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Abstract

This paper considers networked systems and develops a class of distributed algorithms that are

resilient against potential packet drops in the communication links between system components. We

apply this class of algorithms to the problem of coordinating distributed energy resources (DERs) for

service provision to the grid they are connected to, e.g., reactive power support for voltage control. In

this problem, each system component can contribute a certain amount of active and/or reactive power,

bounded from above and (possibly) below by capacity constraints, and the objective is to coordinate

the components so as to collectively provide a predetermined total amount of active and/or reactive

power. In the class of algorithms proposed to address this problem, each DER maintains a set of

variables and updates them through information exchange with neighboring DERs. We show that, as

long as the underlying graph that describes the information exchange between components is strongly

connected, and the predetermined total amount of active and/or reactive power does not violate (upper or

lower) total capacity constraints, DERs can use this approach to calculate, in a distributed fashion, their

fair contribution (subject to their capacity constraints). We show that algorithms reach almost surely

convergence to the fair solution, even in the presence of communication link failures.
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I. INTRODUCTION

Driven by the US-DoE SmartGrid initiative and its European counterpart, electrical energy

systems are undergoing radical transformations in structure and functionality in a quest to increase

efficiency and reliability. Focusing on the distribution level, proper coordination and control of

generation and storage resources [from now on we will refer to them as distributed energy

resources (DERs)] provides more flexibility in the provision of ancillary services, which can

result in enhanced efficiency and reliability. For example, while the primary function of power

electronics interfaces in solar rooftop installations is to control active power, when properly

controlled, they can also provide reactive power support for voltage control [1], [2].

In the above scenario, there are several ways in which DERs can be coordinated. A solution

can be achieved through a completely centralized control strategy where some decision maker—

the coordinator—issues a (separate) command to each DER with a request for a certain amount

of active or reactive power, so that the DERs collectively provide the total amount of active

or reactive power needed. In this centralized solution, however, it is necessary to overlay a

communication network connecting the coordinator with each DER, and to maintain knowledge

of the DERs that are available and their constraints at any given time. An alternative approach

consists of a completely distributed control strategy, in which the coordinator initially relays a

request to a limited number of DERs (with which the coordinator can directly communicate)

without necessarily knowing the total number of DERs, their individual capacity limitations,

or the connections between them). Through a distributed computation over the network, the

DERs can determine their own contribution so that collectively they have the same effect as the

centralized strategy. In this paper, we pursue this distributed approach.

We consider a network of DERs (also referred to as nodes), each of which can provide a

certain amount of active and/or reactive power (bounded from above and from below by upper

and lower limits). In our development, we adopt a very general model for the communication

modality between nodes, which allows asymmetric information structures, in the sense that if

node i can transmit information to another node j, it is not necessarily true that node j can

transmit information to node i; this situation can arise nontrivially in many realistic settings

(e.g., when nodes transmit at different power levels or are subject to different degrees of

interference in a wireless environment). We only require that each node, apart from seeing
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incoming transmissions sent to it by neighboring nodes, also knows the number of nodes that

it can transmit information to, which in graph-theoretic terms is referred to as the out-degree

of that node. Through a distributed computation over the network, DERs determine (using only

information made available by their neighbors) the amount of active and/or reactive power they

will provide. The resulting solution should be feasible in the sense that: i) each DER contribution

is within its capacity limits; and ii) the DERs collectively provide the amount of active or reactive

power requested by the coordinator.

Our starting point to achieve the above objectives is a class of iterative algorithms that rely

on two linear iterations [3], where the collective dynamics of each iteration can be described by

a discrete-time linear system with no inputs, with a transition matrix that is column stochastic

and primitive. In this class of algorithms, each node j in the network maintains two values yj

and zj , which we refer to as internal states, and updates them (independently of each other) to

be, respectively, a weighted linear combination of node j’s own previous internal states, and the

previous internal states of its neighboring nodes. It is worth noting that, each node broadcasts

the same quantity to all receiving nodes, which simplifies the communication scheme. It is easy

to see that, except for the initialization of both iterations, the double-iteration algorithm in [3]

(which assumes perfectly reliable communication links) is a particular case of a gossip-based

algorithm proposed in [4] (which also assumes perfectly reliable communication links) where the

transition matrices describing each linear iteration are allowed to vary as time evolves. However,

the purpose of the algorithm in [4] is for the nodes to compute the average of their initial values,

not to solve the coordination problem with which we are concerned.

In our previous works, the two-iteration algorithm described above has been utilized in several

power system applications that studied the interaction of the algorithm with the electrical network.

For example, in [5], we utilize the algorithm for addressing the voltage control problem in

distribution networks with deep penetration of renewable-based electricity generation resources

and plug-in hybrid vehicles. Similarly, in [6], we utilize the algorithm to coordinate the action

of DERs in the provision of reactive power to a node of a sub-transmission network. In both

of these applications, it is necessary to consider the interplay between the distributed algorithm

for DER coordination with the voltage dynamics of the distribution network. In particular, it

is necessary to enforce time-scale separation between the operation of the distributed algorithm

and the dynamics of the physical network it controls.
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The main focus of this paper is a method to robustify the double-iteration algorithm so that it

can tolerate failures in communication links and allow each node to converge to the correct value.

Our communication link reliability model assumes that, at each time step, a packet containing

information from node i to node j is dropped with some probability. Apart from performing

the two iterations as in the non-robustified double-iteration algorithm, we show that the double-

iteration algorithm can be robustified by having node i keep track of certain additional variables,

and include information about these variables in the messages it broadcasts; similarly, node j

will keep track of additional variables and will use them in the update of its internal state. We

show that the information contained in these additional variables ensures that the nodes can

obtain the information they need despite packet-dropping communication links.

The class of algorithms discussed in this paper is similar in spirit to distributed linear-iterative

algorithms for consensus problems (see, e.g., [7], [8] and references therein); however, the end

goal here is very different. In consensus problems, the objective is to have the nodes agree on

some value. In our setup, the objective is for each node to converge to a value (not necessarily

the same) that lies within an interval defined by upper and lower capacity limits, while the sum

of the values is equal to the total amount of resource requested by the coordinator. Another

difference is the communication modality, as we allow for asymmetric information exchange,

whereas in most consensus works, except for a few instances (see, e.g., [9], [10]), symmetric

information exchange is assumed.

In terms of communication/computational requirements, each node needs to know the number

of its out-neighbors, be able to maintain and broadcast a small number of values, and be able

to linearly combine (or simply add up) the values it receives from its in-neighbors. Nodes also

need to be able to perform the operations of division, summation, and subtraction, and be able to

broadcast two quantities per iteration. The complexity of the computation at each node depends

on its in-degree (i.e., the number of values that it receives): at each iteration, node j performs

O(D−j ) computations.

Some recent works have addressed the consensus and average-consensus problems in the

presence of unreliable communication links [11], [12], [13]. Unlike our setup, the work in

[11] assumes that the graph describing the communication network is undirected and, when a

communication link fails, it affects communication in both directions. Additionally, nodes have

some mechanism to detect link unavailability and compensate for it by rescaling their other
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weights (so that the resulting transition matrix remains column stochastic). The work in [12]

does not require the graph describing the communication network to be undirected and proposes

two compensation methods to account for communication link failures. The key in both methods

is the fact that, at each time step, the resulting weight matrix is row stochastic; the authors show

that the nodes converge almost surely to the same value (which, however is not necessarily the

average of the initial values). The work in [13] proposes a strategy that corrects the errors in

the quantity (state) iteratively calculated by each node, so that nodes obtain the correct average

of the initial values. For this strategy to work, nodes must send acknowledgment messages and

retransmit information an appropriate number of times.

The remainder of this paper is organized as follows. Section II introduces the communication

model, and briefly describes the non-robust version of the double-iteration algorithm. Section III

describes an application example to motivate the use of the proposed algorithms. Section IV

describes the proposed strategy to robustify the double-iteration algorithm and demonstrates the

use/performance of the algorithms via several examples. Section V characterizes the first and

second moment of each iteration. The convergence analysis of the robustified double-iteration

algorithm is provided in Section VI. Concluding remarks are presented in Section VII.

II. PRELIMINARIES

In this section, we provide background on graph-theoretic notions, needed to describe the

communication network model and the DER networked control setup, and also introduce the

basic communication link availability model. In addition, we review a previously proposed

double-iteration algorithm that assumes reliable communication [3].

A. Communication Network Model

Let k index discrete time instants; the information exchange between nodes (components)

at each time instant k can be described by a directed graph G[k] = {V , E [k]}, where V =

{1, 2, . . . , n} is the vertex set (each vertex—or node—corresponds to a system component),

and E [k] ⊆ V × V is the set of edges, where (j, i) ∈ E [k] if node j can receive information

from node i at instant k. It is assumed that E [k] ⊆ E , ∀k ≥ 0, where E is the set of edges

that describe all possibly available communication links between nodes. Note that E could be a

proper subset of V ×V , but we require the graph (V , E) to be strongly connected. All nodes that
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can possibly transmit information to node j are called its in-neighbors, and are represented by

the set N−j = {i ∈ V : (j, i) ∈ E}. For notational convenience, we allow self-loops for all nodes

in G (i.e., (j, j) ∈ E for all j ∈ V). The number of neighbors of j (including itself) is called

the in-degree of j and is denoted by D−j = |N−j |. The nodes that have j as neighbor (including

itself) are called its out-neighbors and are denoted by N+
j = {l ∈ V : (l, j) ∈ E}; the out-degree

of node j is D+
j = |N+

j |.

The existence of a communication link from node i to node j can be described in probabilistic

terms as follows. At instant k, let xji[k] = 0 if (j, i) /∈ E , and, for all (j, i) ∈ E , let xji[k] be an

indicator for the link availability, i.e., xji[k] = 1 with probability qji if the link is available, and

xji[k] = 0 with probability 1− qji if the link is not available:

Pr{xji[k] = m} =





qji, if m = 1,

1− qji, if m = 0.
(1)

We assume that link availability is independent between links and between time steps.

B. DER Networked Control with Reliable Communications

In a networked control setup for DER coordination, each DER j can contribute a certain

amount πj ≥ 0 of active or reactive power, which is upper and lower bounded by capacity

limits πmaxj and πminj respectively, which are known to node j. The objective is to coordinate

the individual DER contributions πj, ∀j, through a distributed computation over the network so

that πminj ≤ πj ≤ πmaxj , ∀j, and collectively the nodes provide a pre-determined total amount

ρd =
∑n

j=1 πj of active or reactive power, as specified by a coordinator.

Under the assumption that the communication network graph (G, E) is strongly connected, and

every communication link between nodes is perfectly reliable, i.e., Pr{xji[k] = 1} = 1, ∀(j, i) ∈

E , ∀k ≥ 0, it was shown in [3] that the DER coordination problem can be solved by running

two separate, appropriately initialized, linear iterations of the form

yj[k + 1] =
∑

i∈N−j

1

D+
i

yi[k], (2)

zj[k + 1] =
∑

i∈N−j

1

D+
i

zi[k], (3)
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where D+
j (D+

i ) is the out-degree of node j (i). In particular, i) if the initial conditions in (2) are

set to yj[0] = ρd/m−πminj if j is one of m, m ≥ 1, nodes contacted initially by the coordinator

and yj[0] = −πminj otherwise, and ii) if the initial conditions in (3) are set to zj[0] = πmaxj −πminj ,

then the nodes can asymptotically calculate their contribution πj as

πj := lim
k→∞

πj[k] = lim
k→∞

(
πminj +

yj[k]

zj[k]
(πmaxj − πminj )

)
,

=πminj +
ρd −

∑n
l=1 π

min
l∑n

l=1 `l
(πmaxj − πminj ), (4)

which satisfies πminj ≤ πj ≤ πmaxj , ∀j, and
∑n

j=1 πj = ρd.

III. MOTIVATING APPLICATION EXAMPLE: TWO-STAGE CONTROL ARCHITECTURE FOR

VOLTAGE CONTROL

In this section, we illustrate the application of the algorithms proposed for coordinating DERs

to provide reactive power support for voltage control. In an AC power system, reactive power

flows impact the voltage of the system buses [14]; thus, by controlling reactive power it is possible

to control voltage, which is extremely important to ensure voltage stability in the system. We

consider the system displayed on Fig. 1, which we have used in our previous work to illustrate the

application of the (non-robust) double-iteration algorithm in (2)–(3) for DER coordination [6].

We use it again here to study the performance of the double-iteration in (2)–(3) in the presence

of packet-dropping communication links; the results will provide motivation for the remainder

of the paper—the development of a method to handle packet drops in the communication links.

The left side of Fig. 1 describes the topology of a small power system comprised of three

electrical generators, denoted by G1, G2, and G3, connected to buses 1, 2, and 3 respectively,

P4 + jQ4

P5 + jQ5

P6 + jQ6

+
_

+

V ref
5

V6
Qd

6 =

4∑

j=1

qj

Qd
6

+

P d
6

(P6 + P d
6 ) + j(Q6 +Qd

6)

ρd/2
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Fig. 1. Two-stage voltage control architecture.
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and three loads connected to buses 4, 5, and 6. The complex power injected (or withdrawn)

on each of bus i is denoted by Si = Pi + jQi, and the voltage on each bus i is described by

the complex number V i = Vi∠θi. As shown in the picture, each pair of buses is linked by a

transmission line. On the right of Fig. 1, we display a two-stage control system that utilizes

DERs to control the reactive power injection Qd
6 provided by the four DERs connected to this

bus. By controlling Qd
6, we can regulate V6 (i.e., bus 6 voltage magnitude) with the objective of

maintaining it close to a reference voltage V ref
6 .

In order to achieve the voltage regulation objective described above, a local coordination

controller—the coordinator—takes the difference between V6, the actual voltage at node 6, and

the reference voltage V ref
6 , and issues a command demanding a total amount of reactive power

denoted by ρd. The coordinator then relays evenly split demands for reactive power to a subset

of the DERs that it can directly communicate with (nodes 1 and 2 in our example), so that

the total amount ρd remains constant. Thus, in Fig. 1, node 1 gets ρd/2 and node 2 gets ρd/2.

Then, all four nodes run the double-iteration algorithm described in (2) and (3); in particular,

and following the notation in (2), we have that

y1[k + 1] =
1

3
y1[k] +

1

3
y2[k] +

1

3
y3[k] ,

y2[k + 1] =
1

3
y1[k] +

1

3
y2[k] +

1

2
y4[k],

y3[k + 1] =
1

3
y1[k] +

1

3
y3[k],

y4[k + 1] =
1

3
y2[k] +

1

3
y3[k] +

1

2
y4[k], (5)

with y1[0] = y2[0] = 1/2ρd, and y3[0] = y4[0] = 0. [We also have an identical iteration to the

one in (5) for the update of the zj[k]’s. with initial conditions z1[0] = z3[0] = 0.4, z2[0] = 0.2,

and z4[0] = 0.1.] After each DER j has calculated its πj as described in (4), it sets its reactive

power command qj accordingly, i.e., qj = πj , such that ρd = Qd
s =

∑4
j=1 qj . It is assumed that

there is a time-scale separation between coordinator requests and the time it takes the DERs to

calculate πj . This time-scale separation is actually related to the speed with which the algorithm

converges, and, in general, it very much depends on the topology of both the communication

and the electrical network (see [6] for more details on the overall control system design).
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(a) All controls working properly.
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(b) Failures in DER communications in bus 2.
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(c) Failures in DER communications in all buses.

Fig. 2. Bus voltages for different malfunction scenarios.

1) Perfectly reliable links: Consider the same scenario as in [6], where a contingency shuts

down generator G2 at t = 2 s. Before the contingency, generator G2 was providing voltage

control, but was operating as its maximum capacity, therefore, after the contingency G2 can no

longer provide voltage control. The contingency causes a voltage drop on every bus except bus

1 (the slack bus). In this scenario, G1 is required to produce additional active and reactive power

to compensate for the loss of G2, but as discussed in [6], it cannot provide voltage control in all

load buses, and (as seen in Fig 2(a)) the voltages in buses 5 and 6 drop below 0.95 p.u. Once

the coordinators on these buses sense their voltage is low, they initiate a request to the DERs

connected to each of them. As seen in Fig. 2(a), within 8 seconds, the voltages in these buses

are restored to a value above 0.95 p.u. In the process, the voltage in bus 2 corresponding to the

outage generator also recovers, as well as the voltage in bus 3, corresponding to the generator

that could not provide voltage control. By setting the DER capacity limits to πmax1 = πmax3 = 0.4,

πmax2 = 0.2, πmax4 = 0.1, and πmin1 = πmax2 = πmin3 = πmax4 = 0, Fig. 2(a) shows the evolution

of the πj[k]’s after the coordinator makes the first request; it can be seen that the algorithm

converges in less than 10 iterations.

2) Effect of packet-dropping links: As seen in Fig. 2(b), when the communication links

between the DERs connected to bus 2 are not working properly, the voltages in all buses do not

recover to the same levels as in Fig. 2(a). To better understand the effect of communication link

failures, in Fig. 3, we display back-to-back the evolution of the double-iteration algorithm for

the DERs in load bus 2 for the case when their communication network is perfectly reliable and

for the case when the communication links drop packages with probability qji = 0.5, ∀(j, i) ∈ E

at each time step k. In the perfectly reliable case, as displayed in Fig. 3(a), the double-iteration

algorithm converges to some nonzero values. On the other hand, when links drop packages,

as displayed in Fig. 3(b), the double-iteration algorithm that each DER runs converges to zero
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Fig. 3. Responses of the DERs in bus 2.

and therefore, the DERs will not provide any reactive power support even if the coordinator

requested it. Finally, Fig. 2(c) shows the case in which link failures affect all the connections

between DERs in all three networked control systems.

IV. ROBUSTIFED DOUBLE-ITERATION ALGORITHM

Consider the setup of the previous section with a strongly connected graph (G, E) representing

a multicomponent system and the communication links between its components. Each node acts

as both sender and receiver at each time step. For each of the two iterations, node j calculates

several quantities of interest, which we refer to as: i) internal state; ii) total broadcast mass; and

iii) total received mass from each in-neighbor l of node j, i.e., for each node l ∈ N−j . Node j

updates the value of its internal state to be a linear combination of its own previous internal state

value (weighted by 1/D+
j ) and the sum (over all its in-neighbors) of the differences between the

two most recently received mass values. At instant time k, the total broadcast mass of i is the

sum up to (and including) step k of the weighted value of that node’s internal state. Additionally,

node j updates the value of the received mass from node l to be either the total broadcast mass

sent by node l if the link from l to j is available, or the most recently received mass value from

node l. An implicit assumption is that broadcast messages are tagged with the sender’s identity

so that receiving nodes can determine where messages originated from.

For iteration 1, let yj[k] be node j’s internal state at time instant k, µlj[k] denote the mass

broadcast from node j to each of its out-neighbors l (this is the same for each out-neighbor

l of node j, i.e., for each l ∈ N+
j ), and νji[k] denote the mass received at node j from node

i ∈ N−j . Similarly, let zj[k] be node j’s internal state, σlj[k] denote node j’s broadcast mass for

each out-neighbor l, l ∈ N+
j , and τji[k] denote the total mass received from i ∈ N−j . Then, for

July 6, 2012 DRAFT



11

all k ≥ 0,

yj[k + 1] =
1

D+
j

yj[k] +
∑

i∈N−j

(
νji[k]− νji[k − 1]

)
,

µlj[k] = µlj[k − 1] +
1

D+
j

yj[k] =
k∑

t=0

1

D+
j

yj[t], (6)

where

νji[k] =





µji[k], if (j, i) ∈ E [k], k ≥ 0,

νji[k − 1], if (j, i) /∈ E [k], k ≥ 0.

[Recall that D+
j (D+

i ) is the number of nodes that node j (i) can transmit information to.]

Similarly, for all k ≥ 0,

zj[k + 1] =
1

D+
j

zj[k] +
∑

i∈N−j

(
τji[k]− τji[k − 1]

)
,

σlj[k] = σlj[k − 1] +
1

D+
j

zj[k] =
k∑

t=0

1

D+
j

zj[t], (7)

where

τji[k] =





σji[k], if (j, i) ∈ E [k], k ≥ 0,

τji[k − 1], if (j, i) /∈ E [k], k ≥ 0.

As mentioned earlier, the initial conditions in (6) are set to yj[0] = ρd/m−πminj if j is initially

contacted by the leader and yj[0] = −πminj otherwise, whereas the initial conditions in (7) are

set to zj[0] = πmaxj −πminj > 0. Additionally, µji[−1] = 0 and νji[−1] = 0 for all (j, i) ∈ E , and

σji[−1] = 0 and τji[−1] = 0 for all (j, i) ∈ E .

Main Result: We shall argue that with the proposed robustification strategy, despite the

presence of unreliable communication links (at each time step, each link (j, i) ∈ E fails,

independently from other links and independently between time steps, with some probability

1−qji), nodes can asymptotically obtain the exact solution to the resource coordination problem

as a function of the ratio yj[k]/zj[k], i.e.,

πj := lim
k→∞

(
πminj +

yj[k]

zj[k]
(πmaxj − πminj )

)
, (8)
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computed whenever zj[k] is large enough. In particular, we show that limk→∞ yj[k] = α limk→∞ zj[k],

for α =
∑n

j=1 y0(j)∑n
j=1 z0(j)

with probability one. We also show that zj[k] > 0 occurs infinitely often (i.o.).

Example 1: We complete the application example presented in Section III, assuming qji =

0.5, ∀(j, i) ∈ E . The evolution of the algorithm right after the first coordinator request (following

the contingency) is displayed in Fig. 4. The evolution of the yj[k]’s and zj[k]’s is displayed in

Figs. 4(b) and 4(c). Neither of the two iterations converges, but, as shown in Fig. 4(a), the πj[k]’s

obtained from (8) converge, indicating that the yj[k]/zj[k]’s converge. �
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(c) Denominator iteration.

Fig. 4. Robustified algorithm for voltage control in the system of Fig. 1.
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(c) Denominator iteration.

Fig. 5. Robustified algorithm for reaching average consensus in a large graph.
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(a) Ratio iteration for 0.45 ≤ qji ≤ 0.55.
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(b) Ratio iteration for 0.4 ≤ qji ≤ 0.6.
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(c) Ratio iteration for 0.05 ≤ qji ≤ 0.95.

Fig. 6. Robustified algorithm for reaching average consensus with unequal failure probabilities of varying dispersion.
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Example 2: An example of what happens in a larger graph is shown in Fig. 5. Here we

consider a graph with 500 nodes, randomly generated by choosing an edge from node i to node

j, 1 ≤ i, j ≤ 500, i 6= j, independently with probability 0.5, and ensuring that the resulting

graph is strongly connected. For qji = 0.5, ∀(j, i) ∈ E , the behavior remains similar to what we

observed in Example 1: the ratio yj[k]/zj[k] converges to the correct solution even though the

individual yj[k] and zj[k] do not converge. �
Example 3: In both Examples 1 and 2, we assumed equal link failure probabilities; in this

example, we explore the effect of unequal failure link probabilities on the convergence of the

algorithm. As in Example 2, we generate a graph with 500 nodes and for each edge (j, i) ∈ E , we

randomly choose its failure probability qji to lie between [0.45, 0.55], [0.4, 0.6], or [0.05, 0.95].

As shown in Fig. 6, the more dispersion around the mean of qji (which is qji = 0.5 in all

three cases), the longer it takes yj[k]/zj[k] to converge; but it eventually converges to the correct

solution. �

V. FIRST AND SECOND MOMENT ANALYSIS

In this section, we characterize the first and second moment of the iterations in (6) and (7).

The results are then used in Section VI to establish the claims previously stated as Main Result.

The analysis is restricted to the equal link failure probability case, i.e., qji = q, ∀(j, i) ∈ E , with

0 < q < 1. The assumption of equal probabilities simplifies the notation used in the derivation

of the expressions that characterize the first and second moment in (6) and (7), however, the

techniques used in this paper to developed these expressions (which involve the use of Hadamard

and Kronecker products) should also be able to handle unequal link failure probabilities, although

the details are left to future work (Example 3 provides some evidence that indeed the algorithm

converges even when link failure probabilities are unequal). Additionally, to facilitate notation,

we will allow each node j to “drop” the packet carrying its own previous value when updating

its value. This way, node j handles its own value in the same way as its neighbors’ values and

notation is simplified significantly.

A. Vectorized Description of Double-Iteration Algorithm

In order to ease the calculations, the iterations in (6)–(7) will be rewritten more compactly in

vector form. Using the definition for the indicator variable xji[k] given in (1), which describes
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the successful transmission of information from node i to node j over an existing, unreliable

link, iterations (6) and (7) can be rewritten, for all k ≥ 0, as

µlj[k] =





µlj[k − 1] + 1
D+

j

yj[k], if l ∈ N+
j ,

0, if l /∈ N+
j ,

(9)

νji[k] =





µji[k]xji[k] + νji[k − 1](1− xji[k]), if i ∈ N−j ,

0, if i /∈ N−j ,
(10)

yj[k + 1] =
n∑

i=1

(
νji[k]− νji[k − 1]

)
; (11)

σlj[k] =





σlj[k − 1] + 1
D+

j

zj[k], if l ∈ N+
j ,

0, if l /∈ N+
j ,

(12)

τji[k] =





σji[k]xji[k] + τji[k − 1](1− xji[k]), if i ∈ N−j ,

0, if i ∈ N−j ,
(13)

zj[k + 1] =
n∑

i=1

(
τji[k]− τji[k − 1]

)
, (14)

where µji[−1] = νji[−1] = σji[−1] = τji[−1] = 0, ∀j, i.

Let A◦B denote the Hadamard (entry-wise) product of a pair of matrices A and B of identical

size. Then, for all k ≥ 0, iteration (9)–(11) can be rewritten in matrix form as

Mk = Mk−1 + Pdiag(yk), (15)

Nk = Mk ◦Xk +Nk−1 ◦ (U −Xk), (16)

yk+1 = (Nk −Nk−1)e =
[
(Mk −Nk−1) ◦Xk

]
e, (17)

where P = [pji] ∈ Rn×n, with pji = 1
D+

i

, ∀j ∈ N+
i and pji = 0 otherwise; M−1 = N−1 = 0;

yk = y[k]; U ∈ Rn×n, with [Uji] = 1, ∀i, j; diag(yk) is the diagonal matrix that results by having

the entries of yk on the main diagonal; and e = [1, 1, . . . , 1]T (note that U = eeT ). Note that Xk

is a matrix whose (j, i) entry is xji[k]. Similar expressions can be obtained for (12)–(14), with

zk replacing yk, Sk replacing Mk, and Tk replacing Nk.

By defining Ak := Mk−Nk−1 and Bk := Sk−Tk−1, iteration (15)–(17) can be rewritten more
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compactly as

Ak = Ak−1 ◦ (U −Xk−1) + Pdiag(yk), k ≥ 1, (18)

yk+1 = (Ak ◦Xk)e, k ≥ 0. (19)

Similarly, we can write iteration (12)–(14) with Bk and zk replacing Ak and yk respectively.

For analysis purposes, each matrix in (18)–(19) will be rewritten in vector form by stacking

up the corresponding columns.1 Let F = [In In . . . In] ∈ Rn×n2 , where In is the n×n identity

matrix, and P̃ = [E1P
T E2P

T . . . EnP
T ]T ∈ Rn2×n, where Ei ∈ Rn×n has Ei(i, i) = 1 and

all other entries equal zero. [The entries of EiP T ∈ Rn×n (PET
i = PEi) are all zero except for

the ith row (column) entries, which are those of the ith row (column) of matrix P T (P ).] Then,

(18)–(19) can be rewritten as

ak = ak−1 ◦ (u− xk−1) + P̃ yk, k ≥ 1, (20)

yk+1 = F (ak ◦ xk), k ≥ 0, (21)

where ak ∈ Rn2 , xk ∈ Rn2 , and xk−1 ∈ Rn2 result from stacking the columns of matrices Ak,

Xk, and Xk−1, respectively. Similarly, for the second iteration, we can write

bk = bk−1 ◦ (u− xk−1) + P̃ zk, k ≥ 1, (22)

zk+1 = F (bk ◦ xk), k ≥ 0, (23)

where bk ∈ Rn2 results from stacking the columns of Bk.

Remark 1: Note that matrices Ak and Bk, and their corresponding vectors ak and bk, have

some entries that remain at zero for all k ≥ 0. Specifically, the (j, i) entry of matrices Ak and

Bk (and their corresponding entries in ak and bk) remain zero if there is no communication link

from node i to node j, i.e., (j, i) /∈ E . We keep these entries because they simplify the notation

in subsequent developments. Perhaps more importantly, we allow all entries of Xk (and thus the

vector xk) to take value 0 or 1 with probabilities 1−q and q respectively, independently between

links and time steps. This makes no difference in the evolution of (20)–(21). �

1Vectors defined by stacking the columns of a matrix will be denoted with the same small letter as the capital letter of the
corresponding matrix., i.e., let A = [Aji] ∈ Rn×n, then a = [A11 . . . , An1, A12, . . . , An2, . . . , A1n, . . . , Ann]

T .
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B. First Moment Analysis

Next, we show that the dynamics of ak := E[ak], yk := E[yk], bk := E[bk], and zk := E[zk] can

be described via discrete-time linear systems with no inputs, where the corresponding transition

matrices are column stochastic and primitive. Furthermore, yk and zk (and also ak and bk) are

shown to converge to an identical solution up to scalar multiplication.

Lemma 1: Let ak, bk, yk, and zk be described by the recurrence relations in (20)–(21), and

(22)–(23) respectively. Let the first moments of ak, yk, bk, and zk be denoted by ak, yk, bk, and

zk respectively. Then the evolution of ak, yk, bk, and zk, ∀k ≥ 1, is governed by

ak =
[
qP̃F + (1− q)In2

]
ak−1, (24)

yk+1 =
[
qP + (1− q)In

]
yk, (25)

bk =
[
qP̃F + (1− q)In2

]
bk−1, (26)

zk+1 =
[
qP + (1− q)In

]
zk, (27)

where Im is the m×m identity matrix, with a0 = P̃ y0, y1 = qPy0, b0 = P̃ z0, and z1 = qPz0.

Proof: Since the development for obtaining ak and yk is parallel to that for obtaining bk

and zk, our analysis focuses on the first case. For k = 0 in (20)–(21), by taking expectations of

both sides and noting that packet drops at time step k = 0 are independent of the initial values

for a0, it follows that a0 = P̃ y0, and y1 = qFa0; therefore, y1 = qF P̃ y0 = qPy0.

For k ≥ 1 in (20)–(21), by taking expectations on both sides and noting that packet drops at

time step k are independent of previous packet drops and the initial values of a0, we obtain

ak = ak−1 ◦ (u− xk−1) + P̃ yk = (1− q)ak−1 + P̃ yk, (28)

yk+1 = F (ak ◦ xk) = qFak. (29)

Substituting (29) into (28), we obtain ak = (1− q)ak−1 + qP̃Fak−1 = [qP̃F + (1− q)In2 ]ak−1.

Similarly, substituting (28) into (29), we have yk+1 = (1 − q)qFak−1 + qF P̃ yk = (1 − q)yk +

qF P̃ yk = [qP + (1− q)In]yk.

Lemma 2: The first moments of ak and bk (also yk and zk) asymptotically converge to the

same solution up to scalar multiplication: i) limk→∞ yk = α limk→∞ zk, and ii) limk→∞ ak =

α limk→∞ bk, where α =
∑n

j=1 y0(j)∑n
j=1 z0(j)

.
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Proof: In Lemma 1, it was shown that yk+1 =
[
qP+(1−q)I

]
yk and zk+1 =

[
qP+(1−q)I

]
zk

with y1 = qy0, and z1 = qz0. Since P is column stochastic and primitive, it follows that [qP +

(1−q)I
]

is also column stochastic and primitive. Thus, the solutions of (25) and (27) are unique

up to scalar multiplication, i.e., limk→∞ yk = α limk→∞ zk, for some α, Then, from the column

stochasticity property:
∑n

j=1 zk(j) = q(
∑n

j=1 z0(j)) and
∑n

j=1 yk(j) = q
(∑n

j=1 y0(j)
)
, ∀k ≥ 1;

this implies that α =
∑n

j=1 y0(j)∑n
j=1 z0(j)

. From (20) and (22), it is easy to see that P̃ limk→∞ yk =

q limk→∞ ak and P̃ limk→∞ zk = q limk→∞ bk. Since, limk→∞ yk = α limk→∞ zk, it immediately

follows that limk→∞ ak = α limk→∞ bk.

C. Second Moment Analysis

Next, we establish that the evolution of Γk := E[aka
T
k ], Ψk := E[bkb

T
k ], Ξk := E[akb

T
k ],

Φk := E[yky
T
k ], Λk := E[zkz

T
k ], and Υk := E[ykz

T
k ] can be expressed as linear iterations with

identical dynamics but different initial conditions. We additionally show that the steady-state

solutions of Γk, Ψk, and Ξk, (and also Φk, Λk, and Υk) are identical up to scalar multiplication.

In order to characterize Γk, Φk, Ψk, Λk, Ξk, and Υk, we need the results in the following lemma.

Lemma 3: Let x, c and d be random vectors of dimension n. Furthermore, assume that the

entries of x are Bernoulli i.i.d. random variables such that Pr{xi = 1} = q and Pr{xi = 0} =

1 − q, ∀i = 1, 2, . . . n, and are independent from c and d. Then S := E
[
(c ◦ x)(x ◦ d)T ] =

q2E[cdT ] + q(1− q)E
[
diag(cdT )], and T := E

[(
c◦x

)(
(u−x)◦d

)T
] = q(1− q)E[cdT ]− q(1−

q)E
[
diag(cdT )], where diag(cdT ) is a diagonal matrix with the same diagonal as matrix cdT .

Proof: The (i, j), i 6= j, entry of S can be obtained as Sij = E
[
cixidjxj

]
. Since xi and xj are

pairwise independent, and independent from c and d, it follows that E
[
cixidjxj

]
= q2E

[
cidj
]
.

For i = j, observing that E[xixi] = E[xi] = q, ∀i = 1, . . . , n, we obtain the corresponding entry

of S as Sii = E
[
cixidixi

]
= E

[
cidixi

]
= qE

[
cidi
]
. Combining these two facts, it follows

that S := E
[
(c ◦ x)(x ◦ d)T ] = q2E[cdT ] + q(1 − q)E

[
diag(cdT )]. Similarly, the (i, j), i 6= j,

entry of T is given by Tij = E
[
cixidj(1 − xj)

]
. Since xi and (1 − xj) are independent, it

follows that E
[
cixidj(1 − xj)

]
= E

[
cidj
]
E
[
xi(1 − xj)

]
= q(1 − q)E

[
cidj
]
. For i = j, and

observing that E[xi(1− xi)] = 0, ∀i = 1, . . . , n, the corresponding entry of T can obtained as

Tii = E
[
cixidi(1− xi)

]
= E

[
cidi
]
E
[
xi(1− xi)

]
= 0.

Lemma 4: Consider the second moments of ak, yk, bk, and zk, and let E[aka
T
k ], E[yky

T
k ],

E[bkb
T
k ], E[zkz

T
k ], E[akb

T
k ], and E[ykz

T
k ] be denoted by Γk, Φk, Ψk, Λk, Ξk, and Υk respectively.
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Then, the evolutions of Γk, Φk, Ψk, Λk, Ξk, Υk, ∀k ≥ 1, are described by the following iterations

(where all I denote n2 × n2 identity matrices):

Γk =
[
qP̃F + (1− q)I

]
Γk−1

[
qP̃F + (1− q)I

]T

+ q(1− q)[I − P̃F ]diag(Γk−1)[I − P̃F ]T , (30)

Φk+1 =F
[
q2Γk + q(1− q)diag(Γk)

]
F T , (31)

Ψk =
[
qP̃F + (1− q)I

]
Ψk−1

[
qP̃F + (1− q)I

]T

+ q(1− q)[I − P̃F ]diag(Ψk−1)[I − P̃F ]T , (32)

Λk+1 =F
[
q2Ψk + q(1− q)diag(Ψk)

]
F T , (33)

Ξk =
[
qP̃F + (1− q)I

]
Ξk−1

[
qP̃F + (1− q)I

]T

+ q(1− q)[I − P̃F ]diag(Ξk−1)[I − P̃F ]T , (34)

Υk+1 =F
[
q2Ξk + q(1− q)diag(Ξk)

]
F T , (35)

with initial conditions Γ0 = P̃ y0y
T
0 P̃

T , Φ1 = y1y
T
1 + q(1 − q)Fdiag(P̃ y0y

T
0 P̃

T )F T , Ψ0 =

P̃ z0z
T
0 P̃

T , Λ1 = z1z
T
1 + q(1 − q)Fdiag(P̃ z0z

T
0 P̃

T )F T , Ξ0 = P̃ y0z
T
0 P̃

T , Υ1 = y1z
T
1 + q(1 −

q)Fdiag(P̃ y0z
T
0 P̃

T )F T .

Proof: For k = 0, it follows from Lemma 1 and (20) that a0 = P̃ y0. Then, Γ0 = E[a0a
T
0 ] =

P̃ E[y0y
T
0 ]P̃ T = P̃ y0y

T
0 P̃

T , Φ1 = E[y1y
T
1 ] = E

[
F (a0 ◦ x0)(x0 ◦ a0)TF T

]
= F E

[
(a0 ◦ x0)(x0 ◦

a0)
T
]
F T , and applying the results in Lemmas 1 and 3, it follows that

Φ1 = q2F E
[
a0a

T
0

]
F T + q(1− q)F E

[
diag(a0a

T
0 )
]
F T

= (qF P̃ y0)(qF P̃ y0)
T + q(1− q)F E[diag(P̃ y0y

T
0 P̃

T )]F T

= (qPy0)(qPy0)
T + q(1− q)Fdiag(P̃ y0y

T
0 P̃

T )F T

= y1y
T
1 + q(1− q)Fdiag(P̃ y0y

T
0 P̃

T )F T , (36)

where we used the fact that FP̃ = P .
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For k ≥ 1, and taking into account that yk = F (ak−1 ◦ xk−1), it follows that

Γk =E
[(
ak−1 ◦ (u− xk−1) + P̃ yk

)(
ak−1 ◦ (u− xk−1) + P̃ yk

)T ]

=E
[(
ak−1 ◦ (u− xk−1)

)(
ak−1 ◦ (u− xk−1)

)T ]

+ E
[(
ak−1 ◦ (u− xk−1)

)(
ak−1 ◦ xk−1

)T ]
F T P̃ T

+ P̃F E
[(
ak−1 ◦ xk−1

)(
ak−1 ◦ (u− xk−1)

)T ]

+ P̃F E
[(
ak−1 ◦ xk−1

)(
ak−1 ◦ xk−1

)T ]
F T P̃ T . (37)

Then, from Lemma 3, (37) can be rewritten as

Γk =(1− q)2E
[
ak−1a

T
k−1
]

+ q(1− q)E
[
diag(ak−1a

T
k−1)]

+ q(1− q)E
[
ak−1a

T
k−1
]
F T P̃ T

− q(1− q)E
[
diag(ak−1a

T
k−1)]F

T P̃ T

+ q(1− q)P̃F E
[
ak−1a

T
k−1
]

− q(1− q)P̃F E
[
diag(ak−1a

T
k−1)]

+ q2P̃F E
[
ak−1a

T
k−1
]
F T P̃ T

+ q(1− q)P̃F E
[
diag(ak−1a

T
k−1)]F

T P̃ T . (38)

By re-arranging terms in (38) and observing that Γk−1 = E
[
ak−1a

T
k−1
]

and diag(Γk−1) =

E
[
diag(ak−1a

T
k−1)

]
, the result in (30) follows. Additionally, from Lemma 3, it follows that

Φk+1 = E
[
yk+1y

T
k+1

]
= F E

[
(ak ◦ xk)(xk ◦ ak)T

]
F T

= F
[
q2E

[
aka

T
k

]
+ q(1− q)E

[
diag(aka

T
k )
]]
F T

= F
[
q2Γk + q(1− q)diag(Γk)

]
F T . (39)

The expressions for Ψk, Λk+1, Ξk, and Υk+1 can be derived in a similar fashion and are

omitted for brevity.

Remark 2: Although omitted in the statement of Lemma 4, the dynamics of ∆k = E[bka
T
k ]

and Θk = E[zky
T
k ] can also be easily obtained by noting that ∆k = ΨT

k and Θk = ΥT
k . �
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Next, we show that the steady-state solutions of Γk, Ψk, Ξk and ∆k are identical up to scalar

multiplication. To see this, we will rewrite (30), (32), and (34) in vector form using Kronecker

products. For matrices C, A, and B of appropriate dimensions, the matrix equation C = AXB

(where X is an unknown matrix) can be rewritten as a set of linear equations of the form

(BT ⊗A)x = c, where x and c are the vectors that result from stacking the columns of matrices

X and C respectively, and ⊗ denotes the Kronecker product [15].

Let γk be the vector that results from stacking the columns of Γk, and G be a diagonal matrix

with entries G
(
(l − 1)n2 + l, (l − 1)n2 + l

)
= 1, ∀l = 1, 2, . . . , n2, and zero otherwise. Then,

using the ideas above, we can rewrite (30) as

γk = Πγk−1, k ≥ 1, (40)

where Π =
[
[qP̃F + (1− q)I]⊗ [qP̃F + (1− q)I] + q(1− q)

(
[I − P̃F ]⊗ [I − P̃F ]

)
G
]
.

Remark 3: Let ψk, and ξk and δk be the vectors that result from stacking the columns of

Ψk, Ξk and ∆k respectively. Then, it is easy to see that the same recurrence relation as in (40)

governs the evolution of ψk and ξk. �
The structure and fundamental properties of the matrix Π are established in the next theorem

(the proof is provided in the Appendix), from where it follows that the steady-state solutions of

γk, ψk, ξk and δk (and therefore Γk, Ψk, Ξk and ∆k) are identical up to scalar multiplication.

Theorem 1: Let P ∈ Rn×n be a column stochastic and primitive weight matrix associated with

a directed graph G = {V , E}, with V = {1, 2, . . . , n} and E ⊆ V ×V . Let F = [In In . . . In] ∈

Rn×n2 , where In is the n × n identity matrix, and P̃ = [E1P
T E2P

T . . . EnP
T ]T ∈ Rn2×n,

where each Ei ∈ Rn×n, i ∈ {1, 2, . . . , n}, satisfies Ei(i, i) = 1 and has all other entries equal

to zero. Then, for any q, 0 < q ≤ 1, the matrix Π that defines (40) is column stochastic, and it

has a single eigenvalue of maximum magnitude at value one.

The next two lemmas establish that the first and second moments of ak and bk (also yk and zk)

converge to the same solution up to a scalar multiplication. These lemmas are used in Section VI

to show that as k →∞, the random vector vk = yk−αzk, for α =
∑n

j=1 y0(j)∑n
j=1 z0(j)

, converges to v = 0

almost surely. Thus, as k →∞, and whenever zk(i) > 0, each node i can obtain an estimate of

α by calculating yk(i)/zk(i).

Lemma 5: Define wk = ak − αbk, with α =
∑n

j=1 y0(j)∑n
j=1 z0(j)

, and denote by χk the vector that
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results from stacking the columns of Xk := E[wkw
T
k ]. Then, it follows that χk = Πχk−1 with

χ0 = γ0 + α2ψ0 − α(ξ0 + δ0) and
∑n4

l=1 χ0(l) = 0.

Proof: Since Xk := E[wkw
T
k ] = E[aka

T
k ] + α2E[bkb

T
k ] − α(E[akb

T
k ] + E[bka

T
k ]) = Γk +

α2Ψk − α(Ξk + ∆k), it follows that χk = γk + α2ψk − α(ξk + δk). From (40) and subsequent

discussion, it follows that γk = Πγk−1, ψk = Πψk−1, ξk = Πξk−1, and δk = Πδk−1, thus

χk = Πγk−1 + α2Πψk−1 − α(Πξk−1 + Πδk−1) = Π(γk−1 + α2ψk−1 − α(ξk−1 + δk−1)) = Πχk−1.

In Lemma 4, it was shown that Γ0 = P̃ y0y
T
0 P̃

T , Ψ0 = P̃ z0z
T
0 P̃

T , and Ξ0 = P̃ y0z
T
0 P̃

T = ∆0.

Since γ0, ψ0, ξ0, and δ0 result from stacking the columns of Γ0, Ψ0, Ξ0, and ∆0, it follows that
∑n4

l=1 γ0(l) =
∑n2

i=1

∑n2

j=1 Γ0(i, j) = (
∑n

i=1 y0(i))
2,

∑n4

l=1 ψ0(l) =
∑n2

i=1

∑n2

j=1 Ψ0(i, j) = (
∑n

i=1 z0(i))
2,

∑n4

l=1 ξ0(l) = (
∑n

i=1 y0(i)) (
∑n

i=1 z0(i)),
∑n4

l=1 δ0(l) = (
∑n

i=1 z0(i)) (
∑n

i=1 y0(i)),

where the last equality in each of the above expressions is obtained by taking into account

that i) matrix P̃ is column stochastic by construction, and ii) for any a, b ∈ Rn, we have that
∑n

i=1

∑n
j=1 ab

T (i, j) = (
∑n

l=1 al)(
∑n

l=1 bl). Since α =
∑n

j=1 y0(j)∑n
j=1 z0(j)

, it follows that
∑n4

l=1 χ0(l) =
∑n4

l=1(γ0(l) + α2ψ0(l)− α(ξ0(l) + δ0(l))) = 0.

VI. CONVERGENCE ANALYSIS

In this section, we establish that for each j, there is an infinite sequence of time instants

τ = {t1, t2, . . . } such that zj[k] > C, ∀k ∈ τ , and almost surely limn→∞

∣∣∣yj [tn]zj [tn]
− α

∣∣∣ = 0 where

α = (
∑n

j=1 y0(j))/(
∑n

j=1 z0(j)). This result is formally stated in Theorems 3 and 6, but in order

to prove this theorems, we first need to establish several ancillary results.

Theorem 2: Let yk and zk be the random vectors that result from iterations (20)–(21) and

(22)–(23). Define vk = yk − αzk, where α =
∑n

j=1 y0(j)∑n
j=1 z0(j)

. Then, ‖vk‖∞ → 0 almost surely.

Furthermore, for every j, vk(j)→ 0 as k →∞ almost surely.

Proof: The result follows from the first Borel-Cantelli Lemma [16, Theorem 7.3.10]. For

all k ≥ 0 and all ε > 0, define the event Ek(ε) = {‖vk‖∞ > ε}. We will first estab-

lish an upper bound on
∑∞

k=0 Pr{Ek(ε)} by noting that Pr{Ek(ε)} = Pr{‖vk‖∞ > ε} ≤
E[‖vk‖∞]

ε
, thus

∑∞
k=0 Pr{Ek(ε)} ≤ 1

ε

∑∞
k=0E [‖vk‖∞] ≤ 1

ε

∑∞
k=0 E [‖vk‖2]. Note that E [‖vk‖2] =

(E[vTk vk]))
1/2 = (trace(E[vkv

T
k ]))1/2 =

(
trace(E[yky

T
k ])+α2trace(E[zkz

T
k ])−2αtrace(E[ykz

T
k ])
)1/2.

We will next show that E [‖vk‖2]→ 0 as k →∞ geometrically fast. Using Lemma 4, it can be
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established that E[vkv
T
k ] = E[yky

T
k ] + α2E[zkz

T
k ]− α(E[ykz

T
k ] + E[zky

T
k ]) = F

[
q2Xk−1 + q(1−

q)diag(Xk−1)
]
F T , where Xk−1 = E[wk−1w

T
k−1] as defined in Lemma 5, thus the evolution of

E[vkv
T
k ] is governed by the evolution of Xk−1 or by χk−1 (the vector that results from stacking

the columns of Xk−1). In Theorem 1, we showed that Π has a unique eigenvector (with all entries

strictly positive) associated to the largest eigenvalue λ1 = 1. Then, the solution of χk = Πχk−1 is

unique and equal to this eigenvector (up to scalar multiplication). Since Π is a column stochastic

matrix, and Lemma 5 established that
∑n4

l=1 χ0(l) = 0, it follows that
∑n4

l=1 χk(l) = 0, k ≥ 0,

and therefore limk→∞ χk(l) = 0, ∀l. Additionally, the convergence of χk = Πχk−1 is geometric

with a rate of convergence given by r = |λ2| + ε where λ2 is the eigenvalue of Π of second

largest modulus, which satisfies |λ2| < λ1 = 1, and ε > 0 is some small constant such that

r < 1 (see, e.g., [17]). Thus, we have established that χk(l) → 0, ∀l, geometrically fast, from

where it follows that all the entries of E[vkv
T
k ] go to zero also geometrically fast. Therefore, the

trace(E[vkv
T
k ]) also goes to zero geometrically fast, so that E [‖vk‖2] also goes to 0 geometrically

fast. It immediately follows that
∑∞

k=0E [‖vk‖2] <∞ and therefore
∑∞

k=0 Pr{‖vk‖∞ ≥ ε} <∞.

Then, from the first Borel-Cantelli Lemma, we have that Pr{‖vk‖∞ ≥ ε i. o.} = 0. Fi-

nally, since ‖vk‖∞ ≥ |vk(j)|, ∀j, then, Pr{‖vk‖∞ ≥ ε} ≥ Pr{|vk(j)| ≥ ε}, ∀j, and thus,
∑∞

k=0 Pr{|vk(j)| ≥ ε} <∞, ∀j. Therefore, by Theorem 7.2.4.c of [16], vk(j)→ 0, ∀j, almost

surely.

Corollary 1: Let λ2 denote the eigenvalue of Π with the second largest magnitude, then

Pr{‖vk+1‖∞ > ε} ≤ C ′(‖E[w0w
T
0 ]‖∞)1/2k

m2−1
2 |λ2|k/2, where m2 is the algebraic multiplicity

of eigenvalue λ2 and C ′ is some constant that depends on matrix Π, n, and ε.

Proof: It is well-known (see, e.g., [18, Thm. 8.5.1]) that ‖Πk − L‖∞ ≤ Ckm2−1|λ2|k, for

some constant C = C(Π), where L = limk→∞Πk is a rank-one column stochastic matrix.

It then follows that ‖(Πk − L)χ0‖∞ ≤ ‖Πk − L‖∞‖χ0‖∞ ≤ C‖χ0‖∞km2−1|λ2|k. Since Π

is column stochastic and
∑n4

l=1 χ0(l) = 0, it follows that Lχ0 = 0, thus ‖E[wkw
T
k ]‖∞ =

‖χk‖∞ = ‖Πkχ0‖∞ ≤ C‖χ0‖∞km2−1|λ2|k. Then, since E[vk+1v
T
k+1] = F

[
q2E[wkw

T
k ] + q(1 −

q)diag(E[wkw
T
k ])
]
F T , and by recalling that all the entries of F are either 0 or 1, it is easy to check

that ‖E[vk+1v
T
k+1]‖∞ ≤ ‖E[wkw

T
k ]‖∞, thus ‖E[vk+1v

T
k+1]‖∞ ≤ C‖E[w0w

T
0 ]‖∞km2−1|λ2|k.

Now, it is easy to establish that ‖E[vk+1v
T
k+1]‖∞ ≥ 1

n2 trace(E[vk+1v
T
k+1]) = 1

n2 (E[‖vk+1‖2])2 ≥
1
n2 (E[‖vk+1‖∞])2, from where it follows that E[‖vk+1‖∞] ≤ nC1/2(‖E[w0w

T
0 ]‖2)1/2k

m2−1
2 |λ2|k/2.

Define C ′ = n
ε
C1/2, for some ε > 0; then, the result follows from the fact Pr{‖vk+1‖∞ > ε} ≤
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E[‖vk+1‖∞]

ε
.

Theorem 2 established that, in the limit as the number of iterations k becomes large, the values

of vectors yk and zk will be perfectly aligned so that yk − αzk = 0 with probability one. Thus,

in this limiting case, each node j can calculate the value of α by taking the ratio yk(j)
zk(j)

, as long

as zk(j) 6= 0. Also, Corollary 1 establishes the number of iterations k after which yk and zk will

satisfy |yk − αzk| ≤ ε, for a given accuracy level ε, with some desired probability. This desired

probability goes to 1 with a geometric rate governed by the |λ2|1/2, where λ2 is the eigenvalue

of Π of second largest modulus. Note that, as also evidenced by the simulations provided in

Fig. 4 and Fig. 5, the vectors yk and zk do not converge in any way; however, the values yk

and zk become perfectly aligned almost surely, allowing each node j to calculate α = yk(j)
zk(j)

. The

only problem here arises when yk(j) and zk(j) have both value zero, which does not constitute

a violation of yk − αzk = 0, but clearly does not allow node j to calculate the desired value α.

The next two theorems essentially establish that zk(j), j = 1, 2, . . . , n, will be greater than zero

(in fact, greater than a constant C that will be specified) infinitely often. Note that, in subsequent

developments, zk(j) is denoted by zj[k] in order to remain close to the notation in (12)–(14).

Theorem 3: Consider a strongly connected graph G = (V , E) and the iteration in (12)–(14),

with xji[k], (j, i) ∈ E , k = 0, 1, 2, ..., as defined in (1). For every j = 1, 2, . . . , n, define the

event Ej
k = {zj[kn] ≥ C}, k ≥ 1, where C = n

(n+m)(D+
max)n−1 , D+

max = maxj∈V{D+
j }, n = |V|,

and m = |E|. Let ζjk denote the indicator of the event Ej
k, k ≥ 1, i.e., ζjk = 1 whenever Ej

k

occurs and ζjk = 0 otherwise. Then, Pr{zj[(k + 1)n] ≥ C | ζjk, ζ
j
k−1, . . . , ζ

j
1} ≥ qn, ∀j.

Proof: Since for every j, zj[0] > 0, ∀j, it follows from (22)–(23) that, for every j, zj[k] ≥

0, k ≥ 0. Then, the total mass Mk+1 in the system, defined as Mk+1 :=
∑n

j=1 zj[k + 1] +
∑

(j,i)∈E(σji[k]−τji[k−1])(1−xji[k]), satisfiesMk+1 = n , for all k = 0, 1, 2, ... . [This follows

from the fact that M0 =
∑n

j=1 zj[0] = n and the observation that Mk+1 :=
∑n

j=1 zj[k + 1] +
∑

(j,i)∈E(σji[k]− τji[k − 1])(1− xji[k]) =
∑

(j,i)∈E(σji[k]− τji[k − 1])xji[k] +
∑

(j,i)∈E(σji[k]−

τji[k− 1])(1−xji[k]) =
∑

(j,i)∈E(σji[k]− τji[k− 1]) =
∑n

j=1 zj[k] +
∑

(j,i)∈E(σji[k− 1]− τji[k−

2])(1− xji[k − 1]) which is equal to Mk.] The definition of Mk+1 involves the summation of

n + m nonnegative quantities, namely, zj[k + 1] for j = 1, 2, ..., n and mji[k + 1] := (σji[k] −

τji[k − 1])(1 − xji[k]) for (j, i) ∈ E . We can think of the Mk+1’s as follows: zj[k + 1] is the

mass at node j, whereas mji[k + 1] is the mass waiting to get transferred to node j from node

i. Since all of these quantities are nonnegative, at least one of them is larger or equal to n
n+m

.
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Regardless of whether this quantity is associated with a node (say j∗) or a link (say (j∗, i∗)), this

mass has at least one way of reaching any node j of interest in graph G via a path of length at

most n−1: in particular, there is at least one path of length at most n−1 from node j∗ to j and

all the links in this path have weight at least 1
D+

max
. If all these links are activated, which occurs

with probability qn−1 (qn in the case of link (j∗, i∗) because the mass needs to first transfer

to j∗), then a fraction ( 1
D+

max
)n−1 of the mass transfers to j in at most n steps. It follows that

Pr{zj[(k + 1)n] ≥ C | ζk, ζk−1, . . . , ζ1} ≥ qn.

Given a sequence of events E1, E2, . . . , En, . . . defined on some probability space, the next

theorem states the 1912 Borel criterion for establishing whether the event that infinitely many of

the Ek occur, denoted by {Ek i.o}, happens with probability one or zero (see, e.g., [19], [20]).

This is used in Theorem 5 to establish that Ej
k = {zj[kn] ≥ C}, k ≥ 1, occurs infinitely often

for all nodes j. Finally, in Theorem 6, we show that, whenever zj[k] ≥ C, each j can obtain an

estimate of α by calculating yj[k]/zj[k] and this estimate will almost surely converge to α.

Theorem 4 (Borel, 1912 [19]): Let {Ek}, k = 1, 2, . . . , be a sequence of events defined on

some probability space. Let ζk be the indicator function of event Ek and let Pr{Ek | ζk−1, ζk−2, . . . , ζ1}

denote the conditional probability of event Ek given the outcome of previous trials. If 0 < p′k ≤

Pr{Ek | ζk−1, ζk−2, . . . , ζ1} ≤ p′′k for every k, whatever ζ1, ζ2, . . . , ζk−1, then i) Pr{Ek i.o.} = 0

if
∑∞

k=1 p
′′
k < 1 ≤ ∞, and ii) Pr{Ek i.o.} = 1 if

∑∞
k=1 p

′
k =∞.

Theorem 5: Consider the iteration in (12)–(14). For every j = 1, 2, . . . , n, define the event

Ej
k = {zj[kn] ≥ C}, k ≥ 1, where C = n

(n+m)(D+
max)n−1 , D+

max = maxj∈V{D+
j }, n = |V|, and

m = |E|. Then, Pr{Ek i.o.} = 1.

Proof: Theorem 3 established that, for every j, Pr{zj[(k+1)n] ≥ C | ζjk, ζ
j
k−1, . . . , ζ

j
1} ≥ qn.

Define p′k = qn, then
∑∞

k=1 p
′
k =∞, and by the second assertion of Theorem 4, it follows that,

Pr{Ej
k i.o.} = 1, ∀j.

Theorem 6: For each j, let τ = {t1, t2, . . . } be an increasing sequence such that zj[k] >

C, ∀k ∈ τ . Then, almost surely limn→∞

∣∣∣yj [tn]zj [tn]
− α

∣∣∣ = 0.

Proof: Assume that α > 0. Then since zj[k] ≥ C, ∀k ∈ τ , whenever yj[tn]− αzj[tn] > 0,

it follows that yj [tn]

zj [tn]
− α ≤ yj [tn]−αzj [tn]

C
. Also, in the proof of Theorem 3, we established that

Mk = n, k ≥ 0, from where it follows that zj[tn] ≤ n, therefore, whenever yj[tn]−αzj[tn] ≤ 0,
yj [tn]

zj [tn]
− α ≥ yj [tn]−αzj [tn]

n
. In Theorem 2, we established that |yj[k]− αzj[k]| → 0 almost surely,

thus, almost surely, the subsequence |yj[tn] − αzj[tn]| → 0. Then, since C < n, almost surely,
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limn→∞

∣∣∣yj [tn]zj [tn]
− α

∣∣∣ ≤ limn→∞

∣∣∣yj [tn]−αzj [tn]C

∣∣∣ = 0. The proof when α ≤ 0 is similar and therefore

omitted.

VII. CONCLUDING REMARKS

In this paper, we proposed a method to ensure robustness of a class of linear-iterative dis-

tributed algorithms against unreliable communication links that may drop packets. As illustrated,

this class of algorithms can be used to coordinate the action of DERs to provide reactive power

support for voltage control. Other possible applications include the coordination of plug-in hybrid

electric vehicles to provide active power for up and down regulation services, and the control

of demand response resources in demand response programs.

APPENDIX

Proof of Theorem 1: We show first column stochasticity of matrix Π. Let C = qP̃F +(1−q)I

and D = I−P̃F , so that Π = C⊗C+q(1−q)(D⊗D)G. We will establish that C⊗C is column

stochastic and also show that the column sums of D⊗D are all zero. By construction, the entries

of the ith column of P̃ ∈ Rn2×n are all zero, with the possible exception of the ones indexed by
(
(i−1)n+j, i

)
, i, j = 1, 2, . . . , n, each of which corresponds to the (j, i) entry of matrix P . Then,

it follows that
∑n2

l=1 P̃li =
∑n

j=1 Pji = 1,∀i = 1, 2, . . . , n2. The matrix P̃F ∈ Rn2×n2 is also

column stochastic by construction, as it results from horizontally concatenating n times the matrix

P̃ , i.e., P̃F = [P̃ P̃ . . . P̃ ]; therefore, the matrix C is also column stochastic. The kronecker

product of C with itself, results in an n4×n4 block matrix of the form C⊗C = [C1 C2 . . . Cn2 ],

where Cj = [c1jC
T c2jC

T . . . cn2jC
T ]T . Then, it follows that the sum of the entries of the

lth column of Cj is
∑n4

m=1Cj(m, l) = (
∑n2

i=1 cij)(
∑n2

r=1 crl). Since
∑n2

i=1 cij and
∑n2

r=1 crl are

the sum of the entries of the jth and lth columns of C = qP̃F + (1 − q)In4 , it follows that
∑n4

m=1Cj(m, l) = 1; thus, C ⊗ C is column stochastic.

Since P̃F is column stochastic, the column-sums of D = I − P̃F are zero. The Kro-

necker product of D with itself is of the form D ⊗ D = [D1 D2 . . . Dn2 ], where Dj =

[d1jD
T d2jD

T . . . dn2jD
T ]T . Using similar arguments as above, it follows that

∑n4

m=1Dj(m, l) =

(
∑n2

i=1 dij)(
∑n2

r=1 drl) = 0, which implies that the column-sums of D ⊗ D are zero. The only

thing left to establish that Π is column stochastic is to show that all entries of Π are nonnegative

(from where it immediately follows that Π = C⊗C + q(1− q)(D⊗D)G is column stochastic).

July 6, 2012 DRAFT



26

We argue nonnegativity of Π as follows: due to the sparsity structure of G, the only nonzero

entries of (D⊗D)G will be in columns (k− 1)n2 + k, k = 1, 2, . . . , n2; thus except for entries

in these columns, the entries of Π will be identical to the corresponding entries in C⊗C. From

the structure of P̃F , entries of C ⊗ C and q(1 − q)(D ⊗D) can, respectively, take one of the

following three forms: i)
(
qpij + (1 − q)

)(
qplm + (1 − q)

)
and q(1 − q)(1 − pij)(1 − plm); ii)

qpij
(
qplm + (1 − q)

)
and −q(1 − q)pij(1 − plm); or iii) q2pijplm and q(1 − q)pijplm, where

pij ≥ 0 and plm ≥ 0 are the (i, j) and (l,m) entries of matrix P . For i), the corresponding

entry of Π is
(
qpij + (1− q)

)(
qplm + (1− q)

)
+ q(1− q)(1− pij)(1− plm) = qpijplm + (1− q),

satisfying 0 ≤ qpijplm + (1− q) ≤ 1. For ii), the corresponding entry of Π is qpij
(
qplm + (1−

q)
)
− q(1 − q)pij(1 − plm) = qpijplm satisfying 0 ≤ qpijplm ≤ 1. For iii), the entry of Π is

q2pijplm + q(1− q)pijplm = qpijplm, satisfying 0 ≤ qpijplm ≤ 1.

To prove the second assertion, we will show first that matrix P̃F can be written via a

permutation of its indices in the form
[
U V

0 W

]
, (41)

where U is an irreducible column stochastic matrix and limk→∞W
k = 0. Since P̃F is column

stochastic, we can assume that it corresponds to the weight matrix of some graph G̃ = {Ṽ , Ẽ}. We

will show that this graph has a single recurrent class plus a few transient states, from which the de-

composition of P̃F in (41) follows. Let Ṽ = {(1, 1), (2, 1), . . . , (n, 1), (1, 2), (2, 2), . . . , (n, 2), . . . ,

(n, n−1), (1, n), (2, n), . . . , (n, n)}. From the structure of P̃F , for any node (i, j) ∈ Ṽ , one-step

transitions out of (i, j) are to nodes of the form (m, i), with i ∈ N−m , where N−m is the set

in-neighbors of node m in the graph G (with weight matrix P ). Also, from the structure of

P̃F , there are possibly several rows of P̃F with all entries equal to zero, which means that a

node (i, j) that is associated with such row cannot be reached from any other node; however, as

already argued, from nodes of the form (i, j), it is possible to reach nodes of the form (m, i),

where i ∈ N−m . The nodes corresponding to rows with all entries being zero are transient. Also,

the only nonzero diagonal entries of P̃F correspond to diagonal entries of P , which are smaller

than one; thus nodes that are not reachable from any other node cannot be disconnected.

Next we will show that all non-transient nodes form a single recurrent class (as already

argued all nonzero diagonal entries are strictly smaller than one which means there cannot be
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absorbing nodes). This follows from the fact that the graph G is strongly connected, which

means that for any j, l ∈ V , there exists a path between j and l. Let i1, i2, . . . , it denote the

nodes traversed along the path between j and l. We will show next that for any two non-

transient nodes (i, j), (r, l) ∈ Ṽ there exists a path. As already argued, from (i, j) one can reach

in a single hop any node of the form (m, i), where m is a neighbor of node i in the graph G.

Since i1 is the first node traversed in the path between j and l, it follows that (i1, i) ∈ Ṽ can be

reached in one step from (i, j). By repeatedly using this argument, it follows that the sequence

of nodes (i1, i), (i2, i1), . . . , (it, it−1), (r, it) forms a path between (i, j) and (r, l), which means

that any non-transient node can be reached by any other non-transient node; thus, the set of non-

transient nodes forms a single recurrent class. Clearly, the vertex set Ṽ can be decomposed into a

single recurrent class and possibly several transient nodes. By re-ordering the nodes, P̃F can be

rewritten as in (41) (see, e.g., [17, p. 126]). Furthermore, since Q in (41) is irreducible, it follows

that qQ + (1 − q)I (where I is the identity matrix) is primitive. Then, C = qP̃F + (1 − q)I

has a unique largest eigenvalue of value one, i.e., λ1 = 1, and 1 > |λ2| ≥ · · · ≥ |λn2|. Let

σ(C) = {λ1, λ2, . . . , λn2}. Then, σ(C ⊗ C) = {λiλj, i = 1, . . . , n, j = 1, . . . , n}, including

algebraic multiplicities in both cases [15, p. 245]. Since λ1 = 1 is unique (multiplicity one) and

|λi| < 1, i = 2, . . . , n2, it follows that the eigenvalue of C ⊗ C = [qP̃F + (1− q)I]⊗ [qP̃F +

(1−q)I] of largest magnitude also takes value 1 and is unique. Since C⊗C is column stochastic

and λ1 = 1 is unique, we know that either C ⊗ C is also primitive or it can be decomposed

(through index permutation) to a matrix of the form in (41) for some U ′, V ′, and W ′ such that

where U is a primitive matrix and limk→∞W
k = 0 [17]. Due to the sparsity structure of G, the

only nonzero entries of (D ⊗ D)G will be in columns (k − 1)n2 + k, k = 1, 2, . . . , n2, thus

except for entries in the aforementioned columns, the nonzero entries of Π are the same as those

in C ⊗C. For all other columns in Π (that include nonzero entries in (D⊗D)G), it was shown

above that the nonzero entries of Π are strictly positive, thus Π has the same sparsity structure

as C ⊗C, which means that Π can be decomposed in the form of (41) (for some L′′, M ′′, N ′′),

and the resulting upper-right block is primitive. Thus, Π has a unique largest eigenvalue at one.
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