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                                   Abstract 
With the increasing levels of variability and randomness in the 
characteristics and behavior of manufactured nanoscale structures 
and devices, achieving performance optimization under process, 
voltage, and temperature (PVT) variations as well as current, 
voltage, and thermal (CVT) stress has become a daunting, yet vital, 
task. In this paper, we present a stochastic dynamic power 
management (DPM) framework to improve the accuracy of decision 
making under probabilistic conditions induced by PVT variations 
and/or stress. More precisely, we propose a resilient power 
management technique that guarantees to select an optimal policy 
under sources of uncertainty. A key characteristic of the proposed 
technique is that the effects of uncertainties due to variability and 
stress are captured by stochastic processes which control a self-
improving power manager. Simulation results with a 65nm 
processor design show that, compared to the worst-case PVT 
conditions, the proposed DPM technique ensures energy efficiency, 
while reducing the uncertain behaviors of the system1. 

1. Introduction 
As nanoscale VLSI circuits are becoming sensitive to the rising 
levels of variability in process and design parameters, guaranteeing 
the quality of system-level performance optimization techniques is 
becoming of great concern. Within-chip variations are typically 
passed into the delay budget of each circuit [1]. However, the 
worst-case behavior of the circuit (e.g., critical path delay) does not 
always correspond to the combination of worst-case points of 
individual parameters (e.g., load capacitance, intrinsic delay, and 
slew rate). Furthermore, a lot of silicon performance is left 
untapped under the worst-case assumption. IC designers can no 
longer afford to mislay performance due to unacceptable levels of 
inaccuracy in their estimation/modeling techniques [2]. Thus, it is 
important to do rigorous modeling of variability early in the design 
cycle. At the same time, it is turning out to be increasingly difficult 
to meet an acceptable safety margin for manufactured IC’s because 
the device and interconnection aging and/or failure processes 
(which are in turn due to current, voltage and thermal stress) are 
becoming more severe as we scale down the devices and critical 
dimensions on the VLSI chips. For example, under normal 
operation conditions, the transistor characteristics can change by 
more than 10% over a 10-year period. Furthermore, stress, e.g., hot 
carrier injection (HCI) in NMOS transistors, negative bias 
temperature instability (NBTI) in PMOS transistors, and time-
dependent dielectric breakdown (TDDB) change the threshold 
voltage of transistors so as to slow down the switching speeds [3]. 
There are also interconnect aging effects such as electro-migration.  

The semiconductor industry has begun to define the lifetime of 
IC’s as the duration of time after which 0.1% of the manufactured 
IC’s will fail. This is clearly a much more stringent requirement 
than the traditional mean time to failure (MTTF), which means the 
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average life function of an IC. Note that MTTF is equal to the 
duration of time after which 50% of IC’s fail only if the life time 
probability distribution function is symmetric, which is generally 
not the case. In general, the reliability of an IC should be specified 
as a percentage value with an associated time. Ideally, a confidence 
level should also be given, which allows for consideration of the 
variability of data with respect to the specification. 

Increasing interest has been given to the problem of modeling 
and reducing variability in the design parameters. The work in [1] 
studies the parameter variations in nanometer and their impacts on 
leakage reduction techniques for a microprocessor. By emphasizing 
that the leakage is critically dependent on the operating temperature 
and power supply, the authors in [4] present a variation resilient 
circuit design technique for maintaining parametric yield of design 
under inherent variation in process parameters. A full chip leakage 
estimation technique under variability is presented in [5] to account 
for power supply and temperature variations. In [6], the impacts of 
threshold voltage variations on the leakage power are modeled in a 
probabilistic way, where these models are subsequently employed 
to minimize the leakage power dissipation, while satisfying certain 
performance requirements. The authors in [7] show that interactions 
between voltage, frequency, and temperature significantly impact 
the energy-delay-product of a target system. The work in [8] 
presents an analog circuit aging simulation technique based on a 
behavioral model which includes the effects of degradations on 
circuit parameters. 

Most of the previous work has focused on the variability 
modeling, analysis, and control at the lower levels of design 
abstraction, e.g., by using physical design optimization and/or logic 
synthesis. Although it is prudent to account for various sources of 
variability earlier in the design process when developing resource 
management (e.g., DPM), variations at the higher levels of design 
abstraction are often translated into uncertainty because the 
underlying RT-level/physical realization is not available. At the 
same time, observations made about the current state of the system 
tend to be imperfect, and approximate, which in turn gives rise to 
uncertainty about the system state.  

In this paper, we attempt to address uncertainty management 
issues in performance optimization at the system-level by ensuring 
IC designers’ goal to produce low-power design with reliability. We 
propose a resilient power management framework which handles 
the parameter variations during power management. Our proposed 
DPM framework is based on stochastic (but stationary) processes 
that combine the dynamic programming (DP) and the expectation-
maximization (EM) algorithms, which enable a power manager to 
predict uncertain state of the system in a dynamic environment. 
Traditional DPM approaches [9], which define a power manager to 
interact with the system resources through its commands and their 
associated costs, tend to be less than satisfactory in the presence of 
variability. This is because they assume different variables of the 
system are (i) directly observable and (ii) deterministic. Key feature 
of the proposed technique is to provide resiliency to the power 
manager to deal with various source of uncertainty.  
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The remainder of this paper is organized as follows. Section 2 
provides some background of paper. The details of the proposed 
DPM framework are given in section 3. Section 4 presents a 
proposed DPM technique. Experimental results and conclusions are 
given in section 5 and section 6. 

2. Background 
As process geometries shrink, the leakage power dissipation is 
becoming an important portion of total power of an electronic 
system, where the prominence of leakage current in ICs has been 
spurred by the continued scaling of subthreshold voltages and gate 
oxide thickness. Both subthreshold and gate leakage currents are 
known to be highly sensitive to process variations due to their 
exponential dependence on many key process parameters [1][2]. 
Furthermore, with regard to environmental variations, it is 
important to implement ICs that have well-distributed temperature 
profiles, and to carefully design supply networks to provide robust 
supply voltage and ground levels throughout the chip. Figure 1 
shows an example of leakage power variation on a 32bit RISC 
processor that we designed with 65nm technology, where the 
leakage power compromises integration density, packaging density, 
and reliability. 

 

 
Figure 1. Leakage power for different levels of variability. 

In general, modern transistors are stressed by high electrics field, 
high temperature, and high switching activity over extended periods 
of time. These stress factors leads to device aging, resulting in 
performance degradation and eventual design failure during the 
expected lifetime of the designs. The MOS transistor aging 
phenomena, such as NBTI (Negative Bias Temperature Instability), 
HCI (Hot Carrier Injection), and TDDB (Time Dependent 
Dielectric Breakdown), are nowadays the most critical device 
degradation mechanisms. They are fast becoming a limiting factor 
in scaling of modern CMOS technologies. For example, NBTI, 
which tends to significantly increase the threshold voltage, exhibits 
wide variations from one wafer run to next and thereby reduces the 
safety margin between actual lifetime of MOSFETs and the 
expected and/or required product lifetime. Note that the NBTI 
effect gets worse at higher temperature. In addition, the HCI effect, 
whereby carriers injected into the gate oxide near the drain end of a 
strongly inverted channel add to the trapped ion density at the 
silicon oxide and substrate interface and thus increase the threshold 
voltage an NMOS transistor, also exhibits wide variations, 
especially resulting in asymmetrical device characteristics after 
stress. Contrary to NBTI, however, HCI gets worse at lower 
temperature [11]. Further details about these phenomena are 
omitted here to save space. Interested reader may refer to [11]. 

The above-mentioned MOS aging phenomena influence the 
performance of the circuit due to corresponding device parameter 
degradation. So far, technology developers have assumed the key 
responsibility to adjust the process technology features and device 
reliability characteristics is to achieve the required lifetime for the 

microelectronic circuits. However, the circuit reliability can no 
longer be the task of process and device engineers alone. Although 
performance analysis tools (e.g., PrimeTime [12]) provide reliable 
bounds on the delay of circuits, they cannot properly account for the 
variability and/or stress inherent in semiconductor process. For 
example, Figure 2 illustrates variational effect in gate-level static 
timing analysis, where gate delays are calculated based on lookup 
tables. Every point in the table represents characterized spice timing 
for cell given particular input transitions and output capacitance. 
Obviously, not all possible input transitions and output capacitance 
values for a given cell can be characterized. In this figure, the closet 
four characterized points in the table are used to interpolate them 
for calculating the delay. Thus, although these analysis tools 
provide the estimate of performance parameters during the design 
time, they cannot guarantee that the resulting performance is 
accurate after fabrication.  
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Figure 2. Variational effect on timing delay. 

3. Resilient Decision Making  
In this section, we present a theoretical framework to construct a 
resilient power management process under uncertainty induced by 
variability. 
3.1 Partially Observable Markov Decision Process 
To capture the impact of variability induced by PVT variations 
and/or stress effects which often result in the uncertainty in the 
performance parameters of interest, the observation can be used in a 
stochastic manner to identify the performance (e.g., power 
dissipation) of the system. In other words, power management can 
be performed under a stochastic environment whose performance 
state is partially observable due to variability. When designing a 
power manager that acts under uncertainty, it is convenient to 
model the power manager in the context of partially observable 
Markov decision process (POMDP) [13], which provides a way to 
model uncertainty in a real world system’s actions and perceptions.  

A POMDP is a special Markov Decision Process (MDP) where 
the state is only partially observable. A POMDP is represented by a 
tuple (S, A, O, T, Z, c) where state space S comprises of a finite set 
of (nominal) states, action space A consists of a finite set of actions, 
and observation space O contains a finite set of observations. T is a 
state transition probability function, Z is an observation function, 
and c is a one-step cost function. The state transition function 
determines the probability of a transition from a state s to another 
state s’ after executing an action a, i.e., T(s’, a, s) = Prob(st+1 = s’ | 
at = a, st = s). 2  The observation function, which captures the 
relationship between the actual state and the observation, is defined 
as the probability of making observation o’ after taking an action a 
that would land the system in state s’, i.e., Z(o’, s’, a) = Prob(ot+1 = 
o’ | at = a, st+1 = s’). We consider a cost function which assigns a 
value to each state and action pair by adopting a conventional 
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denote the time stamp.  



approach, whereby an immediate cost, c(s, a), is incurred when 
action a is chosen in state s. Note that the costs can be set by the 
applications or the developers.  

Instead of making decisions based on the current perceived state 
of the system, the POMDP maintains a belief, i.e., a probability 
distribution over the possible (nominal) states of the system, and 
makes decisions based on its current belief. The belief state at time t 
is a |S|×1 vector of probabilities defined as: bt := [bt(s)], ∀s∈S, 
where bt(s) is the posterior probability distribution of state s at time 
t. Note that Σs∈S bt(s) = 1. Based on the belief state, an action at is 
chosen from a set of available actions. A policy is defined as a 
sequence of mappings from the belief states to actions π = {πt}. 
3.2 Rationale for POMDP-based Power Management  
It is useful to describe how the POMDP can be adapted to the 
power management under uncertainty. In this paper, the POMDP is 
used to model the decision-making problem in a partially 
observable environment. Figure 3 shows the high-level structure of 
the POMDP-based power manager. The proposed power manager 
interacts with an uncertain environment (which is affected by PVT 
variations and/or stress effects) and tries to minimize its long term 
cost by choosing appropriate actions (i.e., voltage-frequency values). 
The actions commanded by the power manager change the 
performance state of the system and lead to quantifiable 
rewards/penalties. In this paper, we consider the case where actions 
incur a cost (i.e., energy dissipation), where the power manager’s 
goal is to devise a policy, which minimizes the total expected 
energy dissipation.  
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Figure 3. Structure of the proposed power manager. 

In our formulation of the decision-making strategy, we define 
state s ∈ S as the dissipated power level, where S is the set of 
available system states. Furthermore, we use an observation (i.e., a 
temperature measurement) to help identify the system state. We 
assume that multiple on-chip thermal sensors provide information 
about the temperatures in different zones of the chip [14].  

As shown in Figure 3, the power manager consists of two 
functional components. The first component is the state estimation 
based on the expectation-maximization (EM) algorithm, which 
predicts the system state s of the system, and the second component 
is a power management policy generation, which assigns optimal 
actions to the system.  

3.3 Power Management Framework 
In a partially observable environment, the belief state is a vector of 
the posterior probability distribution of state s. For example, assume 
that we define three nominal states, e.g., s1 = [0.5 0.8], s2 = [0.8 1.1], 
and s3 = [1.1 1.4] in terms of the range of power consumption 
values (in W). Now, assume the belief state bt(s) is [b(s1) b(s2) 
b(s3)] = [0.1 0.7 0.2]; the probability of being in state s2 is 0.7, 
which means that s2 is the most probable state of the system at time 
t. Figure 4 (a) illustrates a partial observation (i.e., temperaure 
measurement) and its effect on the probability density function.  
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Figure 4. (a) Effect of hidden data on the pdf of the measured 
data and the concept of a belief state, and (b) Use of the ME 

algorithm to estimate the most probable system state without 
having to resort to a belief state representation. 

If we are given a belief state bt for time t and we perform an 
action a and get observation o’, we can compute the successor 
belief state for time t+1 as follows:  
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A key result is that if we maintain the belief state and update it in 
according to Eqn. (1), then using this belief state will give us just as 
much information as the entire action-observation history. This 
shows that the optimal POMDP solution is Markovian over the 
belief state space. In fact, using the belief space as our set of states, 
we can use the transition and observation probabilities to create a 
completely observable, regular (albeit continuous state space) MDP 
that is equivalent to the original POMDP [15]. Note that the 
complexity of computation required by Eqn. (1) for updating the 
belief state grows rapidly with the number of state variables, 
making it infeasible for real-time applications, e.g., online DPM 
techniques. In general, finding policies for POMDP models is 
known to be computationally intractable. In particular, calculating 
exact solutions for the finite-horizon stochastic POMDP problems 
is P-SPACE hard [16]. Therefore, exact solutions cannot be found 
for POMDPs with more than a handful of states. Indeed, solving a 
POMDP problem (i.e., obtaining an optimal policy while 
computing the belief states) is extremely expensive because of the 
complexity of calculating the exact belief state [17]. To overcome 
this difficulty, one is usually forced to estimate the system state by 
some other approach. By doing so, the overwhelming complexity in 
deriving a power management policy for every possible situation is 
avoided. 

We utilize a system state estimation technique based on the 
“expectation-maximization” (EM) algorithm [18], where the 
observations can be viewed as incomplete data. The EM algorithm 
is a general technique which can be used to determine the 
maximum likelihood estimate (MLE) of the parameters of an 
underlying distribution from some given data when the observed 
data is incomplete [19]. Alternatively stated, it is used to find the 
MLE of some parameters in a probabilistic model, where the model 
depends on unobserved latent (hidden) variables. The main 
advantage of the EM in our problem setup is that the EM deals with 
uncertain observation when computing the MLE.  

Let o denote observed data (measurement) and let m denote the 
missing data. Together o and m form the complete data. Notice that 
m can be an actual missing measurement, or in our problem context, 



a hidden source of variation that affects the measurement. Let p 
denote the joint probability density function of the complete data 
with parameters given by vector θ, i.e., we have p(o, m | θ). (θ may 
for example correspond to the mean value and variance of a 
Gaussian distribution.) This function can also be considered as the 
complete data likelihood, that is, it can be thought of as a function 
of θ and expressed as: 

( , | ) ( | , ) ( | )p o m p m o p oθ θ θ=  (2)

by using the Bayes rule.  
The EM algorithm iteratively improves an initial estimate θ0 by 

constructing new estimates θ1, θ2, and so on. Note that an individual 
re-estimation step that derives θn+1 from θn takes the following 
form: 

1 arg max ( )n Q
θ

θ θ+ =  (3)

where Q(θ) is the expected value of the log-likelihood of complete 
data. Since we do not know the complete data, we cannot determine 
the exact value of the likelihood, but given the observed data o, we 
can calculate a posteriori estimates of the probabilities for the 
various values of m. For each set of m values, there is a likelihood 
value for θ, and we can hence calculate an expected value of the 
likelihood with the given values of o's. In our problem setup, Q is 
given by: 

( )( ) log ( , | )
m

Q E p o m oθ θ=  (4)

where it is understood that this denotes the conditional expectation 
of log ( , | )p o m θ  being taken with the θ used in ( | , )p m o θ fixed 
at θn. In other words, θn+1 is the value that maximizes the 
conditional expectation of log-likelihood of the complete data given 
the observed variables under the previous parameter value. The 
expectation Q(θ) may be written as: 

( ) ( | ) log ( , | )Q p m o p o m dmθ θ
∞

−∞
= ∫  (5)

These two steps (Expectation and Maximization) are repeated 
until the convergence of the parameters | θn+1 – θn | ≤ ω, where the 
value of ω is selected by system developers [21]. It can be shown 
that the EM iteration does not decrease the observed data likelihood 
function. However, there is no guarantee that the sequence 
converges to a maximum likelihood estimator. There are a variety 
of heuristic approaches for escaping a local maximum such as using 
different random initial estimates or applying simulated annealing. 

The EM algorithm finds θ that maximizes the complete-data 
likelihood, which in turn removes the effect of hidden variables and 
allows us to calculate the MLE of the system state without having 
to resort to the belief state representation (cf.  Figure 4 (b)).  

4. Resilient DPM 
In this section, we present a dynamic power management technique 
which comprises of a state estimation and a policy generation step. 
4.1 EM-based State Estimation  
The state estimation step corresponds to the estimation of the 
complete observation (o, m), where we use the expectation-
maximization (EM) algorithm. From this information, we can 
identify the system state s from the complete data through the pre-
defined observation-state mapping table. Note that this mapping 
table, which indicates the performance-state of the system based on 
complete observation, is obtained by simulations during design time. 

Figure 5 summarizes the flow of the state estimation, where we 
first set the initial value for vector θ. 
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Figure 5. The flow of the state estimation by the EM algorithm. 

Considering algorithms for state estimation, there are a number 
of other methods for estimation such as moving average filter [10], 
least mean square filter [22], and Kalman filter [23]. In our problem 
setup, we have found that the EM algorithm is more efficient than 
other methods since it provides a parameterized class of density 
functions, which minimizes the computational complexity.  

4.2 Policy Generation 
The policy generation step deals with the value function to 
determine the set of optimal actions. Note that a policy is defined as 
a sequence of mappings from states to actions. 

We develop a policy generation technique by using well-known 
dynamic programming method used to solve problem which 
exhibits the properties of optimal cost. We speak of the minimum 
cost of a system state which is the expected infinite discounted sum 
of cost that the system will accrue if it starts in that state and 
executes the optimal policy. Generally, using π as a complete 
decision policy, this minimum cost is written as 

*

0

( ) min ( )t

t

s E c t
π

γ
∞

=

⎛ ⎞Ψ = ⋅⎜ ⎟
⎝ ⎠
∑  (6)

where γ is a discount factor, 0 ≤ γ < 1, and c(t) is the cost at time t.  
In our problem setup, the minimum cost function is unique and 

can be defined  

* *
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which assert that the cost of a state s is the expected immediate cost 
plus the expected discounted cost of the next state, using the best 
available action. Here, the immediate costs are defined as the 
power-delay product (PDP), i.e., average energy of the system, 
which is incurred due to each state-action pair. By applying 
Bellman’s principle of optimality [24], given the optimal cost 
function, we can specify the optimal policy as  

* *

'
( ) arg min ( , ) ( ', , ) ( ')

a s S
s C s a T s a s sπ γ

∈

⎛ ⎞= + Ψ⎜ ⎟
⎝ ⎠

∑  (8)

Simply stated, the power manager determines the optimal action 
based on Eqn. (8) while utilizing the EM algorithm to estimate the 
system state. The power manager observes the performance of the 
system at each event (e.g., time-based or interrupt-based) 
occurrence. These events occur at so-called decision epochs. The 
task of casting the decision epochs to absolute time units is 
achieved by the system developer. Note that we focus on battery 
operated systems that strive to conserve energy to extend the battery 



life, unlike AC line powered high performance systems that deliver 
maximum performance while guaranteeing performance constraints. 

Given C(s, a) and T(s’, a, s), one way to find an optimal policy 
is to find the minimum cost function. It can be determined by an 
iterative algorithm (cf. Figure 6) called value iteration [25] that can 
be shown to converge to the correct *Ψ  values. It is not obvious 
when to stop this algorithm. One important result bounds the 
performance of the current greedy policy as a function of the 
Bellman residual of the current cost function [26]. It states that if 
the maximum difference between two successive cost functions is 
less than ε, then the cost of the greedy policy (i.e., the policy 
obtained by choosing, in every state, the action that minimizes the 
estimated discounted cost, using the current estimate of the cost 
function) differs from the cost function of the optimal policy by no 
more than 2εγ / (1−γ) at any state. This provides a stopping criterion 
for the algorithm. 

 1:  initialize Ψ(s) arbitrarily
2:      loop until policy good enough 
3:          loop for ∀s ∈ S
4:               loop for ∀a ∈ A
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7: end loop
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9:       end loop
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Figure 6. The value iteration algorithm. 

5. Experimental Results 
In the experimental setup, we applied the proposed DPM technique 
to a 32bit MIPS-compatible processor, which has 5-stages pipeline, 
instruction/data caches, and internal SRAM for code/data storage. 
To apply the effect of variability in this processor, we relied on the 
detailed RTL of the processor synthesized with TSMC 65nmLP 
library, where power numbers (i.e., leakage and dynamic power) 
are achieved through the Power Compiler [12] with the exact 
switching activity information.  

 

 
Figure 7. Probability density function for power dissipation. 

In the first experiment, we analyze the possible variations of the 
processor in terms of power dissipation. By varying process corners 
during the simulation setup, we achieve power numbers for the 
processor after running the tasks. As an application, we perform 
real-time TCP/IP-related tasks (i.e., TCP segmentation and 
checksum offloading [27]) at the designed processor. After running 
a number of simulations, we achieve the probability density 
function for the total power consumption of the processor as shown 
in Figure 7, where the mean value is 650mW and variance σ2 is 3.1 
(i.e., N(650, 3.1)). Next we calculate the on-chip temperature (i.e., 
observation) based on the measured power, which is affected by 

sources of variability. In doing so, we rely on the temperature 
calculation equations of [28]. Note that the temperature values (°C) 
are obtained during the active state of the processor. We use the 
extracted thermal data [29] for PBGA as reported in Table 1, where 
TA is the ambient temperature, θJA is the thermal resistance for 
junction-to-ambient, and ψJT denotes the junction-to-top of package 
thermal characterization parameter. 

Table 1. Package thermal performance data (TA = 70°C). 

 
[°C]

107.90.51

Air velocity

m/s ft/min
TJ_max [°C]TT_max

1.02
2.03

100
200
300

θJAψJT [°C/W] [°C/W]

105.3
102.7

106.7
104.1
101.2

0.51
0.53
0.65

16.12
15.62
14.21

[°C]

107.90.51

Air velocity

m/s ft/min
TJ_max [°C]TT_max

1.02
2.03

100
200
300

θJAψJT [°C/W] [°C/W]

105.3
102.7

106.7
104.1
101.2

0.51
0.53
0.65

16.12
15.62
14.21

 
The second experiment is designed to demonstrate the 

effectiveness of the proposed DPM framework. We first set the 
parameter values for the simulation setup as shown in Table 2, 
where we have a set of three actions {a1, a2, a3}, three states {s1, s2, 
s3}, and three observations {o1, o2, o3}. Note that the actions are 
defined as: a1 = [1.08V / 150MHz], a2 = [1.20V / 200MHz], and a3 
= [1.29V / 250MHz]. The state set {s1, s2, s3} of the processor may 
be defined as the range of power dissipation, where we achieve 
power number through simulations. A set of cost values is defined 
as the power-delay product (PDP) of the processor, where the 
normalized PDP is achieved by multiplying the average power 
consumption by the average execution delay. For example, the cost 
values for each state when action a1 is given are defined as c(s1, a1), 
c(s2, a1), and c(s3, a1), which are 541, 500, and 470.  

Table 2. The parameter values for a given experiment. 
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Figure 8. Trace of temperatures from the thermal calculator 

and from ML estimates. 

Figure 8 shows the traces of on-chip temperature from 
temperature calculation equations based on power measurements 
and that from MLE. Because we do not have a packaged IC 
equipped with a thermal sensor to report the on-chip temperature, 
we estimate the on-chip temperature by utilizing Tchip = TA + P⋅(θJA 
– ΨJT) based on the parameter values provided in Table 1. In this 
equation, P is the simulated power dissipation value. For this 
experiment, we initially set θ0 = (70, 0), where 70°C is the initial 



most probable die temperature. Note that time steps are abstractly 
defined and the power manager issues a command at each time step. 
The results indicate that the proposed estimation exhibits great 
accuracy, where the estimation error is on average less than 2.5°C. 

Simulation results in Figure 9 assess the effectiveness of the 
policy generation algorithm in choosing the optimal action based on 
the information provided in Table 1. We set the discount factor as 
0.5 to evaluate the value function. It is seen that an optimal action is 
chosen to minimize the value function. Note that the conditional 
transition probabilities are given in advance, where extensive 
offline simulations are used to achieve the values of probabilities.  

 

 
Figure 9. Evaluation of policy generation algorithms. 

 

In the third experiment, we compare the proposed uncertainty-
aware DPM technique with conventional DPM techniques 
operating under two different conditions, i.e., worst and best corner 
cases in a 65nm CMOS process technology. The purpose of this 
simulation is to investigate how robustly the proposed approach can 
handle variability during the power management process. The 
optimal DPM policy is achieved by evaluating the value function 
with the derived state transition probabilities, as illustrated in Figure 
8. In our approach, we performed the tasks while varying the 
operating conditions, and identified the system state by using the 
EM algorithm to determine the MLE of the system state given noisy 
temperature observations. Table 3 summarizes these simulation 
results in terms of power, energy (normalized), and energy-delay-
product (EDP) as the figure of merit. Energy and EDP results in 
columns 5 and 6 are normalized to the best case results. Clearly, the 
uncertainty-aware DPM approach cannot do any better than a 
conventional DPM at the best corner case. The expectation, 
however, is that it will outperform the conventional DPM at the 
worst corner case, while ensuring energy efficiency. The results of 
Table 3 confirm this expectation.  

Table 3. Comparing results of our approach with the corner-
based results. 

Our approach

Worst case

Best case

Minimum
Power 

Average
Power

Energy
(normalized)

Maximum
power

0.77W 1.26W

0.96W 1.31W

0.71W 1.12W

EDP
(normalized)

0.97W

1.02W

1.15W

1.14

1.00

1.47

1.34

1.00

2.30

Our approach

Worst case
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Power 

Average
Power

Energy
(normalized)

Maximum
power

0.77W 1.26W

0.96W 1.31W

0.71W 1.12W

EDP
(normalized)

0.97W

1.02W

1.15W

1.14

1.00

1.47

1.34

1.00

2.30

6. Conclusion  
We described a resilient DPM technique which guarantees to select 
an optimal power management policy under variability. The 
proposed DPM framework, which brings PVT variational and/or 
stress effects to the forefront of decision-making strategy, controls 

the uncertain behavior of the system, ensuring energy efficiency. In 
the experimental results included in the paper, we have shown that 
our mathematical framework can handle system’s behavior under 
uncertain information. Being able to handle various sources of 
uncertainty improves the accuracy and robustness of the design. 
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