
Resilient Hybrid SatCom and Terrestrial Networking

for Unmanned Aerial Vehicles

Paresh Saxena, Thomas Dreibholz, Harald Skinnemoen, Özgü Alay,

M. A. Vazquez-Castro, Simone Ferlin, and Guray Acar

Abstract—Today, Unmanned Aerial Vehicles (UAVs) are widely
used in many different scenarios including search, monitoring,
inspection, and surveillance. To be able to transmit the sensor
data from the UAVs to the destination reliably within tangible
response times to the relevant content is crucial, especially for
tactical use cases. In this paper, we propose network coded
torrents (NECTOR) to leverage multiple network interfaces for
resilient hybrid satellite communications (SatCom) and terrestrial
networking for UAVs. NECTOR is significantly different from
the state-of-the-art multipath protocols such as multipath TCP
(MPTCP) as it does not require any additional packet sched-
uler, rate-adaptation or forward error correction. We present
the design and implementation of NECTOR, and evaluate its
performance compared to MPTCP. Our experimental results
show that NECTOR provides goodput (up to 70%) higher than
MPTCP with 5.49 times less signaling overhead.

Index Terms—Network coding, torrents, UAVs, drones, Sat-
Com, cellular networks, multipath transmission, MPTCP.

I. INTRODUCTION

The civilian Unmanned Aerial Vehicle (UAV), also known

as “drones”, market is taking off due to significant improve-

ments in robotics and technology, which also lead to numerous

new applications including search, monitoring, inspection and

surveillance. Drones may often replace manned flights, by

taking the risk of losing lives out of the equation. Many

applications, such as pipeline monitoring, have high accident

risks due to flights in difficult conditions, e.g. at low altitude

with potential high wind gusts. Unmanned flights can be

also conducted at night and for longer duration compared to

manned flights.

Drones are equipped with different sensors, and users need

best possible sensor data within tangible response times to the

relevant content, especially for tactical use cases. For example,

cameras are the most common sensors that are used either

as the payload itself, for monitoring other operations, or for

providing a remote pilot a First Person View (FPV) live video.

P. Saxena is with BITS Pilani, Hyderabad, India (e-mail:
psaxena@hyderabad.bits-pilani.ac.in)

T. Dreibholz is with the Simula Metropolitan Center for Digital Engineer-
ing, Oslo, Norway (e-mail: dreibh@simula.no).

H. Skinnemoen is with AnsuR Technologies AS, Oslo, Norway (email:
harald@ansur.no)

M. A. Vazquez-Castro is with Autonomous University of Barcelona,
Barcelona, Spain (e-mail: angeles.vazquez@uab.es.)

Ö. Alay is with University of Oslo and Simula Metropolitan Center for
Digital Engineering, Oslo, Norway (e-mail: ozgua@ifi.uio.no).

S. Ferlin is with Ericsson AB, Stockholm, Sweden (e-mail: si-
mone.ferlin@ericsson.com).

G. Acar is with the European Space Agency, Noordwijk, The Netherlands
(e-mail: Guray.Acar@esa.int).

Streaming video requires a good communication channel,

and considering the drones often fly in very remote areas,

the only reliable form of communications is via satellites.

Satellite communications (SatCom) can be both, expensive and

limited in capacity. Occasional cellular coverage via terrestrial

networks may be available, but, in general, these are designed

for ground and not aerial coverage. Therefore, there exists

many coverage holes. Using satellite together with cellular

when available will still provide gains even if the extent of the

cellular availability is in general unknown. Thus, in this paper,

we focus on the drone use case, and we study the benefits of

using the combination of one reliable low-bandwidth SatCom

with several potential high capacity cellular networks with less

availability and reliability, in order to enable resilient and high

capacity communication for the drones.

Simultaneous use of multiple networks can lead to signifi-

cant performance improvement in terms of reliability, through-

put, traffic offloading, improved quality of service, etc. [1]–[4].

However, combining multiple networks with heterogeneous

characteristics is challenging. This challenge can partially be

addressed with Multi-Path TCP (MPTCP) [5], which is a

well-known protocol that leverages multiple networks simul-

taneously to provide reliability and bandwidth aggregation.

However, MPTCP’s widely adoption is hindered due several

factors [6], and the protocol inherits several of the well-

known challenges with TCP such as head-of-line blocking.

Furthermore, strenuous efforts should be made to utilise the

aggregated capacity when network conditions change rapidly,

and for each network individually, since the scheduling deci-

sions need a robust estimation of the capacity of each network,

which, in a UAV scenario, may be rapidly changing.

In this paper, we present the design and implementa-

tion of Network Coded Torrents (NECTOR), an UDP-based

application-level multipath solution. Our primary use case is

a source node located remotely, e.g., an UAV, connected with

a set of networks e.g. satellite, 3G/4G, radio, as shown in

Fig. 1, sending data for tactical Intelligence, Surveillance and

Reconnaissance (ISR) operational video. Although NECTOR

is a generic protocol that can be used in other scenarios, in

this paper we focus on addressing the challenge of providing

resilient communications for UAVs that are equipped with

multiple networks with varying coverage and capacity. Our

network-coded torrent-based approach jointly tackle the above

challenges using two key technologies: torrents [7] and Net-

work Coding (NC) [8]. The torrent-based strategy requires no

additional rate adaptation per network, since it is driven by



Fig. 1: Use case: UAV is sending data to a remote location over different networks including satellite and terrestrial networks.

the packet requests from the receivers. Additionally, there is

no need for designing an efficient scheduler to distribute and

track packets when NC is used, since linear combinations of

the same packets are sent instead of uncoded packets.

The main contributions of this paper can be summarized as:

• We design and implemented an UDP-based application-

level multipath data transfer solution NECTOR atop of

two key technologies: torrents and NC. NECTOR is

a comprehensive multipath networking solution without

the need of scheduling, rate-adaption or forward error

correction algorithms.

• We conduct extensive evaluations with NECTOR and

compare its performance against MPTCP when multiple

networks are available. We focus on the combination of

low bandwidth and high reliable SatCom with cellular

networks with lower availability and average reliabil-

ity. Our results show that NECTOR provides up to

70% higher average goodput when the networks vary

slowly but are unavailable for longer duration.

II. RELATED WORK

There are several proposals leveraging the benefits of

NC together with the benefits of multipath transport using

MPTCP [9]–[14]. However, they are mainly focusing on the

integration of NC on the TCP level to provide a sub-flow

selection control policy for network-coded packets, i.e. NC is

applied on each TCP connection individually. These solutions

inherit several TCP shortcomings, e.g. poor performance over

networks with high losses and high delays, and they are

also unable to fully profit from the benefits of multipath

transport. In [13] Pseudo-Random Network Coding (PRNC) is

also proposed for MPTCP, with the goal of reducing the NC

overhead and increase the overall throughput. However, PRNC

has shown to not scale with re-encoding at the intermediate

nodes [1], [14]. One of the reasons is that while it is easy

to select a seed for the encoding vector at the source, it is

not straightforward to do the same for the re-encoding vector

at intermediate nodes. To make this possible, an extension of

PRNC requires the synchronisation of all nodes and potential

additional complexity with large lookup tables.

For proposals integrating network coding with torrents,

in [17], the authors investigate the performance of network

coding and torrents for peer-to-peer content distribution net-

works followed by [18] and [19] for vehicular ad-hoc networks

and Bluetooth, respectively. Furthermore, [20] and [21] verify

the feasibility of a hybrid cellular and vehicular-to-vehicular

(V2V) collaborative content distribution network. Finally, [22]

studies the performance of chunked NC in wireless cooperative

downloads. Our work departs from these, where we investigate

the benefits of NC and torrents for content distribution over

multiple network interfaces. NECTOR uses network coding

to provide both resilience against network outages and to

counter for packet losses. Following this area of work, we have

compared our proposal with state-of-the-art MPTCP protocol.

III. NECTOR DESIGN

In this section, we first describe the system model we

considered and then we provide an overview of the NECTOR

protocol and describe the torrents’ operation. We then present

how NC is incorporated into the system and then finally

discuss the implementation aspects.

A. System Model

Let us consider that a source node, e.g., UAV is connected

to a destination node, e.g. control center, via f networks as

shown in Fig. 2. Each network is characterized by bandwidth,

delay and packet loss. Let us denote bi (in Kbps), di (in ms)

and pi (in %) as the bandwidth, delay and packet loss of the

i-th network, respectively.

At the source node, the data is segmented into small

files, referred as Datagrams (DGRAM). These datagrams are

transmitted using torrent-based technology [7]. Each datagram

is further segmented into several small chunks. Each chunk is

segmented into several slices. Fig. 3 illustrates the integration

of the NECTOR in the end-to-end protocol architecture.

B. Overview of NECTOR Protocol

An overview of the NECTOR protocol and its data units is

presented in Fig. 3. For transmission, a DGRAM is encoded

into chunks; each chunk is further encoded into slices. We

assume the size of each datagram D is nD (in bytes). We

denote the j-th chunk as Cj , and its size as nc (in bytes) where

j = 1, 2, . . . , n with n =
⌈

nd

nc

⌉

as the number of chunks per

datagram. We denote the k-th slice as Sk and its size as ns (in

bytes) where k = 1, 2, . . . ,m with m =
⌈

nc

ns

⌉

as the number of

slices per chunk. Then, we have D =
[

C1 C2 . . Cn

]

and Cj =
[

D1 D2 . . Dm

]

.



Source Destination

b1, d1, p1

b2, d2, p2

bf, df, pf

.

.

Fig. 2: System model illustrating the multipath communication

between a source node and destination.

C. Torrents Operation

The operations of the NECTOR protocol with torrents can

be summarised as follows: First, the torrent file that describes

the hash table, which contains key values of chunks, is sent

to the receiver. This assures the verification of integrity and

authenticity. Torrents have a receiver-driven method, where it

pseudo-randomly asks particular chunks or a set of chunks

from the sender. Once these are received, new chunks are

requested. In this way there is load balancing on all the

networks and a slow network would send fewer packets [7].

The receiver-driven packet request mechanism removes most

of the scheduling complexity at the sender side and the need

to estimate the network capacity per network. Although the

torrents can use any underlying protocol, we choose to use

UDP. Compared to TCP, NECTOR ensures reliability at the

application layer through NC.

D. Network Coding

Sending chunks via torrents over a network with possible

outages and losses may reduce the performance. Therefore,

to assure reliability, NC is performed and coded packets are

generated. As illustrated in Fig. 3, NC is implemented at both,

chunk and slice level. The chunk level NC assures the delivery

of network-coded chunks via different paths without the need

of any specific scheduling, while the slice level NC assures the

reliability against packet losses. Each slice is then transported

as UDP datagrams over the different networks to the receiver.

1) NC at Chunk Level: We call “chunk NC generation” a

set of n chunks, denoted as Xc ∈ F
nc×n
q with elements chosen

from a finite field Fq . We use rateless NC at chunk level. The

encoder can generate a fountain of (coded) chunks and stop

transmission only when it receives the signal from the receiver.

This is the best for torrent-type and larger blocks, where there

is time to stop or signal to continue sending more chunks.

2) NC at Slice Level: We call “slice NC generation” a set

of Ks slices, denoted as Xs ∈ F
ns×Ks

q . We assume per-slice

NC generation block coding with block length Ns. We denote

ρ = Ks

Ns

as slice-level coding rate.

In both cases, we assume each coded chunk is generated by

a linear combination of the chunk NC generation with coding

coefficients from either deterministically or randomly chosen

columns of Pascal matrices Pq of size q × q, see [23].

Fig. 3: NECTOR protocol stack and data units overview.

E. Implementation

NECTOR is implemented in C++ using libraries that make

it independent of the underlying operating system. The sender

side accepts DGRAMs from the application. The datagrams

are passed by shared memory. Once there is a new datagram,

the sender starts producing the chunks, creating the torrent

file. The torrent file is provided to a tracker (fixed at known

addresses), which signals the availability of the new file to the

receiver. Then, the receiver starts to initiate chunk transfers

by requesting a chunk over each path. The sender transmits

a chunk over a path as bursts of its configured number of

slices. Since each path transports only one chunk at a time,

there is no need for congestion control. Note, that the paths

are independent and – in case of UAV operations – each

path is exclusively usable. Once a chunk is decodable (i.e.

a sufficient number of NC-coded slices has been received to

successfully compute the chunk), or no further slice has been

received within a configured timeout (i.e. the chunk transport

has failed), a new chunk is requested by the receiver on

the path. The receiver signals the sender to stop the entire

transmission once it has a sufficient number of NC-coded

chunks received to decode the full datagram. If there is a new

torrent file available while the transmission is still in progress,

the current transmission is aborted (since the datagram became

obsolete, and continuation would be useless) and the transfer

of the new datagram is initiated instead. The datagram is then

passed by shared memory to the application.

IV. MEASUREMENT SETUP AND PERFORMANCE METRICS

In order to better understand the impact of different network

settings on NECTOR, we describe our constructed testbed

together with the experimental setting in Subsection IV-A and

the performance metrics in Subsection IV-B.

A. The Testbed Setup

We built a small scale testbed to evaluate the performance

of NECTOR over off-the-shelf products that can be used

in UAVs. Figure 4 shows our testbed consisting of two

fanless mini-computers IPC3 (Intel Core i7@2.7 GHz, 4 GiB



Fig. 4: Testbed setup

SDRAM) and three single board computers Odroid-XU4. The

mini-computers are used as sender and receiver, while Odroids

are used for network emulation. Two IPCs are connected via

three Odroids via Ethernet. All Odroids run Linux Traffic

Control (tc) with Network Emulation (netem) and the Token

Bucket Filter (tbf) queuing discipline to limit bandwidth, vary

delay and add network impairments such as packet loss. For

most of the measurements, we focus on the scenario in Fig. 4

with three network paths and sender and receiver with three

interfaces. All machines run Ubuntu Linux 16.04, and the

IPC3s run the Linux kernel v4.19 with Linux MPTCP v0.95.

We consider four scenarios as shown in Table I. In each

scenario, network 1 is configured to behave as a satellite

link while networks 2 and 3 are configured to behave as low

bandwidth cellular links, mimicking 2G/3G coverage in rural

areas. The bandwidth and delay characteristics of network 1, 2,

and 3 are illustrated in Table II. The experiments’ bandwidth

settings follow the variations shown in Fig. 5 with a two-state

on-off model: The ith network is available during tON
i and

unavailable during tOFF
i . In other words, the bandwidth is bi

during tON
i and 0 during tOFF

i .

Furthermore, we have considered that network 1 (satellite

link) is always available while networks 2 and 3 availability

(cellular links) vary over time based on Fig. 5. Such a con-

figuration is common in cellular networks as 2G/3G networks

can have coverage holes, especially in high altitudes and rural

areas, and as the UAVs travel, it will get in and out of coverage.

The on/off time duration is configured such that network 2

is mostly available (66.67% of total time) and network 3 is

hardly available (33.33% of total time) in scenarios 1, 2 and

3. In scenario 1, we are emulating fast bandwidth variations

and in scenario 3 we are emulating slow bandwidth variations.

Note that in case of scenario 1, 2 and 3, we considered that

all three networks are available at the start of the experiments.

Finally, we have also considered the scenario where on/off

time duration varies randomly between 1 and 10 seconds. In

this case, tON
i = rand(1, 10) and tOFF

i = rand(1, 10), i.e.

they take random values between 1 and 10 seconds.

B. Performance Metrics

The total time taken to transfer a datagram from the sender

to the receiver is given by T (in s). The application layer

Time (s)

B
a
n
d
w

id
th

 (
K

b
p
s
)

Time (s) Time (s)
0 00

b
2

b
3

b
1

t
2

OFF
t
1

OFF

t
2

ONt
1

ON t
3

ON

t
3

OFF

Fig. 5: Two-state on-off model for bandwidth variations

performance is defined as goodput (γ) (in Kbps) as the number

of useful information (nv) delivered at the receiver per unit of

time:

γ =
8× nv

T
. (1)

The utilization ratio (θ) is given as the goodput divided by the

sum of the total bandwidth of all f networks:

θ =
γ

∑

i bi(1− pi)
. (2)

The receiver has f interfaces corresponding to f networks,

where nr
i as is the number of bytes received, and ns

i as is the

number of bytes sent by the ith interface of the sender. The

total number of bytes at the receiver are: nr
all =

∑

i n
r
i , where

overhead (η) is defined as additional bytes nr
all − nd divided

by the datagram size nd:

η =
nr
all − nd

nd

. (3)

Finally, we also define µi as the percentage of network traffic

load shared by the ith network:

µi =
nr
i

nall

× 100. (4)

V. RESULTS

In this section, we will first discuss the optimal selection of

n and then present the performance of NECTOR as compared

to MPTCP for the different scenarios discussed in Section IV.

We further discuss NECTOR’s performance under lossy path

characteristics and discuss the limitations of the protocol.

Optimal selection of n: We first study the impact of

n on the performance of NECTOR. In order to find the

optimal n, we run some preliminary experiments. We chose

n ∈ {8, 16, 32, 48, 64, 80, 96, 112, 128} and observe that the

goodput is comparatively higher from NECTOR when n = 32
and n = 48. In general, we observe that the larger the number

of chunks, the smaller is the goodput. The reason is that the

encoding and decoding complexity of the network coding is

proportional to the number of chunks [24]. When the number

of chunks is higher, the overall encoding and decoding time

is higher which increases the overall time duration. Hence,

the goodput decreases with the increase in the number of



Scenarios Network 1 (SatCom) Network 2 (Cellular) Network 3 (Cellular)

Scenario 1 tON
1

= ∞, tOFF
1

= 0 tON
2

= 10, tOFF
2

= 5 tON
3

= 5, tOFF
3

= 10

Scenario 2 tON
1

= ∞, tOFF
1

= 0 tON
2

= 20, tOFF
2

= 10 tON
3

= 10, tOFF
3

= 20

Scenario 3 tON
1

= ∞, tOFF
1

= 0 tON
2

= 30, tOFF
2

= 15 tON
3

= 15, tOFF
3

= 30

Scenario 4 tON
1

= ∞, tOFF
1

= 0 tON
2

= rand(1, 10), tOFF
2

= rand(1, 10) tON
3

= rand(1, 10), tOFF
3

= rand(1, 10)

TABLE I: Four scenarios with different on/off time duration.

Network 1 (SatCom) Network 2 (Cellular) Network 3 (Cellular)

b1 = 150Kbit/s b2 = 1000Kbit/s b3 = 1000Kbit/s

d1 = 250ms d2 = 50ms d3 = 50ms

TABLE II: Network Parameters for Satcom and Cellular links

chunks. However, the values that we observe are specific to

the computational power (hardware) used in the experiments.

These values may change if machines with higher/smaller

processing capabilities are used but we expect a general trend

results where the goodput will decrease with the increase in the

number of chunks. Due to space constraints, for the remainder

of the paper, we present the results and analysis only for

n = 32 and n = 48.

Performance evaluation for different scenarios with

on/off model: We now focus on NECTOR’s performance

evaluation compared to MPTCP for the scenarios in Table

I with network settings in Table II. We measure goodput

for both NECTOR and MPTCP, and the goodput percentage

gain and the network utilization ratio for NECTOR in Table

III. The datagram size is configured as nv = 10Mbyte, i.e.

video encoded at 500 Kbit/s for 160 seconds and we have

limited ourselves to 50 iterations for each experiment. In our

experiments, NECTOR achieves higher utilization ratio, with

66.95% compared to only 46.69% of MPTCP in scenario

3. As a consequence of better utilization, NECTOR also

consistently achieves a higher goodput than MPTCP in all

scenarios. We observe that, NECTOR achieves up to 70% and

43.38% higher goodput compared to MPTCP in scenario 2

and scenario 3 respectively, when the networks vary slowly

and then become unavailable for longer duration. We observed

in the experiments that with slow variations, MPTCP seems to

take time for ramping up the transfer speed, while NECTOR

utilizes most of the capacity when the networks are available.

In Figure 6 we present the following metrics measured

at the receiver for all scenarios: (i) total number of bytes

received by each interface, i.e., nr
i (ii) total number of

bytes sent by each interface, i.e., ns
i and (iii) percentage

of load shared by each interface, i.e., µi. Our results in-

dicate that the total number of bytes at the receiver, i.e.,

nall
r , is smaller for NECTOR compared to MPTCP. In other

words, NECTOR requires less data to recover the datagram

of the same size. In scenario 3, the total number of bytes

received with MPTCP is nr
all(MPTCP ) = 11.9 Mbyte,

whereas the total number of bytes received with NECTOR

is nr
all(NECTOR) = 10.7 Mbyte. Thus, MPTCP requires

11.21% more data. We also show that the number of bytes

sent by the receiver, i.e. signalling data, is much smaller with

NECTOR compared to MPTCP. In scenario 3, the total number

of bytes sent with MPTCP is ns
all(MPTCP ) = 0.39 Mbyte

whereas the total number of bytes received with NECTOR

is ns
all(NECTOR) = 0.071 Mbyte. Thus, the signaling

overhead with MPTCP is almost 5.49 times larger.

Finally, we note that even with smaller capacity, the satellite

link carries a substantial amount of traffic, since it is always

available in all scenarios. For scenarios 1, 2 and 3, the satellite

link carries between 15% and 30% of the traffic. In scenario

4 with random network variations, the satellite link carries up

to 40% of traffic, due to more abrupt and frequent disruptions

of the other network paths (cellular networks).

Performance under Lossy Networks: NECTOR is shown

to provide gains in other scenarios as well. For example,

we have considered a different scenario, where instead of

using on/off bandwidth variations, we considered networks

with constant availability but have lossy characteristics. In

this scenario, as expected, the benefits of NECTOR evident.

NECTOR can provide up to 88.76% higher average goodput as

compared to MPTCP when 10% losses are configured in each

network. Even when losses are configured between 0% to 1%,

NECTOR seems to provide up to 5%-6% higher average

goodput than MPTCP. Due to space limitation, these results

have not been presented in this paper.

Limitations: We have also encountered limitations of NEC-

TOR. We observe that for higher bandwidth values, the

transmission time is smaller and therefore the network cod-

ing/decoding time of NECTOR shares a larger percentage of

the overall time duration. The encoding/decoding complexity

of network coding results in smaller utilization of the aggre-

gated bandwidth. Since these results depend on the hardware

used for testing, a better configuration of hardware can yield

to better performance of NECTOR as compared to MPTCP.

VI. CONCLUSION

In this paper, we have proposed NECTOR, which is a

powerful network coding solution that utilizes the aggregated

capacity of available multiple networks for transmission. We

have presented our experimental results that show the benefits

of NECTOR as compared to state-of-the-art MPTCP. In par-

ticular, our results show the performance gain of NECTOR in

different scenarios representing hybrid SatCom and terrestrial

networking for UAVs.

Future work includes the investigation of NECTOR on

more complex use cases including the transmission of sensor

data from UAV to the convoy (one-to-many connections).



TABLE III: Goodput from NECTOR (with n = 32 and n = 48) and MPTCP for different scenarios

Scenarios γ (NECTOR)
n = 32

γ (NECTOR)
n = 48

γ (MPTCP) Gain with
NECTOR
n = 32

Gain with
NECTOR
n = 48

θ (NECTOR)
n = 32

θ (NECTOR)
n = 48

θ (MPTCP)

Scenario 1 450 508 399 12.78% 27.31% 39.13% 44.17% 34.69%

Scenario 2 734 690 431 70.30% 60.09% 63.82% 60% 37.47%

Scenario 3 770 731 537 43.38% 36.12% 66.95% 63.56% 46.69%

Scenario 4 309 342 250 23.36% 36.80% 26.86% 29.73% 21.73%

n
1

r
n

2

r
n

3

r
n

all

r
0

2

4

6

8

10

12

D
a

ta
 R

e
c
e

iv
e

d
 (

M
b

y
te

)

n
1

s
n

2

s
n

3

s
n

all

s
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

D
a

ta
 S

e
n

t 
(M

b
y
te

)

MPTCP
NECTOR

µ
1

µ
2

µ
3

0

10

20

30

40

50
N

e
tw

o
rk

 T
ra

ff
ic

 L
o

a
d

 S
h

a
ri
n

g
 (

%
)

(a) Scenario 1

n
1

r
n

2

r
n

3

r
n

all

r
0

2

4

6

8

10

12

D
a

ta
 R

e
c
e

iv
e

d
 (

M
b

y
te

)

n
1

s
n

2

s
n

3

s
n

all

s
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

D
a

ta
 S

e
n

t 
(M

b
y
te

)

MPTCP
NECTOR

µ
1

µ
2

µ
3

0

10

20

30

40

50

60

70

N
e

tw
o

rk
 T

ra
ff

ic
 L

o
a

d
 S

h
a

ri
n

g
 (

%
)

(b) Scenario 2

n
1

r
n

2

r
n

3

r
n

all

r
0

2

4

6

8

10

12

D
a

ta
 R

e
c
e

iv
e

d
 (

M
b

y
te

)

n
1

s
n

2

s
n

3

s
n

all

s
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

D
a

ta
 S

e
n

t 
(M

b
y
te

)

MPTCP
NECTOR

µ
1

µ
2

µ
3

0

10

20

30

40

50

60

70

N
e

tw
o

rk
 T

ra
ff

ic
 L

o
a

d
 S

h
a

ri
n

g
 (

%
)

(c) Scenario 3

Fig. 6: Total number of bytes received, sent and network traffic load sharing from NECTOR (n = 32) and MPTCP.

Furthermore, we plan to study the impact of several other

factors including the limitations of network codes and bursty

network traffic on the performance of NECTOR.

ACKNOWLEDGMENT

This work has been supported by the European Space

Agency, under the contract number 4000118143/16/NL/EM

(HENCSAT), European Union’s Horizon 2020 research and

innovation programme under grant agreement No 815178

(5GENESIS) and SERB, DST, Government of India’s start-up

research grant agreement SRG/2019/002027 (MUT-DROCO).

REFERENCES

[1] A. Nikravesh, Y. Guo, F. Qian, Z. M. Mao, and S. Sen. An In-depth
Understanding of Multipath TCP on Mobile Devices: Measurement and
System Design. In Proc. of ACM MobiCom, 2016.

[2] Y. E. Guo, A. Nikravesh, Z. M. Mao, F. Qian, and S. Sen. Accelerating
Multipath Transport Through Balanced Subflow Completion. In Proc.
of ACM MobiCom, 2017.

[3] Sana Habib, Junaid Qadir, Anwaar Ali, Durdana Habib, Ming Li, and
Arjuna Sathiaseelan. The past, present, and future of transport-layer
multipath. J. Netw. Comput. Appl. 75, C (November 2016), 236-258.

[4] K. V. Yedugundla, S. Ferlin, T. Dreibholz, Ozgu Alay, N. Kuhn, P.
Hurtig, and A. Brunstrom, Is Multi-Path Transport Suitable for Latency
Sensitive Traffic? Computer Networks, vol. 105, pp. 1-21, Aug. 2016.

[5] Ford A., Raiciu C., Handley M., Bonaventure O. TCP Extensions for
Multipath Operation with Multiple Addresses. RFC; 2013.

[6] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene, O.
Bonaventure, and M. Handley. How hard can it be? Designing and im-
plementing a deployable multipath TCP. In Proc. USENIX Conference
on Networked Systems Design and Implementation (NSDI), 2012.

[7] B.Cohen, “Bit Torrent Protocol1.0,” BitTorrent.org, Tech.Rep.

[8] D. S. Lun, M. Medard, R. Koetter, M. Effros, “On coding for reliable
communication over packet networks”, Phys. Commun., vol. 1, no. 1,
pp. 3-20, Mar. 2008.

[9] S. Gheorghiu, A. L. Toledo, and P. Rodriguez, “Multipath TCP with
network coding for wireless mesh networks,” in Proc. IEEE International
Conference on Communications (ICC), 2010.

[10] X. Zhuoqun, C. Zhigang, Y. Hui, and Z. Ming, “An improved MPTCP in
coded wireless mesh networks,” in Proc. IEEE International Conference
on Broadband Network & Multimedia Technology (IC-BNMT), 2009.

[11] Z. qun Xia, Z. gang Chen, Z. Ming, and J. qi Liu, “A multipath
TCP based on network coding in wireless mesh networks,” in Proc.
IEEE International Conference on Information Science and Engineering
(ICISE), 2009.

[12] A. Kulkarni, M. Heindlmaier, D. Traskov, M.-J. Montpetit, and M.
Médard, “An implementation of network coding with association poli-
cies in heterogeneous networks,” in Proc. IFIP TC International Confer-
ence on Networking (NETWORKING’11), 2011.

[13] J. Cloud, F. du Pin Calmon, W. Zeng, G. Pau, L. M. Zeger and M.
Medard, “Multi-Path TCP with Network Coding for Mobile Devices
in Heterogeneous Networks,” IEEE Vehicular Technology Conference
(VTC Fall), Las Vegas, NV, 2013.

[14] G. Giambene et al., “Network coding applications to high bit-rate
satellite networks,” WiSATS 2015, LNICST 154, July 2015.

[15] S. Ferlin, S. Kucera, H. Claussen and O. Alay, “MPTCP meets FEC:
Supporting Latency-Sensitive Applications over Heterogeneous Net-
works“, IEEE/ACM Transactions on Networking, Volume 26 Issue 5,
October 2018.

[16] H. Skinnemoen, “Visual Situational Awareness: Revolutionizing UAV
Communication Via Satellite”, AUVSI Xpoential, 2018.

[17] C. Gkantsidis and P. Rodriguez, Network Coding for Large Scale
Content Distribution, in Proc. IEEE INFOCOM, 2005.

[18] U. Lee, J.-S. Park, J. Yeh, G. Pau, M. Gerla, “Code Torrent: Content
Distribution Using Network Coding in VANET”, in ”Proceedings of
the 1st International Workshop on Decentralized Resource Sharing in
Mobile Computing and Networking”, 2006.

[19] S. Jung, U. Lee, A. Chang, D.-K. Cho, M. Gerla, “BlueTorrent:
Cooperative content sharing for Bluetooth users”, in ”Pervasive and
Mobile Computing (PerCom)”, no. 6, pp. 609–634, 2007.

[20] R. Zhang, B. Yu, H. Krishnan, “Simulation Study on Collaborative
Content Distribution in Delay Tolerant Vehicular Networks”, in ”EEE
88th Vehicular Technology Conference (VTC-Fall)”, 2018.

[21] D. Recharte, A. Aguiar, H. Cabral, “Cooperative Content Dissemination
on Vehicular Networks”, in ”IEEE Vehicular Networking Conference
(VNC)”, 2018.

[22] X.-x. Wen, H.-q. Wang, J.-y. Lin, G.-s. Feng, H.-w. Lv, J.-z. Han,
“Performance analysis and optimization for chunked network coding
based wireless cooperative downloading systems”, in ”Frontiers of
Information Technology Electronic Engineering”, 2017.

[23] M. A. Vázquez-Castro, P. Saxena, T. Do-Duy, T. Vamstad and H. Skin-
nemoen, “SatNetCode: Functional Design and Experimental Validation
of Network Coding over Satellite,” 2018 International Symposium on
Networks, Computers and Communications (ISNCC), 2018.

[24] P. Saxena and M. A. Vázquez-Castro, “DARE: DoF-Aided Random
Encoding for Network Coding Over Lossy Line Networks,” in IEEE
Communications Letters, vol. 19, no. 8, pp. 1374-1377, Aug. 2015.


