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Abstract—The emergence of Mobile Ad-hoc Clouds (MACs) 
promises more effective and collaborative elastic resource-infinite 
computing.However, the highly dynamic, mobile,  heterogeneous, 
fractionized, and scattered nature of computing resources 
coupled with the isolated non-cooperative nature of current 
resource management systems make it impossible for current 
virtualization and resource management techniques to guarantee 
resilient cloud service delivery. In this paper, we present 
PlanetCloud, our MAC management platform with an intrinsic 
support for resilient, highly mobile, cooperative, and 
dynamically-configurable MACs. We use PlanetCloud for the 
construction and management of resilient hybrid MACs 
(HMACs) over mobile and stationary computing resources. 
PlanetCloud comprises a trustworthy fine-grained virtualization 
layer and a task management layer. PlanetCloud employs the 
concepts of application virtualization and fractionation using 
intrinsically-resilient and aware micro virtual machines, or Cells 
in our terminology, to encapsulate executable application-
fractions. Such employment isolates the running application from 
the underlying physical resource enabling seamless execution 
over heterogeneous resources, lightweight load migration, and 
low cost of failure. Integral to PlanetCloud is resource forecasting 
and selection mechanism, which provide a MAC with future 
appropriate resource availability in space and time. Further, 
these features enable a large set of mobile, heterogeneous, and 
scattered resources to collaborate through PlanetCloud smart 
management platforms that seamlessly consolidates such 
resources into a resilient HMAC. Using analysis and simulation, 
we evaluate a PlanetCloud-managed resilient HMAC. Results 
show that PlanetCloud can provision high level of resource 
availability transparently maintaining the applicat ions’ QoS 
while preventing service disruption even in highly dynamic 
environments. Additionally, results showed that our approach to 
minimizing the cost of failure and facilitating easy load migration 
elevates the resilience of the HMAC to a great extent. 

Keywords- mobile cloud computing; cloud management; mobile 
services; autonomic computing; collaborative computing 

I.  INTRODUCTION 

Recently, cloud computing and mobile computing have 
attracted much attention. Cloud computing enables delivery of 
computing resources as a utility, which drastically brings 

down the cost. Further, mobile computation devices are 
becoming ubiquitous to support various applications. 
Unfortunately, these resources are highly isolated and non-
cooperative. Even for those resources working in a networked 
fashion, they suffer from limited self and situation awareness 
and cooperation. Additionally, given the high mobile nature of 
these devices, there is a large possibility of failure. Explicit 
failure resolution and fault tolerance techniques were not 
efficient enough to guarantee safe and stable operation for 
many of the targeted applications limiting the usability of such 
mobile resources.  

Principles of cloud computing are being extended to the 
mobile computing domain, which leads to the emergence of a 
new paradigm namely, Mobile Cloud Computing (MCC). 
Recent literature presented two types of MCC architectures:1) 
an MCC offering accesses and service delivery to users 
through their mobile devices where all computations, data 
handling, and resource management are performed in the static 
cloud for the sake of offloading the computational workload 
from the mobile nodes to the cloud [1-3]; and 2) utilizing the 
idle resources of mobile devices and enabling them to work 
collaboratively as cloud resource providers to provide a 
mobile cloud [4-5]. In this paper, and in a series of our papers 
[6-9], we adopt and extend the latter definition of MCC as 
cloud computing, through the cooperation and virtualization, 
of heterogeneous mobile fractionized computing resources 
forming a Mobile Ad-hoc Cloud (MAC) that provisions 
computational services to its users. A Hybrid MAC (HMAC), 
the focus of this paper, utilizes both mobile and stationary 
computing resources. 

Participant nodes in a HMAC depend on the access 
network to connect to the cloud and collaboratively share their 
resources with other nodes in the formed HMAC. Permanent 
connectivity may not be always available. This problem is 
common in wireless networks due to traffic congestion and 
network failures. In addition, mobile nodes can not 
collaboratively contribute to form a HMAC anymore if they 
are susceptible to failure for many reasons, e.g., being out of 
battery or hijacked. Therefore, in such highly dynamic 
networks, a  HMAC may suffer from service disruption and 

COLLABORATECOM 2014, October 22-25, Miami, United States
Copyright © 2014 ICST
DOI 10.4108/icst.collaboratecom.2014.257848



lack of resilience. On the other hand, current resource 
management and virtualization technologies fall short for 
building a virtualization layer that can autonomously adapt to 
the real-time dynamic variation, mobility, and fractioning of 
such infrastructure [4-5]. In general, managing reliability of 
dynamic resources, confined in a HMAC, provides a strong 
motivation for collaborative autonomic management 
capabilities for HMACs to construct a resilient HMAC. 
Moreover, for the cloud to operate reliably and safely, we need 
to accurately specify the expected amount of resources that 
will participate in the HMAC as a function of time to 
probabilistically ensure that we will always have the needed 
resources at the right time to host the requested tasks.  

In this paper, we propose to build and manage a resilient 
HMAC over heterogeneous resources consisting of portable 
mobile devices and semi-stationary on-board computing 
resources of vehicles in a small size hospital scenario. Such 
rather huge pool of interconnected computing resources can 
serve as the basis of a HMAC. Our previous works did not 
consider such a real hybrid model and only considered a MAC 
of mobile nodes. In this paper, we present PlanetCloud as the 
first platform to provide resilient MAC formation and 
management employing the following constructs. 

1) Hiding the underlying hardware resources 
heterogeneity, the geographical diversity concern, and node 
failures and mobility  from the application. PlanetCloud 
utilizes an adaptation of our own CybeX [10]  to construct a 
thin virtualization layer. CyberX uses micro virtual machines, 
Cells, to encapsulate executable application-fractions. At 
runtime, CyberX rebuilds the application from such Cells 
enabling application to execute in total isolation from the host 
resources.  Such isolation enables seamless load migration, 
and cost-effective replication and fault-tolerance enhancing 
the HMAC resilience against potential failures. 

2) Providing a resource forecasting mechanism based on a 
distributed spatiotemporal calendaring mechanism [6-9]. This 
mechanism provides a HMAC with the future spatio-temporal  
resource availability.  

3) Enabling early failure detection. The loosely coupled, 
fractionized nature of PlanetCloud foundation and the resource 
prediction mechanism faciliate Cell runtime relocation from 
high risk resources to more stable ones with minimal-to-no 
interruption to the running application. 

PlanetCloud facilitates the provisioning of the right-sized 
reliable cloud resources anytime and anywhere. This would 
enable ubiquitous and pervasive cloud computing over 
dynamically formed HMACs of fixed and/or mobile resources 
as shown in Fig. 1. Collaborating HMACs would enable a new 
resource-infinite computing paradigm to expand problem 
solving beyond the confines of walled-in resources and 
services by utilizing the massive pool of computing resources, 
in both fixed and mobile nodes. 

The rest of the paper is organized as follows. In Sections II 
we highlight related work. And in Section III, we give an 
overview of PlanetCloud. We then detail the architecture of 
the proposed approach to provide resilient resource and task 
management in a dynamic environment in Sections IV and V, 

respectively. In Section VI, we present our evaluation. Finally, 
we conclude the paper in Section VII. 

 
Figure 1.  PlanetCloud Concept. 

II. RELATED WORK 

Many of the existing MCC solutions focus on how the 
mobile devices’ capabilities could be enhanced by migrating 
resource-intensive computations and process them remotely in 
a stable and reliable cloud environment through computation 
offloading [4][11]. Other work such as Hyrax platform [5] 
introduced the concept of using mobile devices as resource 
providers. However, Hyrax did not consider a general high 
mobility scenario where mobile nodes have different 
configurations. In [12], computing resources on vehicles could 
participate, during the absence of their owners for several 
days, to form a datacenter at the airport. However, this 
scenario is considered as a stable resource environment, such 
that the long-term parking lot of an international airport 
guarantees that there are at least a specific number of vehicles 
parked in the airport at any time and ready for utilization.  

All of the aforementioned works do not fit well in the 
MAC environment because they assume the mobility of 
devices is limited, i.e., connectivity is stable with no 
disconnections and faults. Also, none of these approaches 
considered the formation and maintenance of a MAC using 
heterogeneous resource, i.e., different operating systems and 
virtual hardware configurations.  

In a cloud environment, it may be possible that some nodes 
will become inactive because of failure. Therefore, the entire 
work of unsuccessful jobs has to be restarted, and the cloud 
should migrate these jobs to the other node. The redundancy 
concept is a solution to achieve failover for handling failures 
[13-15].There are basically two options of redundancy: 
replication and retry. Replication is redundancy in space where 
a number of secondary nodes, in stand-by mode, are used as 
exact replicas of a primary active node. They continuously 
monitor the work of the primary node to take over if it fails. 
However, this approach is only feasible for fixed servers or if 
the nodes are few [13]. Retry is redundancy in time where a try 
again process starts after a failure is detected [15]. However, 
most current task scheduling and resource allocation 
algorithms [16-18] did not consider the prediction of resource 
availability or the connectivity among mobile nodes in the 
future, or the channel contention, which affects the 
performance of submitted applications. 

Few literature works [19-21] have discussed the 
implementation of mobile agent technology in the cloud 
computing domain to provide elastic and resilient services. For 



example, authors in [21] presented an architecture to 
implement the Mobile Agent technology in cloud computing 
to realize portability, user’s application can span over multiple 
Cloud Computing Service Provider (CCSPs), and 
interoperability, user’s application can deploy on multiple 
CCSPs. The work presented in [19] provided reference 
architecture to develop elastic distributed executor service 
using mobile agents which can be deployed on the cloud. 
However, all these proposed architectures only targets fixed 
cloud computing platforms and did not address the mobile 
resources scenario.   

III.  PLANETCLOUD OVERVIEW 

Our PlanetCloud architecture enables resilient 
MACs/HMACs (we focus here on HMACs) 
throughcollaborative autonomicheterogeneous resource 
managing. The basic requirement for improving the service 
availability in a HMAC is to continuously be driven by a 
certain number of participating nodes, which reflects a 
guaranteed amount of resource provisioning. To achieve such 
a concept onto a HMAC, our PlanetCloud architecture 
assumes that there are two primary types of nodes, as shown in 
Fig. 2: a fixed control node, and a mobile compute node. Each 
type of node has an agent running on it, as the fundamental 
building block of our management platform. There are two 
types of agents: a Cloud Agent (CA), which runs on a fixed 
control node, and a Tenant Agent (TA), which runs on a 
mobile compute node. The TA manages the participant’s local 
spatiotemporal resource calendar. It connects with all other 
agents involved in the cloud formations, and synchronizes the 
calendar’s content with the global spatiotemporal resource 
calendar on a CA. A CA, as a requester to form a cloud, 
manages the formed cloud by keeping track of all the 
resources joining its cloud. The CA is deployed on a high 
capability node to manage and store the data related to 
spatiotemporal calendars for all participants within a cloud. 

PlanetCloud enables a resilient HMAC, by providing the 
HMAC with the ability to continue providing available and 
reliable services under different interruptions due to 
unexpected node failure our departure. This is achieved by 
predicting the future resource availability, in a CA,using 
different types of databases that are related to the participating 
node, (i.e. the spatiotemporal resource calendar, event 
calendar, the resource profile, data from social networks and 
other databases). In addition, PlanetCloud employs an 
automated recovery through multiple recovery modes. Such 
feature enhances the HMAC resilience against failure and 
expands its support for different application-requirements and 
host-configurations. PlanetCloud enables automated recovery 
to ensure high service availability. PlanetCloud offers a 
prompt and accurate fine-grained recovery, hot-recovery, for 
resourceful hosts executing critical applications, and a more 
resource efficient course-grained recovery, cold-recovery, for 
less critical applications. In hot-recovery, the Cell can have 
one or more fully-alive replicas on different mobile nodes 
which can do achieve virtually no task failure downtime but 
on the account of increasing resource usage. The cold-
recovery might save some of the resources used by replicas, 
by deploying a replacement of the failed Cell, while 

compromising some of the execution states, and increasing the 
failure downtime. 

Our PlanetCloud management platform handles all the 
tasks related to both the Resource Domain concerned with the 
spatiotemporal resource allocation, and the Task Domain 
concerned with the task deployment, migration, revocation, 
etc.. The next sections provide more details about the two 
domains. 

 
Figure 2.  PlanetCloud Architecture Overview. 

IV. RESOURCE MANAGEMENT PLATFORM 

A. Resource Management at Compute Node 

Fig. 3 depicts the building blocks of a Compute Node. 
Resource management components of the compute node are 
detailed as follows. 

1) The iCloud interface: It is an interface between the 
agent and a user/ administrator, or other systems, e.g., social 
networks and other database systems. A user/ administrator 
uses the iCloud interface to manage all data in the 
spatiotemporal resource calendar. In addition, the interface 
enables defining the settings required for a formed cloud. 

 
Figure 3.  Compute Node Building Blocks. 



2) The knowledge unit: It consists of two subunits, a local 
spatiotemporal resource calendar, which includes spatial and 
temporal information about the available resources, and 
information bases, that contains predefined or on the fly 
policies created by a cloud admin. Also, information bases 
contain information about the formed cloud, e.g., Service 
Level Agreement (SLA), types of resources needed, amount of 
each resource type needed, and billing plan for the service, etc. 
The CA uses the updated spatial and temporal information of 
resources as inputs of its prediction service for early detection 
of node unavailability. 

3) Participant Resource Calendaring Service (PRCS): 
PRCS includes a Participant Calendar Manager (PCM) which 
acts as a service controller for managing the records of the 
local spatiotemporal resource calendar. Also, PCM 
automatically monitors the internal state of the participant’s 
resources. A failure of any type of resources affects a 
resource’s ability to do its function in the form of an error or 
no response. To mitigate the impact of resource failure on the 
resilience of the HMAC, PCM interacts with the synchronizer 
to synchronize the spatiotemporal resource calendar with 
aspatiotemporal resource calendar on a control node. On the 
other hand, PRCS provides the trust management services 
with the required data to perform trust and security operations. 

4) The Input/Output (I/O) unit: It provides the required 
communications for different activities such as cloud 
formation requests and responses.  

The lowest layer, of the TA's building blocks, consists of 
the application, networking, and computing resources, which 
are involved in the delivery of the service.  

B. Resource Management at Control Node 

The main building blocks of a Control Node are shown in 
Fig. 4. The functionalities of their resource management are 
described below. 

1) The knowledge unit:A CA has a global spatiotemporal 
resource calendar which includes spatial and temporal 
information, resource profiles, and event calendars of the all 
available resources of a cloud’s participants. Therefore, the 
CA maintains the overall picture of the resource capability 
within the cloud. The CA uses a global task repository to store 
the all tasks within a cloud. 

2) Group Resource Calendaring Service (GRCS): 
Distributed GRCSs operate on the updated data from 
participants’ calendars. These updated data are stored in a 
group spatiotemporal resource calendar. GRCS and PRCS  are 
the two primary types of services forming a global resource 
positioning system (GRPS) [7], for dynamic real-time resource 
harvesting, scheduling, tracking and forecasting. GRCS 
comprises four types of modules:The Group Calendar 
Manager (GCM) module, the Synchronizer, the Prediction 
Service (PS), and the Trust Management Services. GCM acts 
as a service controller for managing records of group 
spatiotemporal resource calendars. In addition, a calendar 
manager feeds the PS with the required data to perform 

resource forecasting. The results of resource forecasting 
enhances the HMAC resilience to failure by early Discovery 
of all different failures that might be encountered at different 
communications, resource availability, or reputability levels. 
For more details about the GRPS and its GRCS and PRCS 
services, please refer to [7]. 

3) Collaborative Autonomic Resource Management 
System (CARMS): We design our CARMS architecture using 
the key features, concepts and principles of autonomic 
computing systems to automatically manage resource 
allocation and task scheduling to affect cloud computing in a 
dynamic mobile environment. 

a) Cloud Manager (CM): It provides a self-controlled 
operation to automatically take appropriate actions according 
to the results of the evaluation received from the Performance 
Analyzer, described below,due to variations in the 
performance and workload in a cloud environment. The Cloud 
Manager manages interactions to form, maintain and 
disassemble a cloud. A Cloud Manager comprises four 
components, a Service Manager (SM), a Resource Manager 
(RM), a Policy Manager (PoM), and a Participant Manager 
(PrM). A SM stores the request and its identifier. The SM 
maps the responses received from the participants with the 
service requests from users, and the result is sent back directly 
to the user. The user defines certain resource requirements 
such as hardware specifications and the preferences on the 
QoS criteria. The Cloud Manager decomposes the requested 
service, upon receiving a cloud formation request, to a set of 
tasks.  Tasks of a requested service need to be allocated to real 
mobile resources.  

 
Figure 4.  Control Node Building Blocks. 



The Resource Manager handles the resource allocation on 
real mobile nodes using its Resource Allocator component. 
Also, the Resource Allocator obtains the required information 
about the available real resources from participants by 
interacting with a GRCS. The Resource Allocator interacts 
with the registry of CA to store and retrieve the periodically 
updated data related to all participants within a cloud. The 
Cloud Manager interacts with CyberX servers to assign a set 
of virtual resources in a cell to these tasks according to the 
received SLA information from the Cloud Manager. The PoM 
prevents conflicts and inconsistency when policies are updated 
due to changes in the demands of a cloud. In addition, it 
distributes policies to other CARMS components. The PrM 
manages the interaction between a cloud requester and 
resource providers, the cloud participants, to perform a SLA 
negotiation.  

b) Monitoring Manager: It includes a Performance 
Monitor unit which continuously monitors the performance 
measured by monitoring agents. Then, it provides the results 
of these measurements to the Performance Analyzer 
component. The workload information about the incoming 
request is periodically collected by the Workload Monitor 
component. 

c) Performance Analyzer: It continually analyzes the 
measurements received from the Monitoring Manager to 
detect the status of tasks and operations, and evaluate both the 
performance and SLA. This helps in early error detection. 
Then,  the results are then sent to both the Account Manager 
and the Cloud Manager for taking actions which lowering the 
risk of downtime. 

d) Account Manager: In case of violation of SLA, 
adjustments are needed for the bill of a particular participant. 
These adjustments are performed by the Account Manager 
depending on the billing policies negotiated by the requester 
of cloud formation. 

V. TASK MANAGEMENT PLATFORM  

PlanetClouduses CyberX to manage the cloud tasks and 
the running applications on the cloud and to handle 
faulttolerancein distributed task execution. CyberX is based on 
a biologically inspired architecture termed as the Cell Oriented 
Architecture (COA). The COA employs a mission-oriented 
application design and inline code distribution to enable 
adaptability, dynamic re-tasking, and re-programmability. The 
Cell, is the basic building block in COA, it is an abstraction of 
a mission-oriented autonomously active resource. Generic 
Cells (Stem Cells) are generated by the host middleware 
termed COA-Cell-DNA (CCDNA), then, they participate in 
varying tasks through a process called specialization. Cells are 
intelligent, independent, autonomous, single-application 
capsules that acquire, on the fly, application specific 
functionality in the form of an executable code variant "The 
specialization process". Cells act as a simple, single 
application virtualization environment (sandbox) isolating the 
executable Logic from the underlying physical resources. Fig. 
5 illustrates an abstract view of CyberX Cell.  Cells are also 
dynamically composable into larger structures “organisms” 
representing complex multi-tasking applications.  An 

Organism is a dynamic structure of single or multiple Cells, 
working together to accomplice a certain mission. CyberX 
uses the COA features enable applications to dynamically 
adapt to runtime changes in their execution environment. Such 
feature enables CyberX to tolerate high frequency task 
preemption and migration that might be induced by failures as 
a consequence of unexpected resource mobility or power 
failure. Due to the nature of our resources the high level of 
heterogeneity is a major concern for task deployment and 
migration. Using CyberX vitalization architecture adequately 
resolves this issue.  

CyberX enables the application to exchange real-time 
status and recommendation messages with the host Cell for 
administrative purposes to enhance the Cell local application 
awareness and to enable application driven adaptation. 
CyberX uses these messages to guide the Cell runtime quality-
attribute manipulation towards accurate and prompt 
adaptation. Further, CyberX collects, analyzes and 
trustworthy-share these messages and status reports, 
constructing a real-time sharable global view of the Cell 
network. 

 
Figure 5.  COA Cell at runtime. 

A. CyberX platform architecture 

CyberX is composed of a set of central powerful nodes we 
will address them as servers. These servers cooperate 
autonomously to manage the whole network of Cells. This 
platform is responsible for the organism creation “composition 
and deployment of Cells”, management, the host side API(s) 
“CCDNA”, real-time monitoring and evaluation of the 
executing Cells, and recovery management. Further, it 
provides the necessary management tools for system 
administrators to manage, analyze, and evaluate the working 
Cells/organisms. CyberX will act as an autonomously 
managed resource and application virtualization platform of 
PlanetCloud.  

1) Task Management at Control Node 
All related task management procedures are performed on 

fixed control nodes as follows. 

a) Auditing and Reputation Management Server (ARMS): 
Its main task is to monitor outgoing or incoming Cell 
administrative messages for the lifetime of the Cell. This 
information is used to assist evaluating the trustworthiness of 
the Cell.  This server cooperates with the recovery tracking 
servers and routing nodes to frequently evaluate the Cell 
behavior for any malicious activities.  This server will hold 
comprehensive reports about each Cell for the lifetime of the 



Cell.  A trust feedback will be generated from ARMS and send 
to the Trust Management Services which helps in the 
evaluation of the trustworthiness of a participant. 

b) Recovery and Checkpoint Tracking Server (RCTS): 
This monitors, and stores checkpoints changes for all running 
Cells. Checkpoint updates are always enclosed as a part of the 
Cell frequent beacon message updates. RCTS is also 
responsible for reporting failure events by comparing the 
duration between consecutive beacon messages to a certain 
threshold matching the reporting frequency settings of each 
Cell. Failure events are validated by comparing the recently 
noticed reporting-delay for a particular Cell to the average 
reporting-delay within its neighbors and other Cells hosted on 
the same host. A Cell failure notice is reported to the global 
management servers with the last known failure recovery 
settings, checkpoint, and variant settings to start deploying 
replacement Cells. 

c) Global Management Server (GMS):The main task of 
this server is to manage the underlying COA infrastructure. 
GMS is responsible for Cell deployment, coordinating 
between servers, facilitating and providing a platform for 
administrative control. GMS is the only server authorized of 
issuing Cell termination signals. It can also force Cell 
migration or change the current active recovery policy when 
needed. GMS is responsible for assigning the infrastructure 
global policy, routing protocol, auditing granularity, 
registering/revoking new hosts, and keeping/adjusting the 
host-platform configuration file. 

d) The Data-Warehouse Server (DWS):It is the main 
components of the infrastructure that participates in the 
separation between the Data, Logic, and Physical-resources. 
DWSs are distributed through the Cell network, they are 
responsible for holding and maintaining all the data being 
processed, and any other sensitive data that the management 
units want to store. All running Cells are not permitted to store 
sensitive data on their local memory. All sensitive data has to 
be remotely stored in a specific DWS through the dedicated 
data channel. DWSs synchronizes their data independently. 

e) Distributed Naming Server (DNS): It is responsible for 
resolving the real host IP/Port mapping to the virtual Cell Id 
and organism names. The working Cells use this mapping at 
runtime to direct incoming and outgoing communications. 
DNS is a major player in the COA’s separation of concerns 
that enables virtually seamless, Cell relocation, and workload 
transition in case of failure recovery. In case of Cell 
movement, the DNS will be instructed by the GMS to 
maintain communication redirection. 

2) Task Management at Compute Node 
GMS uses the resource-forecasting database to allocate 

resources for the CyberX Cells to be deployed on the Compute 
Node. The SM updates the task repository by the tasks that 
should be executed, and the code variants associated with it. 
The GMS encapsulates these variants into one of its Cells 
forming a suitable container that matches one of the available 
resources. The selected resource will be the target of the Cell 
deployment where the CCDNA is installed. That resource 

shall accept the deployment package from the GMS, 
instantiate and execute the Cell. 

In case of failure, or unavailability, the GMS will relocate 
the Cells into new active resource seamlessly. All the concerns 
that might be involved with the task relocation will be 
autonomously and seamlessly handled by CyberX. The details 
of task relocation, recovery in case of failure or performance 
tuning using diversity employment, which has been addressed 
in [10], is omitted from this paper due to space limitation. 

VI. EVALUATION  

A. Working Scenario 

For evaluation purposes, we present a scenario of dynamic 
resources in a small size hospital model (25beds ). The model 
involves different types of mobile devices such as 
Smartphones and Laptop Computers and semi-stationary 
devices such as on-board computing resources of vehicles in a 
long-term parking lot at a hospital. Such rather huge pool of 
idle computing resources can serve as the basis of a HMAC as 
a networked computing center. We start our evaluation by 
predicting the average number of participants in this scenario, 
which reflects the amount of computing resources that might 
cooperate to participate in a HMAC. Then, we perform 
evaluations, using the obtained average number of 
participants, to study the effect associated with the 
performance of the formed HMAC. 

B. Expected Number of Participants in a Resource Pool 

We predict the average number of participants of a HMAC 
formed at the hospital as follows. Patients arrive at a time 
dependent rate λT(t), independent of the number of participants 
already participating in the resource pool at the hospital. The 
departure rate of participants is µT(t). Further, we assume that 
for all t≥0, λT(t) and µT(t) are bounded by the constants M1, m1 
,M2, m2, where (0< m1; 0< m2) such that 

m1 ≤ λT(t) ≤  M1;   m2 ≤ µT(t) ≤   M2        (1) 

Consider the event {N(t) = k} occurs if the resource pool at 
the hospital contains k patients at time t, where (1≤ k ≤ N). 
The probability that the event {N(t) = k} occurs is Pk(t).  

Pk(t) = Pr [{N(t) = k }]                 (2) 

We consider the general case where λT(t) and µT(t) are 
integrable functions as in [14]. So that if the expected number, 
E[NT(t)], of patients in the hospital at time t converges, the 
limiting behavior of E[NT(t)] as t →∞  can be written as 

Lim t→∞E[NT(t)] =   Limt→∞  (λT(t)/µT(t))          (3) 

Where,  

        (4) 

Where n0 is the number of patients in the hospital at t=0. 
The success probability, p(t) , is given by 

                                (5) 

Patients arrival, λT(t), and departure, µT(t), rates into/from 
the hospital are periodic functions of time, and can be obtained 
as following: 



λT(t) = a + b sin θ (t)                           (6) 

µT(t) = c + d sin θ (t)                          (7) 

Where a, b, c, and d are constants. 

We can use the previous equations to get the expected 
number of cars, E[Nc(t)], in the parking lot at time t, where  a 
relationship do exist between traffic and the number of 
arriving/departing patients. Therefore, we can model the 
expected number of cars as a percentage factor, v, using the 
following cars arrival, λC (t), and departure, µC (t),  rates 

λ�(t) = v*λ�(t)                  (8) 

µC(t) = x+ y sin θ (t)                             (9) 

Similarly, we can calculate E[Nc(t)] and we set the number 
of patients’ cars in the hospital at t=0 to be equal v*n0. The 
limiting behavior of  E[Nc (t)] as t →∞  can be written as 

Lim t→∞E[Nc (t)]  =   Limt→∞  (λC(t)/µC(t))      (10) 

Let E[Nm(t)] be the expected number of patients’ mobile 
nodes, in the airport at time t, where each patient holds a 
mobile node. This allows us to write 

E[Nm(t)]   =E[NT(t)]                          (11) 

In addition, we consider the resources of the hospital’s 
employees as valuable participants in the formed cloud. Such 
resources may include the computational power of the 
employees’ mobile devices as well as on-board computing 
resources of employees’ cars in the employee parking lots at 
the hospital. We set the expected number of employees, 
E[Ne(t)],   to be 

E[Ne(t)]   = Emin                                            (12) 

Where, Emin is the minimum number of employees that 
should be located in the hospital in their regularly scheduled 
shifts.   

Similarly, we set the expected number of employee cars, 
E[Nec(t)],   as a percentage factor, f, of the number of 
employees. We can write 

E[Nec(t)]   = f*E[Ne(t)]                         (13) 

The total expected number of participants, E[Np (t)], in the 
airport can be obtained by 

E[Np (t)]   = E[Nc(t)]  + E[Nm(t)]   + E[Nec(t)]   +E[Ne(t)]   (14) 

Using the previously obtained expected number of 
participants, we can get the total number of available cells 
hosted by participants in a total resource pool.  For example, 
the on-board computing resources of a vehicle can host an 
expected number of cells equals V cells while a Smartphone or 
Laptop Computer can host expected number of cells equals M 
cells. Therefore, the total expected number of cells could be 
calculated as a function in the number of Laptop Computers 
and Smartphones. 

Using the previous equations, we set the simulation time to 
60 hours. We assumed that at t = 0, n0 equals35 patients. 
Similarly, we set the number of full-time staff employed, Emin, 

equals 35employees [22]. We set θ(t) to be πt/12 for a time 

unit equals one hour. We use a quasi-periodic time-dependent 
arrival and departure rates as follows. 

λT(t) = 32+16[1+2exp(-0.2t)] sin (πt/12)          (15) 

λC(t) = 0.3* (32+16[1+2exp(-0.2t)] sin (πt/12))     (16) 

Where,  

µT(t) = µC(t) = 2+ [1+ exp(-0.2t)] sin (πt/12)      (23) 

We computed the expected number of mobile nodes at 
time t as shown in Fig. 6 shows E[Np (t)]. The expected 
number of mobile nodesdropped as illustrated in Fig. 6and 
settles down to a constant value at 51after t > 20 hours of 
simulation. The pattern of the unstable fluctuation, before 
stabilization, depends on the probability of the departure of 
initially participating nodes and the exponential component of 
arrival and departure rates. Similarly, Fig. 7 shows the 
expected number of cars in the parking lot of the hospital 
stabilizes to a constant number at 19 after 20 hours. 

Next, we turned our attention to compute the expected 
number of participants in the hospital versus time. Fig. 8 
shows E[Np (t)]  plotted against time. The expected number of 
participants dropped as illustrated in Fig. 8. E[Np (t)]  
stabilizes at 70 participants after t > 20 hours of simulation.  

 
Figure 6.  The expected number of mobile nodes versus time. 

 
Figure 7.  The expected number of cars versus time. 

 
Figure 8.  The expected number of participants versus time. 



C. Performance Evaluation 

In this part, we start our evaluation by studying the effect 
associated with execution of applications in a HMAC, consists 
of stationary and mobile devices, using different scheduling 
algorithms, .i.e., Proactive Adaptive List-based Scheduling 
and Allocation AlgorithM (P-ALSALAM) [9], which 
determines the best participants based on the availability of its 
resources to participate in a cloud and the random-based 
algorithm, which does not use this information, where random 
mobile nodes with random availability are selected to execute 
the submitted application. 

To simulate the HMAC environment in hospital, we have 
extended the CloudSim simulator [23] to support the mobility 
of nodes by incorporating the Random Waypoint (RWP) 
model.  

A HMAC consists of N heterogeneous nodes, mobile/ 
stationary participants, characterized by the number of 
processing cores. CPU performance is defined in Millions 
Instructions Per Second (MIPS), amount of RAM, storage and 
network bandwidth.  

In our evaluation model, an application is a set of tasks 
with one primary task. Each task has a pre-assigned instruction 
length and runs in a Cell. A Cell matches the smallest 
computational power available in any participants, which is 
simulated as a single virtual machine (VM) deployed on a 
participant. A VM can be migrated out from the participating 
node as the node becomes unreliable to execute a task. 
Migrations happen when communications are established 
among participating nodes. VMs on participating nodes could 
only communicate with the VM of the primary task node and 
only when a direct ad-hoc connection is established between 
them. For simplicity, a primary node collects the execution 
results from the other tasks which are executed on other 
participating nodes in a cloud. There is only one cloud in this 
simulation. For scheduling any application on a VM, first-
come, first-served (FCFS) is followed.  

For calculating the collision delay, we consider the worst 
case scenario where each node has a packet to transmit in the 
transmission range. 

We modify the simulation to include spatiotemporal data, 
future availability, obtained from the calendaring mechanism. 
Also, we consider that participating nodes cannot always 
function well all the time and may fail. In our evaluation, we 
only consider the cold-recovery mode in case of node failure. 
We set the number of inactive nodes to be sampled following 
a Poisson Process during a time t. We suppose that the 
distribution of detection time of failure is uniform from 0 to 1 
second. Detection time represents the length of a period from 
the time when a participant starts crashing to the time to be 
suspected. 

1) Metrics and Parameters  
We evaluate the average application execution time, which 

is the time elapsed from the application submission to the 
application completion. Also, the mean number of VM 
migrations is evaluated, which is the number of VM 
migrations during the simulation time. 

2) Assumptions 
• A SaaS model is only considered in our model.  

• Communication between nodes is possible within a 
limited maximum communication range, x (km). 
Within this range, the communication is assumed to be 
error free and instantaneous. 

• The distribution of speed is uniform. 

• A participant may have many cells running on it. 

3) Simulation Setup 
We consider a HMACat a small size hospital, where a 

HMAC is composed of the previously obtained stabilized 
number of mobile nodes, in Fig. 6, and stabilized number of 
semi-stationary cars, in Fig. 7, with heterogeneous 
characteristics: 512 or 1024 MB RAM, 4 GB Storage, and 54 
MB bandwidth. Each mobile node may have one or two cores 
with processing capabilities of 2000 or 7500 (MIPS), 
respectively. In our evaluations, we create VMs each has one 
processing core with processing capability 1256 MIPS and 
512 MB RAM.  

Results of our evaluations are collected from different 
simulation runs and the value of sample mean is signified with 
t-student distribution for a 95 % confidence interval for the 
sample space of 30 values in each run. 

In our evaluation, we consider that every car has a fixed 
location. We consider that every participating car can always 
function well all the time with high reliability and does not 
fail. Also, the communication among cars is always possible 
within the hospital. However, we consider that the mobility 
pattern of mobile nodes follows a Random Waypoint (RWP) 
model. A mobile node moves along a line from one waypoint 
to the next waypoint. These waypoints are uniformly 
distributed over a unit square area. At the start of each leg, a 
random velocity is drawn from a uniform velocity distribution. 
Also, each node has an average speed equals 1.389 (m/sec). 
We consider that mobile nodes are different in their reliability, 
in terms of future availability, which follow the values of the 
arrival rate of inactive nodes. 

4) Results 
The average execution time of an application is 

investigated at different values of the arrival rate of inactive 
nodes, ranging from 1/45 to 1/15 (nodes/sec). We consider a 
small-sized hospital (25 beds) with total number of 
participants equals 70 (19 cars and 51 mobile nodes). Also, we 
consider that each node has a transmission range equals 0.2 
km. We consider one application is submitted to be executed, 
with a number of tasks equals to 20, and we set the task length 
to be equal to 500000 MI. 

Fig. 9 shows that at a larger value of arrival rate of inactive 
nodes, e.g. 1/15 (nodes/sec), the worst performance is obtained 
than in the case of results at a smaller arrival rate of inactive 
nodes, e.g. 1/45 (nodes/sec). This is because of the probability 
a node could fail is high when compared with a lower arrival 
rate of inactive nodes value.Consequently, the average number 
of migrations of a VM increases when the arrival rate of 
inactive nodes is increased as shown in Fig. 10.  



The node failure forces a VM to migrate to another reliable 
node. This leads to an extra time overhead of VM migration 
which is added to the execution time of an application. These 
results showed that our PlanetCloud performs well in terms of 
the average execution time of application with a smaller 
number of VM migrations even in case when a large number 
of mobile nodes have left the HMAC. Also, results showed 
that PlanetCloud has a better capability to minimize the delay 
overhead added to the average execution time of an 
application due to mobility of participants than the case of 
random selection of participant nodes. 

 
Figure 9.  Average execution time of an application when applying different 

reliability based algorithms at a small-sized hospital (25 beds). 

 
Figure 10.  Average number of VM migrations when applying different 

reliability based algorithms at a small-sized hospital (25 beds). 

In the next evaluation, we compare results of three cases: a 
mobile nodes scenario, a stationary nodes scenario, and a 
hybrid nodes scenario. In a mobile nodes scenario, all 
participants of a MAC are mobile nodes and each node has a 
transmission range equals 0.2 km, and its average speed equals 
1.389 (m/sec). In a stationary node scenario, each participant 
has a fixed location, and the communication among mobile 
nodes is always possible within the hospital.In a hybrid nodes 
scenario, some participants are mobile nodes and others are 
stationary nodes. The results of this evaluation, as depicted in 
Fig. 11, showed that the average execution time of an 
application at the stationary scenario has the best performance 
compared with the case of hybrid and mobile scenarios, at the 
same arrival rate of inactive nodes, where the participants are 
always reliable and connected with no overhead of VM 
migrations. Also, this figure shows that a worst performance is 
obtained at the mobile scenario where the reliability of 
participants are changing and the connectivity of these 

participants are not stable. However, an adequate  performance 
could be obtained at the hybrid scenario, where some cells are 
deployed on  stationary reliable nodes and others are deployed 
on mobile nodes with variable reliability, which minimizes the 
effect of migration delay in case of a mobile node’s failure. 

 

Figure 11.  Performance comparison among different MAC scenarios when 
applying P-ALSALAM algorithms at a small-sized hospital. 

Fig. 12 depicts a comparison between the results of 
applying both P-ALSALAM and random node selection  
algorithms in terms of the average execution time of an 
application when we consider different communication ranges 
, ranging from 0.1 to 1 (km). We perform this evaluation with 
an arrival rate of inactive nodes equals 1/45 (nodes/sec). 
Where, we consider that the effect of reliability of mobile 
nodes is neglected at this arrival rate of inactive nodes. The 
results show that the average execution time of an application 
has a higher value at a small communication range, e.g. 0.1 
(km).This is because the communication delay is dominant. 
While, a better performance is obtained at higher 
communication ranges, e.g. 1 (km). Results show that P-
ALSALAM significantly outperforms the random node 
selection  algorithm in terms of the average execution time of 
an application at a small transmission range, e.g. 0.1 (km). 
However, this evaluation provides that there are no significant 
differences between results of the two cases, applying P-
ALSALAM/ random node selection algorithms at a larger 
transmission range, e.g. 1 (km).  This is because at a 
transmission range equals 1 km, we can neglect the effect of 
the connectivity, i.e. a node is almost always connected with 
others. 

 
Figure 12.  Average execution time of an application vs. communication range 

(km) when applying P-ALSALAM algorithms at a small-sized hospital. 



Our findings can be summarized as follows. 

• A better performance may be obtained, even at a 
shorter transmission range, if we apply our P-
ALSALAM algorithm. This is because our algorithm 
frequently reschedules the delayed tasks and this 
minimizes the effect of communication delay.  

• The performance is affected by the percentage of the 
number of fixed nodes within the total density of 
available nodes. It means the more fixed reliable nodes, 
participate in a HMAC, the less dependency on mobile 
variable reliability nodes. This could enhance the 
performance of the submitted application. 

VII.  CONCLUSION AND FUTURE WORK 

The combination of cloud computing and mobile 
computing are leading  to the emergence of MACs that would 
provide new opportunities to efficiently and collaboratively 
utilize the ever-increasing pool of computing resources 
available on mobile devices. In this paper, we presented a 
platform for resilient HMAC management with an intrinsic 
support for highly-mobile heterogeneously-composed and 
dynamically-configured HMACs. PlanetCloud is powered by 
an autonomously managed virtualization layer for 
encapsulating cloud applications and facilitating safe and 
reliable execution over scattered heterogeneous resources. 
PlanetCloud provides multiple recovery modes which enhance 
the system resilience and cover different application 
requirements and host-configurations. Through analysis and 
simulation, we evaluated a HMAC.Results showed that our 
PlanetCloud always performs well in terms of the average 
execution time of application with a small number of VM 
migrations even in case of unstable environment. Also, results 
showed that PlanetCloud enabling resource collaboration 
enhanced the cloud capability to reduce the delay overhead 
added to the average execution time of applications due to the 
lack of connectivity of participants. Our ongoing research 
seeks to develop a security mechanism to preserve the privacy 
and security constraints of MAC/HMAC resource provider, 
while allowing multiple users to share autonomous resources.  
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