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Resilient Control under Denial-of-Service:

Robust Design

Shuai Feng and Pietro Tesi

Abstract— In this paper, we study networked control systems
in the presence of Denial-of-Service (DoS) attacks, namely
attacks that prevent transmissions over the communication
network. The control objective is to maximize frequency and
duration of the DoS attacks under which closed-loop stability
is not destroyed. Analog and digital predictor-based controllers
with state resetting are proposed, which achieve the considered
control objective for a general class of DoS signals. An example
is given to illustrate the proposed solution approach.

I. INTRODUCTION

Owing to advances in computing and communication tech-

nologies, recent years witnessed a growing interest towards

cyber-physical systems (CPSs), i.e., systems where physical

processes are monitored/controlled via embedded computers

and networks, possibly with feedback loops that are im-

plemented on wireless platforms [1], [2]. The concept of

CPSs is certainly appealing in the industrial automation area;

however, it raises many theoretical and practical challenges.

In particular, the concept of CPSs has triggered considerable

attention towards networked control in the presence of cyber

attacks. In fact, unlike general-purpose computing systems

where attacks limit their impact to the cyber realm, attacks

to CPSs can affect the physical world: if the process under

control is open-loop unstable, failures in the plant-controller

communication can result in environmental damages.

The concept of cyber-physical security mostly concerns

security against malicious attacks. There are varieties of

attacks such as Denial-of-Service attacks, zero-dynamics

attacks, bias injection attacks, to name a few [3]. The last

two are examples of attacks affecting the integrity of data,

while Denial-of-Service attacks are meant to compromise the

availability of data.

This paper is concerned with Denial-of-Service (DoS)

attacks. We consider a sampled-data control system in which

the measurement channel (sensor-to-controller channel) is

networked; the attacker objective is to induce closed-loop

instability by interrupting the plant-controller communica-

tion. In wireless networks, this can be caused by emitting

intentional noise, also known as jamming, examples being

constant, random and protocol-aware jamming [4]–[6]. It

is generally accepted that communication failures induced

by DoS can have a temporal profile quite different from

the one exhibited by genuine packet losses, as assumed in

the majority of studies on networked control; in particular,

communication failures induced by DoS need not follow a
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given class of probability distributions [7]. This raises new

theoretical challenges from the perspective of analysis as well

as control design.

In the literature, several contributions have been proposed

dealing with networked control under DoS. In [7], [8], the

authors consider the problem of finding optimal control and

attack strategies assuming a maximum number of jamming

actions over a prescribed (finite) control horizon. A similar

formulation is considered in [9], where the authors study

zero-sum games between controllers and strategic jammers.

In [10], [11], the authors consider DoS attacks in the form of

pulse-width modulated signals. The goal is to identify salient

features of the DoS signal such as maximum on/off cycle in

order to suitably schedule the transmission times. For the

case of periodic jamming (of unknown period and duration),

identification schemes are proposed for de-synchronizing the

transmission times from the DoS signal.

In [12], [13], a framework is introduced where no assump-

tion is made regarding the DoS attack underlying strategy. A

general attack model is considered that only constrains the

attacker action in time by posing limitations on the frequency

of DoS attacks and their duration. The main contribution

is an explicit characterization of frequency and duration

of the DoS attacks under which closed-loop stability can

be preserved by means of state-feedback policies. Building

on the results in [12], extensions have been considered

dealing with dynamic controllers [14], nonlinear [15] and

distributed [16] systems. Recently, a similar formulation has

been adopted in the context of DoS-resilient event-triggered

control [17]; see also [14].

From the perspective of securing robustness against DoS,

static feedback has inherent limitations. In fact, using static

feedback one generates control updates only when new

measurements become available. Intuitively, this limitation

can be overcome by considering dynamic controllers. In

particular, a natural approach is to equip the control system

with prediction capabilities so as reconstruct the missing

measurements from available data during the DoS periods.

Prompted by the above considerations, this paper discusses

the design of predictor-based controllers in the context of

DoS-resilient networked control. Inspired by recent results

on finite-time state observers [18], [19], we focus the at-

tention on impulsive-like predictors consisting of dynamical

observers with measurements-triggered state resetting. Both

analog and digital implementations are discussed, and com-

pared.

This paper shows that predictor-based controller make it

possible to maximize the amount of DoS that one can tolerate
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for the class of DoS signals introduced in [12], [13].

The paper is organized as follows. In Section II, we

describe the framework of interest, and outline the paper

contribution. Section III presents the main results. We first

design analog predictor-based controllers and discuss the

conditions under which stability is guaranteed. Second, we

design digital predictor-based controllers and characterize

sampling rate of the digital device and stability conditions.

In Section IV, an example is discussed. Section V ends the

paper with concluding remarks and possible extensions to

the present research. Due to lack of space, all the proofs of

lemmas and theorems are omitted. For an extended version

of this paper including proofs, see [20].

A. Notation

We denote by R the set of reals. Given α ∈ R, we let

R>α (R≥α) denote the set of reals greater than (greater than

or equal to) α. We let N0 denote the set of nonnegative

integers, N0 := {0, 1, . . .}. The prime denotes transpose.

Given a vector v ∈ R
n, ‖v‖ is its Euclidean norm. Given

a matrix M , ‖M‖ is its spectral norm. Given two sets A
and B, we denote by B\A the relative complement of A
in B, i.e., the set of all elements belonging to B, but not

to A. Given a measurable time function f : R≥0 7→ R
n

and a time interval [0, t) we denote the L∞ norm of f(·)
on [0, t) by ‖ft‖∞ := sups∈[0,t)‖f(s)‖. Given a measurable

time function f : R≥0 7→ R
n we say that f is bounded if its

L∞ norm is finite.

II. THE FRAMEWORK

A. Process dynamics and network

The process to be controlled is given by






ẋ(t) = Ax(t) +Bu(t) + d(t)
y(t) = x(t) + n(t)
x(0) = x0

(1)

where t ∈ R≥0; x ∈ R
n is the state, u ∈ R

m is the

control input and y ∈ R
p is measurement vector; A and B

are matrices of appropriate size with (A,B) is stabilizable;

d ∈ R
n and n ∈ R

p are unknown (bounded) disturbance and

noise signals, respectively.

We assume that the measurement channel is networked

and subject to Denial-of-Service (DoS) status. The former

implies that measurements are sent only at discrete time

instants. Let {tk}k∈N0
= {t0, t1, . . .} denote the sequence

of transmission attempts. Throughout the paper, we assume

for simplicity that the transmission attempts are carried out

periodically with period ∆, i.e.,

tk+1 − tk = ∆, k ∈ N0 (2)

with t0 = 0 by convention. The more general case of

aperiodic transmission policies can be pursued along the

lines of [13]. We refer to DoS as the phenomenon for

which some transmission attempts may fail. In this paper,

we do not distinguish between transmissions that fail due

to channel unavailability (e.g., caused by radio-frequency

jammers in protocols employing carrier sensing as medium

access policy) and transmissions that fail due to DoS-induced

packet corruption.

We shall denote by {zm}m∈N0
= {z0, z1, . . .}, z0 ≥ t0,

the sequence of time instants at which samples of y are

successfully transmitted.

B. Control objective

The objective is to design ∆ and a controller K, possibly

dynamic, in such a way that the closed-loop stability is

maintained despite the occurrence of DoS periods. In this

paper, by closed-loop stability we mean that all the signals

in the closed-loop system remain bounded for any initial

condition x0 and bounded noise and disturbance signals,

and converge to zero in the event that noise and disturbance

signals converge to zero.

C. Assumptions −Time-constrained DoS

Clearly, the problem in question does not have a solution

if the DoS amount is allowed to be arbitrary. Following

[13], we consider a general DoS model that constrains the

attacker action in time by only posing limitations on the

frequency of DoS attacks and their duration. Let {hn}n∈N0
,

h0 ≥ 0, denote the sequence of DoS off/on transitions, i.e.,

the time instants at which DoS exhibits a transition from

zero (transmissions are possible) to one (transmissions are

not possible). Hence,

Hn := {hn} ∪ [hn, hn + τn[ (3)

represents the n-th DoS time-interval, of a length τn ∈ R≥0,

over which the network is in DoS status. If τn = 0, then Hn

takes the form of a single pulse at hn. Given τ, t ∈ R≥0 with

t ≥ τ , let n(τ, t) denote the number of DoS off/on transitions

over [τ, t[, and let

Ξ(τ, t) :=
⋃

n∈N0

Hn

⋂

[τ, t] (4)

denote the subset of [τ, t] where the network is in DoS status.

We make the following assumptions.

Assumption 1: (DoS frequency). There exist constants η ∈
R≥0 and τD ∈ R>∆ such that

n(τ, t) ≤ η +
t− τ

τD
(5)

for all τ, t ∈ R≥0 with t ≥ τ . �

Assumption 2: (DoS duration). There exist constants κ ∈
R≥0 and T ∈ R>1 such that

|Ξ(τ, t)| ≤ κ+
t− τ

T
(6)

for all τ, t ∈ R≥0 with t ≥ τ . �

Remark 1: The rationale behind Assumption 1 is that

occasionally DoS can occur at a rate faster than ∆ but

the average interval between consecutive DoS triggering is

greater than ∆. By (5), one may in fact have intervals where

hn+1 − hn ≤ ∆, hence intervals where n(τ, t) is greater

than or equal to the maximum number ⌈(t − τ)/∆⌉ of

transmission attempts that may occur within [τ, t[. However,
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over large time windows, i.e., when the term (t − τ)/τD is

predominant compared to η, the number of DoS triggering is

at most of the order of (t− τ)/τD. Assumption 2 expresses

a similar requirement with respect to the DoS duration. In

fact, it expresses the property that, on the average, the time

instants over which communication is interrupted do not

exceed a certain fraction of time, as specified by the constant

T ∈ R>1. Similarly to η, the constant κ ∈ R≥0 plays the

role of a regularization term. It is needed because during

a DoS interval, one has |Ξ(hn, hn + τn)| = τn > τn/T
since T > 1. Accordingly, κ serves to make (6) consistent.

Assumptions 1 and 2 are general enough to capture many

different types of DoS attacks, including trivial, periodic,

random and protocol-aware jamming attacks [5], [6]; see

[13] for a more detailed discussion. �

Remark 2: Unless other conditions are imposed, both the

requirements τD > ∆ and T > 1 are necessary in order

for the stabilization problem to be well-posed. In fact, if

τD = ∆ then the DoS signal characterized by the pair

(hn, τn) = (tk, 0) satisfies Assumptions 1 and 2 with η = 1,

κ = 0 and T = ∞ but destroys any communication attempt.

Likewise, in case T = 1 then the DoS signal characterized

by (h0, τ0) = (0,∞) satisfies Assumptions 1 and 2 with

η = 1, κ = 0 and τD = ∞ but destroys any communication

attempt. �

D. Previous work and paper contribution

In [13], the problem of achieving robustness against DoS

has been analyzed for the case of static feedback laws

u(t) =







0, t ∈ [0, z0[

Ky(zm), t ∈ [zm, zm+1[, m ∈ N0

(7)

where K is a state-feedback matrix designed in such a way

that all the eigenvalues of Φ = A + BK have negative

real part. For this scenario, a characterization of stabilizing

transmission policies was given. We summarize below this

result.

Theorem 1: Consider the process (1) under a control

action as in (7). Given any positive definite symmetric matrix

Q, let P denote the solution of the Lyapunov equation

Φ′P + P Φ + Q = 0. Let the transmission policy in (2)

be such that

∆ ≤
1

µA

log

[(

σ

1 + σ

)

1

max{‖Φ‖, 1}
µA + 1

]

(8)

when µA > 0, and

∆ ≤

(

σ

1 + σ

)

1

max{‖Φ‖, 1}
(9)

when µA ≤ 0, where µA is the logarithmic norm of A and

σ is a positive constant satisfying γ1−σγ2 > 0, where γ1 is

equal to the smallest eigenvalue of Q and γ2 := ‖2PBK‖.

Then, the closed-loop system is stable for any DoS sequence

satisfying Assumption 1 and 2 with arbitrary η and κ, and

with τD and T such that

1

T
+

∆

τD
<

ω1

ω1 + ω2
(10)

where ω1 := (γ1 − γ2σ)/2α2 and ω2 := 2γ2/α1, where

α1 and α2 denote the smallest and largest eigenvalue of P ,

respectively. �

Inequality (10) provides an explicit characterization of the

robustness degree against DoS that static feedback policies

can achieve. This characterization relates the DoS parameters

τD and T with the transmission period ∆ and the control

system parameters via ω1 and ω2, which depend on choice

of the state-feedback matrix K.

Clearly, increasing the right-hand side of (10) increases the

amount of DoS that the control system can tolerate. However,

with static feedback it is difficult to obtain large values for the

right-hand side of (10). The underlying reason is that static

feedback has the inherent limitation of generating control

updates only when new measurements become available,

and this possibly reflects in small values for the right-hand

side of (10). Intuitively, this limitation can be overcome by

equipping the controller with prediction capabilities, with

the idea of compensating DoS by reconstructing the missing

measurements from available data. In the next section, it is

shown that using predictor-based controllers one can achieve

closed-loop stability whenever

1

T
+

∆

τD
< 1 (11)

holds true. In fact, this is the best possible bound that one

can achieve for DoS signals satisfying Assumption 1 and 2.

III. MAIN RESULTS

In Section III-A, we discuss one technical result which

is fundamental for the developments of the paper. The

theoretical analysis for analog predictor-based controllers is

presented in Section III-B, while in Section III-C we will

further extend our work to digital implementations.

A. Key lemma

The following lemma relates DoS parameters and time

elapsing between successful transmissions.

Lemma 1: Consider a transmission policy as in (2), along

with a DoS signal satisfying Assumption 1 and 2. If (11)

holds true, then the sequence of successful transmissions

satisfies z0 ≤ Q and zm+1 − zm ≤ Q+∆ for all m ∈ N0,

where

Q = (κ+ η∆)

(

1−
1

T
−

∆

τD

)−1

(12)

Remark 3: In the absence of DoS, when T = τD = ∞
and κ = η = 0, Q becomes zero. In fact, in the absence

of DoS, Lemma 1 simply describes the functioning of a

standard periodic transmission policy. �

B. Analog predictor-based controller

The considered predictor-based controller consists of two

parts: prediction and state-feedback. As for the prediction

part, we consider an impulsive predictor, whose dynamics

are given by
{

˙̂x(t) = Ax̂(t) +Bu(t), t 6= zm
x̂(t) = y(t), t = zm

(13)
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with initial condition

x̂(0) =

{

y(0), if z0 = 0

0, otherwise
(14)

where t ∈ R≥0 and m ∈ N0. By construction the solution x̂
is continuous from the right everywhere.

The state-feedback matrix is an arbitrary matrix K such

that all the eigenvalues of Φ = A+ BK have negative real

part. Then, the control input applied to the process (and the

predictor) is given by

u(t) = Kx̂(t) (15)

where t ∈ R≥0.

The predictor differs from a classical asymptotic observer

due to the measurements-triggered jumps in the state. The

reason for considering an impulsive-like predictor rather than

an asymptotic one is the following. Let

e(t) := x̂(t)− x(t) (16)

where t ∈ R≥0. The process dynamics can be therefore

expressed as

ẋ(t) = Φx(t) +BKe(t) + d(t) (17)

where t ∈ R≥0. Consider any symmetric positive definite

matrix Q, and let P be the solution of the Lyapunov equation

Φ′P + PΦ+Q = 0. Let V (x) = x′Px. Its derivative along

the solutions to (17), satisfies

V̇ (x(t)) ≤ − γ1‖x(t)‖
2 + γ2‖x(t)‖‖e(t)‖

+ γ3‖x(t)‖‖d(t)‖ (18)

for all t ∈ R≥0, where γ1 is the smallest eigenvalue of Q,

γ2 := ‖2PBK‖ and γ3 := ‖2P‖. From the last expression

one sees that stability depends on the magnitude of e. In this

respect, the dynamics of e obeys

ė(t) = Ae(t)− d(t), t 6= zm

e(t) = n(t), t = zm
(19)

where t ∈ R≥0 and m ∈ N0. One sees from the second

equation of (19) that resetting the predictor state makes it

possible to reset e to a bounded value whenever a new

measurement becomes available. In turns, Lemma 1 ensures

that a resetting does always occur in a finite time. These two

properties guarantee boundedness of e for all t ≥ z0.

In particular, we have the following result.

Lemma 2: Consider the process (1) with predictor-based

controller (13)-(15) under a transmission policy as in (2).

Consider any DoS sequence satisfying Assumption 1 and 2

with arbitrary η and κ, and with τD and T satisfying (11).

Then, there exists a positive constant ρ such that

‖e(t)‖ ≤ ρ ‖wt‖∞ (20)

for all t ∈ R≥z0 , where w = [d′ n′]
′
. �

Exploiting Lemma 2, we obtain the following stability

result for analog controller implementations.

Theorem 2: Consider the process (1) with predictor-based

controller (13)-(15) under a transmission policy as in (2).

Then, the closed-loop system is stable for any DoS sequence

satisfying Assumption 1 and 2 with arbitrary η and κ, and

with τD and T satisfying (11). �

Remark 4: The considered controller yields quite strong

stability properties, namely global exponential stability with

linear bounds on the map from the disturbance and noise

signals to the process state. It is also interesting to observe

that, as long as the triplet (τD, T,∆) satisfies (11), ∆ can

be chosen arbitrarily (though large values of ∆ may affect

the performance via ρ). In particular, in the absence of DoS

when T = τD = ∞ and κ = η = 0, then (11) is satisfied for

any bounded value of ∆. This is due to the controller state

resetting mechanism. �

C. Digital predictor-based controller

In this section, we extend the control algorithm to a digital

implementation. The substantial difference between analog

and digital implementations is that in the latter the control

action can be updated only at a finite rate. Because of this,

Lemma 2 does not hold any longer. As we will see, in order

to recover a boundedness inequality similar to the one in

Lemma 2, constraints have to be enforced on the sampling

rate of the digital controller.

Consider a digital controller with sampling rate

δ =
∆

b
(21)

where b is any positive integer. Choosing the controller

sampling rate as a submultiple of ∆ makes it possible to

implement the controller as a sampled-data version of (13),

which is synchronized with the network transmission rate.

Let Aδ = eAδ and Bδ =
∫ δ

0
eAτBdτ . The digital predictor

is given by






































x̂((q + 1)δ) = Aδα(qδ) +Bδu(qδ)

α(qδ) =











y(qδ), if qδ = zm

x̂(qδ), otherwise

x̂(0) = 0

(22)

where q ∈ N0.

The control action is given by

u(qδ) = Kα(qδ). (23)

where q ∈ N0.

Similar to the analog implementation, also the digital

implementation is equipped with a state resetting mecha-

nism. Due to the discrete nature of the update equations,

the resetting mechanism is implemented using an auxiliary

variable α.

The stability analysis follows the same steps as in the

previous case. Let

φ(t) := α(qδ)− x(t) (24)
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where t ∈ Iq := [qδ, (q + 1)δ[, q ∈ N0. Hence, the process

dynamics satisfies

ẋ(t) = Φx(t) +BKφ(t) + d(t) (25)

for all t ∈ Iq .

Given any symmetric positive definite matrix Q, let P be

the solution of the Lyapunov equation Φ′P + PΦ+Q = 0.

Let V (x) = x′Px. Its derivative along the solutions to (25),

satisfies

V̇ (x(t)) ≤ − γ1‖x(t)‖
2 + γ2‖x(t)‖‖φ(t)‖

+ γ3‖x(t)‖‖d(t)‖ (26)

for all t ∈ Iq , where γ1 is the smallest eigenvalue of Q,

γ2 := ‖2PBK‖ and γ3 := ‖2P‖. As in the previous case,

stability depends on the magnitude of φ. In this respect, the

dynamics of φ satisfies

φ̇(t) = −ẋ(t)

= Aφ(t)− Φα(qδ)− d(t), t 6= zm

φ(t) = n(t), t = zm

(27)

for all t ∈ Iq .

The differential equation in (27) differs from its analog

counterpart in (19) due to the extra term Φα(qδ). Because

of this, Lemma 2 breaks down. In order to recover a property

similar to the one established in Lemma 2, constraints have

to be enforced on the sampling rate of the digital controller.

This is consistent with intuition, and simply indicates that

the rate of control updates has to be sufficiently fast. In

this respect, letting δ = ∆/b allows to differentiate between

controller sampling rate and transmission rate, maintaining

∆ possibly large.

Lemma 3: Consider the process (1) with predictor-based

controller (22)-(23) under a transmission policy as in (2).

Consider any DoS sequence satisfying Assumption 1 and 2

with arbitrary η and κ, and with τD and T satisfying (11).

Let the controller sampling rate be such that

δ ≤
1

µA

log

[(

σ

1 + σ

)

1

max{‖Φ‖, 1}
µA + 1

]

(28)

when µA > 0, and

δ ≤

(

σ

1 + σ

)

1

max{‖Φ‖, 1}
(29)

when µA ≤ 0, where µA is the logarithmic norm of A and

σ is a positive constant satisfying γ1−σγ2 > 0, where γ1 is

equal to the smallest eigenvalue of Q and γ2 := ‖2PBK‖.

Then, there exists a positive constant ρ̃ such that

‖φ(t)‖ ≤ σ‖x(t)‖+ ρ̃ ‖wt‖∞ (30)

for all t ∈ R≥z0 . �

Based on Lemma 3 the following result can be stated,

which provides a natural counterpart of Theorem 2.

Theorem 3: Consider the process (1) with predictor-based

controller (22)-(23) under a transmission policy as in (2).
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Time(s)
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Fig. 1. Simulation results for the example. Top: Analog controller;Bottom:
Digital Controller

Let the controller sampling rate be chosen as in Lemma 3.

Then, the closed-loop system is stable for any DoS sequence

satisfying Assumption 1 and 2 with arbitrary η and κ, and

with τD and T satisfying (11). �

Compared with the analog implementation, one sees that

the digital implementation does only require a proper choice

of the controller sampling rate. On the other hand, it achieves

the same robustness properties of the analog implementation.

By Lemma 3, admissible values for the controller sampling

rate can be explicitly computed from the parameters of the

control system.

IV. EXAMPLE

The numerical example is taken from [21]. The system to

be controlled is open-loop unstable and is characterized by

the matrices

A =

[

1 1
0 1

]

, B =

[

1 0
0 1

]

(31)

The state-feedback matrix is given by

K =

[

−2.1961 −0.7545
−0.7545 −2.7146

]

(32)

The control system parameters are γ1 = 1, γ2 = 2.1080,

α1 = 0.2779, α2 = 0.4497, ‖Φ‖ = 1.9021 and µA = 1.5.

Disturbance d and noise n are random signals with uniform

distribution in [−0.1, 0.1].
The network transmission rate is given by ∆ = 0.1s.

Both analog and digital controllers are considered. As for

the digital implementation, in accordance with Lemma 3,

we must select σ such that σ < 0.4744. According to (28),

we obtain the constraint δ < 0.1508. We select δ = 0.01s so

that δ is sufficiently small, and in order to synchronize the

controller sampling rate with ∆.

Figure 1 shows simulation results with the analog and

digital predictor-based controllers (13)-(15) and (22)-(23), re-

spectively. We consider a sustained DoS attack with variable

period and duty cycle, generated randomly. Over a simulation
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Fig. 2. Simulation of digital controller in case disturbance and noise are
random signals with uniform distribution in [−0.01, 0.01].

horizon of 50s, the DoS signal yields |Ξ(0, 50)| = 38.8s

and n(0, 50) = 52. This corresponds to values (averaged

over 50s) of τD ≈ 0.96 and T ≈ 1.29, and ∼ 80% of

transmission failures. For the predictor-based controllers, the

stability requirement is satisfied since

∆

τD
+

1

T
≈ 0.8793 (33)

On the other hand, the DoS parameters do not satisfy the

stability requirement for the pure static feedback law, which

is (cf. (10))

∆

τD
+

1

T
< 0.0321 (34)

The theoretical bound for the case of pure static feedback

is conservative (indeed, simulations show that (7) ensures

closed-loop stability for the system in (31) up to ∼ 40% of

transmission failures). Nonetheless, the improvement given

by predictor-based controllers is significant. In fact, while the

system undergoes instability with (7), the performance level

provided by (13)-(15) and (22)-(23) is very high despite the

sustained DoS attack.

It is worth noting that while stability is independent on the

magnitude of disturbance and noise signals, performance is

not. As shown in Figure 2, noise significantly impacts on the

accuracy of the state estimate, and, hence, on the closed-loop

behavior during DoS status; cf. the paper conclusions.

V. CONCLUDING REMARKS

In this paper, we investigated the problem of designing

DoS-resilient control systems. It was shown that the use of

dynamical observers with state resetting mechanism makes it

possible to maximize the amount of DoS that one can tolerate

for a general class of DoS signals. Both analog and digital

implementations have been discussed, the latter requiring a

suitable choice of the controller sampling rate.

The results presented in this paper can be extended in

various directions. We envision the use of a similar control

architecture for the case of partial state measurements, via

the approach considered in [18]. Another interesting study

concerns performance robustness against measurement noise,

which is the main factor affecting the quality of the process

state estimation. The recent results in [22] may prove relevant

in this regard.
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