
Received March 2, 2021, accepted March 11, 2021, date of publication March 17, 2021, date of current version March 24, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3066419

Resiliency/Cost-Based Optimal Design of
Distribution Network to Maintain Power System
Stability Against Physical Attacks: A Practical
Study Case

MOHAMMAD GHIASI 1, MOSLEM DEHGHANI 1,2, TAHER NIKNAM 1, (Member, IEEE),

HAMID REZA BAGHAEE 3, (Member, IEEE),

SANJEEVIKUMAR PADMANABAN 4, (Senior Member, IEEE),

GEVORK B. GHAREHPETIAN 3, (Senior Member, IEEE), AND

HAMDULAH ALIEV 5, (Member, IEEE)
1Department of Electrical and Electronic Engineering, Shiraz University of Technology, Shiraz 715555-313, Iran
2Electricity Distribution Company of Fars Province, Shiraz 1435893737, Iran
3Department of Electrical and Electronic Engineering, Amirkabir University of Technology, Tehran 1591634311, Iran
4CTIF Global Capsule (CGC), Department of Business Development and Technology, Aarhus University, 7400 Herning, Denmark
5Faculty of Energy, Tajik Technical University, Dushanbe 734025, Tajikistan

Corresponding authors: Hamdulah Aliev (hhuali334@gmail.com) and Taher Niknam (niknam@sutech.ac.ir)

ABSTRACT Unexpected natural disasters or physical attacks can have various consequences, including

extensive and prolonged blackouts on power systems. Energy systems should be resistant to unwanted events,

and their performance is not easily affected by such conditions. The power system should also have sufficient

flexibility to adapt to severe disturbances without losing its full version; it should restore itself immediately

after resolving the disturbance. This critical feature of the behavior of infrastructure systems in power grids

is called resilience. In this paper, the concepts related to resilience in the power system against severe

disturbance are explained. The resilience and evaluation process components are introduced; then, an optimal

design of resilient substations in the Noorabad city distribution grid against physical attack is presented. This

research proposes an optimal solution for simultaneously allocating the feeder routing issue and substation

facilities and finding the models of installed conductors and economic hardening of power lines due to

unexpected physical attacks on vital urban operational infrastructure. The values of distribution networks

are calculated using the grey wolf optimization (GWO) algorithm to solve the problem of designing an

optimal distribution network scheme (ODNS) and optimal resilient distribution network scheme (ORDNS).

Obtained results confirm the effectiveness of the proposed resiliency-cost-based optimization approach.

INDEX TERMS Power distribution network, grey wolf optimization, high-impact low-probability event,

optimal design, resilience.

I. INTRODUCTION

A. BACKGROUND

Today’s society heavily depends on services provided by

the power grid infrastructure. When a crisis occurs, these

networks often lose their ability to provide services because

of damage to network equipment. As a vital infrastruc-

ture, the security of power systems is recognized as a

global challenge closely linked to society’s stability and
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the improvement of economic conditions. Therefore, it has

always been one priority of different authorities, organiza-

tions, and social institutions at different levels. The explana-

tion given is that the power system as a valuable and vast

capital profoundly affects human life. High-Impact Low-

Probability (HILP) accidents of occurrences have increased

concerns about the usual reliability and resilience-oriented

approach [1]–[5]. Coping with unexpected and rare difficult

situations is recognized as a significant challenge. As a

vital infrastructure, the power system is expected to be far

more resilient to HILP events. Resilience is called the power
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system’s ability to effectively withstand HILP events to

ensure a definite minimum possible power supply and rapid

restoration to regular operation [6]. Thus, different parts of

society pose challenges to improving network responsiveness

to HILP events.

As soon as the power system’s security is severely affected

by different threats, the power systemmay be subdivided into

several zones, and large zonesmay face global blackouts. As a

result, there is widespread economic loss and, sometimes,

human life and even national privacy and security. Many

similarities in recent blackouts are seen in various refer-

ences [7], [8]; for example, on 4 November 2006. A blackout

in the west part of the Union for the coordination of the

transmission of electricity (UCTE) network resulted in a

severe deviation of frequency resulting in the division of the

entire network into three zones and interruptions in supplying

the needs of over 15 million European home subscribers.

Besides, in recent decades, human life has found a grow-

ing dependence on integrating interdependent systems on a

large scale. As a source of energy for other infrastructures,

electricity is centrally located and plays a vital role in other

systems [9].

A good example was an American blackout in 2003; water

pressure dropped sharply due to the lack of back-up power

due to the lack of electric pumps. All New York-bound trains

stopped, the mobile telecommunication equipment was dis-

rupted, and the cable television system was shut down [10].

Various threats have long been recognized and investigated to

ensure the security of power systems [11]. These threats that

cause an outage of the power grid include a range of internal

and external factors (including natural disasters, technical

errors, human failures, sabotage, terrorism, or even war) [12].

Potential threat factors include accidents, line breaks, bus

breaking, or overload; this might cause the power failure and

the possibility of power outages. Conventional hazards to

power systems usually are divided into two different cate-

gories: natural disasters and accidental hazards [13]. Natural

threats are caused by adverse climatic conditions, including

heat waves, tornadoes, lightning, and geological hazards such

as volcanic eruptions and earthquakes, tsunamis, and land-

slides, accidental hazards as errors in performance, failure

to maintain, impairment of equipment. With the increasing

importance of power systems, it has gradually become a

favorite victim of malicious threats. Destructive hazards refer

to terrorism and crimes, such as attacks, insurgency, product

manipulation, explosions, and bombings [14].With the evolu-

tion, development, and transition of the power system, threads

such as cyber-attacks have emerged. In recent years, the rapid

advancement of technology in power electronics, computers,

information technology, andmaterials has been promising for

the ever-expanding power system [15]–[19]. Also, varieties in

power systems technology have created an increasing chance

for emerging threats to system security. Besides, the threat

posed by human attacks on power systems in recent years

has become more serious [20]. For instance, the deployment

of communications-based intelligent network equipment to

make them more manageable has increased the possibility

of cyber-attacks [21]–[24], and the growing share of renew-

able energy sources (RESs) with the alternating nature of

power supply has altered the system and posed a variety of

security challenges [25]–[29]. Also, recent research focuses

on this issue; for instance, in papers [30], [31], authors pro-

posed different strategies, including natural disaster mod-

eling, equipment vulnerability and grid resilience analysis,

and grid resilience enhancement. Paper [32] presented the

benefits of having sections micro-grids (MGs) to manage

distributed energy resources (DERs), to develop power grid

resilience to HILPs.

Therefore, there is a fundamental need to categorize and

evaluate the system security considerations’ current and

emerging threats. A critical drawback of previous research

is the lower speed for step-by-step load restoration in the

power network to maintain its stability. This paper’s signif-

icant advantage is to provide optimal scheduling of resilient

substations in the real power distribution system to lower

operational costs in both standard and critical operational

modes with higher performance speed. Another advantage of

the proposed resilience strategy is to provide minimal load

curtailment in the crucial physical attack mode, considering

priority given to critical loads. Also, the suggested method

can restore total blackout or local outage.

B. MOTIVATION AND MAIN CONTRIBUTION

Hardening is the physical change of infrastructure to make

it less prone to high-impact, low-probability damage. How-

ever, hardening transmission systems models cannot be used

directly in power systems’ resilience, as most distribution

systems have a radial network-like tree configuration. In con-

trast, transmission grids are usually more interconnected than

lattice grids. Therefore, this research is designed to present

a comprehensive analysis of the flexible scheme of distribu-

tion networks. This study’s significant contribution is to find

an optimal solution for simultaneously allocating the feeder

routing issue and substation facilities and finding the models

of conductor’s installation and the economic hardening tech-

niques in power lines due to malicious attacks on vital urban

operational infrastructure (VUOI). The characteristics in nor-

mal and resilience modes of distribution systems are calcu-

lated using the grey wolf optimization (GWO) algorithm.

To solve optimal design problem in two different modes:

optimal distribution network scheme (ODNS) and optimal

resilient distribution network scheme (ORDNS). The pro-

posed technique is applied to an actual study case (Noorabad

City, Iran), comprising different distributed and renewable

generations, substations, transmission and distribution lines,

and consumers. Obtained results confirm the effectiveness of

the proposed approach.

C. PAPER STRUCTURE

The rest of this research study is formed as follows: Section II

defines resilience issues in power systems and introduces a

hardening strategy in power systems; in Section III, problem
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formulation of a resilient network is provided. Also, the prob-

lem constraints of the proposed method will be introduced.

Section IV provides the study’s simulation results, and finally,

the conclusions are stated in Section V.

II. DEFINING RESILIENCE ISSUES IN POWER SYSTEMS

A. INTRODUCING PERFORMANCE INDEX (PI) IN A

RESILIENCE POWER SYSTEM

To evaluate a power system’s resiliency, first, quantitative

indicators should be defined and calculated to describe fea-

tures’ components. Figure 1 shows a typical Performance

Index (PI) of the power system in terms of time and the event

of a severe disturbance. In defining the PI, a system’s load

can be considered its goal. Depending on the need, the value

of the remaining loads on the grid. The number of healthy

and electrified equipment in the system may be selected as

an indicator of system performance.

FIGURE 1. A typical Performance Index (PI) of the power system.

As can be seen from Figure 1, the curve shows well that

the restoration or resilience process of the grid is not expo-

nential or linear with a fixed slope in practice. Also, system

performance does not decrease rapidly after the disturbance

t0, and given the amount of endurance it has, it may take a

while for system performance to decline. This stage of system

behavior can be called the prevention phase, depending on the

user’s operational status and the network’s strength.Whatever

the network operator is aware of the danger that threatens the

system and what is happening and has enough knowledge and

experience to deal with this condition, it will take longer to

decline system performance. Therefore, the duration td − t0
can be considered a quantitative indicator to describe the

quality of the prevention phase. As the system’s performance

falls, the system enters a sustained phase until the situation

is adjusted to the new situation. The degree of network vul-

nerability measured in terms of the maximum loss in the

network’s performance relative to its value in the normal case

depends on the degree of system adaptation to perturbation.

As system compatibility increases, performance drops lower,

and vulnerability decreases. Equation (1) gives a quantified

normalized indicator (QNI) to describe the system’s exposure

to a disturbance.

QNI =
PI2 − PI1

PI2
(1)

The restoration phase begins after the conditions are estab-

lished in the post-accident situation. The operator rearranges

the network and retrieves the offloads. Restoration time can

also be an indicator that describes the restoration process’s

quality after a specific disturbance. Finally, in measuring the

whole restoration process by a quantitative index, it can the

normalized index is shown in equation (2).

R(T ) =

T
∫

0

PR(t)dt

T
∫

0

PT (t)dt

(2)

where PR(t) is the actual value of the PI at moment t, and

PT (t) is the optimal value of the PI at moment t .

Experiences from natural disasters show that conventional

power systems have been fragile systems due to the geo-

graphical extent of the disaster due to the type of equipment

architecture and central control network. The destruction of

less than one percent of their equipment can lead to sig-

nificant outages. Therefore, it is projected that regions with

a larger power system grid are more likely to experience a

higher proportion of exit. In this way, the network may not be

available for critical load lines and neighboring areas for days

to weeks. Thismay not be the case for all disasters or all areas.

Still, there is evidence of such activity worldwide follow-

ing various disasters such as Hurricane Katrina, the Sichuan

China earthquake, Japan earthquake, and tsunami [33]. The

resilient power system should be able to overcome disorders

with HILP of occurrence. Based on the experiences gained

from recent natural disasters, the essential features of such

events that distinguish them from conventional power system

errors are as follows:

• The timing and duration of these disorders are strongly

associated with uncertainty and may take days.

• They are entirely dynamic, and it is challenging to pre-

dict future events or sequences effectively.

• Their occurrence may cause multiple equipment failures

within a short time; for instance, transmission and distri-

bution facilities such as substations, transmission lines,

and towers may be damaged.

• Power sources may not be accessible or available.

Because of the features mentioned above, to have a

resilient system, the system in question should have the

following characteristics:

• Due to high uncertainty, diversification of supply

sources should be maximized and avoid dependence on

a limited set of power supplies.

• There should be sufficient flexibility to respond quickly

to events and to adjust operating procedures even during

short times.

• Due to the scarcity of resources, priorities for supplying

different loads should be identified.

Long-term actions refer to long-term adaptation plan-

ning to enhance system resilience to climate-related
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FIGURE 2. Temporal response of the power system to natural disasters.

events and climate change. The essential parts of these

actions include:

• Risk assessment and management to measure and pre-

pare for such events

• Accurate estimation of the probable location of the event

and its severity

• Upgrading emergency preparedness plans

• Tree pruning and vegetation management to clear the

transmission lines along the way

• Under grounding distribution and transmission lines

• Upgrading equipment with stronger materials

• Increasing the redundancy of transmission routes by the

construction of new transmission facilities

• Redirecting transmission lines to areas less affected by

adverse weather conditions

• Upgrading switchgear posts and installations to more

minor flood-prone areas

• Warehousing and maintenance of towers and backing

materials

• Increasing visualization and environmental awareness

through advanced monitoring and forecasting tools

The impact of HILP events on the power system and its

subsequent economic and social hazards has created a funda-

mental need globally to raise power systems’ resiliency [34].

Figure 2 summarizes the temporal response of the power

system to natural disasters.

B. MAKING RESILIENCE POWER SYSTEMS

The threats thatmay affect the energy system’s resiliency vary

depending on the likelihood of occurrence—the severity of

the consequences, the predictability, and the availability of

technologies. Meanwhile, electricity infrastructure and assets

are usually divided based on performance between genera-

tion, transmission, and distribution systems. Each of them

has a physical scope and vulnerability to threats and differ-

ent governance patterns regarding ownership and manage-

ment responsibility. Identifying a more systematic resiliency

framework and specific criteria that can be used to monitor

and evaluate resiliency in the electricity system is a rapidly

evolving research field.

III. MATERIALS AND METHOD OF MAKING GRIDS AND

SUBSTATIONS RESILIENT

The primary objective should be to provide sufficient elec-

trical energy to consumers with the lowest possible cost and

required standards. From the asset management point of view,

economic strategies should be implemented to reduce the

impact of various threats on their assets and continuously

meet consumer demand, especially in critical situations. The

Objective Function (OF) should include normal and critical

operating conditions. Therefore, the proposed OF is given by:

OF = min(Total_Expense) = Esubstation + Efeeder

+Eloss + Ereliability + Eresiliency (3)

A. SUBSTATION INSTALLATION COST

This article assumes that the substation location, location, and

number of loads are specified. Therefore, the total energy

supply of loads and losses should be provided by the sub-

station. The capacity of the substation should be determined

by solving the ORDNS problem. The cost of installing the

substation is given in (4).

Esubstation = Eground + Econstruction+Etransformer+Eequipment

= Esubstation/MVA ×MVAsub (4)

Substation cost is often due to land acquisition, con-

struction, the transformer’s expense, and equipment expense.

Therefore, the substation cost can be calculated by multiply-

ing the cost of installation per megawatt-amp at the capacity
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of the substation by MVA. Hence the total cost of substation

690000.67 is assumed in this paper.

In this work, to calculate the cost of installing a feeder,

a method for designing a distribution network at minimum

costs is presented. Feeder routing is determined by search-

ing through all candidate routes and considering limitations,

including voltage drop and geographical constraints. In the

proposed approach, the GWO algorithm is used to find the

optimal path of feeders. Also, the current limit of the feeders

is determined during optimization. It should be noted that

the feeder’s cost will be proportional to the length of the

feeder and for a specific type of cable conductor. Therefore,

due to limited financial resources, the minimum budget is

assigned to improve the distribution network’s resilience with

the optimal retrofitting of network lines.

The installation of ground feeders requires more invest-

ment due to the cost of land buried in Kabul, the crew’s high

work, and the long process. Also, due to limited financial

resources, it is assumed that the design can be accepted if the

cost of installing the feeder, increased by a maximum of 20%

compared to the cost of conventional feeders.

Efeeder =

∑

n

(yEohf /km + y′Eugf /km)Mn (5)

where Mn is the feeder length n, Eohf /km represents the

expense of installing one kilometer of overhead line, and

Eugf /km gives the cost of one kilometer of ground cabling; y

and y′ are binary variables that represent the type of feeder.

Table 1 provide characteristics of overhead lines used in the

real case study (Noorabad city of Fars in Iran).

TABLE 1. Characteristics of overhead lines.

Reducing the cost of network losses is a key goal for

utilities and consumers. Therefore, a network structure that

can significantly reduce losses has attracted a lot of attention.

The result is reduced losses, energy savings, and improved

distribution network operation. In the transmission network,

the X/R ratio is often high, so the impact of resistance could

be denied, but in the distribution network, the X/R ratio is

usually high and brings a large voltage drop, leading to large

losses during the distribution feeders. By decreasing losses

at all levels of the power system from production to the final

subscribers, electricity’s final cost is reduced. Thus, the eco-

nomic increase of electric companies would be faster. Also,

from the electricity market point of view, low losses increase

electricity companies’ efficiency. The equations for calculat-

ing the cost of losses are presented as follows [35], [36].

Ploss + jQloss =

∑

n

I2(n) × (R(n) + jX(n)) (6)

Eloss = [(Ploss×EP−loss) + (Qloss×EQ−loss)] (7)

where Ploss is an active power loss, Qloss provides reactive

power loss, R(n) + jX(n) represents the impedance of line n;

EP−loss is the expense of active losses, and EQ−loss gives

reactive losses.

B. RELIABILITY EXPENSE

In today’s daily life, it should be noted that distribution net-

works are recognized as the basic infrastructure in the supply

of energy demand. Given that human or natural errors and

the occurrence of outages are normal in the power system,

distribution companies meet the demand of their consumers

even in the event of errors, so interruptions must be calculated

for all subscribers. Reliability can be calculated based on the

amount of fault in every branch, the number of loads inter-

rupted in the occurrence of a fault. Besides, the estimation

of the load not supplied (LNS) is based on interruptions.

Therefore, it should be considered EReliability as an influential

factor in the study. The low value of this index guarantees the

level of stability of the power system performance.

EReliability =

∑

n

rn × λn × ELNS × LNS(n) (8)

where, rn represents the time of repair for feeder n (h), λn pro-

vides the rate of failure for feeder n (fail/km/year), ELNS gives

the expense of reliability for unsupplied power ($/kWh), and

LNS(n) represents the not supplied load because of the outage

in the feeder n. One crucial point here is that the amount λn
and rn varies between the overhead line and underground line.

As mentioned earlier, attackers usually attack vital urban

operational infrastructures (VUOIs) that cause the most dam-

age. The attacker’s purpose is often to disrupt crisis man-

agement and bring unrest and fear to the community. The

crisis conditions will be much more severe if the electric-

ity distribution grid is destroyed, and therefore, there is a

widespread power outage. It causes extensive financial dam-

age and may endanger human life and national security.

Therefore, the power systemmust experience the least failure

after every internal or external hazard. From the perspective

of the distribution grid, installing and repairing damaged

equipment and the cost of removed load can a suitable mea-

sure to show the network’s level of resilience. Due to the time

required to repair or replace equipment, so the costs should be

considered.

When the distribution network is affected, the required

crew and facilities should be at the shortest distance from the

site with the most damage to minimize the cost of repair-

ing and replacing equipment. Because of human response,

the delay of his action after the occurrence of an event has

been considered. It is assumed that any equipment’s repair or
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replacement time varies depending on the model (bus load or

line) and its capacity.

As mentioned earlier, attack modeling is defined by dif-

ferent scenarios, and the VUOI defines each strategy under

attack. The cost-benefit assessment of the attacker obtains

every approach’s probability, and the likelihood of every

process differs from the other. Given the status quo, equation

(9) gives the cost of the resilience of the system.

EResilience =

∑

s

π s
× (LSEs + RDEs) (9)

where, LSEs represents the expense of load shedding, RDEs
provides the expense for repair and replacement of damaged

equipment in approach s. π s also represents the probability

for approach s.

C. LIMITATIONS

1) LOAD DISTRIBUTION EQUATIONS

In this part, load flow equations are presented as a constraint

on implementing the proposed method. So the following

equation is presented as:

Psub−
∑

i

Pload,i−Vi

Nbus
∑

k=1

VkYik cos(δi−δk−θik ) = 0 (10)

Qsub−
∑

i

Qload,i−Vi

Nbus
∑

k=1

VkYik sin(δi−δk−θik ) = 0 (11)

where, i displays the number of buses.

2) SUBSTATION VOLTAGE ANGLE

Another important limitation that should be considered is

voltage and its angle. As a result, the following equation is

presented:

Vsub = 1p.u. (12)

δsub = 0 (13)

3) VOLTAGE LIMITATION SATISFACTION

Voltage limitation satisfaction is usually planned as an error

function; therefore, it is better to keep the voltage in a normal

(safe) condition so that it is not violated. The voltage limits

satisfactions (normal and critical conditions) for the bus i in

scenario s are defined as follows:

µV
i,s =































Vi,s − Vmin
critic

Vmin
norm − Vmin

critic

, Vmin
norm ≤ Vi,s ≤ Vmax

critic

1, Vmin
norm ≤ Vi,s ≤ Vmax

norm
Vi,s − Vmax

critic

Vmax
norm − Vmax

critic

, Vmax
norm ≤ Vi,s ≤ Vmax

critic

0, else































(14)

where, Vmin
norm = 0.95, Vmax

norm = 1.05, and Vmax
critic = 1.10.

Due to the different network scenarios in question, there

are several satisfaction levels for the desired bus. Therefore,

the weighted average of satisfaction is necessary to obtain an

index that shows the bus condition I as:

µV
i =

∑

s

π s
× µV

i,s (15)

Finally, the best way to get thewhole grid voltage condition

index is to compute the average value µV
i for all buses, which

is given as:

µV
=

∑

i

µV
i

Buses.No
(16)

4) FEEDER LIMITATIONS

The value of the feeder current µl and the voltage are similar

in the calculations. But with current, there is only a high limit

for the feeder current. According to the voltage and current

constraint modeling, the limitations are soft, and each viola-

tion is added to the objective function as follows. Therefore,

the expense of technical dissatisfaction (ETD) is calculated

by:

ETD = dc× max
{

(1 − µV ), (1 − µl)
}

(17)

where, dc represents dissatisfaction cost.

IV. SIMULATION RESULTS

In this section, the simulation’s results on the real power

distribution network of Noorabad city of Fars in Iran-based

on the proposed method are presented. Figure 3 displays the

absolute configuration of the power distribution network of

Noorabad city. A graphical image of the power distribution

grid is shown in Figure 4, where the substations’ places are

known, and the optimal size should be obtained. Also, the size

and position of the loads (kW and kVar) have been specified.

MATLAB software is also used to perform simulations

using the GWO algorithm and prepare results. In this

section, the optimal distribution network design is done

for two modes: optimal conventional distribution network

scheme (ODNS) and optimal resilient distribution network

scheme (ORDNS). In both cases, the substations’ capacities,

feeder paths, and type of feeders installed are optimized.

Also, the optimal ORDNS determines the reinforced lines.

For ensuring the feasibility and efficiency of the presented

approach, it has been performed on a relatively large distri-

bution grid. So, the goal function includes several cases that

GWO algorithms have solved.

It should be noted that all the restrictions in the final

network are considered. Figure 5 shows the candidate routes

for distribution network design and the location of VUOIs,

where the red circle displays the radius of destruction. The

conventional configuration routes of main lines are provided

in Table 2. As can be seen from Table 2, we have 79 main

lines in the basic configuration.

A. OPTIMAL DISTRIBUTION NETWORK SCHEME

This section presents the conventional network design of the

above distribution substation network in ODNS mode. In this

method, the substation’s optimal capacity is determined from

VOLUME 9, 2021 43867



M. Ghiasi et al.: Resiliency/Cost-Based Optimal Design of Distribution Network

FIGURE 3. Real configuration of the electricity network of Noorabad city.

FIGURE 4. A graphical image of the real study case network (Noorabad city).

reliability economics, simultaneously with the feeders’ path

and feeders’ type. As can be seen, all the loads are fed by post,

and the final grid structure is tree-like and radial.

Voltage amplitude should be considered a critical indi-

cator that affects the distribution grid in terms of load

distribution, losses, power quality, and voltage stability.

Therefore, the voltage range is defined as limiting the

final answer to keep the bus voltage within the standard

range. For proving that the voltage is within the allow-

able range, the following figure has been prepared. Figure 6
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FIGURE 5. The candidate routes and the location of VUOIs for the distribution network scheme.

FIGURE 6. The configuration of ODNS.

displays the configuration of ODNS. The configuration

routes of prominent lines for the ODNS method are pro-

vided in Table 3. Figure 7 depicts the optimal results of

bus voltages for ODNS. The bus voltage amplitude is given

per unit (pu).

B. OPTIMAL RESILIENT DISTRIBUTION NETWORK

SCHEME

The results related to the resilient design of the aboveORDNS

distribution substation’s power supply network are presented

in this part. The purpose of ORDNS is to determine the

substation’s optimal capacity and, at the same time, the feeder

path, the type of feeders installed, and the reinforced lines.

In this regard, theGWOalgorithm has converged to an answer

that effectively reduces the defined objective function.

As can be seen, the defined objective function includes

the economics-reliability design of the ODNS and distribu-

tion network resilience issues. Figure 8 displays the optimal

configuration for ORDNS. As can be seen from Figure 8,

the network structure obtained from ORDNS is radial. Also,

some lines are shown in brown. The proximity of these lines

to VUOIs that are physically attacked has led to the selection

of these lines as terrestrial. Loads in crises are fed through the

local network. Like ODNS, the voltage range of the buses is

shown to confirm the effectiveness of the presented approach

within the allowable range.
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TABLE 2. The conventional configuration of main lines.

FIGURE 7. Optimal results of buses voltages for ODNS.

The configuration routes of main lines for the ORDNS

method are provided in Table 4. Figure 9 depicts the optimal

results of bus voltages for ORDNS.

C. COMPARISON BETWEEN ODNS AND ORDNS

As mentioned earlier, resilience refers to the system’s ability

to withstand low-probability events - high destructive power.

Besides, the distribution grid is a vast and valuable asset

that greatly impacts human life. Therefore, different com-

panies make great efforts to make their network resilient

to HILP events. As a result, the basic need for a method

that can determine the optimal investment for retrofitting is

essential. This method can have high savings and can also

improve network resilience. The main obstacle to promot-

ing resilience is the limited financial resources of compa-

nies. It seems that the transition from ODNS to ORDNS

should be cost-effective. Therefore, cost increases should be

a constraint on optimization. Figure 10 displays a compari-

son of resilience for different scenarios in the transmission

line online. Also, Table 5 compares the results of costs for

ODNS and ORDNS. As shown in Figure 10, the resilience

in conventional, ODNS, and ORNDS modes is compared.

It has been demonstrated that ONDS resilience is higher than

traditional resilience andORNDS resilience is higher than the

other two modes, which reflects the fact that the proposed

optimization scheme has higher and better resilience than

different modes.
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TABLE 3. The configuration of main lines.

FIGURE 8. Optimal configurations for ORDNS.

The reinforcement of the lines raises the cost of installing

feeders in ORDNS compared to ODNS. The impact of reli-

ability and resilience costs on the goal function has led opti-

mization to seek a network that often delivers critical loads

close to VUOIs. Also, the reinforcement of long lines is more

expensive. These reasons may justify the high cost of feed

in the ORDNS approach. Besides, the above reasons have

limited search space during ORDNS optimization.
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TABLE 4. The configuration of the main lines.

FIGURE 9. Optimal results of buses voltages for ORDNS.

TABLE 5. Comparison of costs between ODNS and ORDNS.

Table 6 compares the load flow results, analysis of losses,

and energy not supplied (ENS) between ODNS and ORDNS

methods. As shown in Table 6, the load flow results in

ORDNS mode in substation-1 and substation-2 have lower

energy losses, ENS, and peak power losses than ODNS. Also,

FIGURE 10. A comparison of resilience for different scenarios in
transmission line online.

the peak voltage minimum is closer to one than ODNS, which

indicates the superiority of ORDNS compared to ODNS.

Another critical point is that the final network should keep

the voltage within the allowable range. Furthermore, the cost

of its power losses affects the goal function.

Given these facts and due to the limited search space,

feeders should be selected from a type that has a high flow

rate. Feeders with high current limits have low resistance

and reactance, resulting in a low voltage drop across the

feeder. As a result, the voltage profile is improved, and the

losses are reduced. Instead, the cost of feeding is increased.
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TABLE 6. Comparison of load flow, losses, and energy not supplied between ODNS and ORDNS.

From the reliability perspective, the overhead lines are more

reliable. The presented results confirm the fact that the cost

of unsecured energy in ORDP is lower. The results demon-

strate the proposed method’s effectiveness, which ultimately

leads to a proper network structure from a technical point of

view, reliability, and resilience. Also, the cost of implementa-

tion is minimal. Given the geographical limitations, the pro-

posed approach is implemented on a real power distribution

grid of Noorabad city in Iran, whose information is derived

from GIS.

V. CONCLUSION

A power system should be designed to be resistant to dif-

ferent unexpected events, such as natural disasters or cyber

or physical attacks with high-impact low-probability (HILP)

effects on the network’s stability. At the same time, the system

should also have sufficient flexibility so that it can adapt

to a severe disturbance without losing its full performance.

Besides, it should restore itself immediately after resolving

such a disturbance.

In this paper, the concepts related to resilience in the

power system against severe disturbance were explained, and

the components of this concept, its evaluation process were

introduced. The optimal design of resilient substations in a

real-power grid (Noorabad city) against physical attack to

maintain network stability was presented. This paper pro-

posed an optimal solution for simultaneously allocating the

feeder routing issue and substation facilities and finding

the types of installed conductors and economic hardening

of power lines due to physical attacks on a vital urban

operational infrastructure. The distribution network param-

eters were calculated using the GWO algorithm to solve

optimal functional forms, including optimal distribution net-

work design and optimal resilient distribution network design

modes. The effectiveness of the proposed resilience method

was confirmed according to the analysis of the obtained

results.
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