsg([from 7→ “rf”, to 7→ “rf”, tag 7→ “terminateGhost”,

441 finish id 7→ rf .parent finish id ,

442 ghost finish id 7→ rf .id ,

443 dst 7→ NOT PLACE ID]) rf .id is enough

444 ∧ rf set ′ = rf set \ {rf }
445 else ∧ SendMsg([from 7→ “rf”, to 7→ “f”, tag 7→ “release”,

446 finish id 7→ rf .id ,

447 dst 7→ rf .home])
448 ∧ rf set ′ = rf set \ {rf }
449 else ∧msgs ′ = msgs

450 ∧ rf set ′ = (rf set \ {rf }) ∪ {rf updated}

452 RecvTerminateSignal(msg)
∆
=

453 ∧RecvMsg(msg)
454 ∧ rf set ′ = rf set

456 RecvCountDroppedResponse(msg)
∆
=

457 ∧RecvMsg(msg)
458 ∧ rf set ′ = rf set

459

204 TLA+ Specification of the Optimistic Finish Protocol

Appendix C

TLA+ Specification of the

Distributed Finish Replication

Protocol

1 module AsyncFinishReplication

2 extends Integers

4 constants CLIENT NUM , the number of clients

5 MAX KILL maximum allowed kill events

7 variables exec state, the execution state of the program: running, success, or fatal

8 clients , clients sending value update requests to master and backup

9 master , array of master instances, only one is active

10 backup, array of backup instances, only one is active

11 msgs , in-flight messages

12 killed number of invoked kill actions to master or backup

14

15 Vars
∆
= 〈exec state, clients , master , backup, msgs , killed〉

16

17 C
∆
= instance Commons

18

19 TypeOK
∆
=

Variables type constrains

23 ∧ clients ∈ [C !CLIENT ID → C !Client]

24 ∧master ∈ [C !INSTANCE ID → C !Master]

25 ∧ backup ∈ [C !INSTANCE ID → C !Backup]

26 ∧ exec state ∈ {“running”, “success”, “fatal”}

27 ∧msgs ⊆ C !Messages

28 ∧ killed ∈ 0 . . MAX KILL

30

205

206 TLA+ Specification of the Distributed Finish Replication Protocol

31 MaxOneActiveMaster
∆
=

Return true if maximum one active master exists, and false otherwise

35 let activeM
∆
= C !FindMaster (C !INST STATUS ACTIVE)

36 otherIds
∆
= C !INSTANCE ID \ {activeM .id}

37 in if activeM = C !NOT MASTER

38 then true zero active masters

39 else let otherActiveMs
∆
= {m ∈ otherIds :

40 master [m].status = C !INST STATUS ACTIVE}
41 in if otherActiveMs = {} then true no other active masters

42 else false other active masters exist

44 MaxOneActiveBackup
∆
=

Return true if maximum one active backup exists, and false otherwise

48 let activeB
∆
= C !FindBackup(C !INST STATUS ACTIVE)

49 otherIds
∆
= C !INSTANCE ID \ {activeB .id}

50 in if activeB = C !NOT BACKUP

51 then true zero active backups

52 else let otherActiveBs
∆
= {b ∈ otherIds :

53 backup[b].status = C !INST STATUS ACTIVE}
54 in if otherActiveBs = {} then true no other active backups

55 else false other active backup exist

57 StateOK
∆
=

State invariants

1. on successful termination: the final version equals CLIENT NUM

2. on fatal termination: there must be a client whose master is lost and whose backup is lost or is

unknown
3. before termination:

a) master version ≥ backup version

b) master and backup version should not exceed CLIENT NUM

c) maximum one active master and maximum one active backup

68 let curMaster
∆
= C !LastKnownMaster

69 curBackup
∆
= C !LastKnownBackup

70 in if exec state = “success”

71 then ∧ curMaster .version = CLIENT NUM

72 ∧ curBackup.version = CLIENT NUM

73 else if exec state = “fatal”

74 then ∃ c ∈ C !CLIENT ID :

75 ∧ clients [c].phase = C !PH 2 COMPLETED FATAL

76 ∧master [clients [c].masterId].status = C !INST STATUS LOST

77 ∧ if clients [c].backupId 6= C !UNKNOWN ID

78 then backup[clients [c].backupId].status = C !INST STATUS LOST

79 else true

80 else ∧ curMaster .version ≥ curBackup.version

81 ∧ curMaster .version ≤ CLIENT NUM

82 ∧ curBackup.version ≤ CLIENT NUM

207

83 ∧MaxOneActiveMaster

84 ∧MaxOneActiveBackup

86

87 MustTerminate
∆
=

Temporal property: the program must eventually terminate either successfully or fatally

92 ✸(exec state ∈ {“success”, “fatal”})
93

94 Init
∆
=

Initialize variables

98 ∧ exec state = “running”

99 ∧ clients = [i ∈ C !CLIENT ID 7→ [id 7→ i , phase 7→ C !PH 1 PENDING ,

100 value 7→ i , masterId 7→ C !FIRST ID ,

101 backupId 7→ C !UNKNOWN ID]]
102 ∧ backup = [i ∈ C !INSTANCE ID 7→
103 if i = C !FIRST ID

104 then [id 7→ C !FIRST ID , masterId 7→ C !FIRST ID ,

105 status 7→ C !INST STATUS ACTIVE ,

106 value 7→ 0, version 7→ 0]
107 else [id 7→ i , masterId 7→ C !UNKNOWN ID ,

108 status 7→ C !INST STATUS NULL,

109 value 7→ 0, version 7→ 0]]
110 ∧master = [i ∈ C !INSTANCE ID 7→
111 if i = C !FIRST ID

112 then [id 7→ C !FIRST ID , backupId 7→ C !FIRST ID ,

113 status 7→ C !INST STATUS ACTIVE ,

114 value 7→ 0, version 7→ 0]
115 else [id 7→ i , backupId 7→ C !UNKNOWN ID ,

116 status 7→ C !INST STATUS NULL,

117 value 7→ 0, version 7→ 0]]
118 ∧msgs = {}
119 ∧ killed = 0

121

122 E KillingMaster
∆
=

Kill the active master instance.

126 ∧ exec state = “running”

127 ∧ killed < MAX KILL

128 ∧ let activeM
∆
= C !FindMaster(C !INST STATUS ACTIVE)

129 in ∧ activeM 6= C !NOT MASTER

130 ∧master ′ = [master except ! [activeM .id].status = C !INST STATUS LOST]
131 ∧ killed ′ = killed + 1

132 ∧ unchanged 〈exec state, clients , backup, msgs〉

134 E KillingBackup
∆
=

208 TLA+ Specification of the Distributed Finish Replication Protocol

Kill the active backup instance.

138 ∧ exec state = “running”

139 ∧ killed < MAX KILL

140 ∧ let activeB
∆
= C !FindBackup(C !INST STATUS ACTIVE)

141 in ∧ activeB 6= C !NOT BACKUP

142 ∧ backup ′ = [backup except ! [activeB .id].status = C !INST STATUS LOST]

143 ∧ killed ′ = killed + 1

144 ∧ unchanged 〈exec state, clients , master , msgs〉

146 C Starting
∆
=

Client start the replication process by sending “do” to master

150 ∧ exec state = “running”

151 ∧ let client
∆
= C !FindClient(C !PH 1 PENDING)

152 in ∧ client 6= C !NOT CLIENT

153 ∧C !SendMsg([from 7→ “c”,

154 to 7→ “m”,

155 clientId 7→ client .id ,

156 masterId 7→ client .masterId ,

157 backupId 7→ C !UNKNOWN ID ,

158 value 7→ client .value ,

159 tag 7→ “masterDo”])

160 ∧ clients ′ = [clients except ! [client .id].phase = C !PH 2 WORKING]

161 ∧ unchanged 〈exec state, master , backup, killed〉

163 M Doing
∆
=

Master receiving “do”, updating value, and sending “done”

167 ∧ exec state = “running”

168 ∧ let msg
∆
= C !FindMessageToWithTag(“m”, C !INST STATUS ACTIVE , “masterDo”)

169 in ∧msg 6= C !NOT MESSAGE

170 ∧master ′ = [master except ! [msg .masterId].value =

171 master [msg .masterId].value +msg .value ,

172 ! [msg .masterId].version =

173 master [msg .masterId].version + 1]

174 ∧C !ReplaceMsg(msg , [from 7→ “m”,

175 to 7→ “c”,

176 clientId 7→ msg .clientId ,

177 masterId 7→ msg .masterId ,

178 backupId 7→ master [msg .masterId].backupId ,

179 value 7→ 0,

180 tag 7→ “masterDone”])

181 ∧ unchanged 〈exec state, clients , backup, killed〉

183 C HandlingMasterDone
∆
=

Client receiving “done” from master, and forwarding action to backup

209

187 ∧ exec state = “running”

188 ∧ let msg
∆
= C !FindMessageToClient(“m”, “masterDone”)

189 in ∧msg 6= C !NOT MESSAGE

190 ∧C !ReplaceMsg(msg , [from 7→ “c”,

191 to 7→ “b”,

192 clientId 7→ msg .clientId ,

193 masterId 7→ msg .masterId ,

194 backupId 7→ msg .backupId ,

195 value 7→ clients [msg .clientId].value ,

196 tag 7→ “backupDo”])

197 update our knowledge about the backup identity

198 ∧ clients ′ = [clients except ! [msg .clientId].backupId = msg .backupId]

199 ∧ unchanged 〈exec state, master , backup, killed〉

201 B Doing
∆
=

Backup receiving “do”, updating value, then sending “done”

205 ∧ exec state = “running”

206 ∧ let msg
∆
= C !FindMessageToWithTag(“b”, C !INST STATUS ACTIVE , “backupDo”)

207 in ∧msg 6= C !NOT MESSAGE

208 Master info is consistent between client and backup

209 ∧msg .masterId = backup[msg .backupId].masterId

210 ∧ backup ′ = [backup except ! [msg .backupId].value =

211 backup[msg .backupId].value +msg .value ,

212 ! [msg .backupId].version =

213 backup[msg .backupId].version + 1]

214 ∧C !ReplaceMsg(msg , [from 7→ “b”,

215 to 7→ “c”,

216 clientId 7→ msg .clientId ,

217 masterId 7→ msg .masterId ,

218 backupId 7→ msg .backupId ,

219 value 7→ 0,

220 tag 7→ “backupDone”])

221 ∧ unchanged 〈exec state, clients , master , killed〉

223 B DetectingOldMasterId
∆
=

Backup receiving “do” and detecting that the client is using an old master id . It does not update the

value, and it sends the new master id to the client

229 ∧ exec state = “running”

230 ∧ let msg
∆
= C !FindMessageToWithTag(“b”, C !INST STATUS ACTIVE , “backupDo”)

231 in ∧msg 6= C !NOT MESSAGE

232 Master has changed, client must restart

233 ∧msg .masterId 6= backup[msg .backupId].masterId

234 ∧C !ReplaceMsg(msg , [from 7→ “b”,

235 to 7→ “c”,

236 clientId 7→ msg .clientId ,

210 TLA+ Specification of the Distributed Finish Replication Protocol

237 masterId 7→ backup[msg .backupId].masterId ,

238 backupId 7→ msg .backupId ,

239 value 7→ 0,

240 tag 7→ “newMasterId”])

241 ∧ unchanged 〈exec state, clients , master , backup, killed〉

243 C HandlingBackupDone
∆
=

Client receiving “done” from backup. Replication completed

247 ∧ exec state = “running”

248 ∧ let msg
∆
= C !FindMessageToClient(“b”, “backupDone”)

249 in ∧msg 6= C !NOT MESSAGE

250 ∧C !RecvMsg(msg)

251 ∧ clients ′ = [clients except ! [msg .clientId].phase = C !PH 2 COMPLETED]

252 if all clients completed, then terminate the execution successfully

253 ∧ if ∀ c ∈ C !CLIENT ID : clients ′[c].phase = C !PH 2 COMPLETED

254 then exec state ′ = “success”

255 else exec state ′ = exec state

256 ∧ unchanged 〈master , backup, killed〉

258

259 C HandlingMasterDoFailed
∆
=

Client received the system’s notification of a dead master, and is requesting the backup to return the

new master info

264 ∧ exec state = “running”

265 ∧ let msg
∆
= C !FindMessageToWithTag(“m”, C !INST STATUS LOST , “masterDo”)

266 knownBackup
∆
= if msg 6= C !NOT MESSAGE

267 then C !FindBackup(C !INST STATUS ACTIVE)

268 else C !NOT BACKUP

269 in ∧msg 6= C !NOT MESSAGE

270 ∧ if knownBackup = C !NOT BACKUP

271 then ∧C !RecvMsg(msg)

272 ∧ exec state ′ = “fatal”

273 ∧ clients ′ = [clients except ! [msg .clientId].phase =

274 C !PH 2 COMPLETED FATAL]

275 else ∧C !ReplaceMsg(msg , [from 7→ “c”,

276 to 7→ “b”,

277 clientId 7→ msg .clientId ,

278 send the client’s master knowledge,

279 to force the backup to not respond

280 until re-replication

281 masterId 7→ clients [msg .clientId].masterId ,

282 backupId 7→ knownBackup.id ,

283 value 7→ 0,

284 tag 7→ “backupGetNewMaster”])

285 ∧ exec state ′ = exec state

211

286 ∧ clients ′ = clients

287 ∧ unchanged 〈master , backup, killed〉

289 C HandlingBackupDoFailed
∆
=

Client received the system’s notification of a dead backup, and is requesting the master to return the

new backup info

294 ∧ exec state = “running”

295 ∧ let msg
∆
= C !FindMessageToWithTag(“b”, C !INST STATUS LOST , “backupDo”)

296 in ∧msg 6= C !NOT MESSAGE

297 ∧C !ReplaceMsg(msg , [from 7→ “c”,

298 to 7→ “m”,

299 clientId 7→ msg .clientId ,

300 masterId 7→ clients [msg .clientId].masterId ,

301 send the client’s backup knowledge,

302 to force the master to not respond

303 until rereplication

304 backupId 7→ clients [msg .clientId].backupId ,

305 value 7→ 0,

306 tag 7→ “masterGetNewBackup”])

307 ∧ unchanged 〈exec state, clients , master , backup, killed〉

309

310 M GettingNewBackup
∆
=

Master responding to client with updated backup identity

314 ∧ exec state = “running”

315 ∧ let msg
∆
= C !FindMessageToWithTag(“m”,

316 C !INST STATUS ACTIVE ,

317 “masterGetNewBackup”)

318 in ∧msg 6= C !NOT MESSAGE

319 master must not respond until it recovers the dead backup

320 ∧msg .backupId 6= master [msg .masterId].backupId

321 ∧C !ReplaceMsg(msg , [from 7→ “m”,

322 to 7→ “c”,

323 clientId 7→ msg .clientId ,

324 masterId 7→ msg .masterId ,

325 backupId 7→ master [msg .masterId].backupId ,

326 value 7→ 0,

327 tag 7→ “newBackupId”])

328 ∧ unchanged 〈exec state, clients , master , backup, killed〉

330 B GettingNewMaster
∆
=

Backup responding to client with updated master identity

334 ∧ exec state = “running”

335 ∧ let msg
∆
= C !FindMessageToWithTag(“b”,

336 C !INST STATUS ACTIVE ,

212 TLA+ Specification of the Distributed Finish Replication Protocol

337 “backupGetNewMaster”)

338 in ∧msg 6= C !NOT MESSAGE

339 backup must not respond until it recovers the dead master

340 ∧msg .masterId 6= backup[msg .backupId].masterId

341 ∧C !ReplaceMsg(msg , [from 7→ “b”,

342 to 7→ “c”,

343 clientId 7→ msg .clientId ,

344 masterId 7→ backup[msg .backupId].masterId ,

345 backupId 7→ msg .backupId ,

346 value 7→ 0,

347 tag 7→ “newMasterId”])

348 ∧ unchanged 〈exec state, clients , master , backup, killed〉

350

351 C HandlingBackupGetNewMasterFailed
∆
=

The client handling the failure of the backup, when the client asked the backup to return the new

master identity. The client mannually searches for the master. If manual search does not find a master,

a fatal error occurs. Otherwise, the client updates it’s masterId and eventually restarts. Restarting is

safe because this action is reached only if “masterDo” fails

361 ∧ exec state = “running”

362 ∧ let msg
∆
= C !FindMessageToWithTag(“b”,

363 C !INST STATUS LOST ,

364 “backupGetNewMaster”)

365 foundMaster
∆
= C !FindMaster (C !INST STATUS ACTIVE)

366 in ∧msg 6= C !NOT MESSAGE

367 ∧C !RecvMsg(msg)

368 ∧ if foundMaster = C !NOT MASTER no live master found

369 then ∧ exec state ′ = “fatal”

370 ∧ clients ′ = [clients except ! [msg .clientId].phase =

371 C !PH 2 COMPLETED FATAL]

372 else ∧ exec state ′ = exec state

373 at this point, the live master must have been changed

374 ∧ foundMaster .id 6= clients [msg .clientId].masterId

375 change status to pending to be eligible for restart

376 ∧ clients ′ = [clients except ! [msg .clientId].masterId =

377 foundMaster .id ,

378 ! [msg .clientId].phase =

379 C !PH 1 PENDING]

380 ∧ unchanged 〈master , backup, killed〉

382 C HandlingMasterGetNewBackupFailed
∆
=

The client handling the failure of the master when the client asked the master to return the new

backup identity. The failure of the master is fatal. If a recovered master exists we should not search

for it, because it may have the old version before masterDone.

389 ∧ exec state = “running”

390 ∧ let msg
∆
= C !FindMessageToWithTag(“m”,

213

391 C !INST STATUS LOST ,

392 “masterGetNewBackup”)

393 in ∧msg 6= C !NOT MESSAGE

394 ∧ exec state ′ = “fatal”

395 ∧ clients ′ = [clients except ! [msg .clientId].phase =

396 C !PH 2 COMPLETED FATAL]

397 ∧C !RecvMsg(msg)

398 ∧ unchanged 〈master , backup, killed〉

400

401 C UpdatingBackupId
∆
=

402 ∧ exec state = “running”

403 ∧ let msg
∆
= C !FindMessageToClient(“m”, “newBackupId”)

404 in ∧msg 6= C !NOT MESSAGE receive new backup identity, and complete request,

405 don’t restart, master is alive and up to date

406 ∧C !RecvMsg(msg)

407 ∧ clients ′ = [clients except ! [msg .clientId].backupId = msg .backupId ,

408 ! [msg .clientId].phase = C !PH 2 COMPLETED]

409 if all clients completed, then terminate the execution successfully

410 ∧ if ∀ c ∈ C !CLIENT ID : clients ′[c].phase = C !PH 2 COMPLETED

411 then exec state ′ = “success”

412 else exec state ′ = exec state

413 ∧ unchanged 〈master , backup, killed〉

415 C UpdatingMasterId
∆
=

Client receiving a new master identify from a live backup and is preparing to restart by changing its

phase to pending

420 ∧ exec state = “running”

421 ∧ let msg
∆
= C !FindMessageToClient(“b”, “newMasterId”)

422 in ∧msg 6= C !NOT MESSAGE

423 ∧C !RecvMsg(msg)

424 ∧ clients ′ = [clients except ! [msg .clientId].masterId = msg .masterId ,

425 ! [msg .clientId].phase = C !PH 1 PENDING]

426 ∧ unchanged 〈exec state, master , backup, killed〉

427

428 M CreatingNewBackup
∆
=

Master creating a new backup using its own exec state. Master does not process any client requests

during recovery

433 ∧ exec state = “running”

434 ∧ let activeM
∆
= C !FindMaster(C !INST STATUS ACTIVE)

435 activeB
∆
= C !FindBackup(C !INST STATUS ACTIVE)

436 lostB
∆
= C !LastLostBackup

437 in ∧ activeM 6= C !NOT MASTER active master exists

438 ∧ activeB = C !NOT BACKUP active backup does not exist

439 ∧ lostB 6= C !NOT BACKUP a lost backup exists

214 TLA+ Specification of the Distributed Finish Replication Protocol

440 ∧ let newBackupId
∆
= lostB .id + 1

441 new backup id is the following id of the dead backup

442 in ∧ newBackupId ≤ C !MAX INSTANCE ID

443 ∧ backup ′ = [backup except

444 ! [newBackupId].status = C !INST STATUS ACTIVE ,

445 ! [newBackupId].masterId = activeM .id ,

446 ! [newBackupId].value = activeM .value ,

447 ! [newBackupId].version = activeM .version]

448 ∧master ′ = [master except

449 ! [activeM .id].backupId = newBackupId]

450 ∧ unchanged 〈exec state, clients , msgs , killed〉

452 B CreatingNewMaster
∆
=

Backup creating a new master using its own exec state. Backup does not process any client requests

during recovery

457 ∧ exec state = “running”

458 ∧ let activeM
∆
= C !FindMaster (C !INST STATUS ACTIVE)

459 activeB
∆
= C !FindBackup(C !INST STATUS ACTIVE)

460 lostM
∆
= C !LastLostMaster

461 in ∧ activeM = C !NOT MASTER active master does not exist

462 ∧ activeB 6= C !NOT BACKUP active backup exists

463 ∧ lostM 6= C !NOT MASTER a lost master exists

464 ∧ let newMasterId
∆
= lostM .id + 1

465 in ∧ newMasterId ≤ C !MAX INSTANCE ID

466 ∧master ′ = [master except

467 ! [newMasterId].status = C !INST STATUS ACTIVE ,

468 ! [newMasterId].backupId = activeB .id ,

469 ! [newMasterId].value = activeB .value ,

470 ! [newMasterId].version = activeB .version]

471 ∧ backup ′ = [backup except

472 ! [activeB .id].masterId = newMasterId]

473 ∧ unchanged 〈exec state, clients , msgs , killed〉

475 Next
∆
=

476 ∨ E KillingMaster

477 ∨ E KillingBackup

478 ∨ C Starting

479 ∨ M Doing

480 ∨ C HandlingMasterDone

481 ∨ B Doing

482 ∨ B DetectingOldMasterId

483 ∨ C HandlingBackupDone

484 ∨ C HandlingMasterDoFailed

485 ∨ C HandlingBackupDoFailed

486 ∨ M GettingNewBackup

215

487 ∨ B GettingNewMaster

488 ∨ C HandlingBackupGetNewMasterFailed

489 ∨ C HandlingMasterGetNewBackupFailed

490 ∨ C UpdatingBackupId

491 ∨ C UpdatingMasterId

492 ∨ M CreatingNewBackup

493 ∨ B CreatingNewMaster

495 Liveness
∆
=

496 ∧ WFVars(E KillingMaster)

497 ∧ WFVars(E KillingBackup)

498 ∧ WFVars(C Starting)

499 ∧ WFVars(M Doing)

500 ∧ WFVars(C HandlingMasterDone)

501 ∧ WFVars(B Doing)

502 ∧ WFVars(B DetectingOldMasterId)

503 ∧ WFVars(C HandlingBackupDone)

504 ∧ WFVars(C HandlingMasterDoFailed)

505 ∧ WFVars(C HandlingBackupDoFailed)

506 ∧ WFVars(M GettingNewBackup)

507 ∧ WFVars(B GettingNewMaster)

508 ∧ WFVars(C HandlingBackupGetNewMasterFailed)

509 ∧ WFVars(C HandlingMasterGetNewBackupFailed)

510 ∧ WFVars(C UpdatingBackupId)

511 ∧ WFVars(C UpdatingMasterId)

512 ∧ WFVars(M CreatingNewBackup)

513 ∧ WFVars(B CreatingNewMaster)

515

Specification

519 Spec
∆
= Init ∧✷[Next]Vars ∧ Liveness

521 theorem Spec =⇒ ✷(TypeOK ∧ StateOK)

522

216 TLA+ Specification of the Distributed Finish Replication Protocol

1 module Commons

2 extends Integers

4 constants CLIENT NUM , the number of clients

5 MAX KILL maximum allowed kill events

7 variables exec state, the execution state of the program: running, success, or fatal

8 clients , clients sending value update requests to master and backup

9 master , array of master instances, only one is active

10 backup, array of backup instances, only one is active

11 msgs , in-flight messages

12 killed number of invoked kill actions to master or backup

13

15 Identifiers related to master and backup instance ids

16 FIRST ID
∆
= 1

17 MAX INSTANCE ID
∆
= MAX KILL+ 1

18 INSTANCE ID
∆
= FIRST ID . . MAX INSTANCE ID

19 UNKNOWN ID
∆
= 0

20 NOT INSTANCE ID
∆
= − 1

22 Identifiers related to master and backup instance statuses

23 INST STATUS NULL
∆
= “null” null, not used yet

24 INST STATUS ACTIVE
∆
= “active” active and handling client requests

25 INST STATUS LOST
∆
= “lost” lost

26 NOT STATUS
∆
= “invalid” invalid status

27 INSTANCE STATUS
∆
= {INST STATUS NULL,

28 INST STATUS ACTIVE ,

29 INST STATUS LOST}

31 Master instance record structure

32 Master
∆
= [id : INSTANCE ID , backupId : INSTANCE ID ∪ {UNKNOWN ID},

33 status : INSTANCE STATUS , value : Nat , version : Nat]

35 Invalid master instance

36 NOT MASTER
∆
= [id 7→ NOT INSTANCE ID , backupId 7→ NOT INSTANCE ID ,

37 status 7→ NOT STATUS , value 7→ − 1, version 7→ − 1]

39 Backup instance record structure

40 Backup
∆
= [id : INSTANCE ID , masterId : INSTANCE ID ∪ {UNKNOWN ID},

41 status : INSTANCE STATUS , value : Nat , version : Nat]

43 Invalid backup instance

44 NOT BACKUP
∆
= [id 7→ NOT INSTANCE ID , masterId 7→ NOT INSTANCE ID ,

45 status 7→ NOT STATUS , value 7→ − 1, version 7→ − 1]

47 LastLostMaster
∆
=

Return the lost master, or NOT MASTER if master is alive

217

51 let mset
∆
= {m ∈ INSTANCE ID : master [m].status = INST STATUS LOST}

52 in if mset = {} then NOT MASTER

53 else master [(choose n ∈ mset : ∀m ∈ mset : n ≥ m)]

55 FindMaster (mStatus)
∆
=

Return the master with given status or NOT MASTER otherwise

59 let mset
∆
= {m ∈ INSTANCE ID : master [m].status = mStatus}

60 in if mset = {} then NOT MASTER

61 else master [(choose x ∈ mset : true)]

63 LastKnownMaster
∆
=

Return the last known master, whether active or lost

67 let mset
∆
= {m ∈ INSTANCE ID : master [m].status 6= INST STATUS NULL}

68 in master [(choose n ∈ mset : ∀m ∈ mset : n ≥ m)]

70 FindBackup(bStatus)
∆
=

Return the backup with given status or NOT BACKUP otherwise

74 let bset
∆
= {b ∈ INSTANCE ID : backup[b].status = bStatus}

75 in if bset = {} then NOT BACKUP

76 else backup[(choose x ∈ bset : true)]

78 LastLostBackup
∆
=

Return the lost backup, or NOT BACKUP if backup is alive

82 let bset
∆
= {b ∈ INSTANCE ID : backup[b].status = INST STATUS LOST}

83 in if bset = {} then NOT BACKUP

84 else backup[(choose n ∈ bset : ∀m ∈ bset : n ≥ m)]

86 LastKnownBackup
∆
=

Return the last known backup, whether active or lost

90 let bset
∆
= {b ∈ INSTANCE ID : backup[b].status 6= INST STATUS NULL}

91 in backup[(choose n ∈ bset : ∀m ∈ bset : n ≥ m)]

93

94 Identifiers related to client ids and phases

95 CLIENT ID
∆
= 1 . . CLIENT NUM

96 NOT CLIENT ID
∆
= − 1

98 client phases

99 CLIENT PHASE
∆
= 1 . . 4

100 PH 1 PENDING
∆
= 1

101 PH 2 WORKING
∆
= 2

102 PH 2 COMPLETED
∆
= 3

103 PH 2 COMPLETED FATAL
∆
= 4

104 NOT CLIENT PHASE
∆
= − 1

106 Client record structure

107 Client
∆
= [id : CLIENT ID , phase : CLIENT PHASE , value : Nat ,

218 TLA+ Specification of the Distributed Finish Replication Protocol

108 the master instance last communicated with

109 masterId : INSTANCE ID ,

110 the backup instance last communicated with, initially unknown

111 backupId : INSTANCE ID ∪ {UNKNOWN ID}
112]

114 Invalid client instance

115 NOT CLIENT
∆
= [id 7→ NOT CLIENT ID , phase 7→ NOT CLIENT PHASE , value 7→ 0]

117 FindClient(phase)
∆
=

Return a client matching the given phase, or NOT CLIENT otherwise

121 let cset
∆
= {c ∈ CLIENT ID : clients [c].phase = phase}

122 in if cset = {} then NOT CLIENT

123 else clients [(choose x ∈ cset : true)]

125

126 Message record structure

127 Messages
∆
= [from : {“c”, “m”, “b”, “sys”}, to : {“c”, “m”, “b”},

128 clientId : CLIENT ID ,

129 masterId : INSTANCE ID ∪ {UNKNOWN ID},

130 backupId : INSTANCE ID ∪ {UNKNOWN ID},

131 value : Nat ,

132 tag : {“masterDo”, “masterDone”,
133 “backupDo”, “backupDone”,

134 “masterGetNewBackup”, “newBackupId”,

135 “backupGetNewMaster”, “newMasterId”

136 }]

138 Invalid message instance

139 NOT MESSAGE
∆
= [from 7→ “na”, to 7→ “na”]

141 SendMsg(m)
∆
=

Add message to the msgs set

145 msgs ′ = msgs ∪ {m}

147 RecvMsg(m)
∆
=

Delete message from the msgs set

151 msgs ′ = msgs \ {m}

153 ReplaceMsg(toRemove , toAdd)
∆
=

Remove an existing message and add another one

157 msgs ′ = (msgs \ {toRemove}) ∪ {toAdd}

159 FindMessageToWithTag(to, status , optionalTag)
∆
=

Return a message matching the given criteria, or NOT MESSAGE otherwise

163 let mset
∆
= {m ∈ msgs : ∧m .to = to

164 ∧ if to = “m”

219

165 then master [m .masterId].status = status

166 else if to = “b”

167 then backup[m .backupId].status = status

168 else false

169 ∧ if optionalTag = “NA”

170 then true

171 else m .tag = optionalTag}
172 in if mset = {} then NOT MESSAGE

173 else (choose x ∈ mset : true)

175 FindMessageTo(to, status)
∆
= FindMessageToWithTag(to, status , “NA”)

177 FindMessageToClient(from , tag)
∆
=

Return a message sent to client matching given criteria, or NOT MESSAGE otherwise

182 let mset
∆
= {m ∈ msgs : ∧m .from = from

183 ∧m .to = “c”

184 ∧m .tag = tag}
185 in if mset = {} then NOT MESSAGE

186 else (choose x ∈ mset : true)

188

220 TLA+ Specification of the Distributed Finish Replication Protocol

List of Abbreviations

2PC Two-Phase Commit

ABFT Algorithmic-Based Fault Tolerance

AMPI Adaptive MPI

APGAS Asynchronous Partitioned Global Address Space

API Application Programming Interface

ARMCI Aggregate Remote Memory Copy Interface

BLCR Berkeley Lab Checkpoint/Restart

CC concurrency control

DMTCP Distributed MultiThreaded CheckPointing

DTM Distributed Transactional Memory

EA Early Acquire

FMI Fault Tolerant Messaging Interface

FTWG Fault Tolerance Working Group

GASNet Global Address Space Networking

GASPI Global Address Space Programming Interface

GC Garbage Collection

GML Global Matrix Library

HBI Happens-Before Invariance

HPC High Performance Computing

HPCS High Productivity Computing Systems

HTM hardware transactional memory

221

222 TLA+ Specification of the Distributed Finish Replication Protocol

LA Late Acquire

MPI Message Passing Interface

MPI-ULFM MPI User Level Failure Mitigation

MTBF Mean Time Between Failures

O-dist optimistic distributed finish

O-p0 optimistic place-zero finish

OCR Open Community Runtime

P-dist pessimistic distributed finish

P-p0 pessimistic place-zero finish

PAMI the Parallel Active Message Interface

PDE Partial Differential Equation

PFS Parallel File System

PGAS Partitioned Global Address Space

RAS Reliability, Availability, and Serviceability

RDD Resilient Distributed Datasets

RDMA Remote Direct Memory Access

RL Read Locking

RTS Run Through Stabilization

RV Read Versioning

RX10 Resilient X10

SPMD Single Program Multiple Data

SSCA Scalable Synthetic Compact Application

SSH Secure Shell

TD termination detection

TLA Temporal Logic of Actions

TM Transactional Memory

uGNI user Generic Network Interface

223

UL Undo-Logging

UPC Unified Parallel C

WB Write-Buffering

X10RT X10 Runtime Transport

224 TLA+ Specification of the Distributed Finish Replication Protocol

Bibliography

Acun, B.; Gupta, A.; Jain, N.; Langer, A.; Menon, H.; Mikida, E.; Ni, X.; Robson,

M.; Sun, Y.; Totoni, E.; et al., 2014. Parallel programming with migratable objects:

Charm++ in practice. In Proc. International Conference for High Performance Computing,

Networking, Storage and Analysis, 647–658. IEEE Press. (cited on page 28)

Aiken, A.; Bauer, M.; and Treichler, S., 2014. Realm: An event-based low-level

runtime for distributed memory architectures. In Proc. 23rd International Conference

on Parallel Architecture and Compilation Techniques (PACT), 263–275. IEEE. (cited on

pages 17, 30, and 31)

Akka, 2018. Akka Documentation. https://akka.io/docs/. (cited on page 29)

Ali, M. M.; Southern, J.; Strazdins, P.; and Harding, B., 2014. Application level

fault recovery: Using fault-tolerant Open MPI in a PDE solver. In Proc. Parallel &

Distributed Processing Symposium Workshops (IPDPSW), 1169–1178. IEEE. (cited on

pages 43 and 51)

Ali, M. M.; Strazdins, P. E.; Harding, B.; Hegland, M.; and Larson, J. W., 2015.

A fault-tolerant gyrokinetic plasma application using the sparse grid combination

technique. In Proc. International Conference on High Performance Computing & Simula-

tion, HPCS, 499–507. (cited on pages 43 and 68)

Ali, N.; Krishnamoorthy, S.; Govind, N.; and Palmer, B., 2011a. A redundant

communication approach to scalable fault tolerance in PGAS programming models.

In Proc. 19th Euromicro International Conference on Parallel, Distributed and Network-

Based Processing (PDP), 24–31. IEEE. (cited on page 25)

Ali, N.; Krishnamoorthy, S.; Halappanavar, M.; and Daily, J., 2011b. Tolerating

correlated failures for generalized Cartesian distributions via bipartite matching.

In Proc. 8th ACM International Conference on Computing Frontiers. ACM. (cited on

page 25)

Almeida, R.; Neto, A. A.; and Vieira, M., 2013. Score: An across-the-board metric

for computer systems resilience benchmarking. In Proc. 43rd Annual IEEE/IFIP

Conference on Dependable Systems and Networks Workshop (DSN-W), 1–8. IEEE. (cited

on page 9)

225

https://akka.io/docs/

226 Bibliography

Ansel, J.; Arya, K.; and Cooperman, G., 2009. DMTCP: Transparent checkpointing

for cluster computations and the desktop. In Proc. International Symposium on Parallel

& Distributed Processing (IPDPS’09)., 1–12. IEEE. (cited on pages 25 and 162)

Augonnet, C.; Thibault, S.; Namyst, R.; and Wacrenier, P.-A., 2011. StarPU: a

unified platform for task scheduling on heterogeneous multicore architectures.

Concurrency and Computation: Practice and Experience, 23, 2 (2011), 187–198. (cited

on page 31)

Bader, D. A. and Madduri, K., 2005. Design and Implementation of the HPCS Graph

Analysis Benchmark on Symmetric Multiprocessors. Technical report, Georgia

Institute of Technology. (cited on page 148)

Bartsch, V.; Machado, R.; Merten, D.; Rahn, M.; and Pfreundt, F.-J., 2017.

GASPI/GPI In-memory Checkpointing Library. In European Conference on Paral-

lel Processing, 497–508. Springer. (cited on page 24)

Bauer, M.; Treichler, S.; Slaughter, E.; and Aiken, A., 2012. Legion: expressing

locality and independence with logical regions. In Proc. International Conference for

High Performance Computing, Networking, Storage and Analysis (SC’12), 1–11. IEEE.

(cited on page 30)

Bauer, M. E., 2014. Legion: programming distributed heterogeneous architectures with

logical regions. Ph.D. thesis, Stanford University. (cited on page 30)

Bergman, K.; Borkar, S.; Campbell, D.; Carlson, W.; Dally, W.; Denneau, M.;

Franzon, P.; Harrod, W.; Hill, K.; Hiller, J.; et al., 2008. Exascale computing

study: Technology challenges in achieving exascale systems. Defense Advanced

Research Projects Agency Information Processing Techniques Office (DARPA IPTO), Tech.

Rep, 15 (2008). (cited on page 1)

Bernstein, P. A.; Bykov, S.; Geller, A.; Kliot, G.; and Thelin, J., 2014. Or-

leans: Distributed virtual actors for programmability and scalability. Technical

Report MSR-TR-2014–41, Microsoft Research. https://pdfs.semanticscholar.org/aacf/

bf0d34bc24dc3b72e56719ec083759a072ce.pdf. (cited on page 29)

Bernstein, P. A. and Goodman, N., 1981. Concurrency control in distributed

database systems. ACM Computing Surveys (CSUR), 13, 2 (1981), 185–221. (cited

on page 111)

Bernstein, P. A. and Goodman, N., 1984. An algorithm for concurrency control and

recovery in replicated distributed databases. ACM Transactions on Database Systems

(TODS), 9, 4 (1984), 596–615. (cited on page 16)

Bernstein, P. A.; Hadzilacos, V.; and Goodman, N., 1987. Concurrency control and

recovery in database systems. Addison-Wesley Pub. Co. Inc., Reading, MA. (cited on

page 119)

https://pdfs.semanticscholar.org/aacf/bf0d34bc24dc3b72e56719ec083759a072ce.pdf
https://pdfs.semanticscholar.org/aacf/bf0d34bc24dc3b72e56719ec083759a072ce.pdf

Bibliography 227

Bland, W.; Bosilca, G.; Bouteiller, A.; Herault, T.; and Dongarra, J., 2012a. A

Proposal for User-Level Failure Mitigation in the MPI-3 Standard. Technical Report

ut-cs-12-693, University of Tennessee Electrical Engineering and Computer Science.

(cited on page 42)

Bland, W.; Bouteiller, A.; Herault, T.; Bosilca, G.; and Dongarra, J., 2013.

Post-failure recovery of MPI communication capability: Design and rationale. The

International Journal of High Performance Computing Applications, 27, 3 (2013), 244–254.

(cited on pages 10, 42, and 49)

Bland, W.; Bouteiller, A.; Herault, T.; Hursey, J.; Bosilca, G.; and Dongarra,

J. J., 2012b. An Evaluation of User-level Failure Mitigation Support in MPI. In Proc.

EuroMPI’12 (Vienna, Austria, 2012), 193–203. doi:10.1007/978-3-642-33518-1_24.

(cited on pages 1, 22, and 42)

Blumofe, R. D.; Joerg, C. F.; Kuszmaul, B. C.; Leiserson, C. E.; Randall, K. H.; and

Zhou, Y., 1995. Cilk: An efficient multithreaded runtime system, vol. 30. ACM. (cited

on page 70)

Blumofe, R. D. and Leiserson, C. E., 1999. Scheduling multithreaded computations

by work stealing. Journal of the ACM (JACM), 46, 5 (1999), 720–748. (cited on page

71)

Bocchino, R. L.; Adve, V. S.; and Chamberlain, B. L., 2008. Software transactional

memory for large scale clusters. In Proc. 13th ACM SIGPLAN Symposium on Prin-

ciples and practice of parallel programming, 247–258. ACM. (cited on pages 118, 120,

144, 145, and 148)

Bosilca, G.; Bouteiller, A.; Cappello, F.; Djilali, S.; Fedak, G.; Germain, C.;

Herault, T.; Lemarinier, P.; Lodygensky, O.; Magniette, F.; et al., 2002. MPICH-

V: Toward a scalable fault tolerant MPI for volatile nodes. In Proc. ACM/IEEE

Conference on Supercomputing, 29–29. IEEE. (cited on page 20)

Bosilca, G.; Bouteiller, A.; Guermouche, A.; Herault, T.; Robert, Y.; Sens, P.;

and Dongarra, J., 2016. Failure Detection and Propagation in HPC systems. In

Proc. International Conference for High Performance Computing, Networking, Storage and

Analysis (SC’16), 312–322. IEEE. (cited on page 22)

Bougeret, M.; Casanova, H.; Robert, Y.; Vivien, F.; and Zaidouni, D., 2014. Using

group replication for resilience on exascale systems. The International Journal of High

Performance Computing Applications, 28, 2 (2014), 210–224. (cited on page 16)

Bouteiller, A.; Bosilca, G.; and Venkata, M. G., 2016. Surviving errors with

openshmem. In Workshop on OpenSHMEM and Related Technologies, 66–81. Springer.

(cited on page 25)

Bungart, M. and Fohry, C., 2017a. A Malleable and Fault-Tolerant Task Pool Frame-

work for X10. In Proc. International Conference on Cluster Computing (CLUSTER),

749–757. IEEE. (cited on page 57)

http://dx.doi.org/10.1007/978-3-642-33518-1_24

228 Bibliography

Bungart, M. and Fohry, C., 2017b. Extending the MPI backend of X10 by elasticity.

In EuroMPI Poster. (cited on page 37)

Bykov, S.; Geller, A.; Kliot, G.; Larus, J. R.; Pandya, R.; and Thelin, J., 2011.

Orleans: cloud computing for everyone. In Proc. 2nd ACM Symposium on Cloud

Computing, 16. ACM. (cited on page 29)

Cao, C.; Herault, T.; Bosilca, G.; and Dongarra, J., 2015. Design for a soft error

resilient dynamic task-based runtime. In Proc. International Parallel and Distributed

Processing Symposium (IPDPS), 765–774. IEEE. (cited on pages 12 and 31)

Cappello, F., 2009. Fault tolerance in petascale/exascale systems: Current knowledge,

challenges and research opportunities. The International Journal of High Performance

Computing Applications, 23, 3 (2009), 212–226. (cited on pages 10 and 107)

Cappello, F.; Geist, A.; Gropp, B.; Kale, L.; Kramer, B.; and Snir, M., 2009. To-

ward exascale resilience. The International Journal of High Performance Computing

Applications, 23, 4 (2009), 374–388. (cited on pages 1 and 16)

Chakrabarti, D.; Zhan, Y.; and Faloutsos, C., 2004. R-MAT: A recursive model

for graph mining. In Proc. SIAM International Conference on Data Mining, 442–446.

SIAM. (cited on page 148)

Chakravorty, S. and Kale, L. V., 2004. A fault tolerant protocol for massively parallel

systems. In Proc. 18th International Parallel and Distributed Processing Symposium

(IPDPS’04), 212. IEEE. doi:10.1109/IPDPS.2004.1303244. (cited on page 28)

Chakravorty, S.; Mendes, C. L.; and Kalé, L. V., 2006. Proactive fault tolerance in

MPI applications via task migration. In International Conference on High-Performance

Computing, 485–496. Springer. (cited on page 29)

Chamberlain, B. L.; Callahan, D.; and Zima, H. P., 2007. Parallel Programmability

and the Chapel Language. The International Journal of High Performance Computing

Applications, 21, 3 (2007), 291–312. (cited on pages 1, 2, 26, and 70)

Charles, P.; Grothoff, C.; Saraswat, V.; Donawa, C.; Kielstra, A.; Ebcioglu,

K.; Von Praun, C.; and Sarkar, V., 2005. X10: an object-oriented approach to

non-uniform cluster computing. In Proc. 20th Annual ACM SIGPLAN Conference

on Object Oriented Programming, Systems, Languages, and Applications (OOPSLA’05),

519–538. ACM. (cited on pages 1, 2, and 27)

Chen, Y.; Wei, X.; Shi, J.; Chen, R.; and Chen, H., 2016. Fast and general distributed

transactions using RDMA and HTM. In Proc. 11th European Conference on Computer

Systems, 26. ACM. (cited on pages 33 and 169)

Chen, Z. and Dongarra, J., 2008. Algorithm-based fault tolerance for fail-stop

failures. IEEE Transactions on Parallel and Distributed Systems, 19, 12 (2008), 1628–

1641. (cited on page 17)

http://dx.doi.org/10.1109/IPDPS.2004.1303244

Bibliography 229

Chien, A.; Balaji, P.; Beckman, P.; Dun, N.; Fang, A.; Fujita, H.; Iskra, K.; Ruben-

stein, Z.; Zheng, Z.; Schreiber, R.; et al., 2015. Versioned Distributed Arrays

for Resilience in Scientific Applications: Global View Resilience. Procedia Computer

Science, 51 (2015), 29–38. (cited on page 25)

Coarfa, C.; Dotsenko, Y.; Mellor-Crummey, J.; Cantonnet, F.; El-Ghazawi, T.;

Mohanti, A.; Yao, Y.; and Chavarría-Miranda, D., 2005. An Evaluation of

Global Address Space Languages: Co-Array Fortran and Unified Parallel C. In

Proc. 10th ACM SIGPLAN symposium on Principles and practice of parallel programming,

36–47. ACM. (cited on page 23)

Coti, C.; Herault, T.; Lemarinier, P.; Pilard, L.; Rezmerita, A.; Rodriguez, E.;

and Cappello, F., 2006. Blocking vs. non-blocking coordinated checkpointing for

large-scale fault tolerant MPI. In Proc. 2006 ACM/IEEE conference on Supercomputing,

127. ACM. (cited on page 20)

Crafa, S.; Cunningham, D.; Saraswat, V.; Shinnar, A.; and Tardieu, O., 2014.

Semantics of (resilient) X10. In European Conference on Object-Oriented Programming,

670–696. Springer. (cited on page 2)

Cunningham, D.; Grove, D.; Herta, B.; Iyengar, A.; Kawachiya, K.; Murata,

H.; Saraswat, V.; Takeuchi, M.; and Tardieu, O., 2014. Resilient X10: Efficient

Failure-Aware Programming. In Proc. 19th ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming (PPoPP ’14) (Orlando, Florida, USA, 2014), 67–80.

ACM. (cited on pages 2, 5, 27, 33, 36, 37, 70, 73, 76, 89, 90, 91, 96, and 106)

Daily, J.; Vishnu, A.; van Dam, H.; Palmer, B.; and Kerbyson, D. J., 2014. On

the Suitability of MPI as a PGAS Runtime. In International Conference on High

Performance Computing (HiPC’14). (cited on page 23)

Davies, T.; Karlsson, C.; Liu, H.; Ding, C.; and Chen, Z., 2011. High performance

LINPACK benchmark: a fault tolerant implementation without checkpointing. In

Proc. International Conference on Supercomputing, 162–171. ACM. (cited on page 17)

Dean, J. and Ghemawat, S., 2008. MapReduce: simplified data processing on large

clusters. Communications of the ACM, 51, 1 (2008), 107–113. (cited on page 17)

Dijkstra, E. W. and Scholten, C. S., 1980. Termination detection for diffusing

computations. Information Processing Letters, 11, 1 (1980), 1–4. (cited on pages 70

and 72)

Dongarra, J.; Beckman, P.; Moore, T.; Aerts, P.; Aloisio, G.; Andre, J.-C.; Barkai,

D.; Berthou, J.-Y.; Boku, T.; Braunschweig, B.; et al., 2011. The international ex-

ascale software project roadmap. International Journal of High Performance Computing

Applications, 25, 1 (2011), 3–60. (cited on pages 1 and 16)

Dragojević, A.; Narayanan, D.; Nightingale, E. B.; Renzelmann, M.; Shamis, A.;

Badam, A.; and Castro, M., 2015. No compromises: distributed transactions with

230 Bibliography

consistency, availability, and performance. In Proc. 25th Symposium on Operating

Systems Principles, 54–70. ACM. (cited on pages 33 and 169)

Du, P.; Bouteiller, A.; Bosilca, G.; Herault, T.; and Dongarra, J., 2012. Algorithm-

based fault tolerance for dense matrix factorizations. ACM SIGPLAN Notices, 47, 8

(2012), 225–234. (cited on pages 12 and 17)

Du, P.; Luszczek, P.; and Dongarra, J., 2011. High performance dense linear system

solver with soft error resilience. In Proc. International Conference on Cluster Computing,

272–280. IEEE. (cited on page 12)

Egwutuoha, I. P.; Levy, D.; Selic, B.; and Chen, S., 2013. A survey of fault tolerance

mechanisms and checkpoint/restart implementations for high performance com-

puting systems. The Journal of Supercomputing, 65, 3 (2013), 1302–1326. (cited on

pages 10 and 16)

El-Ghazawi, T. and Smith, L., 2006. UPC: Unified Parallel C. In Proc. ACM/IEEE

conference on Supercomputing, 27. ACM. (cited on page 23)

Elnozahy, E. N.; Alvisi, L.; Wang, Y.-M.; and Johnson, D. B., 2002. A survey of

rollback-recovery protocols in message-passing systems. ACM Computing Surveys

(CSUR), 34, 3 (2002), 375–408. (cited on pages 10 and 15)

Fagg, G. E. and Dongarra, J. J., 2000. FT-MPI: Fault tolerant MPI, supporting dy-

namic applications in a dynamic world. In European Parallel Virtual Machine/Message

Passing Interface Users’ Group Meeting, 346–353. Springer. (cited on pages 1 and 21)

Fanfarillo, A.; Garain, S. K.; Balsara, D.; and Nagle, D., 2019. Resilient compu-

tational applications using Coarray Fortran. Parallel Computing, 81 (2019), 58–67.

(cited on pages 24 and 67)

Fang, A.; Laguna, I.; Sato, K.; Islam, T.; and Mohror, K., 2016. Fault Tolerance

Assistant (FTA): An Exception Handling Programming Model for MPI Applications.

Technical report, Lawrence Livermore National Laboratory. doi:10.2172/1258538.

https://e-reports-ext.llnl.gov/pdf/820672.pdf. (cited on page 2)

Feng, S.; Gupta, S.; Ansari, A.; and Mahlke, S., 2010. Shoestring: probabilistic

soft error reliability on the cheap. In ACM SIGARCH Computer Architecture News,

vol. 38, 385–396. ACM. (cited on page 12)

Ferreira, K.; Stearley, J.; Laros, J. H.; Oldfield, R.; Pedretti, K.; Brightwell,

R.; Riesen, R.; Bridges, P. G.; and Arnold, D., 2011. Evaluating the viability of

process replication reliability for exascale systems. In Proc. International Conference

for High Performance Computing, Networking, Storage and Analysis (SC’11), 1–12. IEEE.

(cited on pages 1 and 21)

http://dx.doi.org/10.2172/1258538
https://e-reports-ext.llnl.gov/pdf/820672.pdf

Bibliography 231

Fiala, D.; Mueller, F.; Engelmann, C.; Riesen, R.; Ferreira, K.; and Brightwell,

R., 2012. Detection and correction of silent data corruption for large-scale high-

performance computing. In Proc. International Conference on High Performance Com-

puting, Networking, Storage and Analysis, 78. IEEE Computer Society Press. (cited

on page 21)

Fohry, C.; Bungart, M.; and Plock, P., 2017. Fault tolerance for lifeline-based

global load balancing. Journal of Software Engineering and Applications, 10, 13 (2017),

925–958. (cited on page 18)

Gainaru, A.; Cappello, F.; Snir, M.; and Kramer, W., 2012. Fault prediction under

the microscope: A closer look into HPC systems. In Proc. International Conference on

High Performance Computing, Networking, Storage and Analysis, 77. IEEE Computer

Society Press. (cited on page 14)

Gamell, M.; Katz, D. S.; Teranishi, K.; Heroux, M. A.; Van der Wijngaart, R. F.;

Mattson, T. G.; and Parashar, M., 2016. Evaluating online global recovery with

Fenix using application-aware in-memory checkpointing techniques. In Proc. 45th

International Conference on Parallel Processing Workshops (ICPPW), 346–355. IEEE.

(cited on page 67)

Garcia-Molina, H., 1982. Elections in a distributed computing system. IEEE trans-

actions on Computers, , 1 (1982), 48–59. (cited on page 112)

Garg, R.; Vienne, J.; and Cooperman, G., 2016. System-level transparent checkpoint-

ing for OpenSHMEM. In Workshop on OpenSHMEM and Related Technologies, 52–65.

Springer. (cited on page 25)

GASNet, 2018. Gasnet. https://gasnet.lbl.gov. (cited on page 23)

Graham, R.; Hursey, J.; Vallée, G.; Naughton, T.; and Boehm, S., 2012. The Impact

of a Fault Tolerant MPI on Scalable Systems Services and Applications. In Proc.

Cray Users Group Conference. (cited on page 17)

Gropp, W. and Lusk, E., 2004. Fault tolerance in message passing interface programs.

The International Journal of High Performance Computing Applications, 18, 3 (2004),

363–372. (cited on page 22)

Grove, D.; Hamouda, S. S.; Herta, B.; Iyengar, A.; Kawachiya, K.; Milthorpe,

J.; Saraswat, V.; Shinnar, A.; Takeuchi, M.; Tardieu, O.; et al., 2019. Failure

Recovery in Resilient X10 (accepted). ACM Transactions on Programming Languages

and Systems, (2019). (cited on pages 7, 93, and 106)

Guo, Y.; Barik, R.; Raman, R.; and Sarkar, V., 2009. Work-first and help-first

scheduling policies for async-finish task parallelism. In IEEE International Sympo-

sium on Parallel & Distributed Processing (IPDPS), 1–12. IEEE. (cited on pages 2

and 71)

https://gasnet.lbl.gov

232 Bibliography

Hadoop/ZooKeeper. Hadoop/zookeeper. https://wiki.apache.org/hadoop/ZooKeeper.

(cited on page 89)

Hakkarinen, D. and Chen, Z., 2010. Algorithmic Cholesky factorization fault recov-

ery. In IEEE International Symposium on Parallel & Distributed Processing (IPDPS’10),

1–10. IEEE. (cited on page 17)

Hamouda, S. S.; Herta, B.; Milthorpe, J.; Grove, D.; and Tardieu, O., 2016. Re-

silient X10 over MPI user level failure mitigation. In Proc. 6th ACM SIGPLAN

Workshop on X10, 18–23. ACM. (cited on pages 7, 41, 45, 46, 105, and 106)

Hamouda, S. S. and Milthorpe, J., 2019. Resilient Optimistic Termination Detection

for the Async-Finish Model (to appear). In ISC High Performance, Frankfurt, Germany.

(cited on pages 7 and 69)

Hamouda, S. S.; Milthorpe, J.; Strazdins, P. E.; and Saraswat, V., 2015. A resilient

framework for iterative linear algebra applications in X10. In Proc. International

Parallel and Distributed Processing Symposium Workshop (IPDPSW), 970–979. IEEE.

(cited on pages 5, 7, 105, 106, 108, 110, and 152)

Hao, P.; Shamis, P.; Venkata, M. G.; Pophale, S.; Welch, A.; Poole, S.; and Chap-

man, B., 2014a. Fault tolerance for OPENSHMEM. In Proc. 8th International Con-

ference on Partitioned Global Address Space Programming Models, 23. ACM. (cited on

page 25)

Hao, Z.; Xie, C.; Chen, H.; and Zang, B., 2014b. X10-FT: transparent fault tolerance

for APGAS language and runtime. Parallel Computing, 40, 2 (2014), 136–156. (cited

on page 27)

Harding, B. and Hegland, M., 2013. A parallel fault tolerant combination technique.

In Proc. International Conference on Parallel Computing, (ParCo’13), 584–592. (cited on

page 68)

Harding, R.; Van Aken, D.; Pavlo, A.; and Stonebraker, M., 2017. An evaluation

of distributed concurrency control. Proc. VLDB Endowment, 10, 5 (2017), 553–564.

(cited on page 16)

Harris, T.; Larus, J.; and Rajwar, R., 2010. Transactional memory. Synthesis Lectures

on Computer Architecture, 5, 1 (2010), 1–263. (cited on page 112)

Hassani, A.; Skjellum, A.; Bangalore, P. V.; and Brightwell, R., 2015. Practical

resilient cases for FA-MPI, a transactional fault-tolerant MPI. In Proc. 3rd Workshop

on Exascale MPI, 1. ACM. (cited on page 22)

Hayashi, A.; Paul, S. R.; Grossman, M.; Shirako, J.; and Sarkar, V., 2017. Chapel-

on-X: Exploring Tasking Runtimes for PGAS Languages. In Proc. 3rd International

Workshop on Extreme Scale Programming Models and Middleware, 5. ACM. (cited on

pages 1 and 26)

https://wiki.apache.org/hadoop/ZooKeeper

Bibliography 233

Hazelcast, Inc., 2014. Hazelcast 3.4. https://hazelcast.com/. (cited on page 106)

Herault, T.; Bouteiller, A.; Bosilca, G.; Gamell, M.; Teranishi, K.; Parashar,

M.; and Dongarra, J., 2015. Practical scalable consensus for pseudo-synchronous

distributed systems. In Proc. International Conference for High Performance Computing,

Networking, Storage and Analysis (SC’15), 1–12. IEEE. (cited on page 56)

Herlihy, M. and Moss, J. E. B., 1993. Transactional Memory: Architectural support for

lock-free data structures, vol. 21. ACM. (cited on page 111)

Huang, C.; Lawlor, O.; and Kale, L. V., 2003. Adaptive MPI. In International

workshop on languages and compilers for parallel computing, 306–322. Springer. (cited

on page 28)

Huang, K.-H. and Abraham, J. A., 1984. Algorithm-based fault tolerance for matrix

operations. IEEE transactions on computers, 100, 6 (1984), 518–528. (cited on page

17)

Hursey, J.; Graham, R. L.; Bronevetsky, G.; Buntinas, D.; Pritchard, H.; and

Solt, D. G., 2011. Run-Through Stabilization: An MPI proposal for process fault

tolerance. In European MPI Users’ Group Meeting, 329–332. Springer. (cited on pages

1 and 22)

Isard, M.; Budiu, M.; Yu, Y.; Birrell, A.; and Fetterly, D., 2007. Dryad: distributed

data-parallel programs from sequential building blocks. In ACM SIGOPS operating

systems review, vol. 41, 59–72. ACM. (cited on page 17)

Jain, N.; Bhatele, A.; Yeom, J.-S.; Adams, M. F.; Miniati, F.; Mei, C.; and Kale, L. V.,

2015. Charm++ and MPI: Combining the best of both worlds. In Proc. International

Parallel and Distributed Processing Symposium (IPDPS), 655–664. IEEE. (cited on page

28)

Kaiser, H.; Heller, T.; Adelstein-Lelbach, B.; Serio, A.; and Fey, D., 2014. HPX: A

task based programming model in a global address space. In Proc. 8th International

Conference on Partitioned Global Address Space Programming Models, 6. ACM. (cited

on page 31)

Kale, L. V. and Krishnan, S., 1993. CHARM++: a portable concurrent object oriented

system based on C++. In Proc. 8th annual conference on Object-Oriented Programming

Systems, Languages, and Applications (OOPSLA’93), 91–108. ACM. (cited on page 28)

Karlin, I.; Keasler, J.; and Neely, R., 2013. LULESH 2.0 updates and changes.

Technical Report LLNL-TR-641973. (cited on page 158)

Keidar, I. and Dolev, D., 1998. Increasing the resilience of distributed and replicated

database systems. Journal of Computer and System Sciences, 57, 3 (1998), 309–324.

(cited on pages 112 and 119)

https://hazelcast.com/

234 Bibliography

Kurt, M. C.; Krishnamoorthy, S.; Agrawal, K.; and Agrawal, G., 2014. Fault-

tolerant dynamic task graph scheduling. In Proc. International Conference for High

Performance Computing, Networking, Storage and Analysis, 719–730. IEEE Press. (cited

on page 31)

Laguna, I.; Richards, D. F.; Gamblin, T.; Schulz, M.; and de Supinski, B. R., 2014.

Evaluating user-level fault tolerance for MPI applications. In Proc. 21st European

MPI Users’ Group Meeting, 57. ACM. (cited on pages 18 and 43)

Laguna, I.; Richards, D. F.; Gamblin, T.; Schulz, M.; de Supinski, B. R.; Mohror,

K.; and Pritchard, H., 2016. Evaluating and extending user-level fault tolerance

in MPI applications. The International Journal of High Performance Computing Applica-

tions, 30, 3 (2016), 305–319. (cited on pages 2 and 67)

Lai, T.-H. and Wu, L.-F., 1995. An (n-1)-resilient algorithm for distributed termination

detection. IEEE Transactions on Parallel and Distributed Systems, 6, 1 (1995), 63–78.

(cited on pages 70 and 72)

Lemarinier, P.; Bouteiller, A.; Herault, T.; Krawezik, G.; and Cappello, F., 2004.

Improved message logging versus improved coordinated checkpointing for fault

tolerant MPI. In Proc. International Conference on Cluster Computing, 115–124. IEEE.

(cited on page 20)

Liang, Y.; Zhang, Y.; Sivasubramaniam, A.; Jette, M.; and Sahoo, R., 2006. Blue-

gene/L failure analysis and prediction models. In International Conference on De-

pendable Systems and Networks (DSN), 425–434. IEEE. (cited on page 14)

Lifflander, J.; Krishnamoorthy, S.; and Kale, L. V., 2012. Work stealing and

persistence-based load balancers for iterative overdecomposed applications. In Proc.

21st International Symposium on High-Performance Parallel and Distributed Computing,

137–148. ACM. (cited on page 18)

Lifflander, J.; Miller, P.; and Kale, L., 2013. Adoption protocols for fanout-optimal

fault-tolerant termination detection. In 18th ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming, PPoPP’13. ACM. (cited on pages 70, 72, 73, 83,

and 107)

Losada, N.; Cores, I.; Martín, M. J.; and González, P., 2017. Resilient MPI applica-

tions using an application-level checkpointing framework and ULFM. The Journal

of Supercomputing, 73, 1 (2017), 100–113. (cited on page 68)

Maloney, A. and Goscinski, A., 2009. A survey and review of the current state

of rollback-recovery for cluster systems. Concurrency and Computation: Practice and

Experience, 21, 12 (2009), 1632–1666. (cited on pages 10 and 15)

Matocha, J. and Camp, T., 1998. A taxonomy of distributed termination detection

algorithms. Journal of Systems and Software, 43, 3 (1998), 207–221. (cited on page 72)

Bibliography 235

Mattson, T. G.; Cledat, R.; Cavé, V.; Sarkar, V.; Budimlić, Z.; Chatterjee, S.;

Fryman, J.; Ganev, I.; Knauerhase, R.; Lee, M.; et al., 2016. The Open Com-

munity Runtime: A Runtime System for Extreme Scale Computing. In Proc. High

Performance Extreme Computing Conference (HPEC ’16), 1–7. IEEE. (cited on pages

12, 17, and 30)

Meneses, E.; Ni, X.; and Kalé, L. V., 2011. Design and analysis of a message

logging protocol for fault tolerant multicore systems. Technical report, Parallel

Programming Laboratory, Department of Computer Science, University of Illinois

at Urbana-Champaign. http://charm.cs.uiuc.edu/newPapers/11-30/paper.pdf. (cited on

page 28)

Meneses, E.; Ni, X.; and Kalé, L. V., 2012. A message-logging protocol for multi-

core systems. In IEEE/IFIP 42nd International Conference on Dependable Systems and

Networks Workshops (DSN-W), 1–6. IEEE. (cited on pages 72, 83, and 107)

Meneses, E.; Ni, X.; Zheng, G.; Mendes, C. L.; and Kale, L. V., 2014. Using

Migratable Objects to Enhance Fault Tolerance Schemes in Supercomputers. IEEE

transactions on parallel and distributed systems, 26, 7 (2014), 2061–2074. (cited on

pages 16 and 17)

Min, S.-J.; Iancu, C.; and Yelick, K., 2011. Hierarchical work stealing on manycore

clusters. In 5th Conference on Partitioned Global Address Space Programming Models

(PGAS11), vol. 625. (cited on page 24)

Mohan, C.; Lindsay, B.; and Obermarck, R., 1986. Transaction management in the

R* distributed database management system. ACM Transactions on Database Systems

(TODS), 11, 4 (1986), 378–396. (cited on pages 112, 115, 119, and 121)

Moody, A.; Bronevetsky, G.; Mohror, K.; and Supinski, B. R. d., 2010. Design,

Modeling, and Evaluation of a Scalable Multi-level Checkpointing System. In

Proc. International Conference on High Performance Computing, Networking, Storage and

Analysis, 1–11. IEEE Computer Society. (cited on pages 72, 83, and 107)

Moss, J. E. B., 1981. Nested Transactions: An Approach to Reliable Distributed Computing.

The MIT Press. (cited on page 117)

Moss, J. E. B. and Hosking, A. L., 2006. Nested transactional memory: model and

architecture sketches. Science of Computer Programming, 63, 2 (2006), 186–201. (cited

on page 113)

MPI-4, 2018. MPI 4.0. http://mpi-forum.org/mpi-40/. (cited on page 42)

MPI-ULFM, 2018. MPI-ULFM Specification. http://fault-tolerance.org/ulfm/

ulfm-specification. (cited on page 48)

MPICH, 2018. High-Performance Portable MPI. https://www.mpich.org. (cited on page

19)

http://charm.cs.uiuc.edu/newPapers/11-30/paper.pdf
http://mpi-forum.org/mpi-40/
http://fault-tolerance.org/ulfm/ulfm-specification
http://fault-tolerance.org/ulfm/ulfm-specification
https://www.mpich.org

236 Bibliography

Mukherjee, S. S.; Emer, J.; and Reinhardt, S. K., 2005. The soft error problem:

An architectural perspective. In 11th International Symposium on High-Performance

Computer Architecture, 243–247. IEEE. (cited on page 12)

Ni, X.; Meneses, E.; Jain, N.; and Kalé, L. V., 2013. ACR: Automatic Check-

point/Restart for Soft and Hard Error Protection. In Proc. International Conference

on High Performance Computing, Networking, Storage and Analysis (SC ’13). ACM.

doi:10.1145/2503210.2503266. (cited on pages 15 and 28)

Ni, X.; Meneses, E.; and Kalé, L. V., 2012. Hiding checkpoint overhead in HPC

applications with a semi-blocking algorithm. In IEEE International Conference on

Cluster Computing (CLUSTER), 364–372. IEEE. (cited on page 28)

Nieplocha, J.; Harrison, R. J.; and Littlefield, R. J., 1996. Global Arrays: A

nonuniform memory access programming model for high-performance computers.

The Journal of Supercomputing, 10, 2 (1996), 169–189. (cited on page 25)

Nieplocha, J.; Tipparaju, V.; Krishnan, M.; and Panda, D. K., 2006. High perfor-

mance remote memory access communication: The ARMCI approach. The Inter-

national Journal of High Performance Computing Applications, 20, 2 (2006), 233–253.

(cited on page 23)

Numrich, R. W., 2018. Parallel Programming with Co-arrays: Parallel Programming in

Fortran. Chapman and Hall/CRC. (cited on page 24)

Numrich, R. W. and Reid, J., 1998. Co-Array Fortran for parallel programming. In

ACM Sigplan Fortran Forum, vol. 17, 1–31. ACM. (cited on page 24)

OpenCoarrays, 2019. OpenCoarrays. http://www.opencoarrays.org. (cited on pages 24

and 67)

OpenMPI, 2018. Open MPI: Open Source High Performance Computing. https:

//www.open-mpi.org. (cited on pages 19 and 43)

OpenSHMEM, 2017. OpenSHMEM 1.4. http://www.openshmem.org/site/sites/default/

site_files/OpenSHMEM-1.4.pdf. (cited on page 25)

Panagiotopoulou, K. and Loidl, H.-W., 2015. Towards Resilient Chapel: Design

and implementation of a transparent resilience mechanism for Chapel. In Proc. 3rd

International Conference on Exascale Applications and Software, 86–91. University of

Edinburgh. (cited on page 26)

Pauli, S.; Kohler, M.; and Arbenz, P., 2013. A fault tolerant implementation of

Multi-Level Monte Carlo methods. In Parallel Computing: Accelerating Computational

Science and Engineering (PARCO), vol. 13, 471–480. (cited on page 43)

Rizzi, F.; Morris, K.; Sargsyan, K.; Mycek, P.; Safta, C.; Debusschere, B.; LeMaitre,

O.; and Knio, O., 2016. ULFM-MPI implementation of a resilient task-based partial

differential equations preconditioner. In Proc. ACM Workshop on Fault-Tolerance for

HPC at Extreme Scale, 19–26. ACM. (cited on pages 14 and 68)

http://dx.doi.org/10.1145/2503210.2503266
http://www.opencoarrays.org
https://www.open-mpi.org
https://www.open-mpi.org
http://www.openshmem.org/site/sites/default/site_files/OpenSHMEM-1.4.pdf
http://www.openshmem.org/site/sites/default/site_files/OpenSHMEM-1.4.pdf

Bibliography 237

Rodríguez, G.; Martín, M. J.; González, P.; Tourino, J.; and Doallo, R., 2010.

CPPC: a compiler-assisted tool for portable checkpointing of message-passing ap-

plications. Concurrency and Computation: Practice and Experience, 22, 6 (2010), 749–766.

(cited on page 68)

Ropars, T.; Lefray, A.; Kim, D.; and Schiper, A., 2015. Efficient Process Replication

for MPI Applications: Sharing Work Between Replicas. In Proc. International Parallel

and Distributed Processing Symposium (IPDPS), 645–654. IEEE. (cited on pages 16

and 21)

Rosenkrantz, D. J.; Stearns, R. E.; and Lewis II, P. M., 1978. System level con-

currency control for distributed database systems. ACM Transactions on Database

Systems (TODS), 3, 2 (1978), 178–198. (cited on page 117)

Saad, M. M. and Ravindran, B., 2011. HyFlow: A high performance distributed

software transactional memory framework. In Proc. 20th International Symposium on

High Performance Distributed Computing, 265–266. ACM. (cited on page 112)

Sahoo, R. K.; Bae, M.; Vilalta, R.; Moreira, J.; Ma, S.; and Gupta, M., 2002.

Providing persistent and consistent resources through event log analysis and pre-

dictions for large-scale computing systems. In Workshop on Self-Healing, Adaptive,

and Self-Managed Systems. (cited on page 14)

Saraswat, V.; Almasi, G.; Bikshandi, G.; Cascaval, C.; Cunningham, D.; Grove,

D.; Kodali, S.; Peshansky, I.; and Tardieu, O., 2010. The asynchronous partitioned

global address space model. In The First Workshop on Advances in Message Passing,

1–8. (cited on page 1)

Saraswat, V. A.; Kambadur, P.; Kodali, S.; Grove, D.; and Krishnamoorthy, S.,

2011. Lifeline-based global load balancing. In ACM SIGPLAN Notices, vol. 46,

201–212. ACM. (cited on page 18)

Sato, K.; Maruyama, N.; Mohror, K.; Moody, A.; Gamblin, T.; de Supinski, B. R.;

and Matsuoka, S., 2012. Design and modeling of a non-blocking checkpointing

system. In Proc. International Conference for High Performance Computing, Networking,

Storage and Analysis (SC’12), 1–10. IEEE. (cited on pages 83 and 107)

Sato, K.; Moody, A.; Mohror, K.; Gamblin, T.; de Supinski, B. R.; Maruyama,

N.; and Matsuoka, S., 2014. FMI: Fault tolerant messaging interface for fast and

transparent recovery. In Proc. 28th International Parallel and Distributed Processing

Symposium, 1225–1234. IEEE. (cited on pages 20 and 107)

Schroeder, B. and Gibson, G. A., 2007. Understanding failures in petascale comput-

ers. In Journal of Physics: Conference Series, vol. 78, 012022. IOP Publishing. (cited

on page 1)

Shalf, J.; Dosanjh, S.; and Morrison, J., 2010. Exascale computing technology chal-

lenges. In International Conference on High Performance Computing for Computational

Science, 1–25. Springer. (cited on page 1)

238 Bibliography

Shet, A.; Tipparaju, V.; and Harrison, R., 2009. Asynchronous programming in

UPC: A case study and potential for improvement. In Workshop on asynchrony in the

PGAS programming model collocated with ICS, vol. 2009. Citeseer. (cited on page 24)

Simmendinger, C.; Rahn, M.; and Gruenewald, D., 2015. The GASPI API: A failure

tolerant PGAS API for asynchronous dataflow on heterogeneous architectures. In

Sustained Simulation Performance 2014, 17–32. Springer. (cited on pages 24 and 169)

Skeen, D., 1981. Nonblocking commit protocols. In Proc. 1981 ACM SIGMOD Interna-

tional Conference on Management of Data, 133–142. ACM. (cited on page 16)

Squyres, J., 2011. What is an MPI eager limit? https://blogs.cisco.com/performance/

what-is-an-mpi-eager-limit. (cited on page 60)

Teranishi, K. and Heroux, M. A., 2014. Toward local failure local recovery resilience

model using MPI-ULFM. In Proc. 21st European MPI Users’ Group Meeting, 51. ACM.

(cited on page 67)

The TLA Home Page. The TLA Home Page. http://lamport.azurewebsites.net/tla/tla.html.

(cited on page 87)

Thoman, P.; Hasanov, K.; Dichev, K.; Iakymchuk, R.; Aguilar, X.; Gschwandtner,

P.; Lemarinier, P.; Markidis, S.; Jordan, H.; Laure, E.; et al., 2017. A taxonomy of

task-based technologies for high-performance computing. In International Conference

on Parallel Processing and Applied Mathematics, 264–274. Springer. (cited on page 10)

Tipparaju, V.; Krishnan, M.; Palmer, B.; Petrini, F.; and Nieplocha, J., 2008.

Towards fault resilient Global Arrays. Parallel computing: architectures, algorithms,

and applications, (2008), 339–345. (cited on page 25)

Venkatesan, S., 1989. Reliable protocols for distributed termination detection. IEEE

Transactions on Reliability, 38, 1 (1989), 103–110. (cited on pages 70 and 72)

Vinoski, S., 2007. Reliability with Erlang. Internet Computing, IEEE, 11, 6 (2007), 79–81.

(cited on page 29)

Wang, C.; Mueller, F.; Engelmann, C.; and Scott, S. L., 2008. Proactive process-

level live migration in HPC environments. In Proc. ACM/IEEE conference on Super-

computing, 1–12. IEEE Press. (cited on page 16)

X10 Applications. X10 applications. https://github.com/x10-lang/x10-applications.

(cited on page 160)

X10 Benchmarks. X10 benchmarks. https://github.com/x10-lang/x10-benchmarks.

(cited on page 148)

X10 Formal Specifications. TLA+ specification of the optimistic finish protocol and

replication protocol. https://github.com/shamouda/x10-formal-spec. (cited on page

89)

https://blogs.cisco.com/performance/what-is-an-mpi-eager-limit
https://blogs.cisco.com/performance/what-is-an-mpi-eager-limit
http://lamport.azurewebsites.net/tla/tla.html
https://github.com/x10-lang/x10-applications
https://github.com/x10-lang/x10-benchmarks
https://github.com/shamouda/x10-formal-spec

Bibliography 239

Zaharia, M.; Chowdhury, M.; Das, T.; Dave, A.; Ma, J.; McCauley, M.; Franklin,

M. J.; Shenker, S.; and Stoica, I., 2012. Resilient distributed datasets: A fault-

tolerant abstraction for in-memory cluster computing. In Proc. 9th USENIX con-

ference on Networked Systems Design and Implementation, 2–2. USENIX Association.

(cited on page 31)

Zaharia, M.; Chowdhury, M.; Franklin, M. J.; Shenker, S.; and Stoica, I., 2010.

Spark: Cluster computing with working sets. HotCloud, 10, 10-10 (2010), 95. (cited

on page 17)

Zheng, G.; Shi, L.; and Kalé, L. V., 2004. FTC-Charm++: an in-memory checkpoint-

based fault tolerant runtime for Charm++ and MPI. In Cluster Computing, 2004

IEEE International Conference on, 93–103. IEEE. (cited on page 28)

Zheng, Y.; Kamil, A.; Driscoll, M. B.; Shan, H.; and Yelick, K., 2014. UPC++: a

PGAS extension for C++. In Parallel and Distributed Processing Symposium, 2014 IEEE

28th International, 1105–1114. IEEE. (cited on page 24)

	Acknowledgements
	Abstract
	Contents
	Introduction
	Background and Motivation
	Multi-Resolution Resilience
	Problem Statement
	Research Questions
	Thesis Statement
	Contributions
	Thesis Outline

	Background and Related Work
	Resilience Definition
	Taxonomy of Resilient Programming Models
	Adaptability
	Resource Allocation
	Resource Mapping

	Fault Tolerance
	Fault Type
	Fault Level
	Recovery Level
	Fault Detection
	Fault Tolerance Technique

	Performance
	Performance Recovery

	Resilience Support in Distributed Programming Models
	Message-Passing Model
	MPICH-V
	FMI
	rMPI
	RedMPI
	FT-MPI
	MPI-ULFM
	FA-MPI

	The Partitioned Global Address Space Model
	GASNet
	UPC
	Fortran Coarrays
	GASPI
	OpenSHMEM
	Global Arrays
	Global View Resilience

	The Asynchronous Partitioned Global Address Space Model
	Chapel
	X10

	The Actor Model
	Charm++
	Erlang
	Akka
	Orleans

	The Dataflow Programming Model
	OCR
	Legion
	NABBIT and PaRSEC
	Spark

	Review Conclusions

	The X10 Programming Model
	Task Parallelism
	The Happens-Before Constraint
	Global Data
	Resilient X10
	Elastic X10
	The PlaceManager API
	Place Virtualization

	Summary

	Improving Resilient X10 Portability and Scalability Using MPI-ULFM
	Introduction
	X10 over MPI
	Initialization
	Active Messages
	Team Collectives
	The Emulated Implementation
	The Native Implementation

	MPI-ULFM Overview
	Fault-Tolerant Communicators
	Failure Notification
	Failure Mitigation

	Resilient X10 over MPI-ULFM
	Resilient X10 Transport Requirements
	Global Failure Detection
	Identifying Dead Places
	Native Team Collectives
	Team Construction
	Team Failure Notification
	Team Agreement

	Non-Shrinking Recovery

	Performance Evaluation
	Experimental Setup
	Performance Factors
	The Immediate Thread
	Emulated Team versus Native Team

	MPI-ULFM Failure-Free Resilience Overhead
	Resilient X10 over MPI-ULFM versus TCP Sockets
	Team Construction Performance
	Team Collectives Performance

	Related Work
	Summary

	An Optimistic Protocol for Resilient Finish
	Introduction
	Nested Task Parallelism Models
	Related Work
	Resilient Async-Finish Optimality Limit
	Async-Finish Termination Detection Under Failure
	Failure Model
	Recovery Challenges

	Distributed Task Tracking
	Finish and LocalFinish Objects
	Task Events

	Non-Resilient Finish Protocol
	Garbage Collection

	Resilient Pessimistic Finish
	Adopting Orphan Tasks
	Excluding Lost Tasks
	Garbage Collection

	Resilient Optimistic Finish
	Adopting Orphan Tasks
	Excluding Lost Tasks
	Garbage Collection
	Optimistic Finish TLA Specification

	Finish Resilient Store Implementations
	Reviving the Distributed Finish Store

	Performance Evaluation
	Experimental Setup
	BenchMicro
	Performance Factors
	Performance Results

	Conclusions

	Summary

	Towards Data Resilience in X10
	A Resilient Data Store for the APGAS Model
	Strong Locality
	Double In-Memory Replication
	Non-Shrinking Recovery
	Distributed Transactions

	From Finish to Transaction
	Transactional Finish Construct
	Nesting Semantics
	Error Reporting Semantics
	Compiler-Free Implementation

	Finish Atomicity Awareness
	The Join Signal
	The Merge Signal
	Extended Finish Protocols

	Implementation Details
	Transaction Identifier and Log
	Lock Specification
	Concurrency Control Mechanism
	Two Phase Commit
	Transaction Termination Guarantee

	Resilient Application Frameworks
	Application Resilient Stores
	Place Local Store
	Transactional Store

	Resilient Iterative Framework
	The Global Iterative Executor
	The SPMD Iterative Executor

	Resilient Parallel Workers Framework
	Parallel Workers Executor

	Performance Evaluation
	Experimental Setup
	Transaction Benchmarking
	ResilientTxBench
	Graph Clustering: SSCA2 Kernel-4

	Iterative Applications Benchmarking
	X10 Global Matrix Library
	Linear Regression
	Logistic Regression
	PageRank
	LULESH

	Summary of Performance Results

	Summary

	Conclusion
	Answering the Research Questions
	Future Work
	Fault-Tolerant One-Sided Communication
	Hardware Support for Distributed Transactions
	Beyond X10

	Appendices
	Evaluation Platforms
	TLA+ Specification of the Optimistic Finish Protocol
	TLA+ Specification of the Distributed Finish Replication Protocol
	List of Abbreviations
	Bibliography

