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Abstract

This paper addresses the problem of resilient in-network consensus in the presence of misbe-

having nodes. Secure and fault-tolerant consensus algorithms typically assume knowledge of nonlocal

information; however, this assumption is not suitable for large-scale dynamic networks. To remedy

this, we focus on local strategies that provide resilience to faults and compromised nodes. We design a

consensus protocol based on local information that is resilient to worst-case security breaches, assuming

the compromised nodes have full knowledge of the network and the intentions of the other nodes. We

provide necessary and sufficient conditions for the normal nodes to reach asymptotic consensus despite

the influence of the misbehaving nodes under different threat assumptions. We show that traditional

metrics such as connectivity are not adequate to characterize the behavior of such algorithms, and develop

a novel graph-theoretic property referred to as network robustness. Network robustness formalizes the

notion of redundancy of direct information exchange between subsets of nodes in the network, and is

a fundamental property for analyzing the behavior of certain distributed algorithms that use only local

information.

Index Terms

H. LeBlanc is with the Electrical & Computer Engineering and Computer Science Department, Ohio Northern University,

Ada, OH, 45810 USA h-leblanc@onu.edu.

H. Zhang and S. Sundaram are with the Department of Electrical and Computer Engineering at the University of Waterloo,

Waterloo, Ontario, Canada {h223zhan,ssundara}@uwaterloo.ca.

X. Koutsoukos is with the Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN,

USA xenofon.koutsoukos@vanderbilt.edu.

Manuscript received April 9, 2012; revised December 30, 2012. Some of the results in this paper were presented in preliminary

form at the First Conference on High-Confidence Networked Systems (HiCoNS 2012) [1] and at the 2012 American Control

Conference [2].



Consensus; In-Network Computation; Robust Networks; Resilience; Byzantine; Adversary; Dis-

tributed Algorithms.

I. INTRODUCTION

Engineered systems have undergone a paradigm shift from centralized to distributed, propelled

by advances in networking and low-cost, high performance embedded devices. These advances

have enabled a transition from end-to-end routing of information in large-scale networked systems

to in-network computation of aggregate quantities of interest [3]. In-network computing offers

certain performance advantages, including reduced latency, smaller communication overhead,

and greater robustness to node and link failures.

A fundamental challenge of in-network computation is that the quantities of interest must be

calculated using only local information, i.e., information obtained by each node through sensor

measurements, calculations, or communication only with neighbors in the network. Another

important challenge is that large-scale distributed systems have many potential vulnerable points

for failures or attacks. To obtain the desired computational results, it is important to design the

in-network algorithms to be able to withstand the compromise of a subset of the nodes and still

ensure some notion of correctness (possibly at a degraded level of performance). We refer to

such a networked system as being resilient to adversaries. Given the growing threat of malicious

attacks in large-scale cyber-physical systems, this is an important and challenging problem [4].

One of the most important objectives in networked systems is to reach consensus on a quantity

of interest [5]–[8]. Consensus is fundamental to diverse applications such as data aggregation [9],

distributed estimation [10], distributed optimization [11], distributed classification [12], and

flocking [13]. Reaching consensus (and more generally, transmitting information) resiliently

in the presence of faulty or misbehaving nodes has been studied extensively in distributed

computing [5], [14]–[18], communication networks [19], [20], and mobile robotics [21]–[23].

Among other things, it has been shown that given F (worst-case) adversarial nodes, there exists

a strategy for these nodes to disrupt consensus if the network connectivity1 is 2F or less.

Conversely, if the network connectivity is at least 2F + 1, then there exist strategies for the

1The network connectivity is defined as the smaller of the two following values: (i) the size of a minimal vertex cut and (ii)

n− 1, where n is the number of nodes in the network.



normal nodes to use that ensure consensus is reached (under the local broadcast model of

communication) [5], [24], [25]. However, these consensus algorithms either require that normal

nodes have at least some nonlocal information (e.g., knowledge of multiple independent paths

in the network between themselves and other nodes) or assume that the network is complete,

i.e., all-to-all communication or sensing [14], [21]–[23], [26]. Moreover, these algorithms tend

to be computationally expensive. Therefore, there is a need for resilient consensus algorithms

that have low complexity and operate using only local information (i.e., without knowledge

of the network topology and the identities of non-neighboring nodes). A key challenge is to

characterize fundamental topological properties that allow the normal nodes to compute an

appropriate consensus value, despite the influence of misbehaving nodes.

The faulty or misbehaving nodes can be characterized by threat models and scope of threat

assumptions. Examples of fault or threat models include non-colluding [25], malicious [24]–

[26], Byzantine [14], [21], [27], [28], or crashed [21], [22] nodes. Typically, the scope of the

faults or threats is assumed to be bounded by a constant, i.e., at most F out of n nodes fail or

are compromised. We refer to this as the F -total model. Alternatively, the scope may be local;

e.g., at most F neighbors of any normal node fail (F -local model), or at most a fraction f of

neighbors are compromised (f -fraction local model).

A. Previous Work on Consensus With Only Local Information

In [29], the authors introduced the Approximate Byzantine Consensus problem, in which the

normal nodes are required to achieve approximate agreement2 (i.e., they should converge to

a relatively small convex hull contained in the convex hull defined by their initial values) in

the presence of F -total Byzantine faults in finite time. They consider only complete networks

(where there is a direct connection between every pair of nodes), and they propose the following

algorithm: each node disregards the largest and smallest F values received from its neighbors

and updates its state to be the average of a carefully chosen subset of the remaining values. This

algorithm was extended to a family of algorithms, named the Mean-Subsequence-Reduced (MSR)

algorithms, in [30]. Although the research on Approximate Byzantine Consensus for complete

2If the network is synchronous, and if one allows t → ∞, then approximate agreement is equivalent to asymptotic consensus.



networks is mature, there are few papers that have attempted to analyze this algorithm in more

general topologies [31], and even then, only certain special networks have been investigated.

Recently, we have studied resilient algorithms in the presence of misbehaving nodes [32], [33].

In [26], we proposed a continuous-time variation of the MSR algorithms, named the Adversarial

Robust Consensus Protocol (ARC-P), to solve asymptotic consensus under the F -total malicious

model. The results of [26] were extended to both malicious and Byzantine threat models in

networks with constrained information flow and dynamic network topology in [27]. The sufficient

conditions studied in [27] are stated in terms of in-degrees and out-degrees of nodes in the

network and are shown to be sharp, i.e., if the conditions are relaxed, even minimally, then there

are examples in which the relaxed conditions are not sufficient. In [2], we generalized the MSR

algorithm as the Weighted-Mean-Subsequence-Reduced (W-MSR) algorithm and studied general

distributed algorithms with F -local malicious adversaries.

In a recent paper, developed independently of our work, Vaidya et al. have characterized tight

conditions for resilient consensus using the MSR algorithm when the threat model is Byzantine

and the scope is F -total [28]. The network constructions used in [28] are very similar to the

robust digraphs presented here. In particular, the networks in [28] also require redundancy of

direct information exchange between subsets of nodes in the network.

In contrast to the deterministic approach taken here, gossip algorithms have been studied for

in-network computation of aggregate functions such as sums, averages, and quantiles [9]. In

such algorithms, each node chooses at random a single neighbor to communicate with in each

round. This scheme limits the required computational, communication, and energy resources, and

provides some robustness against time-varying topologies and random node and link failures [34].

However, we are not aware of any work that studies the resilience of gossip-based algorithms

to malicious attacks.

B. Contributions

In this paper, we show that traditional graph theoretic properties such as connectivity and

minimum degree, which have played a vital role in characterizing the resilience of distributed

algorithms (see [5], [24]), are not adequate when the nodes make purely local decisions (i.e.,

without knowing nonlocal aspects of the network topology). Instead, we introduce a novel

topological property, referred to as network robustness, and show that this concept is the key



property for reasoning about the ability of purely local algorithms to succeed. In particular, we

provide a comprehensive characterization of the network topologies where algorithms such as

W-MSR (which uses only local information and operates in synchronous networks) can succeed

despite the presence of a broad class of adversaries. We establish results for both malicious and

Byzantine threats, where the scope is F -total, F -local, and f -fraction local, and the network

is time-invariant or time-varying. For the case of time-invariant networks, we provide, for the

first time, a tight condition for the W-MSR algorithm to succeed under the F -total malicious

model. Furthermore, we give tight conditions for F -local and F -total Byzantine threats (the

proof for the F -total Byzantine model is different than the proof given in [28], and is stated

for the more general W-MSR algorithm and in terms of network robustness). We prove separate

necessary and sufficient conditions for the W-MSR algorithm under the F -local malicious, f -

fraction local malicious, and f -fraction local Byzantine threat models. While there is a gap

between the necessary and sufficient conditions in these latter cases, we show that the sufficient

condition for the F -local malicious model is sharp, i.e., relaxing the condition leads to examples

in which consensus is not achieved. For all threat models, we provide sufficient conditions for

the case of time-varying networks.

In addition to the results on resilient asymptotic consensus, we also examine properties of

robust digraphs. We demonstrate the connectivity and degree properties of robust digraphs,

explore the robustness maintained after edge removal, and describe how to compare the relative

robustness of different digraphs. Finally, we provide a method that enables the construction of

robust networks and show that the preferential attachment mechanism for generating complex

networks is a special case of this method (and therefore produces robust networks).

The rest of the paper is organized as follows. Section II introduces the problem of resilient

consensus. Section III presents the W-MSR algorithm. Section IV demonstrates the inadequacy of

connectivity as a metric to analyze the behavior of the W-MSR algorithm, and formally introduces

the notion of network robustness. The main results are given in Section V. A simulation example

is presented in Section VI. In Section VII, we discuss properties of network robustness and

provide a construction for robust networks. Finally, some conclusions are given in Section VIII.



C. Notation and Graph Terminology

Throughout this paper, we denote the set of integers by Z and the set of real numbers by

R. The set of integers greater than or equal to some integer q ∈ Z is denoted Z≥q. Given

a ∈ R, the ceiling of a, denoted �a�, is the smallest integer that is greater than or equal to

a. Similarly, the floor of a, denoted �a�, is the largest integer less than or equal to a. The

cardinality of a set S is denoted by |S|. Given sets S1,S2, the reduction of S1 by S2 is denoted

S1 \ S2 = {x ∈ S1 : x /∈ S2}.

A finite simple directed graph, or just digraph, is denoted D = (V, E), in which V is the node

set and E ⊂ V × V is the directed edge set. With a slight abuse of terminology, we will often

refer to the network and the digraph that models the topology of the network synonymously.

The underlying graph G(D) is defined by replacing directed edges of D by undirected ones,

resulting in the edge set EG . A digraph D′ = (V ′, E ′) is a subdigraph of D, written D ′ ⊆ D,

if V ′ ⊆ V and E ′ ⊆ E . A digraph D′ = (V ′, E ′) is isomorphic to D if there exists a bijection

ψ : V → V ′ such that (i, j) ∈ E if and only if (ψ(i), ψ(j)) ∈ E ′.

A path is a sequence of distinct vertices i0, i1, . . . , ik such that (ij , ij+1) ∈ E , j = 0, 1, . . . , k−
1. We use the notion of path to define different forms of connectedness. We say that D is

strongly connected if for every i, j ∈ V , there exists a path starting at i and ending at j. If

the underlying graph is connected, then D is weakly connected. Alternatively, if the underlying

graph is disconnected, then D is disconnected. A digraph has a rooted out-branching if there

exists a node r, the root, such that for each i ∈ V , there exists a path from r to i.

II. PROBLEM FORMULATION

Consider a time-varying network modeled by the digraph D[t] = (V, E [t]), where V =

{1, ..., n} is the node set and E [t] ⊂ V × V is the directed edge set at time-step t ∈ Z≥0.

The node set is partitioned into a set of normal nodes N and a set of adversary nodes A which

is unknown a priori to the normal nodes. Each directed edge (j, i) ∈ E [t] models information

flow and indicates that node i can be influenced by (or receive information from) node j at

time-step t. The set of in-neighbors, or just neighbors, of node i at time-step t is defined as

Vi[t] = {j ∈ V : (j, i) ∈ E [t]} and the (in-)degree of i is denoted di[t] =|Vi[t]|. Likewise, the set

of out-neighbors of node i at time-step t is defined as V out
i [t] = {j ∈ V : (i, j) ∈ E [t]}. Because

each node has access to its own state at time-step t, we also consider the inclusive neighbors



of node i, denoted Ji[t] = Vi[t] ∪ {i}. Note that time-invariant networks are represented simply

by dropping the dependence on t.

A. Update Model

Suppose that each node i ∈ N begins with some private value xi[0] ∈ R (which could

represent a measurement, optimization variable, vote, etc.). The nodes interact synchronously

by conveying their value to (out-)neighbors in the network. Each normal node updates its own

value over time according to a prescribed rule, which is modeled as

xi[t + 1] = fi({xij [t]}), j ∈ Ji[t], i ∈ N , t ∈ Z≥0,

where xij [t] is the value sent from node j to node i at time-step t, and xi
i[t] = xi[t]. The update

rule fi(·) can be an arbitrary function, and may be different for each node, depending on its role

in the network. These functions are designed a priori so that the normal nodes compute some

desired function. However, some of the nodes may not follow the prescribed strategy if they are

compromised by an adversary. Such misbehaving nodes threaten the group objective, and it is

important to design the fi(·)’s in such a way that the influence of such nodes can be eliminated

or reduced without prior knowledge about their identities.

B. Threat Model

Definition 1: A node i ∈ A is said to be Byzantine if it does not send the same value to all

of its neighbors at some time-step, or if it applies some other function f ′
i(·) at some time-step.

Definition 2: A node i ∈ A is said to be malicious if it sends xi[t] to all of its neighbors at

each time-step, but applies some other function f ′
i(·) at some time-step.

Note that both malicious and Byzantine nodes are allowed to update their states arbitrarily

(perhaps colluding with other malicious or Byzantine nodes to do so). The only difference is in

their capacity for duplicity. If the network is realized through sensing or broadcast communica-

tion, it is natural to assume that the out-neighbors receive the same information, thus motivating

the definition of a malicious node. If the network is point-to-point, however, Byzantine behavior

is possible. Note that all malicious nodes are Byzantine, but not vice versa. When we do not

need to explicitly distinguish between Byzantine and malicious threats, we simply say those

nodes are misbehaving.



C. Scope of Threats

Having defined the types of misbehavior in the system, it is necessary to define the number

of misbehaving nodes. While there are various stochastic models that could be used to formalize

the scope of threats, we use a deterministic approach and consider upper bounds on the number

of compromised nodes either in the network (F -total) or in each node’s neighborhood (F -local).

To account for varying degrees of different nodes, we also introduce a fault model that considers

an upper bound on the fraction of compromised nodes in any node’s neighborhood.

Definition 3 (F -total set): A set S ⊂ V is F -total if it contains at most F nodes in the

network, i.e., |S| ≤ F , F ∈ Z≥0.

Definition 4 (F -local set): A set S ⊂ V is F -local if it contains at most F nodes in the

neighborhood of the other nodes for all t, i.e., |Vi[t]
⋂S| ≤ F , ∀i ∈ V \S, ∀t ∈ Z≥0, F ∈ Z≥0.

Definition 5 (f -fraction local set): A set S ⊂ V is f -fraction local if it contains at most a

fraction f of nodes in the neighborhood of the other nodes for all t, i.e., |Vi[t]
⋂S| ≤ f |Vi[t]|,

∀i ∈ V \ S, ∀t ∈ Z≥0, 0 ≤ f ≤ 1.

It should be noted that in time-varying network topologies, the local properties defining an

F -local set (or an f -fraction local set) must hold at all time instances. These definitions facilitate

the following scope of threat models.

Definition 6: A set of adversary nodes is F -totally bounded, F -locally bounded or f -

fraction locally bounded if it is an F -total set, F -local set or f -fraction local set, respectively.

We refer to these threat scopes as the F -total, F -local, and f -fraction local models, respectively.

F -totally bounded faults have been studied in distributed computing [5], [14], [28] and mobile

robotics [21]–[23] for both stopping (or crash) failures and Byzantine failures. The F -locally

bounded fault model has been studied in the context of fault-tolerant broadcasting [35], [36].

However, to the best of our knowledge, there are no prior works discussing the f -fraction local

model; our investigation of this model is inspired by ideas pertaining to contagion in social

and economic networks [37], where a node will accept some new information (behavior or

technology) if more than a certain fraction of its neighbors has adopted it. However, these

previous works do not consider faulty or malicious behavior, and our definition is a natural

extension to the existing interpretations.



D. Resilient Asymptotic Consensus

Given the threat model and scope of threats, we formally define resilient asymptotic consensus.

Let M [t] and m[t] be the maximum and minimum values of the normal nodes at time-step t,

respectively.

Definition 7 (Resilient Asymptotic Consensus): The normal nodes are said to achieve resilient

asymptotic consensus in the presence of (a) F -totally bounded, (b) F -locally bounded, or (c)

f -fraction locally bounded misbehaving (Byzantine or malicious) nodes if

• ∃L ∈ R such that limt→∞ xi[t] = L for all i ∈ N , and

• [m[0],M [0]] is an invariant set (i.e., the normal values remain in the interval for all t),

for any choice of initial values. Whenever the scope of threat is understood, we simply say that

the normal nodes reach asymptotic consensus.

The resilient asymptotic consensus problem has two important conditions. First, the normal

nodes must reach asymptotic consensus in the presence of misbehaving nodes given a particular

threat model (e.g., malicious) and scope of threat (e.g., F -total). This is a condition on agreement.

Additionally, it is required that the interval containing the initial values of the normal nodes is

an invariant set for the normal nodes; this is a safety condition. This condition is important in

safety critical processes where the interval [m[0],M [0]] is known to be safe. The agreement and

safety conditions, when combined, imply a third condition on validity: the consensus quantity

that the values of the normal nodes converge to must lie within the range of initial values of the

normal nodes.

The validity condition is reasonable in applications where any value in the range of initial

values of normal nodes is acceptable to select as the consensus value. For instance, consider a

large sensor network where every sensor takes a measurement of its environment, captured as a

real number. Suppose that at the time of measurement, all values taken by correct sensors fall

within a range [a, b], and that all sensors are required to come to an agreement on a common

measurement value. If the range of measurements taken by the normal sensors is relatively

small, it will likely be the case that reaching agreement on a value within that range will

form a reasonable estimate of the measurements taken by all sensors. However, if a set of

malicious nodes is capable of biasing the consensus value outside of this range, the error in the

measurements could be arbitrarily large.



More generally, suppose the nodes are trying to distributively minimize
∑
hi(θ), where each

of the hi’s is a local convex function and θ is the optimization variable. If the initial value of

each node i represents the value of θ that minimizes hi, a convex combination of these initial

values will represent an estimate of the optimal θ, within some bounded error. On the other

hand, if an adversary is capable of biasing the consensus value arbitrarily, the resulting value

of the objective function will also be arbitrarily far away from its minimum value. One can

formulate similar motivating examples for the validity condition in other applications as well;

for instance, a swarm of robots that are trying to flock should not be pulled in arbitrary directions

by a malicious agent in the network.

III. CONSENSUS ALGORITHM

While there are various approaches to facilitate consensus, a class of linear algorithms have

attracted significant interest in recent years [6], [38], due to their applicability in a variety of

contexts. In such strategies, at time t, each node senses or receives information from its neighbors,

and changes its value according to

xi[t + 1] =
∑

j∈Ji[t]

wij[t]x
i
j [t], (1)

where wij [t] is the weight assigned to node j’s value by node i at time-step t. The above strategy

is the so-called Linear Consensus Protocol (LCP).

Different conditions have been reported in the literature to ensure asymptotic consensus is

reached [7], [13], [39]–[41]. In discrete time, it is common to assume that there exists a constant

α ∈ R, 0 < α < 1 such that all of the following conditions hold:

• wij[t] = 0 whenever j �∈ Ji[t], i ∈ N , t ∈ Z≥0;

• wij[t] ≥ α, ∀j ∈ Ji[t], i ∈ N , t ∈ Z≥0;

•
∑n

j=1wij[t] = 1, ∀i ∈ N , t ∈ Z≥0.

Given these conditions, a necessary and sufficient condition for reaching asymptotic consensus

in time-invariant networks is that the digraph has a rooted out-branching, also called a rooted

directed spanning tree [38]. The case of dynamic networks is not quite as straightforward. In this

case, under the conditions stated above, a sufficient condition for reaching asymptotic consensus

is that there exists a uniformly bounded sequence of contiguous time intervals such that the

union of digraphs across each interval has a rooted out-branching [40]. Recently, a more general



condition referred to as the infinite flow property has been shown to be both necessary and

sufficient for asymptotic consensus for a class of discrete-time stochastic models [42]. Finally,

the lower bound on the weights is needed because there are examples of asymptotically vanishing

weights in which consensus is not reached [43].

Given a fixed, bidirectional network topology, the selection of the optimal weights in (1) with

respect to the speed of the consensus process can be done by solving a semidefinite program

(SDP) [39]. However, this SDP is solved at design time with global knowledge of the network

topology. A simple suboptimal choice of weights that requires only local information is to let

wij[t] = 1/(1 + di[t]) for j ∈ Ji[t].

One problem with the linear update given in (1) is that it is not resilient to misbehaving

nodes. In fact, it was shown in [13], [44] that a single ‘leader’ node can cause all agents

to reach consensus on an arbitrary value of its choosing (potentially resulting in a dangerous

situation in physical systems) simply by holding its value constant. Thus, by themselves, the

dynamics given by (1) do not facilitate resilient asymptotic consensus for any of the fault models.

We now describe a simple modification to the update rule, and then provide a comprehensive

characterization of network topologies in which resilient asymptotic consensus is reached under

such dynamics.

A. Description of W-MSR

At every time-step t, each normal node i obtains the values of other nodes in its neighborhood.

At most F of node i’s neighbors may be misbehaving; however, node i is unsure of which

neighbors may be compromised. To ensure that node i updates its value in a safe manner, we

consider a protocol where each node removes the extreme values with respect to its own value.

More specifically:

1) At each time-step t, each normal node i obtains the values of its neighbors, and forms a

sorted list.

2) If there are less than F values strictly larger than its own value, xi[t], then normal node i

removes all values that are strictly larger than its own. Otherwise, it removes precisely the

largest F values in the sorted list (breaking ties arbitrarily). Likewise, if there are less than

F values strictly smaller than its own value, then node i removes all values that are strictly

smaller than its own. Otherwise, it removes precisely the smallest F values.



3) Let Ri[t] denote the set of nodes whose values were removed by normal node i in step 2

at time-step t. Each normal node i applies the update

xi[t+ 1] =
∑

j∈Ji[t]\Ri[t]

wij[t]x
i
j [t], (2)

where the weights wij[t] satisfy the conditions stated above, but with Ji[t] replaced by

Ji[t] \ Ri[t].3

To accommodate the f -fraction local model, the parameter F in step 2 above is replaced by

Fi = �fdi[t]�. As a matter of terminology, we refer to the bound on the number (or fraction) of

larger or smaller values that could be thrown away as the parameter of the algorithm. Above,

the parameter of W-MSR with the F -local and F -total models is F , whereas the parameter with

the f -fraction local model is f , and the meaning of the parameter will be clear from the context.

Observe that the set of nodes removed by normal node i, Ri[t], is possibly time-varying.

Hence, even if the underlying network topology is fixed, the W-MSR algorithm effectively

induces switching behavior, and can be viewed as the linear update of (1) with a specific rule

for state-dependent switching (the rule given in step 2).

The above algorithm is extremely lightweight, and does not require any normal node to have

any knowledge of the network topology or of the identities of non-neighbor nodes. Given these

highly desirable properties, the question that we answer in this paper is: in what networks will

the above algorithm facilitate resilient asymptotic consensus?

B. Use of Related Algorithms in Previous Work

As mentioned in the introduction, the use of similar algorithms that remove extreme values

and then form an average from a subset of the remaining values have been studied for decades.

In [29], functions that perform this type of operation are referred to as approximation functions,

and both synchronous and asynchronous algorithms are studied that use these approximation

functions in complete networks for resilience to F -total Byzantine faults. These approximation

functions are used in the family of Mean-Subsequence-Reduced (MSR) algorithms [30]. There

are a few key differences between the operations used in the W-MSR algorithm and the MSR

algorithm of [30]. First, W-MSR does not always remove the largest and smallest F values as

3In this case, a simple choice for the weights is to let wij [t] = 1/(1 + di[t]− |Ri[t]|) for j ∈ Ji[t] \ Ri[t].



in the MSR algorithm [30]. Instead, only the extreme values that are strictly larger or strictly

smaller than the given node’s value are removed. Since the node’s own value may be one of

the F extreme values, the MSR algorithm may throw away this useful (correct) information.

Second, W-MSR uses all values retained after removing the extreme values. MSR, on the other

hand, may select only a subsequence of the remaining values to use in the update. Finally, MSR

averages the remaining values instead of allowing for weighted averages as in W-MSR.

MSR algorithms have also been used for Byzantine point convergence of mobile robots

in complete networks [23]. Besides Byzantine faults, some works also consider other threat

models [30]. However, few papers have addressed the convergence of MSR algorithms in less

restrictive (non-complete) networks. Some exceptions include [31], [45], [46]. In [31], the authors

studied local convergence (convergence of a subset of nodes) in undirected regular graphs4; the

results are extended to asynchronous networks in [46] and global convergence of a class of

undirected regular graphs, named Partially Fully Connected Networks (PFCN), in [45]. More

recently, [28] provides necessary and sufficient conditions on the network topology required

for a special case of the MSR algorithm (which retains all of the values after removing the

extreme ones) to achieve consensus in the presence of F -total Byzantine faults. In the following

sections, we will develop a novel topological property and show that this property is essential

for studying MSR (and more generally, W-MSR) algorithms in arbitrary networks for the broad

class of adversarial models described in Section II.

Finally, it is worth noting the relationship between the W-MSR algorithm and robust consen-

sus algorithms designed to withstand outliers [47], [48]. The problem of robust consensus to

outliers does not assume a threat model, such as malicious or Byzantine nodes. Instead, some

measurements may be statistical outliers (caused by noise) and the goal is to reach consensus on

the measurements in a manner that reduces the error introduced by the outliers. In these works

the nodes with outlier measurements are cooperative in the consensus process. Therefore, such

techniques are not designed to work in the presence of misbehaving nodes. Furthermore, the

W-MSR algorithm will also handle the case where the misbehaving nodes change their initial

values, but behave normally otherwise.

4A regular graph is a graph where each vertex has the same number of neighbors.



Fig. 1. Example of a 5-connected graph satisfying Prop. 1 with F = 2.

IV. ROBUST NETWORK TOPOLOGIES

Traditionally, network connectivity has been the key metric for studying robustness of dis-

tributed algorithms because it formalizes the notion of redundant information flow across the

network through independent paths. Due to the fact that each independent path may include

multiple intermediate nodes, network connectivity is well-suited for studying resilient distributed

algorithms that assume such nonlocal information is available (for example, by explicitly relaying

information across multiple hops in the network [5], by ‘inverting’ the dynamics on the network to

recover the needed information [24], [25], or by resiliently encoding information along multiple

paths [20]). However, when the nodes in the network use only local information (as in W-MSR),

the following proposition suggests that connectivity is no longer a promising metric.

Proposition 1: For any n, F ∈ Z>0 with F ≤ �n
2
�, there exists a graph with connectivity

κ = �n
2
� + F − 1 in which W-MSR with parameter F does not ensure asymptotic consensus.

The proof of Proposition 1 can be found in the Appendix. Figure 1 illustrates an example of

this kind of graph with n = 8, F = 2, and κ = 5. In this graph, there are two cliques (complete

subgraphs), X = K4 and Y = K4, where Kn is the complete graph on n nodes. Each node in

X has exactly F = 2 neighbors in Y , and vice versa. One can see that if the initial values of

nodes in X and Y are a ∈ R and b ∈ R, respectively, with a �= b, then asymptotic consensus is

not achieved whenever W-MSR is used with parameter F , even in the absence of misbehaving

nodes. This is because each node views the values of its F neighbors from the opposing set as

extreme, and removes all of these values from its list. The only remaining values for each node

are from its own set, and thus no node ever changes its value.



The situation can be even worse in the more general case of digraphs. Examples of digraphs

are illustrated in [27] that have minimum out-degree n−2 and the underlying graph is complete,

yet W-MSR still cannot guarantee resilient asymptotic consensus. Thus, even a relatively large

connectivity (or minimum out-degree) in digraphs is not sufficient to guarantee consensus of the

normal nodes, indicating the inadequacy of these traditional metrics to analyze the convergence

properties of W-MSR. Taking a closer look at the graph in Fig. 1, we see that the reason for

the failure of consensus is that no node has enough neighbors in the opposite set; this causes

every node to throw away all useful information from outside of its set, and prevents consensus.

What is needed is a metric that formalizes the notion of sufficient redundancy of information

flow directly to at least one node in a subset. To capture this intuition, we develop a novel

graph-theoretic property framed in terms of reachable sets and network robustness [2].

Definition 8 (r-reachable set): Given a digraph D and a nonempty subset S of nodes of D,

we say S is an r-reachable set if ∃i ∈ S such that |Vi \ S| ≥ r, where r ∈ Z≥0.

Definition 9 (p-fraction reachable set): Given a digraph D and a nonempty subset S of nodes

of D, we say S is a p-fraction reachable set if ∃i ∈ S such that |Vi| > 0 and |Vi \ S| ≥ p|Vi|,
where 0 ≤ p ≤ 1. If |Vi| = 0 or |Vi \ S| = 0 for all i ∈ S, then S is 0-fraction reachable.

A set S is r-reachable (or p-fraction reachable) if it contains a node that has at least r (or

�pdi�) neighbors outside of S. The parameter r (or p) quantifies the redundancy of information

flow from nodes outside of S to some node inside S. Intuitively, the r-reachability (or p-fraction

reachability) property captures the idea that some node inside the set is influenced by a sufficiently

large number of nodes from outside the set. The above reachability property pertains to a given

set S. The following definitions generalize this notion of redundancy to the entire network.

Definition 10 (r-robustness): A nonempty, nontrivial digraph D = (V, E) on n nodes (n ≥ 2)

is r-robust, with r ∈ Z≥0, if for every pair of nonempty, disjoint subsets of V , at least one of

the subsets is r-reachable. By convention, if D is empty or trivial (n ≤ 1), then D is 0-robust.

The trivial graph is also 1-robust.5

Definition 11 (p-fraction robustness): A nonempty, nontrivial digraph D = (V, E) on n nodes

(n ≥ 2) is p-fraction robust, with 0 ≤ p ≤ 1, if for every pair of nonempty, disjoint subsets of

5The trivial graph is defined to be both 0-robust and 1-robust for consistency with properties shown to hold for larger digraphs

in Section VII.



V , at least one of the subsets is p-fraction reachable. If D is empty or trivial (n ≤ 1), then D is

0-fraction robust.

Note that the notions of robustness and fraction robustness are similar to the concept of vertex

expanders6 [49], [50]. However, the definition of vertex expanders only requires that the whole

set has sufficient neighbors outside the set; for this reason, even a high expansion ratio may not

guarantee that the set contains some node that by itself has enough neighbors outside the set.

Thus, the concept of vertex expanders is not applicable to characterize the network topology

required to succeed using the W-MSR algorithm.

The reason that pairs of nonempty, disjoint subsets of nodes are considered in the definition

of r-robustness can be seen in the example of Fig. 1. If either X or Y were 3-reachable (r =

F + 1 = 3), then at least one node would be sufficiently influenced by a node outside its set

(because each node only removes up to F = 2 nodes that have values lower or higher than its

own). This would drive it away from the values of its group, and thereby allow it to lead its

group to the values of the other set.

However, if there are misbehaving nodes in the network, then the situation becomes more

complex. For example, consider the network modeled by the graph in Fig. 2. One can verify

that the graph is 3-robust by checking every possible pair of disjoint subsets, and confirming

that at least one of them is 3-reachable. Consider the disjoint subsets X and Y shown in the

figure, and note that both of them are 3-reachable – nodes 2 and 8 each have three neighbors

outside of their respective sets. However, no other nodes in those two sets have more than

two neighbors outside their own set, and thus nodes 2 and 8 are the only ones with access to

sufficient information outside their own set. Suppose these two nodes 2 and 8 are malicious

(or Byzantine) and the initial values of nodes in X and Y are a and b, respectively. Then, by

stubbornly maintaining their initial values, nodes 2 and 8 are able to prevent consensus whenever

the normal nodes use W-MSR with parameter F = 2. One way to remedy this is to require the

whole network to be more robust. Another way is to introduce another form of information

redundancy by specifying a minimum number of nodes that are sufficiently influenced from

outside of their set. In order to capture this intuition, we define the following concept.

6A digraph D = (V, E) is an r vertex expander if for all S ⊂ V of size at most �n
2
�, the neighborhood V(S) = {j ∈ V \S :

∃i ∈ S s.t. (j, i) ∈ E } is of size at least r|S|.



Fig. 2. A 3-robust graph in which sets X and Y are each 3-reachable. Nodes 2 and 8 are malicious (shown in grey).

Fig. 3. Illustration of an (r, s)-reachable set of nodes.

Definition 12 ((r, s)-reachable set): Given a digraph D and a nonempty subset of nodes S,

we say that S is an (r, s)-reachable set if there are at least s nodes in S, each of which has at

least r neighbors outside of S, where r, s ∈ Z≥0; i.e., given X r
S = {i ∈ S : |Vi \ S| ≥ r}, then

|X r
S | ≥ s.

An illustration of an (r, s)-reachable set of nodes is shown in Fig. 3. Observe that, in general,

a set S is (r, s′)-reachable, for s′ ≤ s, whenever S is (r, s)-reachable. At one extreme, whenever

there are no nodes in S with at least r neighbors outside of S, then S is only (r, 0)-reachable.

At the other extreme, S can be at most (r, |S|)-reachable. Also note that r-reachability is

equivalent to (r, 1)-reachability. Hence, (r, s)-reachability strictly generalizes r-reachability, and

better quantifies the number of nodes with redundant information flow from outside of their set.

This additional specificity is useful for defining a more general notion of robustness.

Definition 13 ((r, s)-robustness): A nonempty, nontrivial digraph D = (V, E) on n nodes (n ≥
2) is (r, s)-robust, for nonnegative integers r ∈ Z≥0, 1 ≤ s ≤ n, if for every pair of nonempty,

disjoint subsets S1 and S2 of V at least one of the following holds (recall X r
Sk

= {i ∈ Sk : |Vi \
Sk| ≥ r} for k ∈ {1, 2}):

(i) |X r
S1
| = |S1|;



(ii) |X r
S2
| = |S2|;

(iii) |X r
S1
|+ |X r

S2
| ≥ s.

By convention, if D is empty or trivial (n ≤ 1), then D is (0,1)-robust. If D is trivial, D is also

(1,1)-robust.7

The definition of (r, s)-robustness aims to capture the idea that “enough” nodes in every pair

of nonempty, disjoint sets S1,S2 ⊂ V have at least r neighbors outside of their respective sets.

To quantify what is meant by “enough” nodes, it is necessary to take the maximal sr,k for which

Sk is (r, sr,k)-reachable for k ∈ {1, 2} (since Sk is (r, s′r,k)-reachable for s′r,k ≤ sr,k). Since

sr,k = |X r
Sk
|, condition (i) or (ii) means that all nodes in Sk have at least r neighbors outside of

Sk. Given a pair S1,S2 ⊂ V such that 0 < |S1| < r and S2 = V \S1, there can be no more than

|S1| nodes with at least r neighbors outside of their set. Hence, conditions (i) and (ii) quantify

the maximum number of nodes with at least r neighbors outside of their set for such pairs, and

must therefore be “enough”. Alternatively, if there are at least s nodes with at least r neighbors

outside of their respective sets in the union S1 ∪ S2, then condition (iii) is satisfied. For such

pairs S1,S2 ⊂ V , the parameter8 1 ≤ s ≤ n quantifies what is meant by “enough” nodes.

In the next section, we will show that these concepts we have proposed above are, in fact, the

key properties needed to characterize the performance of the class of local filtering algorithms

given by W-MSR. That is, sufficiently robust digraphs guarantee resilient consensus.

V. RESILIENT CONSENSUS ANALYSIS

We start with the following result showing that W-MSR always satisfies the safety condition

for resilient asymptotic consensus. Recall that M [t] and m[t] are the maximum and minimum

values of the normal nodes at time-step t, respectively.

Lemma 1: Suppose each normal node updates its value according to the W-MSR algorithm

with parameter F under the F -total or F -local Byzantine (or malicious) model, or with parameter

7The trivial graph is defined to be both (0,1)-robust and (1,1)-robust for consistency with properties shown to hold for larger

digraphs in Section VII.

8Note that s = 0 is not allowed in (r, s)-robustness because in that case any digraph on n ≥ 2 nodes satisfies the definition

for any r ∈ Z≥0, which subverts the interpretation of the parameter r. At the other extreme, the maximal meaningful value of

s is s = n since condition (iii) can never be satisfied with s > n.



f under the f -fraction local Byzantine (or malicious) model. Then, for each node i ∈ N ,

xi[t+ 1] ∈ [m[t],M [t]], regardless of the network topology.

Proof: The proof is straightforward and follows directly from the definitions and the facts

that the values in Ji[t]\Ri[t] used in the W-MSR update rule lie in the interval [m[t],M [t]] and

that the update rule in (2) is a convex combination of these values.

Having guaranteed the safety condition, we now provide a characterization of networks where

the agreement condition (and thus, the validity condition) will be satisfied for each of the threat

models introduced in Section II.

A. F -Total Malicious Model

The following result is one of the major contributions of this paper and provides, for the first

time, a necessary and sufficient condition for the W-MSR algorithm to succeed under the F-total

malicious model.

Theorem 1: Consider a time-invariant network modeled by a digraph D = (V, E) where each

normal node updates its value according to the W-MSR algorithm with parameter F . Under the

F -total malicious model, resilient asymptotic consensus is achieved if and only if the network

topology is (F + 1, F + 1)-robust.

Proof: (Necessity) If D is not (F + 1, F + 1)-robust, then there are nonempty, disjoint

S1,S2 ⊂ V such that none of the conditions (i) − (iii) hold. Suppose the initial value of each

node in S1 is a and each node in S2 is b, with a < b. Let all other nodes have initial values taken

from the interval (a, b). Since |X F+1
S1

|+ |X F+1
S2

| ≤ F , suppose all nodes in X F+1
S1

and X F+1
S2

are

malicious and keep their values constant. With this assignment of adversaries, there is still at

least one normal node in both S1 and S2 since |X F+1
S1

| < |S1| and |X F+1
S2

| < |S2|, respectively.

Since these normal nodes remove the F or less values of in-neighbors outside of their respective

sets, no consensus among normal nodes is reached.

(Sufficiency) Recall that N is the set of normal nodes, and define N = |N |. Furthermore,

define M [t] and m[t] to be the maximum and minimum values of the normal nodes at time-step

t, respectively. We know from Lemma 1 that both M [t] and m[t] are monotone and bounded

functions of t and thus each of them has some limit, denoted by AM and Am, respectively. Note

that if AM = Am, the normal nodes will reach consensus. We will now prove by contradiction

that this must be the case.



Suppose that AM �= Am (note that AM > Am by definition). We can then define some constant

ε0 > 0 such that AM − ε0 > Am + ε0. At any time-step t and for any positive real number εi,

let XM(t, εi) = {i ∈ V : xi[t] > AM − εi}, which includes all normal and malicious nodes that

have values larger than AM − εi, and let Xm(t, εi) = {i ∈ V : xi[t] < Am + εi}, which includes

all normal and malicious nodes that have values smaller than Am + εi. Note that XM(t, ε0) and

Xm(t, ε0) are disjoint, by the definition of ε0.

Fix ε < αN

1−αN ε0, which satisfies ε0 > ε > 0. Let tε be such that M [t] < AM + ε and

m[t] > Am−ε, ∀t ≥ tε (we know that such a tε exists by the definition of convergence). Consider

the nonempty and disjoint sets XM(tε, ε0) and Xm(tε, ε0). Since the network is (F + 1, F + 1)-

robust and there are no more than F malicious nodes in the network (F -total model), there is

a normal node in the union that has at least F + 1 neighbors outside of its set. Without loss

of generality, suppose normal node i ∈ XM(tε, ε0) ∩ N has at least F + 1 neighbors outside of

XM(tε, ε0). By definition, these neighbors have values at most equal to AM −ε0, and at least one

of these values will be used by node i (since node i removes at most F values lower than its

own value). Note that at each time-step, every normal node’s value is a convex combination of

its own value and the values it uses from its neighbors, and each coefficient in the combination

is lower bounded by α. Since the largest value that node i will use at time-step tε is M [tε],

placing the largest possible weight on M [tε] produces

xi[tε + 1] ≤ (1− α)M [tε] + α(AM − ε0)

≤ (1− α)(AM + ε) + α(AM − ε0)

≤ AM − αε0 + (1− α)ε.

Note that this upper bound also applies to the updated value of any normal node that is not in

XM(tε, ε0), because such a node will use its own value in its update. Similarly, if j ∈ Xm(tε, ε0)∩
N has at least F + 1 neighbors outside of Xm(tε, ε0), then xj [tε + 1] ≥ Am + αε0 − (1 − α)ε.

Again, any normal node that is not in Xm(tε, ε0) will have the same lower bound.

Define ε1 = αε0−(1−α)ε, which satisfies 0 < ε < ε1 < ε0. Consider the sets XM(tε+1, ε1) and

Xm(tε+1, ε1). Since at least one of the normal nodes in XM(tε, ε0) decreases at least to AM −ε1
(or below), or one of the nodes in Xm(tε, ε0) increases at least to Am+ ε1 (or above), it must be

that either |XM(tε + 1, ε1) ∩N | < |XM(tε, ε0) ∩N | or |Xm(tε + 1, ε1) ∩N | < |Xm(tε, ε0) ∩N |,
or both. Since ε1 < ε0, XM (tε + 1, ε1) and Xm(tε + 1, ε1) are still disjoint. For j ≥ 1, define εj



recursively as εj = αεj−1−(1−α)ε, and observe that εj < εj−1. As long as there are still normal

nodes in both XM(tε + j, εj) and Xm(tε + j, εj), we can repeat the above analysis for time-steps

tε+j. Furthermore, at time-step tε+j, either |XM(tε+j, εj)∩N | < |XM(tε+j−1, εj−1)∩N | or

|Xm(tε+j, εj)∩N | < |Xm(tε+j−1, εj−1)∩N |, or both. Since |XM(tε, ε0)∩N |+|Xm(tε, ε0)∩N | ≤
N , there must be some time-step tε + T (where T ≤ N) where either XM (tε + T, εT ) ∩ N or

Xm(tε + T, εT ) ∩ N is empty. In the former case, all normal nodes in the network at time-step

tε + T have value at most AM − εT , and in the latter case all normal nodes in the network

at time-step tε + T have value no less than Am + εT . We will show that εT > 0, which will

contradict the fact that the largest value monotonically converges to AM (in the former case) or

that the smallest value monotonically converges to Am (in the latter case). To do this, note that

εT = αεT−1 − (1− α)ε

= α2εT−2 − α(1− α)ε− (1− α)ε

...

= αT ε0 − (1− α)(1 + α + · · ·+ αT−1)ε

= αT ε0 − (1− αT )ε

≥ αNε0 − (1− αN)ε.

Since ε < αN

1−αN ε0, we obtain εT > 0, providing the desired contradiction. It must thus be the

case that ε0 = 0, proving that AM = Am.

The above result establishes the notion of network robustness introduced in Definition 13

as the appropriate metric for reasoning about purely local distributed algorithms, supplanting

the traditional metric of connectivity. We will discuss the relationship between connectivity and

robustness in further detail later in the paper.

When the network is time-varying, one can state the following corollary of the above theorem.

The proof is given in the Appendix.

Corollary 1: Consider a time-varying network modeled by a digraph D[t] = (V, E [t]) where

each normal node updates its value according to the W-MSR algorithm with parameter F . Let

{tk} denote the set of time-steps in which D[t] is (F +1, F +1)-robust. Then, under the F -total

malicious model, resilient asymptotic consensus is achieved if |{tk}| = ∞ and |tk+1 − tk| ≤ c,

∀k, where c ∈ Z>0.



Fig. 4. A 3-robust graph that is not (3,2)-robust.

To illustrate these results consider the graphs in Figs. 1 and 4. These graphs can withstand

the compromise of F = 1 malicious node in the network using the W-MSR algorithm with

parameter F = 1 (each graph is (2,2)-robust but not (3,3)-robust). This is not to say that it

is impossible for the normal nodes to reach consensus if there are, for example, two nodes

that are compromised. Instead, these results say that there are two specific nodes that can be

compromised by an adversary to prevent consensus (e.g., nodes 5 and 6 in Fig. 4).

B. F -Local and f -Fraction Local Malicious Models

The previous result fully characterizes those network topologies that are able to handle F -

total malicious adversaries. In order to capture the case when the total number of adversaries

is quite large (e.g., in large-scale networks), we now consider the F -local and f -fraction local

malicious models. Due to the fact that there is no meaningful upper bound on the total number

of adversaries under these models, we cannot rely on a ‘sufficiently large’ number of nodes in

each set having F +1 neighbors outside. Instead, we must return to the original definition of an

r-robust network and increase the requirements on the number of external neighbors for a node

in one out of any pair of disjoint sets.

Theorem 2: Consider a time-invariant network modeled by a digraph D = (V, E) where each

normal node updates its value according to the W-MSR algorithm with parameter F . Under

the F -local malicious model, resilient asymptotic consensus is achieved if the topology of the

network is (2F+1)-robust. Furthermore, a necessary condition is for the topology of the network

to be (F + 1)-robust.



Proof: (Necessity) If the network is not (F + 1)-robust, there exist two disjoint subsets of

nodes that are not (F + 1)-reachable, i.e., each node in these two sets would have at most F

neighbors outside the set. If we assign the maximum and minimum values in the network to

these two sets, respectively, the nodes in these sets would never use any values from outside

their own sets. Thus, their values would remain unchanged, and consensus will not be reached.

(Sufficiency) The proof of sufficiency is similar to the proof of Theorem 1. Note that when

considering the nonempty, disjoint sets XM(tε, ε0) ∩N and Xm(tε, ε0) ∩N defined in the proof

of Theorem 1, at least one of these two sets must be (2F + 1)-reachable due to the assumption

of (2F +1)-robustness of the network. Thus, at least one of these two sets contains some normal

node which will use at least one of its normal neighbors’ values from outside.

Corollary 2: Consider a time-varying network modeled by a digraph D[t] = (V, E [t]) where

each normal node updates its value according to the W-MSR algorithm with parameter F . Let

{tk} denote the set of time-steps in which D[t] is (2F + 1)-robust. Then, under the F -local

malicious model, resilient asymptotic consensus is achieved if |{tk}| = ∞ and |tk+1 − tk| ≤ c,

∀k, where c ∈ Z>0.
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Fig. 5. Illustration of Proposition 2

Although the sufficient and necessary conditions in Theorem 2 do not coincide, the following

result shows that the sufficient condition in the theorem is sharp.

Proposition 2: For every F ∈ Z>0, there exists a 2F -robust network that fails to reach

consensus using the W-MSR algorithm with parameter F .

Proof: We will prove the result by giving a construction of such a graph, visualized in

Figure 5. In Figure 5, S1, S2 and S3 are all complete components with |S1| =|S3| = 2F and

|S2| = 4F . Each node in S1 connects to 2F nodes of S2 and each node in S3 connects to the

other 2F nodes of S2, and all of these connections are undirected. Node x1 has incoming edges



from all nodes in S1 and similarly node x2 has incoming edges from all nodes in S3. This is an

example of a graph that arises from the construction that we derive in Section VII-A, where we

show that such a graph will be 2F robust. We choose F nodes of S1 and also F nodes of S3 to

be malicious; note that this constitutes an F -local set of malicious nodes. Then we assign node

x1 with initial value m, node x2 with initial value M and the other normal nodes with initial

values c, such that m < c < M . Malicious nodes in S1 and S3 will keep their values unchanged

at m and M , respectively. We can see that, by using the W-MSR algorithm, the values of nodes

x1 and x2 will never change and thus consensus cannot be reached, completing the proof.

To illustrate these results, consider the 3-robust graph of Fig. 4. Recall that this graph cannot

generally sustain 2 malicious nodes as specified by the 2-total model; it is not (3,3)-robust.

However, under the 1-local model, it can sustain two malicious nodes if the right nodes are

compromised. For example, nodes 1 and 4 may be compromised under the 1-local model and

the normal nodes will still reach consensus. This example illustrates the advantage of the F -local

model, where there is no concern about global assumptions. If a digraph is (2F +1)-robust, then

up to F nodes may be compromised in any node’s neighborhood, possibly resulting in more

than F malicious nodes in the network (as in the previous example).

We now extend the discussion to the f -fraction local malicious model.

Theorem 3: Consider a time-invariant network modeled by a digraph D = (V, E) where each

normal node updates its value according to the W-MSR algorithm with parameter f . Under the

f -fraction local malicious model, resilient asymptotic consensus is achieved if the topology of

the network is p-fraction robust, where 2f < p ≤ 1. Furthermore, a necessary condition is for

the topology of the network to be p′-fraction robust, where p′ > f .

Proof: The proof is similar to the proof of Theorem 2. For the proof of sufficiency, note that

under the f -fraction local model, each normal node will disregard at most 2×�fdi� values from

its neighborhood at each time-step. Thus, if the network is p-fraction robust, where 2f < p ≤ 1,

at least one of these two sets XM(tε, ε0)∩N and Xm(tε, ε0)∩N will adopt some normal node’s

value from outside.

Corollary 3: Consider a time-varying network modeled by a digraph D[t] = (V, E [t]) where

each normal node updates its value according to the W-MSR algorithm with parameter f . Let {tk}
denote the set of time-steps in which D[t] is p-fraction robust, where 2f < p ≤ 1. Then, under

the f -fraction local malicious model, resilient asymptotic consensus is achieved if |{tk}| = ∞



and |tk+1 − tk| ≤ c, ∀k, where c ∈ Z>0.

C. F -Total, F -Local and f -Fraction Local Byzantine Models

Our above results have focused on the case of malicious (but not Byzantine) adversaries. The

recent paper [28] investigates a similar algorithm in the context of F -total Byzantine adversaries,

and provides necessary and sufficient conditions for the algorithm to succeed. While their proof

techniques are different, the main result can be captured neatly by the notion of robustness as

follows.

Definition 14: For a network D = (V, E), define the normal network of D, denoted by DN , as

the network induced by the normal nodes, i.e., DN = (N , EN ), where EN is the set of directed

edges among the normal nodes.

Theorem 4 ( [28]): Consider a time-invariant network modeled by a digraph D = (V, E)
where each normal node updates its value according to the W-MSR algorithm with parameter

F . Under the F -total Byzantine model, resilient asymptotic consensus is achieved if and only if

the topology of the normal network is (F + 1)-robust.

Proof: To prove sufficiency, besides the method used in [28], [51], we can also use the

approach proposed in the proof of Theorem 1. Note that when the original network is (2F +1)-

robust, the normal network will be (F + 1)-robust.

To prove necessity, if the normal network is not (F +1)-robust, we can assign the two disjoint

sets that are not (F + 1)-reachable the maximum and minimum values, respectively. Since the

Byzantine nodes can send different values to different neighbors, suppose they send the maximum

and minimum values to the maximum and minimum sets, respectively. Then, nodes in these two

sets never use any values from outside their own sets and consensus is not reached.

The following results are straightforward extensions of the above result from [28] to the local

models and time-varying networks.

Corollary 4: Consider a time-invariant network modeled by a digraph D = (V, E) where each

normal node updates its value according to the W-MSR algorithm with parameter F (or parameter

f for the f -fraction local model). Under the F -local Byzantine model, resilient asymptotic

consensus is achieved if and only if the topology of the normal network is (F + 1)-robust.

Under the f -fraction local Byzantine model, resilient asymptotic consensus is achieved if the



normal network is p-fraction robust, where p > f , and a necessary condition is for the normal

network to be p′-fraction robust, where p′ ≥ f .

Proof: The proof is similar to the proof of Theorem 4. For the proof of necessity, note

that the choice of Byzantine nodes should satisfy the F -local and f -fraction local properties,

respectively. Further note that the only difference between the sufficient and necessary conditions

for the f -fraction local model is p = f . When the normal network is f -fraction robust, we can

choose two sets which are at most f -fraction reachable and each node i in these two sets has

at most �fdi� neighbors outside. For certain choice of initial values (i.e., these two sets have

the maximum and minimum initial values, respectively), consensus can be reached if fd i �∈ Z≥1

and cannot be reached if fdi ∈ Z≥1.

Corollary 5: Consider a time-varying network modeled by a digraph D[t] = (V, E [t]) where

each normal node updates its value according to the W-MSR algorithm with parameter F (or

parameter f for the f -fraction local model). Let {tk} denote the set of time steps in which D[t]

is either (i) (2F + 1)-robust, or (ii) p-fraction robust, where 2f < p ≤ 1. Then, under (i) the

F -total or F -local Byzantine model, or (ii) the f -fraction local Byzantine model, respectively,

resilient asymptotic consensus is achieved if |{tk}| = ∞ and |tk+1− tk| ≤ c, ∀k, where c ∈ Z>0.

VI. SIMULATION RESULTS

This section presents a numerical example to illustrate our results. In this example, the network

is given by the (2,2)-robust graph shown in Fig. 6, in which the node set is V = {1, 2, . . . , 14}
and node i ∈ V has initial value xi[0] shown in the circle representing the node. To verify that

this graph is (2,2)-robust one must exhaustively check every nonempty, disjoint pair of subsets

of nodes to make sure that either every node in one of the sets has at least 2 neighbors outside

of its set, or that there are at least 2 nodes in the union of the subsets that have 2 or more

neighbors outside of their respective set. For example, the pair of sets {6} and V \ {6} passes

this test since each node in the first set (just node 6) has at least 2 neighbors outside of its set (in

this case just node 6’s neighbors). As another example, the pair of sets {1, 2, 11, 12} and {5, 6}
passes since node 11 and node 5 each have 2 or more neighbors outside of their respective sets.

Since the network is (2,2)-robust, Theorem 1 indicates it can sustain a single malicious node

in the network under the 1-total model. Suppose that the node with the largest degree, node

14, is compromised and turns malicious. The normal nodes use either the LCP given in (1) or



Fig. 6. (2,2)-Robust network topology.

W-MSR for their update rule. Each normal node i ∈ N uses the weights wij[t] = |Ji[t]|−1 for

each j ∈ Ji[t] with LCP and wij[t] = (|Ji[t] \Ri[t]|)−1 for each j ∈ Ji[t] \Ri[t] with W-MSR.

The malicious node’s objective is to prevent the normal nodes from reaching consensus and to

drive the normal node values outside of the range of their initial values.

The results for the time-invariant network of Fig. 6 are shown in Fig. 7. It is clear in Fig. 7(a)

that the malicious node is able to drive the values of the normal nodes outside of the range of

initial values and prevent consensus whenever LCP is used. On the other hand, the malicious

node is unable to achieve its goal whenever W-MSR is used. Note that although consensus can

be reached, the malicious node still has the potential to drive the consensus process to any value

in the interval [0, 1] by choosing the desired value as its initial value and remaining constant.

However, this is allowed with resilient asymptotic consensus (because the consensus value is

within the range of the initial values held by normal nodes).

Finally, we illustrate the time-varying network result for the 1-total malicious model by

removing approximately half of the directed edges in 9 out of every 10 consecutive time-steps.

To do this, we check whether the time-step is equal to 0 modulo 10. If it is not, then we model

directed edge removal by a Bernoulli process with parameter p = 0.5, so that approximately half

of the directed edges are removed in these time-steps. The results are illustrated in Fig. 8(b),

and show that only the speed of convergence is affected when using W-MSR.

VII. REVISITING NETWORK ROBUSTNESS: CONSTRUCTION AND PROPERTIES

Having established network robustness as the key metric for characterizing the efficacy of

the W-MSR algorithm, we now provide more insight into robust networks. First, we provide a
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Fig. 7. Malicious node attempts to prevent the normal nodes from reaching consensus and drive their values away from the

convex hull containing their initial values. The malicious node succeeds whenever LCP is used, but fails whenever W-MSR is

used.
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Fig. 8. The malicious node has the same objective as before, but now the network is time-varying with only one time-step

out of every ten guaranteed to be (2,2)-robust.

method for constructing robust digraphs, and show that scale-free networks constructed using the

preferential-attachment model are robust. We then explore more properties of robust digraphs.



A. Construction of Robust Digraphs

Note that robustness requires checking every possible nonempty disjoint pair of subsets of

nodes in the digraph for certain conditions. Currently, we do not have a computationally efficient

method to check whether these properties hold in arbitrary digraphs. However, in [2] it is shown

that the common preferential-attachment model for complex networks (e.g., [52]) produces r-

robust graphs, provided that a sufficient number of links are added to new nodes as they are

attached. Here we show that preferential attachment also leads to (r, s)-robust graphs.

Theorem 5: Let D = (V, E) be an (r, s)-robust digraph (with s ≥ 1). Then the digraph

D′ = (V ∪{vnew}, E ∪Enew), where vnew is a new vertex added to D and Enew is the directed edge

set related to vnew, is (r, s)-robust if dvnew ≥ r + s− 1.

Proof: For a pair of nonempty, disjoint sets S1 and S2, there are three cases to check:

vnew �∈ Si, {vnew} = Si and vnew ∈ Si, for some i ∈ {1, 2}. In the first case, since D is (r, s)-

robust, the conditions in Definition 13 must hold. In the second case, X r
Si

= Si, and we are done.

In the third case, suppose, without loss of generality, S2 = S ′
2∪{vnew}. Since D is (r, s)-robust,

at least one of the following conditions hold: |X r
S1
| + |X r

S′
2
| ≥ s, |X r

S1
| = |S1|, or |X r

S′
2
| = |S ′

2|.
If either of the first two hold, then the corresponding conditions hold for the pair S1,S2 in D′.

So assume only |X r
S′
2
| = |S ′

2| holds. Then, the negation of the first condition |X r
S1
|+ |X r

S′
2
| ≥ s

implies |X r
S′
2
| = |S ′

2| < s. Hence, |Vvnew \ S2| ≥ r, and |X r
S2
| = |S2|, completing the proof.

The above result indicates that to construct an (r, s)-robust digraph with n nodes (where

n > r), we can start with an (r, s)-robust digraph with relatively smaller order (such as a complete

graph), and continually add new nodes with incoming edges from at least r + s − 1 nodes in

the existing digraph. Note that this method does not specify which existing nodes should be

chosen. The preferential-attachment model corresponds to the case when the nodes are selected

with a probability proportional to the number of edges that they already have. This leads to the

formation of so-called scale-free networks [52], and is cited as a plausible mechanism for the

formation of many real-world complex networks. Theorem 5 indicates that a certain class of

scale-free networks is resilient to the threat models studied in this paper (provided the number

of edges added in each round is sufficiently large when the network is forming).

For example, Fig. 9 illustrates a (3, 2)-robust graph constructed using preferential attachment

by starting with the complete graph on 5 nodes K5 – which is also (3,3)-robust and is the only



Fig. 9. A (3, 2)-robust graph constructed from K5 using preferential attachment.

(3,2)-robust digraph on 5 nodes (c.f., Lemma 4 in the sequel)) – and by adding 4 new edges to

each new node in each step. Note that this graph is also 4-robust, which could not be predicted

from Theorem 5 since K5 is not 4-robust. Therefore, it is possible (but not guaranteed) to end

up with a more robust digraph than the initial one using the growth model from Theorem 5.

B. Properties of Robust Networks

In this subsection, we begin with the important observation that (r, 1)-robustness is equivalent

to r-robustness. This holds because conditions (i) − (iii) in Definition 13 for (r, 1)-robustness

collapse to the condition that at least one of S1 and S2 is r-reachable. We next establish an

inheritance property of (r, s)-robust digraphs. Note that all the proofs of the results in this

subsection can be found in the Appendix.

Lemma 2: Every (r, s)-robust digraph D = (V, E) is also (r′, s′)-robust when 0 ≤ r′ ≤ r,

1 ≤ s′ ≤ s.

It follows from Lemma 2 that a digraph is r-robust whenever it is (r, s)-robust. The converse,

however, is not true. Consider the graph in Fig. 4. This graph is 3-robust, but is not (3, 2)-robust.

For example, let S1 = {1, 3, 5, 6, 7} and S2 = {2, 4}. Only node 2 has at least 3 nodes outside of

its set, so all of the conditions (i)−(iii) fail. Therefore, (r, s)-robustness is a strict generalization

of r-robustness.

The following result formalizes the intuition that adding links to a robust network can never

reduce the robustness of the network.

Lemma 3 (Monotonicity): Suppose D = (V, E) is an (r, s)-robust spanning subdigraph of

D′ = (V, E ′), where E ′ = E ∪ E ′′ and |E ′′| ≥ 0. Then D′ is (r, s)-robust.



Next, we look at the maximum amount of robustness one can expect from a network with n

nodes. As expected, the complete digraph Kn is the most robust topology on n nodes.

Lemma 4 (Maximum robustness): No digraph D = (V, E) on n nodes is (�n/2� + 1)-robust.

Conversely, the complete digraph, denoted Kn = (V, EKn), with EKn = {(i, j) ∈ V ×V : i �= j},

is (�n/2�, s)-robust, for 1 ≤ s ≤ n. Furthermore, whenever n > 1 is odd, Kn is the only digraph

on n nodes that is (�n/2�, s)-robust with s ≥ �n/2�.

The next property relates robustness of the network to its minimum in-degree.

Lemma 5 (Minimum In-Degree): Given an (r, s)-robust digraph D = (V, E), with 0 ≤ r ≤
�n/2� and 1 ≤ s ≤ n, the minimum in-degree of D, δ in(D), is at least

δin(D) ≥

⎧⎪⎨
⎪⎩
r + s− 1 if s < r;

2r − 2 if s ≥ r.

The following result provides a lower bound on the amount of robustness that can be main-

tained in a digraph after removing incoming edges from nodes in the network.

Lemma 6 (Directed Edge Removal): Given an (r, s)-robust (p-fraction robust) digraph D, let

D′ be the digraph produced by removing up to k (q-fraction of) incoming edges of each node

in D, where 0 ≤ k < r (0 ≤ q < p ≤ 1). Then D′ is (r − k, s)-robust ((p− q)-fraction robust).

Recall that when there are no misbehaving nodes, the Linear Consensus Protocol given in (1)

achieves consensus if and only if the network contains a rooted out-branching. The following

result shows that 1-robustness is equivalent to containing a rooted out-branching.

Lemma 7: A digraph D is 1-robust if and only if D contains a rooted-out branching.

Next, we relate the robustness of the underlying graph to its connectivity.

Theorem 6 (Connectivity of Robust Graphs): Suppose D = (V, E) is an r-robust digraph,

with 0 ≤ r ≤ �n/2�. Then the underlying graph GD is at least r-connected. Furthermore, if

D is (r, r)-robust, with 3 ≤ r ≤ �n/2�, then GD is at least (�3r/2� − 1)-connected.

Finally, we discuss how to compare the robustness of different networks. Clearly, if digraph

D1 is (r1, s1)-robust and digraph D2 is (r2, s2)-robust with maximal rk and sk for k ∈ {1, 2},

where r1 > r2 and s1 > s2, then one can conclude that D1 is more robust than D2. However, in

cases where r1 > r2 but s1 < s2, which digraph is more robust? For example, consider the graphs

of Figs. 1 and 4. The graph in Fig. 1 can be shown to be (2, s)-robust, for all 1 ≤ s ≤ n = 8.

This follows because all nodes in at least one of the sets S1 and S2 have at least 2 neighbors



outside of their set, for any nonempty and disjoint S1,S2 ⊂ V . Therefore, condition (iii) in

Definition 13 is never needed, and the definition is satisfied with r = 2 for all valid values of s.

However, this graph is not 3-robust. This can be shown by selecting S1 = X and S2 = Y . The

graph in Fig. 4 is 3-robust, but is not (2,5)-robust (e.g., let S1 = {1, 5, 6} and S2 = {2, 3, 4}).

In general, the parameter r in (r, s)-robustness takes precedence in the partial order that

determines relative robustness, and the maximal s is used for ordering the robustness of networks

with the same value of r. This choice is motivated by the dependence of the properties outlined

in this section on the value of r. Therefore, the graph in Fig. 4 is more robust than the graph of

Fig. 1. Yet, the graph of Fig. 4 is only 3-connected, whereas the graph of Fig. 1 is 5-connected.

Hence, it is possible that a digraph with less connectivity is more robust.

VIII. CONCLUSION

The notion of graph connectivity has long been the backbone of investigations into fault

tolerant and secure distributed algorithms. Indeed, under the assumption of full knowledge of

the network topology, connectivity is the key metric in determining whether a fixed number of

malicious adversaries can be overcome. However, in large scale systems and complex networks,

it is not practical for the various nodes to obtain knowledge of the global network topology. This

necessitates the development of algorithms that allow the nodes to be agnostic of the topology and

identities of non-neighbor nodes, and operate on purely local information. This paper continues

and extends the work started in [1], [2], [26]–[29], [31], [45], [46], and represents a step in this

direction for the particular application of distributed consensus. Using the W-MSR algorithm

and the notion of robust digraphs introduced in [2], and the extensions of each presented here,

we characterize necessary/sufficient conditions for the normal nodes in large-scale networks

to mitigate the influence of adversaries. We show that the notions of robust digraphs are the

appropriate analogues to graph connectivity when considering purely local filtering rules at each

node in the network. Just as connectivity has played a central role in the existing analysis of

reliable distributed algorithms with global topological knowledge, we believe that robustness

will play an important role in the investigation of purely local algorithms.



APPENDIX

A. Proof of Proposition 1

Proof: For simplicity, we focus on the case when n is even. Construct an undirected graph

as follows. Let X and Y be two complete graphs on n
2

nodes. Number nodes in X and Y
as x1, x2, . . . , xn

2
and y1, y2, . . . , yn

2
, respectively. For any node xi ∈ X , if i ≤|Y| − F + 1,

connect xi with nodes yi, yi+1, . . . , yi+F−1; otherwise, connect xi with nodes yi, . . . , yn
2

and

nodes y1, . . . , yi+F−n
2
−1. Then each node in X and Y has exactly F neighbors in the other set.

Next we will prove that the connectivity of this graph is n
2
+ F − 1. Let C = {CX , CY}

be a vertex cut, where CX = C ∩ X and CY = C ∩ Y . Without loss of generality, assume

that CX = {x1, x2, . . . , x|CX |}; other ways of choosing CX are equivalent to this situation by

renumbering the nodes. By the definition of a vertex cut, we know |CX | ≥ F ; otherwise, each

node in Y \ CY still has at least one neighbor in X , and since X \ CX and Y \ CY each induce

fully-connected subgraphs, we see that the graph will be connected (contradicting the fact that

C is a vertex cut). When F ≤ |CX | < n
2
, the remaining nodes of X collectively still have

k = n
2
−|CX | + F − 1 neighbors in Y , which implies we need to remove at least k nodes from

Y to disconnect the graph. When CX = X , since Y is complete, we know |CY | = n
2
− 1. Thus

the connectivity of this graph is n
2
+ F − 1.

In this graph, assume that all nodes in X have initial value a, and all nodes in Y have initial

value b, where a < b. When any node xi applies the W-MSR algorithm, all of its F neighbors

in Y have the highest values in xi’s neighborhood, and thus they are all disregarded. Similarly,

all of yi’s neighbors in X are disregarded as well. Thus, each node in each set only uses the

values from its own set, and no node ever changes its value, which shows that consensus will

never be reached in this network.

B. Proof of Corollary 1

Proof: As in the proof of Theorem 1, we define the same terms and argue by contradiction.

In this case, fix ε < αNc

1−αNc ε0, which satisfies ε0 > ε > 0. Let tε be such that M [t] < AM + ε and

m[t] > Am−ε, ∀t ≥ tε. By hypothesis, there exists τ1 ∈ {tε, tε+1, . . . , tε+c−1} such that D[τ1]

is (F+1, F+1)-robust. As in the proof of Theorem 1, there either exists i ∈ XM(τ1, ε0)∩N such

that xi[τ1+1] ≤ AM−ε1 or j ∈ Xm(τ1, ε0)∩N such that xj [τ1+1] ≥ Am+ε1, or both, where we



have defined ε1 = αε0−(1−α)ε. Note that as before, these inequalities hold for all normal nodes

outside of the sets XM(τ1, ε0) and Xm(τ1, ε0), respectively, and 0 < ε < ε1 < ε0 by the choice of

ε. Furthermore, |XM(τ1+1, ε1)∩N | < |XM(τ1, ε0)∩N | or |Xm(τ1+1, ε1)∩N | < |Xm(τ1, ε0)∩N |,
or both.

Define recursively εk = αεk−1 − (1 − α)ε for 1 ≤ k ≤ Nc. Regardless of the network

topology, we can show that any normal node i satisfying xi[τ1 + 1] ≤ AM − ε1 will satisfy

xi[τ1 + k] ≤ AM − εk at time τ1 + k, for all 1 ≤ k ≤ Nc. This holds because each normal

node uses its own value with weight no smaller than α. Likewise, any normal node j satisfying

xj [τ1+1] ≥ Am+ε1 will satisfy xj [τ1+k] ≥ Am+εk at time τ1+k, for all 1 ≤ k ≤ Nc. Because

of these relationships, we have that |XM(τ1+k, εk)∩N | ≤ |XM(τ1+k−1, εk−1)∩N | and |Xm(τ1+

k, εk)∩N | ≤ |Xm(τ1+k−1, εk−1)∩N |, for each time-step regardless of the network topology.

However, we are interested in the time-steps τ1, τ2, . . . , in which |XM(τj +1, ε(1+τj−τ1))∩N | <
|XM(τj , ε(τj−τ1))∩N | or |Xm(τj +1, ε(1+τj−τ1))∩N | < |Xm(τj , ε(τj−τ1))∩N |. These time-steps

correspond to the times at which D[τj ] is (F + 1, F + 1)-robust and both XM(τj , ε(τj−τ1)) and

Xm(τj, ε(τj−τ1)) have at least one normal node, for j ≥ 1 (by the argument made in the proof

of Theorem 1). Since |XM(τ1, ε0) ∩ N | + |Xm(τ1, ε0) ∩ N | ≤ N and |τN − τ1| ≤ Nc, there

must be some time-step τ = τ1 + T (where T ≤ Nc) where either XM(τ1 + T, εT ) ∩ N or

Xm(τ1 + T, εT ) ∩ N is empty. In the former case, all normal nodes in the network at time-step

τ1 + T have value at most AM − εT , and in the latter case all normal nodes in the network at

time-step τ1+T have value no less than Am+ εT . Since ε < αNc

1−αNc ε0, we can show that εT > 0,

producing the desired contradiction.

C. Proof of Lemma 2

Proof: If D is empty or trivial, there is nothing to prove, so assume D is nonempty and

nontrivial. For any nonempty, disjoint pair S1,S2 ⊂ V , at least one of the three conditions (i)–

(iii) of Definition 13 holds. Observe that |X r′
Sk
| ≥ |X r

Sk
| for k = 1, 2. Hence if (i) or (ii) hold,

then |X r′
Sk
| ≥ |X r

Sk
| = |Sk| ≥ |X r′

Sk
|, which implies |X r′

Sk
| = |Sk|. If (iii) holds, then

|X r′
S1
|+ |X r′

S2
| ≥ |X r

S1
|+ |X r

S2
| ≥ s ≥ s′.

Thus, any pair of nonempty, disjoint subsets of nodes in D satisfy Definition 13 with r and s

replaced by r′ and s′. Therefore, D is (r′, s′)-robust.



D. Proof of Lemma 3

Proof: Suppose D′ is not (r, s)-robust. Then there exists a pair of nonempty, disjoint subsets

S1,S2 ⊂ V such that all of the conditions (i)-(iii) in Definition 13 fail to hold with r and s.

By removing directed edges in E ′′, the number of nodes in X r
S1

and X r
S2

can only decrease, and

therefore none of conditions (i)-(iii) hold for the pair S1,S2 in D. Hence, D is not (r, s)-robust,

which is a contradiction.

E. Proof of Lemma 4

Proof: Assume D is nonempty and nontrivial (otherwise, the result holds by definition).

Pick S1 and S2 by taking any bipartition of V such that |S1| = �n/2� and |S2| = �n/2�.

Neither S1 nor S2 have �n/2�+1 nodes; therefore, neither one is (�n/2�+1)-reachable. Hence,

D is not (�n/2� + 1)-robust. Now suppose D = Kn. For any nonempty, disjoint S1,S2 ⊂ V ,

|V\Si| ≥ �n/2� holds for at least one of i ∈ {1, 2}. For whichever i this holds, |X �n/2�
Si

| = |Si|, so

that Kn is (�n/2�, s)-robust, for 1 ≤ s ≤ n. For the last statement, we show that whenever n > 1

is odd, removing any directed edge from Kn causes the resulting digraph to lose (�n/2�, �n/2�)-
robustness. Suppose e = (i, j) is the directed edge removed from EKn to form D′′ = (V, E ′′), with

E ′′ = EKn \ {e}. Choose S1 and S2 by taking any bipartition of V in D ′′ such that |S1| = �n/2�,

|S2| = �n/2�, i ∈ S1, and j ∈ S2. Then, |X �n/2�
S1

| = 0 and |X �n/2�
S2

| = �n/2�−1 < |S2|. Therefore,

D′′ is not (�n/2�, s)-robust for s ≥ �n/2�. This is sufficient to prove the statement because of

the monotonicity result of Lemma 3, combined with the fact that any spanning subdigraph of

Kn, D′ = (V, E ′) ⊂ Kn, can be obtained from a directed edge removal process starting with

some directed edge e = (i, j) /∈ E ′.

F. Proof of Lemma 5

Proof: Whenever r ∈ {0, 1}, there is nothing to prove. Also, if n ≤ 2, then r ≤ 1. Therefore,

assume n ≥ 3 and 2 ≤ r ≤ �n/2�. Fix j ∈ V . First, let S1 = {j} and S2 = V \ S1. Then,

|X r
S2
| = 0 so that |X r

S1
| = |S1|. This proves dj ≥ r. Next, whenever s < r, form S1 by choosing

s−1 of node j’s in-neighbors along with j itself. Take S2 = V\S1 as before. Since |S1| = s < r,

again |X r
S2
| = 0 so that |X r

S1
| = |S1|. This implies j has an additional r in-neighbors outside

of S1, thereby guaranteeing dj ≥ r + s − 1. On the other hand, whenever s ≥ r, form S1 by

choosing r − 2 of node j’s in-neighbors along with j itself. Again, choose S2 = V \ S1. Since



|S1| < r and s ≥ r, again |X r
S2
| = 0 so that |X r

S1
| = |S1|. This implies j has an additional r

in-neighbors outside of S1, thereby guaranteeing dj ≥ 2r−2. Since j ∈ V is arbitrary, the bound

on δin(D) follows.

G. Proof of Lemma 6

Proof: From the definition of (r, s)-reachable (p-fraction reachable) set, we know that if a

set is (r, s)-reachable (p-fraction reachable), then by removing up to k (q-fraction of) incoming

edges of each node in D, where 0 ≤ k < r (0 ≤ q < p < 1), the set is (r − k, s)-reachable

((p − q)-fraction reachable). Thus, by the definition of (r, s)-robustness (p-fraction robustness),

the result follows.

H. Proof of Lemma 7

Proof: If D is 1-robust, we will prove that D has a rooted out-branching by contradiction.

Assume that D does not have a rooted out-branching. Decompose D into its strongly connected

components, and note that since D does not have a rooted out-branching, there must be at

least two components that have no incoming edges from any other components. However, this

contradicts the assumption that D is 1-robust (at least one of the two subsets must have a

neighbor outside the set), so it must be true that there exists a rooted out-branching.

Assume D contains a rooted out-branching, but is not 1-robust. Then we can find two subsets

of nodes which do not have neighbors from outside, which contradicts with the assumption that

D contains a rooted out-branching, completing the proof.

Remark 1: The proof of Lemma 7 is a more direct version of the proof of Theorem 5 in [41].

I. Proof of Theorem 6

Proof: If r = 0, the first statement is vacuously true, and if r = 1, it holds by Lemma 7.

Therefore, assume r ≥ 2. By Lemma 3, the underlying graph GD = (V, EG) is r-robust. By

Lemmas 2 and 7, the graph is connected. Suppose there is a vertex cut K ⊂ V such that

|K| < r, and denote the k ≥ 2 connected components remaining after the removal of K by

C1, C2, . . . , Ck. Let S1 = C1 and S2 = C2. Since GD is r-robust, either S1 or S2 is r-reachable,

which contradicts the fact that K is a vertex cut. Hence, any vertex cut K must satisfy |K| ≥ r,

so that GD is at least r-connected.



For the second statement, suppose there is a vertex cut K ⊂ V such that r ≤ |K| ≤ �3r/2�−2,

and denote the k ≥ 2 connected components remaining after the removal of K by C1, C2, . . . , Ck.

Partition K into K = K1 ∪K2 ∪K3 such that |K1| = |K2| = �r/2�− 1 and the remaining nodes

go to K3; i.e., 1 ≤ |K3| ≤ �r/2�. Then form S1 = C1 ∪ K1 and S2 = C2 ∪ K2. Since GD is

(r, r)-robust by Lemma 3, δ(GD) ≥ 2r − 2 by Lemma 5, so that |Ci| ≥ �r/2� + 1 (since there

are at most �3r/2� − 2 neighbors in K). It follows that |S1|, |S2| ≥ r, and we are guaranteed

|X r
S1
| + |X r

S2
| ≥ r. Because |K1 ∪ K2| ≤ r − 1 and r ≥ 3, there is v ∈ C1 ∪ C2 such that v

has at least r neighbors outside of its set. Without loss of generality, assume v ∈ C1. Since

|K2| + |K3| ≤ r − 1, ∃j ∈ C2 ∪ · · · ∪ Ck such that (j, v) ∈ E , which contradicts the fact that

K is a vertex cut whose removal results in components C1, C2, . . . , Ck. Hence, GD is at least

(�3r/2� − 1)-connected.
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