
Resilient Dynamic Power Management under Uncertainty

Hwisung Jung and Massoud Pedram
Department of Electrical Engineering, University of Southern California

Los Angeles, CA 90089
{hwijung, pedram}@usc.edu

 Abstract
With the increasing levels of variability and randomness in the
characteristics and behavior of manufactured nanoscale structures
and devices, achieving performance optimization under process,
voltage, and temperature (PVT) variations as well as current,
voltage, and thermal (CVT) stress has become a daunting, yet vital,
task. In this paper, we present a stochastic dynamic power
management (DPM) framework to improve the accuracy of decision
making under probabilistic conditions induced by PVT variations
and/or stress. More precisely, we propose a resilient power
management technique that guarantees to select an optimal policy
under sources of uncertainty. A key characteristic of the proposed
technique is that the effects of uncertainties due to variability and
stress are captured by stochastic processes which control a self-
improving power manager. Simulation results with a 65nm
processor design show that, compared to the worst-case PVT
conditions, the proposed DPM technique ensures energy efficiency,
while reducing the uncertain behaviors of the system1.

1. Introduction
As nanoscale VLSI circuits are becoming sensitive to the rising
levels of variability in process and design parameters, guaranteeing
the quality of system-level performance optimization techniques is
becoming of great concern. Within-chip variations are typically
passed into the delay budget of each circuit [1]. However, the
worst-case behavior of the circuit (e.g., critical path delay) does not
always correspond to the combination of worst-case points of
individual parameters (e.g., load capacitance, intrinsic delay, and
slew rate). Furthermore, a lot of silicon performance is left
untapped under the worst-case assumption. IC designers can no
longer afford to mislay performance due to unacceptable levels of
inaccuracy in their estimation/modeling techniques [2]. Thus, it is
important to do rigorous modeling of variability early in the design
cycle. At the same time, it is turning out to be increasingly difficult
to meet an acceptable safety margin for manufactured IC’s because
the device and interconnection aging and/or failure processes
(which are in turn due to current, voltage and thermal stress) are
becoming more severe as we scale down the devices and critical
dimensions on the VLSI chips. For example, under normal
operation conditions, the transistor characteristics can change by
more than 10% over a 10-year period. Furthermore, stress, e.g., hot
carrier injection (HCI) in NMOS transistors, negative bias
temperature instability (NBTI) in PMOS transistors, and time-
dependent dielectric breakdown (TDDB) change the threshold
voltage of transistors so as to slow down the switching speeds [3].
There are also interconnect aging effects such as electro-migration.

The semiconductor industry has begun to define the lifetime of
IC’s as the duration of time after which 0.1% of the manufactured
IC’s will fail. This is clearly a much more stringent requirement
than the traditional mean time to failure (MTTF), which means the

1 This research is supported in part by the National Science Foundation

under grant no. 0509564.

average life function of an IC. Note that MTTF is equal to the
duration of time after which 50% of IC’s fail only if the life time
probability distribution function is symmetric, which is generally
not the case. In general, the reliability of an IC should be specified
as a percentage value with an associated time. Ideally, a confidence
level should also be given, which allows for consideration of the
variability of data with respect to the specification.

Increasing interest has been given to the problem of modeling
and reducing variability in the design parameters. The work in [1]
studies the parameter variations in nanometer and their impacts on
leakage reduction techniques for a microprocessor. By emphasizing
that the leakage is critically dependent on the operating temperature
and power supply, the authors in [4] present a variation resilient
circuit design technique for maintaining parametric yield of design
under inherent variation in process parameters. A full chip leakage
estimation technique under variability is presented in [5] to account
for power supply and temperature variations. In [6], the impacts of
threshold voltage variations on the leakage power are modeled in a
probabilistic way, where these models are subsequently employed
to minimize the leakage power dissipation, while satisfying certain
performance requirements. The authors in [7] show that interactions
between voltage, frequency, and temperature significantly impact
the energy-delay-product of a target system. The work in [8]
presents an analog circuit aging simulation technique based on a
behavioral model which includes the effects of degradations on
circuit parameters.

Most of the previous work has focused on the variability
modeling, analysis, and control at the lower levels of design
abstraction, e.g., by using physical design optimization and/or logic
synthesis. Although it is prudent to account for various sources of
variability earlier in the design process when developing resource
management (e.g., DPM), variations at the higher levels of design
abstraction are often translated into uncertainty because the
underlying RT-level/physical realization is not available. At the
same time, observations made about the current state of the system
tend to be imperfect, and approximate, which in turn gives rise to
uncertainty about the system state.

In this paper, we attempt to address uncertainty management
issues in performance optimization at the system-level by ensuring
IC designers’ goal to produce low-power design with reliability. We
propose a resilient power management framework which handles
the parameter variations during power management. Our proposed
DPM framework is based on stochastic (but stationary) processes
that combine the dynamic programming (DP) and the expectation-
maximization (EM) algorithms, which enable a power manager to
predict uncertain state of the system in a dynamic environment.
Traditional DPM approaches [9], which define a power manager to
interact with the system resources through its commands and their
associated costs, tend to be less than satisfactory in the presence of
variability. This is because they assume different variables of the
system are (i) directly observable and (ii) deterministic. Key feature
of the proposed technique is to provide resiliency to the power
manager to deal with various source of uncertainty.

978-3-9810801-3-1/DATE08 © 2008 EDAA

The remainder of this paper is organized as follows. Section 2
provides some background of paper. The details of the proposed
DPM framework are given in section 3. Section 4 presents a
proposed DPM technique. Experimental results and conclusions are
given in section 5 and section 6.

2. Background
As process geometries shrink, the leakage power dissipation is
becoming an important portion of total power of an electronic
system, where the prominence of leakage current in ICs has been
spurred by the continued scaling of subthreshold voltages and gate
oxide thickness. Both subthreshold and gate leakage currents are
known to be highly sensitive to process variations due to their
exponential dependence on many key process parameters [1][2].
Furthermore, with regard to environmental variations, it is
important to implement ICs that have well-distributed temperature
profiles, and to carefully design supply networks to provide robust
supply voltage and ground levels throughout the chip. Figure 1
shows an example of leakage power variation on a 32bit RISC
processor that we designed with 65nm technology, where the
leakage power compromises integration density, packaging density,
and reliability.

Figure 1. Leakage power for different levels of variability.

In general, modern transistors are stressed by high electrics field,
high temperature, and high switching activity over extended periods
of time. These stress factors leads to device aging, resulting in
performance degradation and eventual design failure during the
expected lifetime of the designs. The MOS transistor aging
phenomena, such as NBTI (Negative Bias Temperature Instability),
HCI (Hot Carrier Injection), and TDDB (Time Dependent
Dielectric Breakdown), are nowadays the most critical device
degradation mechanisms. They are fast becoming a limiting factor
in scaling of modern CMOS technologies. For example, NBTI,
which tends to significantly increase the threshold voltage, exhibits
wide variations from one wafer run to next and thereby reduces the
safety margin between actual lifetime of MOSFETs and the
expected and/or required product lifetime. Note that the NBTI
effect gets worse at higher temperature. In addition, the HCI effect,
whereby carriers injected into the gate oxide near the drain end of a
strongly inverted channel add to the trapped ion density at the
silicon oxide and substrate interface and thus increase the threshold
voltage an NMOS transistor, also exhibits wide variations,
especially resulting in asymmetrical device characteristics after
stress. Contrary to NBTI, however, HCI gets worse at lower
temperature [11]. Further details about these phenomena are
omitted here to save space. Interested reader may refer to [11].

The above-mentioned MOS aging phenomena influence the
performance of the circuit due to corresponding device parameter
degradation. So far, technology developers have assumed the key
responsibility to adjust the process technology features and device
reliability characteristics is to achieve the required lifetime for the

microelectronic circuits. However, the circuit reliability can no
longer be the task of process and device engineers alone. Although
performance analysis tools (e.g., PrimeTime [12]) provide reliable
bounds on the delay of circuits, they cannot properly account for the
variability and/or stress inherent in semiconductor process. For
example, Figure 2 illustrates variational effect in gate-level static
timing analysis, where gate delays are calculated based on lookup
tables. Every point in the table represents characterized spice timing
for cell given particular input transitions and output capacitance.
Obviously, not all possible input transitions and output capacitance
values for a given cell can be characterized. In this figure, the closet
four characterized points in the table are used to interpolate them
for calculating the delay. Thus, although these analysis tools
provide the estimate of performance parameters during the design
time, they cannot guarantee that the resulting performance is
accurate after fabrication.

Resulting
performance
variation

Z [delay]

Y [transition time]

X [output capacitance]

0.070

0.035
0.05 0.10

Possible variations

Resulting
performance
variation

Z [delay]

Y [transition time]

X [output capacitance]

0.070

0.035
0.05 0.10

Possible variations

Figure 2. Variational effect on timing delay.

3. Resilient Decision Making
In this section, we present a theoretical framework to construct a
resilient power management process under uncertainty induced by
variability.
3.1 Partially Observable Markov Decision Process
To capture the impact of variability induced by PVT variations
and/or stress effects which often result in the uncertainty in the
performance parameters of interest, the observation can be used in a
stochastic manner to identify the performance (e.g., power
dissipation) of the system. In other words, power management can
be performed under a stochastic environment whose performance
state is partially observable due to variability. When designing a
power manager that acts under uncertainty, it is convenient to
model the power manager in the context of partially observable
Markov decision process (POMDP) [13], which provides a way to
model uncertainty in a real world system’s actions and perceptions.

A POMDP is a special Markov Decision Process (MDP) where
the state is only partially observable. A POMDP is represented by a
tuple (S, A, O, T, Z, c) where state space S comprises of a finite set
of (nominal) states, action space A consists of a finite set of actions,
and observation space O contains a finite set of observations. T is a
state transition probability function, Z is an observation function,
and c is a one-step cost function. The state transition function
determines the probability of a transition from a state s to another
state s’ after executing an action a, i.e., T(s’, a, s) = Prob(st+1 = s’ |
at = a, st = s). 2 The observation function, which captures the
relationship between the actual state and the observation, is defined
as the probability of making observation o’ after taking an action a
that would land the system in state s’, i.e., Z(o’, s’, a) = Prob(ot+1 =
o’ | at = a, st+1 = s’). We consider a cost function which assigns a
value to each state and action pair by adopting a conventional

2 In this paper, subscripts denote the state information whereas superscripts
denote the time stamp.

approach, whereby an immediate cost, c(s, a), is incurred when
action a is chosen in state s. Note that the costs can be set by the
applications or the developers.

Instead of making decisions based on the current perceived state
of the system, the POMDP maintains a belief, i.e., a probability
distribution over the possible (nominal) states of the system, and
makes decisions based on its current belief. The belief state at time t
is a |S|×1 vector of probabilities defined as: bt := [bt(s)], ∀s∈S,
where bt(s) is the posterior probability distribution of state s at time
t. Note that Σs∈S bt(s) = 1. Based on the belief state, an action at is
chosen from a set of available actions. A policy is defined as a
sequence of mappings from the belief states to actions π = {πt}.
3.2 Rationale for POMDP-based Power Management
It is useful to describe how the POMDP can be adapted to the
power management under uncertainty. In this paper, the POMDP is
used to model the decision-making problem in a partially
observable environment. Figure 3 shows the high-level structure of
the POMDP-based power manager. The proposed power manager
interacts with an uncertain environment (which is affected by PVT
variations and/or stress effects) and tries to minimize its long term
cost by choosing appropriate actions (i.e., voltage-frequency values).
The actions commanded by the power manager change the
performance state of the system and lead to quantifiable
rewards/penalties. In this paper, we consider the case where actions
incur a cost (i.e., energy dissipation), where the power manager’s
goal is to devise a policy, which minimizes the total expected
energy dissipation.

State
estimation

ao System

PVT variations

Policy
generation

power manager

MOS aging (stress)

State
estimation

ao System

PVT variations

Policy
generation

power manager

MOS aging (stress)

Figure 3. Structure of the proposed power manager.

In our formulation of the decision-making strategy, we define
state s ∈ S as the dissipated power level, where S is the set of
available system states. Furthermore, we use an observation (i.e., a
temperature measurement) to help identify the system state. We
assume that multiple on-chip thermal sensors provide information
about the temperatures in different zones of the chip [14].

As shown in Figure 3, the power manager consists of two
functional components. The first component is the state estimation
based on the expectation-maximization (EM) algorithm, which
predicts the system state s of the system, and the second component
is a power management policy generation, which assigns optimal
actions to the system.

3.3 Power Management Framework
In a partially observable environment, the belief state is a vector of
the posterior probability distribution of state s. For example, assume
that we define three nominal states, e.g., s1 = [0.5 0.8], s2 = [0.8 1.1],
and s3 = [1.1 1.4] in terms of the range of power consumption
values (in W). Now, assume the belief state bt(s) is [b(s1) b(s2)
b(s3)] = [0.1 0.7 0.2]; the probability of being in state s2 is 0.7,
which means that s2 is the most probable state of the system at time
t. Figure 4 (a) illustrates a partial observation (i.e., temperaure
measurement) and its effect on the probability density function.

s1

s2

s3

b1 + b2 + b3 = 1

current belief state
[b1 b2 b3]

Pr
ob

ab
ili

ty

µ

Use belief state b

uncertainty

Pr
ob

ab
ili

ty

µ

o = N(µ , σ2)

Identify the state s

Maximum
Likelihood
Estimate

Complete
observation

System
state

mapping

o1

o2

s1

s2

(a)

(b)

o = N(µ , σ2)

s1

s2

s3

b1 + b2 + b3 = 1

current belief state
[b1 b2 b3]

Pr
ob

ab
ili

ty

µ

Use belief state b

uncertainty

Pr
ob

ab
ili

ty

µ

o = N(µ , σ2)

Identify the state s

Maximum
Likelihood
Estimate

Complete
observation

System
state

mapping

o1

o2

s1

s2

(a)

(b)

o = N(µ , σ2)

Figure 4. (a) Effect of hidden data on the pdf of the measured
data and the concept of a belief state, and (b) Use of the ME

algorithm to estimate the most probable system state without
having to resort to a belief state representation.

If we are given a belief state bt for time t and we perform an
action a and get observation o’, we can compute the successor
belief state for time t+1 as follows:

1

, "

(', ',) () (', ,)
(')

(', ",) () (", ,)

t

t s

t
s s

Z o s a b s T s a s
b

Z b T
s

o s a s s a s
+ =

∑
∑

 (1)

A key result is that if we maintain the belief state and update it in
according to Eqn. (1), then using this belief state will give us just as
much information as the entire action-observation history. This
shows that the optimal POMDP solution is Markovian over the
belief state space. In fact, using the belief space as our set of states,
we can use the transition and observation probabilities to create a
completely observable, regular (albeit continuous state space) MDP
that is equivalent to the original POMDP [15]. Note that the
complexity of computation required by Eqn. (1) for updating the
belief state grows rapidly with the number of state variables,
making it infeasible for real-time applications, e.g., online DPM
techniques. In general, finding policies for POMDP models is
known to be computationally intractable. In particular, calculating
exact solutions for the finite-horizon stochastic POMDP problems
is P-SPACE hard [16]. Therefore, exact solutions cannot be found
for POMDPs with more than a handful of states. Indeed, solving a
POMDP problem (i.e., obtaining an optimal policy while
computing the belief states) is extremely expensive because of the
complexity of calculating the exact belief state [17]. To overcome
this difficulty, one is usually forced to estimate the system state by
some other approach. By doing so, the overwhelming complexity in
deriving a power management policy for every possible situation is
avoided.

We utilize a system state estimation technique based on the
“expectation-maximization” (EM) algorithm [18], where the
observations can be viewed as incomplete data. The EM algorithm
is a general technique which can be used to determine the
maximum likelihood estimate (MLE) of the parameters of an
underlying distribution from some given data when the observed
data is incomplete [19]. Alternatively stated, it is used to find the
MLE of some parameters in a probabilistic model, where the model
depends on unobserved latent (hidden) variables. The main
advantage of the EM in our problem setup is that the EM deals with
uncertain observation when computing the MLE.

Let o denote observed data (measurement) and let m denote the
missing data. Together o and m form the complete data. Notice that
m can be an actual missing measurement, or in our problem context,

a hidden source of variation that affects the measurement. Let p
denote the joint probability density function of the complete data
with parameters given by vector θ, i.e., we have p(o, m | θ). (θ may
for example correspond to the mean value and variance of a
Gaussian distribution.) This function can also be considered as the
complete data likelihood, that is, it can be thought of as a function
of θ and expressed as:

(, |) (| ,) (|)p o m p m o p oθ θ θ= (2)

by using the Bayes rule.
The EM algorithm iteratively improves an initial estimate θ0 by

constructing new estimates θ1, θ2, and so on. Note that an individual
re-estimation step that derives θn+1 from θn takes the following
form:

1 arg max ()n Q
θ

θ θ+ = (3)

where Q(θ) is the expected value of the log-likelihood of complete
data. Since we do not know the complete data, we cannot determine
the exact value of the likelihood, but given the observed data o, we
can calculate a posteriori estimates of the probabilities for the
various values of m. For each set of m values, there is a likelihood
value for θ, and we can hence calculate an expected value of the
likelihood with the given values of o's. In our problem setup, Q is
given by:

()() log (, |)
m

Q E p o m oθ θ= (4)

where it is understood that this denotes the conditional expectation
of log (, |)p o m θ being taken with the θ used in (| ,)p m o θ fixed
at θn. In other words, θn+1 is the value that maximizes the
conditional expectation of log-likelihood of the complete data given
the observed variables under the previous parameter value. The
expectation Q(θ) may be written as:

() (|) log (, |)Q p m o p o m dmθ θ
∞

−∞
= ∫ (5)

These two steps (Expectation and Maximization) are repeated
until the convergence of the parameters | θn+1 – θn | ≤ ω, where the
value of ω is selected by system developers [21]. It can be shown
that the EM iteration does not decrease the observed data likelihood
function. However, there is no guarantee that the sequence
converges to a maximum likelihood estimator. There are a variety
of heuristic approaches for escaping a local maximum such as using
different random initial estimates or applying simulated annealing.

The EM algorithm finds θ that maximizes the complete-data
likelihood, which in turn removes the effect of hidden variables and
allows us to calculate the MLE of the system state without having
to resort to the belief state representation (cf. Figure 4 (b)).

4. Resilient DPM
In this section, we present a dynamic power management technique
which comprises of a state estimation and a policy generation step.
4.1 EM-based State Estimation
The state estimation step corresponds to the estimation of the
complete observation (o, m), where we use the expectation-
maximization (EM) algorithm. From this information, we can
identify the system state s from the complete data through the pre-
defined observation-state mapping table. Note that this mapping
table, which indicates the performance-state of the system based on
complete observation, is obtained by simulations during design time.

Figure 5 summarizes the flow of the state estimation, where we
first set the initial value for vector θ.

Initialization

• Initialize parameter:

Expectation-step

• Find the expected value:

Maximization-step

• Find that maximize :

Identify the state

• Identify the system state s based on the estimate
of the complete observation

θ

1tθ + ()Q θ

+1 t tθ θ ω− ≤till

()() log (, |)
m

Q E p o m oθ θ=

1 arg max ()n Q
θ

θ θ+ =

Initialization

• Initialize parameter:

Expectation-step

• Find the expected value:

Maximization-step

• Find that maximize :

Identify the state

• Identify the system state s based on the estimate
of the complete observation

θ

1tθ + ()Q θ

+1 t tθ θ ω− ≤till

()() log (, |)
m

Q E p o m oθ θ=

1 arg max ()n Q
θ

θ θ+ =

Figure 5. The flow of the state estimation by the EM algorithm.

Considering algorithms for state estimation, there are a number
of other methods for estimation such as moving average filter [10],
least mean square filter [22], and Kalman filter [23]. In our problem
setup, we have found that the EM algorithm is more efficient than
other methods since it provides a parameterized class of density
functions, which minimizes the computational complexity.

4.2 Policy Generation
The policy generation step deals with the value function to
determine the set of optimal actions. Note that a policy is defined as
a sequence of mappings from states to actions.

We develop a policy generation technique by using well-known
dynamic programming method used to solve problem which
exhibits the properties of optimal cost. We speak of the minimum
cost of a system state which is the expected infinite discounted sum
of cost that the system will accrue if it starts in that state and
executes the optimal policy. Generally, using π as a complete
decision policy, this minimum cost is written as

*

0

() min ()t

t

s E c t
π

γ
∞

=

⎛ ⎞Ψ = ⋅⎜ ⎟
⎝ ⎠
∑ (6)

where γ is a discount factor, 0 ≤ γ < 1, and c(t) is the cost at time t.
In our problem setup, the minimum cost function is unique and

can be defined

* *

'

() min (,) (', ,) (')
a s S

s C s a T s a s s s Sγ
∈

⎛ ⎞Ψ = + Ψ ∀ ∈⎜ ⎟
⎝ ⎠

∑ (7)

which assert that the cost of a state s is the expected immediate cost
plus the expected discounted cost of the next state, using the best
available action. Here, the immediate costs are defined as the
power-delay product (PDP), i.e., average energy of the system,
which is incurred due to each state-action pair. By applying
Bellman’s principle of optimality [24], given the optimal cost
function, we can specify the optimal policy as

* *

'
() arg min (,) (', ,) (')

a s S
s C s a T s a s sπ γ

∈

⎛ ⎞= + Ψ⎜ ⎟
⎝ ⎠

∑ (8)

Simply stated, the power manager determines the optimal action
based on Eqn. (8) while utilizing the EM algorithm to estimate the
system state. The power manager observes the performance of the
system at each event (e.g., time-based or interrupt-based)
occurrence. These events occur at so-called decision epochs. The
task of casting the decision epochs to absolute time units is
achieved by the system developer. Note that we focus on battery
operated systems that strive to conserve energy to extend the battery

life, unlike AC line powered high performance systems that deliver
maximum performance while guaranteeing performance constraints.

Given C(s, a) and T(s’, a, s), one way to find an optimal policy
is to find the minimum cost function. It can be determined by an
iterative algorithm (cf. Figure 6) called value iteration [25] that can
be shown to converge to the correct *Ψ values. It is not obvious
when to stop this algorithm. One important result bounds the
performance of the current greedy policy as a function of the
Bellman residual of the current cost function [26]. It states that if
the maximum difference between two successive cost functions is
less than ε, then the cost of the greedy policy (i.e., the policy
obtained by choosing, in every state, the action that minimizes the
estimated discounted cost, using the current estimate of the cost
function) differs from the cost function of the optimal policy by no
more than 2εγ / (1−γ) at any state. This provides a stopping criterion
for the algorithm.

 1: initialize Ψ(s) arbitrarily
2: loop until policy good enough
3: loop for ∀s ∈ S
4: loop for ∀a ∈ A
5:
6:
7: end loop
8: end loop
9: end loop

'

(,) (,) (', ,) (')
s S

Q s a C s a T s a s sγ
∈

= + Ψ∑
() min (,)

a
s Q s aΨ =

1: initialize Ψ(s) arbitrarily
2: loop until policy good enough
3: loop for ∀s ∈ S
4: loop for ∀a ∈ A
5:
6:
7: end loop
8: end loop
9: end loop

'

(,) (,) (', ,) (')
s S

Q s a C s a T s a s sγ
∈

= + Ψ∑
() min (,)

a
s Q s aΨ =

Figure 6. The value iteration algorithm.

5. Experimental Results
In the experimental setup, we applied the proposed DPM technique
to a 32bit MIPS-compatible processor, which has 5-stages pipeline,
instruction/data caches, and internal SRAM for code/data storage.
To apply the effect of variability in this processor, we relied on the
detailed RTL of the processor synthesized with TSMC 65nmLP
library, where power numbers (i.e., leakage and dynamic power)
are achieved through the Power Compiler [12] with the exact
switching activity information.

Figure 7. Probability density function for power dissipation.

In the first experiment, we analyze the possible variations of the
processor in terms of power dissipation. By varying process corners
during the simulation setup, we achieve power numbers for the
processor after running the tasks. As an application, we perform
real-time TCP/IP-related tasks (i.e., TCP segmentation and
checksum offloading [27]) at the designed processor. After running
a number of simulations, we achieve the probability density
function for the total power consumption of the processor as shown
in Figure 7, where the mean value is 650mW and variance σ2 is 3.1
(i.e., N(650, 3.1)). Next we calculate the on-chip temperature (i.e.,
observation) based on the measured power, which is affected by

sources of variability. In doing so, we rely on the temperature
calculation equations of [28]. Note that the temperature values (°C)
are obtained during the active state of the processor. We use the
extracted thermal data [29] for PBGA as reported in Table 1, where
TA is the ambient temperature, θJA is the thermal resistance for
junction-to-ambient, and ψJT denotes the junction-to-top of package
thermal characterization parameter.

Table 1. Package thermal performance data (TA = 70°C).

[°C]

107.90.51

Air velocity

m/s ft/min
TJ_max [°C]TT_max

1.02
2.03

100
200
300

θJAψJT [°C/W] [°C/W]

105.3
102.7

106.7
104.1
101.2

0.51
0.53
0.65

16.12
15.62
14.21

[°C]

107.90.51

Air velocity

m/s ft/min
TJ_max [°C]TT_max

1.02
2.03

100
200
300

θJAψJT [°C/W] [°C/W]

105.3
102.7

106.7
104.1
101.2

0.51
0.53
0.65

16.12
15.62
14.21

The second experiment is designed to demonstrate the

effectiveness of the proposed DPM framework. We first set the
parameter values for the simulation setup as shown in Table 2,
where we have a set of three actions {a1, a2, a3}, three states {s1, s2,
s3}, and three observations {o1, o2, o3}. Note that the actions are
defined as: a1 = [1.08V / 150MHz], a2 = [1.20V / 200MHz], and a3
= [1.29V / 250MHz]. The state set {s1, s2, s3} of the processor may
be defined as the range of power dissipation, where we achieve
power number through simulations. A set of cost values is defined
as the power-delay product (PDP) of the processor, where the
normalized PDP is achieved by multiplying the average power
consumption by the average execution delay. For example, the cost
values for each state when action a1 is given are defined as c(s1, a1),
c(s2, a1), and c(s3, a1), which are 541, 500, and 470.

Table 2. The parameter values for a given experiment.

(1.1 1.4]

(0.8 1.1]

[0.5 0.8]

State Description [W]

s1

s2

s3 (88 95]

(83 88]

[75 83]

Obser-
vation

Description [°C]

o1

o2

o3

cost c(s, a)

[541 500 470]

[465 423 381]

[450 508 550]

a1

a2

a3

s1 s2 s3

(1.1 1.4]

(0.8 1.1]

[0.5 0.8]

State Description [W]

s1

s2

s3 (88 95]

(83 88]

[75 83]

Obser-
vation

Description [°C]

o1

o2

o3

cost c(s, a)

[541 500 470]

[465 423 381]

[450 508 550]

a1

a2

a3

s1 s2 s3

Figure 8. Trace of temperatures from the thermal calculator

and from ML estimates.

Figure 8 shows the traces of on-chip temperature from
temperature calculation equations based on power measurements
and that from MLE. Because we do not have a packaged IC
equipped with a thermal sensor to report the on-chip temperature,
we estimate the on-chip temperature by utilizing Tchip = TA + P⋅(θJA
– ΨJT) based on the parameter values provided in Table 1. In this
equation, P is the simulated power dissipation value. For this
experiment, we initially set θ0 = (70, 0), where 70°C is the initial

most probable die temperature. Note that time steps are abstractly
defined and the power manager issues a command at each time step.
The results indicate that the proposed estimation exhibits great
accuracy, where the estimation error is on average less than 2.5°C.

Simulation results in Figure 9 assess the effectiveness of the
policy generation algorithm in choosing the optimal action based on
the information provided in Table 1. We set the discount factor as
0.5 to evaluate the value function. It is seen that an optimal action is
chosen to minimize the value function. Note that the conditional
transition probabilities are given in advance, where extensive
offline simulations are used to achieve the values of probabilities.

Figure 9. Evaluation of policy generation algorithms.

In the third experiment, we compare the proposed uncertainty-
aware DPM technique with conventional DPM techniques
operating under two different conditions, i.e., worst and best corner
cases in a 65nm CMOS process technology. The purpose of this
simulation is to investigate how robustly the proposed approach can
handle variability during the power management process. The
optimal DPM policy is achieved by evaluating the value function
with the derived state transition probabilities, as illustrated in Figure
8. In our approach, we performed the tasks while varying the
operating conditions, and identified the system state by using the
EM algorithm to determine the MLE of the system state given noisy
temperature observations. Table 3 summarizes these simulation
results in terms of power, energy (normalized), and energy-delay-
product (EDP) as the figure of merit. Energy and EDP results in
columns 5 and 6 are normalized to the best case results. Clearly, the
uncertainty-aware DPM approach cannot do any better than a
conventional DPM at the best corner case. The expectation,
however, is that it will outperform the conventional DPM at the
worst corner case, while ensuring energy efficiency. The results of
Table 3 confirm this expectation.

Table 3. Comparing results of our approach with the corner-
based results.

Our approach

Worst case

Best case

Minimum
Power

Average
Power

Energy
(normalized)

Maximum
power

0.77W 1.26W

0.96W 1.31W

0.71W 1.12W

EDP
(normalized)

0.97W

1.02W

1.15W

1.14

1.00

1.47

1.34

1.00

2.30

Our approach

Worst case

Best case

Minimum
Power

Average
Power

Energy
(normalized)

Maximum
power

0.77W 1.26W

0.96W 1.31W

0.71W 1.12W

EDP
(normalized)

0.97W

1.02W

1.15W

1.14

1.00

1.47

1.34

1.00

2.30

6. Conclusion
We described a resilient DPM technique which guarantees to select
an optimal power management policy under variability. The
proposed DPM framework, which brings PVT variational and/or
stress effects to the forefront of decision-making strategy, controls

the uncertain behavior of the system, ensuring energy efficiency. In
the experimental results included in the paper, we have shown that
our mathematical framework can handle system’s behavior under
uncertain information. Being able to handle various sources of
uncertainty improves the accuracy and robustness of the design.

References
[1] S. Borkar, et al., “Parameter Variations and Impact on Circuits and

Microarchitecture,” Proc. of DAC, Jun., 2003.
[2] A. Srivastava, D. Sylvester, and D. Blaauw, Statistical Analysis and

Optimization for VLSI: Timing and Power, Springer, 2005.
[3] A. B. Kahng, “Design Challenges at 65nm and Beyond,” Proc. of

DATE, Mar., 2007.
[4] K. Kang, K. Kim, and K. Roy, “Variation Resilient Low-Power Circuit

Design Methodology using On-Chip Phase Locked Loop,” Proc. of
DAC, Jun., 2007.

[5] H. Su, F. Liu, A. Devgan, E. Acar, and S. Nassif, “Full Chip Leakage
Estimation Considering Power Supply and Temperature Variations,”
Proc. of ISLPED, Aug., 2003.

[6] M. Lie, W.S. Wang, and M. Orshansky, “Leakage Power Reduction by
Dual-Vth Designs Under Probabilistic Analysis of Vth Variation,” Proc.
of ISLPED, Aug., 2004.

[7] A. Basu, et al., “Simultaneous Optimization of Supply and Threshold
Voltages for Low-Power and High-Performance Circuits in the Leakage
Dominant Era,” Proc. of DAC, Jun., 2004.

[8] F. Marc, et al., “Improvement of Aging Simulation of Electronic
Circuits Using Behavioral Modeling” IEEE Trans. on Device and
Materials Reliability, Vol. 6, No. 2, Jun., 2006.

[9] L. Benini, and G. De Micheli, Dynamic Power Management: Design
Techniques and CAD Tools, Kluwer Academic Publishers, 1998..

[10] A. Gosavi, Simulation-Based Optimization: Parametric Optimization
Techniques and Reinforcement Learning, Kluwer Publishers, 2003.

[11] M. A. Alam, “A simple view of a complex phenomena,” Proc. of Int’l
Reliability Physics Symposium, Mar., 2006.

[12] Synopsys PrimeTime / Power Compiler. http://www.synopsys.com
[13] M.L. Puterman, Markov Decision Processes: Discrete Stochastic

Dynamic Programming. Wiley Publisher, New York, 1994.
[14] M. R. Stan, and K. Skadron, “Power-Aware Computing,” IEEE

Computer, Vol. 36, No. 1, Jan., 2003.
[15] C. T. Striebel, “Sufficient statistics in the optimal control of stochastic

systems,” J. Math. Anal. Appl., 12, pp. 576-592, 1965.
[16] D. Burago, M. de Rougemont, and A. Slissenko, “On the complexity of

partially observed Markov decision processes,” Theoretical Computer
Science, 157(2):161–183, 1996.

[17] S. Paquet, G. Gordon, and S. Thrun, “Point-based Value Iteration: An
Anytime Algorithm for POMDPs,” Proc. of Conf. on AI, Aug., 2003.

[18] A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood from
incomplete data via the EM algorithm,” Journal of the Royal Statistical
Society, Series B, 39(1):1–38, 1977.

[19] O. Cappe, et al., “An Algorithm for Maximum Likelihood Estimation of
Hidden Markov Models with Unknown State-Typing,” IEEE Trans. on
Speech and Audio Processing, Vol. 6, No. 1, Jan., 1998.

[20] G. McLachlan, and T. Krishnan, The EM Algorithm and Extensions,
Wiley-Interscience publisher, 1996.

[21] J. A. Bilmes, “A Gentle Tutorial of the EM Algorithm and its
Application to Parameter Estimation for Gaussian Mixture and Hidden
Markov Model,” Technical Report, TR-97-021, U.C. Berkeley, 1998.

[22] P. Diniz, Adaptive Filtering Algorithms and Practical Implementation,
Kluwer Academic, 1997.

[23] R. Kalman, “A New Approach to Linear Filtering and Prediction
Problems,” Journal of Basic Engineering, Vol. 82, Series D, 1960.

[24] R.E. Bellman, Dynamic Programming. Princeton Univ Press, 1957.
[25] D. P. Bertsekas. Dynamic Programming: Deterministic and Stochastic

Models. Prentice-Hall, Englewood Cliffs, NJ, 1987.
[26] R. Williams, and L. Baird, “Tight Performance Bounds on Greedy

Policies based on Imperfect Value Functions,” Technical report NU-
CCS-93-14, Northestern University, Nov., 1993.

[27] IEEE802.3 Ethernet document. http://www.ieee802.org
[28] Y. Cheng, C. Tsai, C. Teng, and S. Kang, Electrothermal Analysis of

VLSI Systems, Kluwer Academic Publishers, 2000.
[29] Thermal data for MIPS processors. http://www.broadcom.com.

