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Abstract 

Hydropedological units are of critical importance in modulating catchment response in 

terms of storage and flux dynamics under changing hydrological conditions. We examined 

the short-term impacts of an extreme drought on the storage dynamics and runoff response 

in hydropedological units in a headwater catchment in the Scottish Highlands. These 

included poorly drained histosols in riparian zones and freely draining podzols on steeper 

hillslopes. To characterise the storage and runoff dynamics prior to, during, and after the 

drought period, precipitation, soil moisture, shallow ground water levels, and consequent 

runoff were monitored and stable water isotopes samples collected. Storage changes in the 

histosols were remarkably small (<40 mm), compared to those in moorland (~100 mm) and 

forest (~200mm) covered podzols. Although storage in all soils recovered soon after the 

drought, this took longest (3-4 months) for the forested podzols. During events, there was 

consistent threshold behaviour in most hydropedological units and the integrated response 

at the catchment scale, which was not affected by drying or wetting. The results suggest 

that during dry periods, large parts of the catchment were disconnected from the river 

network and runoff was generated mainly from the wet histosols. However, during events, 

there was an intermittent connection of the hillslopes that recharged the wetland and 

stream. This contributed to strong recovery and resilience of the catchment in its runoff 

response. Nevertheless, as future climate projections for northern environments suggest 

that prolonged dry periods are likely to become more frequent, further work is needed on 

the potential cumulative or carry over effects of consecutive drier periods.  
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1. Introduction 

Northern upland catchments sustain rivers that provide vital sources of water and energy in 

many areas, as well as supporting important ecosystems, including peatlands (Acreman et 

al., 2009; Tetzlaff et al., 2013). Although relatively water resource rich in a global context 

(Gerten et al., 2011), water scarcity can occur during exceptional dry periods. In these 

environments, the concept of a ‘drought’ thus refers to relative rather than absolute deficits 

(Wilhite and Glantz, 1987; Gosling et al., 2012). In addition to reductions in water and 

energy supplies, such events can cause changes in the physical properties of catchment 

soils, which may have serious hydrological implications. Soil cracking may lead to increased 

infiltration and vertical water movements (Holden and Burt, 2002; Jarvis et al., 2012). 

Alternatively, the development of a hydrophobic layer could reduce infiltration and enhance 

overland flows (Doerr et al., 2006). Droughts and lower water tables in northern uplands 

have also been linked to changes in soil chemistry (Juckers and Watmough, 2014), increases 

in carbon fluxes (Worrall et al., 2006) and solutes (Burt et al., 2014), alterations in microbal 

activity (Mettrop et al., 2014) and the mobilisation of sediment (Evans et al., 2006), and 

(temporary) loss of habitat (Stubbington et al., 2009). For many ecosystems, timing of water 

availability in particular is crucial. Droughts can be most detrimental, for example, during or 

at the onset of growing seasons (Michelot et al., 2012; Matías et al., 2014), or at times of 

fish migration for spawning (Tetzlaff et al., 2005). Economically, replacing ecosystem 

services lost during drought conditions and adapting to new ecosystem equilibria may be 

extremely costly (Banerjee et al., 2013).  

The impacts of droughts (both in severity and duration) are known to depend on catchment 

characteristics, including soil type, land use, and geology (Peters et al., 2003; Van Lanen et 

al., 2013). In general, meteorological droughts tend to develop more often into hydrological 

droughts for catchments with relatively fast responding flowpaths, although they are of 

shorter duration than those for more slowly responding (e.g. groundwater dominated) 

catchments (Van Lanen et al., 2004; 2013). Of importance in the context of drought 

tolerance are the systems’ resistance, resilience and recovery to drought perturbations, 

concepts which are more commonly used in the field of ecology (e.g. Lloret et al., 2011; 

Taeger et al., 2013). Resistance relates to the strength of the system’s state to remain 

unchanged under stress, while resilience expresses the system’s ability to respond to stress 
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by repelling damage and recovering quickly (Carey et al., 2010; Taeger et al., 2013). 

Recovery, in turn, refers to the system’s restoration to pre-stress conditions. For example, if 

a system has low resistance and low resilience to change, it will show dramatic state 

changes under stress conditions, and prolonged (or indefinite) recovery times to pre-stress 

conditions.  

The present work focuses on short-term (event-based and seasonal) impacts of drought on 

water storage and transmission dynamics in northern environments. We examined the 

impacts on these processes in different hydropedological units in Scotland, UK, as well as 

their integrated response at the catchment scale. Hydropedological characteristics are 

known to be of great importance in regulating water storage and flux dynamics in these 

humid upland catchments (Soulsby and Tetzlaff, 2008; Hrachowitz et al., 2009). Permanently 

wet, poorly draining histosols exhibit little dynamic storage and highly responsive near-

surface hydrological pathways, while processes in more freely draining pozolic soils are 

mainly characterised by vertical movement to deeper flow paths (Tetzlaff et al., 2014). Some 

studies have shown that the hydrological impacts of periods of drought in humid 

environments tend to be small and short-lived at the catchment scale (e.g. Evans et al., 

1999; Worrall et al., 2007a; Burt et al., 2014). However, the sensitivity to droughts of the 

different characteristic hydropedological units in northern landscapes, and their integrated 

response at the catchment scale remain poorly understood. 

A key limitation to understanding impacts of droughts on storage and transmission 

dynamics in northern environments is the lack of spatially distributed data. This is caused by 

the difficulty of measuring subsurface processes directly and the challenges associated with 

monitoring an uncommon hydroclimatological event. Through the integration of 

hydrometric data with stable water istotopes, new insights can be gained into the 

resistance, recovery and resilience of storage and transmission dynamics in 

hydropeodological units to droughts. Whereas soil moisture and groundwater level 

monitoring provide partial insights into total water storage dynamics (e.g. Haga et al., 2005; 

Salve et al., 2012), isotope tracers are crucial to further understand water transport, 

partitioning (e.g. evapotranspiration), and mixing processes (see reviews by Kendall and 

McDonnell, 1998; Vitvar et al., 2005; Soderberg et al., 2012).  
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The main aim of this study was to investigate the short-term impacts of an exceptionally dry 

period on the storage dynamics in different hydropedological units and runoff response of a 

northern headwater catchment using a combination of hydrometric and stable isotope data. 

In particular, the following questions were addressed: (i) What are the hydroclimatological 

conditions prior to, during, and after the extremely dry period?, (ii) How do different 

hydropedological units respond to the dry period, in terms of dynamic storage as 

characteristed by soil moisture and shallow ground water level responses?, and (iii) How is 

the catchment behaviour as a whole affected by the exceptionally dry period? 

2. Site Description 

This study was conducted in the 3.2 km
2
 Bruntland Burn northern headwater catchment, in 

the Cairngorms National Park, NorthEast Scotland, UK (Figure 1). The climate is generally 

characterised by high annual preciptiation (~1000 mm), mostly occuring in small and low 

intensity storms, relatively evenly distributed throughout the year. Annual potential 

evapotranspiration (~400 mm) is concentrated in the period between April and September 

(Birkel et al., 2011a). The Bruntland catchment is underlain by granite and metamorphic 

bedrock. Elevations range from 248 to 539 masl (mean 351 masl) and the mean slope is 

~13. The catchment is characteristed by distinctly different hydropedological units typical 

for glaciated northern headwater catchments. Drift deposits in an over-widened glaciated 

valley are poorly draining, which has allowed the formation of peat bogs (histosols; 

approximately 9% of total catchment area) of up to 4 m deep in the riparian zone. Here, 

vegetation is dominated by Sphagnum and Bog Myrtle (Myrica gale). The histosols exhibit 

high water storage and are wet throughout the year, owing to high porosities and water 

retention capacities. Consequently these soils provide a very responsive hydrological regime 

with runoff generated mainly via surface and near-surface horizontal flow in the riparian 

zone (Tetzlaff et al., 2007; Birkel et al., 2011b). At the footslopes, the histosols thin to less 

than 0.5 m and gradually move to peaty gleys (gleysols; 12% of total catchment area) that 

mostly support Molinia and heather (Calluna and Erica species) vegetation. These soils 

exhibit similar poorly draining properties, although overall storage is generally lower. 

Humus-iron podzols (spodosols; 36% of total catchment area) with heather vegetation 

overlay the steeper hillslopes. In comparison to the histosols and gleysols, these soils are 

much more freely draining, with clear drying and wetting patterns in response to rainfall 



This article is protected by copyright. All rights reserved. 
 

(Geris et al., 2014). On the hillslopes, water flow is characterised by more vertical, deeper 

flow path recharge, with lateral shallow subsurface storm flow in the largest events (Soulsby 

et al., 1998), exhibiting a transient connection to the riparian wetland when water tables are 

high (Tetzlaff et al., 2014). On the steeper slopes (> 25), the podzols thin to ranker soils 

(leptosols, 14%) and bedrock outcrops (approximately 29% of total catchment area). As a 

result of high deer grazing densities, tree cover is limited to areas generally inaccessible to 

deer (i.e. on steeper scree slopes and behind deer fences). There are several patches 

(approximately 20% of catchment area in total) of Scots Pine (Pinus sylvestris) and other 

native (incl. Birch (Betula), Alder (Alnus)) and non-native (e.g. Sitka Spruce (Picea sitchensis)) 

tree species.  

3. Data and Methods 

3.1 Hydrometric Data and Analyses 

The Burntland Burn is part of a long-term experimental monitoring programme with a dense 

hillslope monitoring network of hydrological variables. As part of this, precipitation, soil 

moisture, shallow ground water levels, and consequent runoff at the catchment outlet were 

monitored, and analysed here to characterise the storage and runoff dynamics prior to, 

during, and after the drying period in the 2013 summer. Soil moisture and ground water 

level responses in the main soil types (poorly draining histosols and gleysols, and freely 

draining podzols) were investigated. Five sites were selected that demonstrate the overall 

variability in hillslope responses (Table 1; Figure 1), equally representing poorly draining and 

freely draining soils. The first three sites were positioned along a hillslope transect, so that 

S1, S2, and S3 were located on a histosol-gleysol-podzol soil catena with typical vegetation, 

respectively. In addition, S4 (tree cover) and S5 (heather vegetation cover) were positioned 

on podzol soils. Site characteristics, vegetation, and soil physical properties for the five sites 

are provided in Table 1.  

Volumetric soil moisture (VSM) content of the upper 0.6 m profile was measured at sites S1 

– S4 with Campbell Scientific Time Domain Reflectometry (TDR) probes at 0.1, 0.3 and 0.5 m 

depth. These depths correspond roughly to the main soil horizons (Table 1). Assuming 

idealised soil profiles, these VSM data were converted to absolute soil moisture (SM) 

estimates of the upper 0.6 m soil profile, by multiplying the VSM data of each probe with 
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the representative soil horizon thickness (0.2 m). Average values of two replicate probes for 

each soil layer were used. For S1, VSM was measured at -0.1 m only, assuming that the 

lower soil layers (-0.2 m and beyond) were permanently saturated (cf. Geris et al., 2014). 

Groundwater table levels (GWL) were measured at sites S1-S3 and S5 using Odyssey 

capacitance probes. The stony nature of the drift and podzol parent material prohibited 

installation of wells deeper than approximately 0.5 m (well depths are provided in Table 1). 

Precipitation and other climatological variables were obtained from an automatic weather 

station located 1 km west of the catchment. Potential evapotranspiration rates were 

estimated using a simplified version of the Penman-Monteith Equation (cf. Dunn and 

Mackay, 1995). All hydrometric variables were monitored at a 15 minute interval.  

Three distinctly different, 4 month periods in hydroclimatological conditions were identified, 

involving a pre-drying, drying, and rewetting period. General statistics of precipitation, 

potential evapotranspiration, and discharge were derived to characterise the different 

nature of hydroclimatological conditions during these three periods. T-tests were performed 

to assess the statistical differences between these event characteristics of the three periods. 

Drought tolerance indices based on timeseries percentiles were computed for the soil water 

storage in the different hydropedological units and the runoff at the catchment scale. For 

each of the timeseries’ statistics (X), the system’s resistance, recovery, and resilience (all [-]) 

was calculated according to Equations 1, 2, and 3 respectively (following Lloret et al., 2011; 

Taeger et al., 2013):                                   (Equation 1)                                     (Equation 2)                                    (Equation 3) 

for which i is the timeseries (X) percentile (including the 0.1, 0.5, and 0.9 percentiles as well 

as minimum and maximum), during the ‘pre’ (Xpre), ‘drying’ (Xdrying), and ‘wetting’ (Xwetting) 

periods.  A resistance of 1, for example for the discharge 0.5 percentile, signifies no change 

in the mean flow, while values below one indicate decreases and increasingly lower 

resistance. Similarly, recovery and resilience values below 1 indicate incomplete recovery 
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and relatively low resilience, while values above 1 show recovery to levels higher than 

before the drying period and a highly resilient system.  

Subsequently, event-based analyses were performed to explore the spatio-temporal soil 

moisture, groundwater and runoff responses of the different hydropedological units and at 

the catchment scale under the different hydroclimatological conditions. In the context of 

this study, a precipitation event was defined by a 12 hour dry period before and after the 

occurrence of precipitation larger than the measurement error of 0.2 mm. Because of the 

low intensity and long duration nature of most precipitation in the Scottish Highlands, 

events last up to several days. The magnitude and timing of peak responses in SM and GWL 

for the hydropedological units and in discharge at the catchment outlet were extracted. The 

peak response (and its timing) were defined as the maximum level of each of the variables 

in the period between the start of the event under consideration and that of the next event. 

The lag times in responses were expressed as the difference between timing of the 

precipitation mass centroid and the peak timing. Antecedent precipitation was calculated 

according to Equation 4:                                (Equation 4) 

where API (mm) is the antecedent precipitation index and time t (days), k (-) is an API time 

decay factor, and P (mm
 
day

-1
) precipitation. Parameter k inversely represents the rate at 

which the catchment wetness declines in the absence of precipitation and affects both the 

average magnitude of API and the weightings given to historical rainfall. Here it was set at 

0.8 to reflect the relatively flashy nature of the catchment (the effect of rainfall falls to 10% 

over 10 days).    

3.2 Stable Water Isotope Data and Analyses 

Soil and stream water samples were collected for stable water isotope analyses to further 

explore mixing, storage and evapotranspiration effects.  During the full duration of the study 

period, daily precipitation and stream flow samples were collected by automatic ISCO (3700) 

samplers. Isotopic fractionation between sampling and collection was prevented by a 

paraffin seal in the field. During the pre-drying and drying periods only, fortnightly soil water 

samples from the three VSM monitoring depths were collected for sites S1-S4 using 
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Rhizosphere Research Products MacroRhizon moisture samplers. Water samples were 

analysed for stable isotope composition with a Los Gatos DLT-100 laser liquid water isotope 

analyser. Lab procedures followed standard protocols and data are presented in the δ-

notation (‰) relative to Vienna Standard Mean Ocean Water (VSMOW). Duplicates for each 

soil layer were collected and average results are given here.  

To assess general mixing and storage processes, catchment isotope input-output 

relationships were investigated and compared with the isotope dynamics of soil water. 

Evaporative fractionation in the top soil of the different hydropedological units and its 

potential propagation throughout the soil profile were explored. Soil water isotope 

signatures for the three depths were compared against the global and local meteoric water 

lines for the different periods. Similarly, the integrated effects at the catchment scale in 

addition to direct evaporation from water in the stream were evaluated.  

4. Results 

4.1 General Hydroclimatological Conditions and Responses Prior to, During, and After the 

Drying Period 

The climatological conditions of the study year (February 2013 – January 2014) included an 

unusually dry and warm summer which was followed by an extremely wet winter. Figure 2 

shows the mean monthly temperature and monthly precipitation during the study year for 

the closest long-term monitoring station at Braemar, approximately 20km west of the 

catchment. Compared to the long-term (1981-2010) average, January to April 2013 was 

colder, while in particular July and December 2013 were generally warmer. Precipitation 

occurred predominantly as rain. Regular field visits confirmed occasional snow lying up to 

April 2013, while this was negligible for the 2013-2014 winter period. Monthly precipitation 

totals at Braemar were significantly less than the long-term average during the 2013 

summer period (43% less for June-September; 67% less for August-September). In terms of 

total precipitation, these conditions had an estimated return period of 8-12 years (NHMP, 

September 2013). Moreover, a large part of this rain fell during late July, during a few large 

convective events, so that there were unusually prolonged periods without any 

precipitation. The winter that followed this dry period was extremely wet. For North-East 

Scotland, 179% of the average rainfall for December 2013 – January 2014 was recorded, 



This article is protected by copyright. All rights reserved. 
 

with an estimated return period exceeding 100 years (NHMP, January 2014). Daily 

catchment hydrometric data (Figure 3, Table 2 top) revealed three markedly different 

periods: February  – May 2013 (the period prior to the drying), June – September 2013 (a 

period with significant drying), and October 2013 – January 2014 (a period during with 

catchment rewetting occured), hereafter referred to as the ‘pre’, ‘drying’, and ‘wetting’ 

periods, respectively. Although it may be argued that the ‘wetting’ period started later for 

some of the sites (e.g. S4), overall Figure 3 shows that from the start of October 2013, there 

were regular precipitation inputs, potential evapotranspiration rates were low, and 

discharge at the catchment scale increased.  

During the drying period, potential evapotranspiration greatly exceeded precipitation and 

discharge (Table 2). There were 3 extended periods without rain, with a maximum length of 

18 days. The majority of preciptiation during the drying period occurred during a wave of 

convective events at the end of July. To some degree, decreases in SM were observed for all 

soil types, although this was most distinct for the podzol soils at S3 and S4, with the 

strongest drying effects under tree cover at S4 (Figure 3). The maximum difference in SM for 

the S1 histosol site was limited to approximately 20 mm (around 4% of its maximum 

observed total storage in the upper 60 cm of the soil profile). For GWL, similar patterns 

were observed in drawdown, with little drawdown at S1 and marked declines for the 

podzolic soils at S3 and S5, for which levels dropped beyond the measuring range for the 

majority of drying period. Subsequent deeper drilling at S3 has revealed a minimum water 

table depth of around 1.2m. Discharge declined substantially during the drying period, and 

runoff ratios were considerably lower than during the two other periods (Figure 3, Table 2). 

Median flow (Q50) was around a third of flows during the pre and wetting periods, while 

Q10 (i.e. the amount of flow exceeded for 10% of the time) of the drying period was still less 

than two thirds of Q50 at the two other periods (Table 2).   

From the beginning of October 2013, the catchment started rewetting and discharge levels 

recovered (Figure 3). In terms of water storage recovery in the hydropedological units to 

pre-June levels, this appeared to take longer for the podzols. However for each particular 

unit, there was similarity in the rewetting patterns observed in the GWL and VSM data. The 

resistance, recovery, and resilience of the SM storage dynamics in the different 

hydropedological units and the consequent catchment runoff Q, as represented by SM and 
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flow percentiles, respectively, are summarised in Figure 4. GWL data are not shown, as 

these data had large gaps during the drying period at S3. As the poorly draining histosols 

and gleysols are highly resistant (values close to 1), their recovery and resilience to the 

drying period is also high. The resistance of the freely draining podzols appeared relatively 

low, although recovery was good. As the rewetting of the podzols took considerable time, 

their resilience, especially as reflected for the lower percentiles, is relatively low. Note the 

log scale of the y axes and the high variety between the indices of the podzols, reflecting the 

more variable nature in their dynamics. A large proportion of the catchment (~80%) is 

represented by freely draining podzols, ranker soils and bedrock outcrops. At the catchment 

scale (as quantified by discharge at the catchment outlet), resistance to the drought over 

the whole time series is, as for the podzols, low, and recovery high.    

4.2 Event Based Storage (Soil Moisture and Groundwater Level) and Runoff Responses  

We analysed 40, 28, and 39 events for the ‘pre’, ‘drying’, and ‘wetting’ periods respectively. 

There was considerable natural variability in the precipitation events, which is evident in the 

large spread in the event characteristic boxplots during the three periods (Figure 5). In 

general, precipitation events during the entire study year were long in duration (up to a few 

days, and ~10 hr on average) and had relatively low intensities (Figure 5), typical for the 

climate in the Scottish Highlands. Although the large spread at first sight suggests that there 

are no clear differences between the precipitation event characteristics of the three 

periods, events during the drying period were, on average, shorter in duration and smaller 

in magnitude, in particular when compared with the wetting period (Figure 5;Table 3). 

Because of the general drier conditions, the antecedent precipitation index prior to the 

events was also smaller. Associated with these drier conditions, it appears that the peak 

discharge (Qpeak) for similar precipitation totals was generally lower for the drying events.  

Precipitation intensities were generally similar for events in the three different periods. 

For the three periods, Figures 6 and 7 show the peak event magnitude and timing, 

respectively, for the responses of SM, GWL and discharge (Q) in relation to each other. As in 

Figure 3, there are large differences in the SMpeak ranges between the different 

hydropedological units (Figure 6). The freely draining podzolic soils show much larger ranges 

in peak responses than the poorly draining soils. As the SM ranges observed at S1 are small, 
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apparent peak responses in the histosols cannot be clearly identified; hence, timings of peak 

responses at S1 are not shown in Figure 7.  

At the catchment outlet, event peak discharges during the ‘pre’ and ‘rewetting’ period up to 

~ 0.8 mm/hr were observed, while the maximum peak flow during the drying period was 

only 0.42 mm/hr (Figures 5c, 6). However, even though these ranges were quite different, 

all soil types exhibited clear threshold behaviour in the relationship between Qpeak and the 

SMpeak (top row Figure 6), so that highest discharges only occur when SM storage 

throughout the catchment is relatively high. Similar threshold behaviour was observed for 

GWLpeak in relation to Qpeak (middle row Figure 6), although again not for S1 which was 

always wet. Importantly, there was no clear difference in these relationships between the 

pre, drying and the rewetting periods. The exception was the podzolic soil with tree cover 

(S4), where high discharges occurred during periods with some of lowest SM observations, 

both during the drying and (start of) the rewetting period. This suggests that during those 

times, there was little or no connection of this hydropedological unit with the river network.   

Maximum observed stream discharge lag times were in the order of two days during the 

‘pre’ and ‘drying’ periods (Figure 7). They were generally less than a day during the 

‘rewetting’ period, when conditions were generally wetter, and total precipitation larger. In 

terms of relative peak timing, Figure 7 showed large scatter for the SM and GWL responses 

in relation to Q (upper two rows) and each other (bottom row) in all hydropedological units. 

However, it is noted that, as for peak magnitude, there are no clear differences in the event 

peak timings between the three periods, even though soil water storages were much lower 

during the drying period.  

4.3 Stable Water Isotope Dynamics in the Hydropedological Units and in Stream water 

Isotopes in precipitation input showed high variability throughout the study year, though in 

general more enriched values were evident during the drying period (δD weighted average = 

-49.6 ‰) than during the pre-drying (-50.8 ‰) and the rewetting (-66.6 ‰) periods. Albeit 

significantly damped, this pattern was reflected in the temporal isotope signatures of the 

stream water outputs (Figure 8, δD weighted averages of -53.6 ‰, compared to -56.3 ‰ 

and ‰ -58.0 respectively).  
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For each of the individual sites, the soil water isotopes, in particular at the top of the 

profiles, were also more enriched during the drying period (Figure 9). The large variability of 

the precipitation inputs is most clearly reflected in the soil water of the freely draining 

podzols at S3 and S4. The damping of isotope variability, especially for the poorly draining 

sites (S1 and S2), increases with depth. There was a slight indication of evaporative 

fractionation in the upper soil profiles during the drying period, but transmission of this 

signal to greater depths was not apparent. This suggests that the proportion of stored soil 

water that was affected by evaporation was relatively small, as it would be subsequently 

mixed with any new precipitation inputs that would have penetrated further down the soil 

profile.   

Apart from the more generally enriched stream water isotopes during the drying period, 

there were no clear differences between the three periods in the stream water signatures in 

terms of evaporative fractionation influence (Figure 10). The more enriched soil water in the 

upper profiles (top row Figure 9) was not reflected to the same extent in the stream water 

(Figure 10). Throughout the entire observation period, it appeared the stream water 

signatures remained similar to those observed at S1 at 0.3 m, consistent with the riparian 

wetland being the main source of runoff. Open water evaporation effects, or inputs from 

fractionated soil water, were small or absent, as stream water plotted close or on the local 

meteoric water line (LMWL). Even during periods with no rain, there was no relation 

between deviations from the LMWL that indicate fractionation effects of evaporation (inset 

Figure 10). It is noted, however, that during periods with little new precipitation inputs and 

decreasing discharge, the stream water signatures were increasingly depleted, which 

suggests relatively more groundwater inputs that are mainly recharged with depleted 

winter precipitation. These effects appeared more dominant than any potential 

fractionation impacts as a result of evapotranspiration during the lowest flows during the 

drying period.  

5. Discussion 

5.1 Hydroclimatological conditions  

The Scottish climate is generally characterised by high preciptiation inputs that are relatively 

evenly distributed throughout the year. The study year, however, showed a distinctly dry 
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period with precipitation inputs below - and mean temperatures above - average. In 

addition to the impacts of this dry period on general storage and flow conditions, the 

dynamics during individual events were analysed. The definition of an event we used here 

(i.e. 12 hr pre- and post-event windows with no precipitation), may initially seem arbitrary. 

It is, however, most suitable for the prevailing climate, where events are generally 

characterised by long and low intensity inputs of precipitation, which can last for days. Initial 

analyses (not shown here) indicated that different time windows for the characterisation of 

events would not have affected the relative differences in conditions between the pre, 

drying, and wetting periods, nor the interpretation of the drought impacts on storage and 

transmission processes. However, the local climate has natural variability and individual 

drought events can provide only a limited insight into potential future system responses. For 

the Girnock catchment (30 km
2
), into which the study catchment drains, Birkel et al. (2015) 

showed that catchment scale storage deficits for a dry period in 2003 persisted well into 

2004. The winter of 2013-2014 received almost twice as much precipitation than average, 

with an estimated return period exceeding 100 years (NHMP, January 2014), so it is likely 

that rewetting processes occurred more quickly during this study year.  

5.2 How do the hydropedological units respond to the dry period, in terms of dynamic 

storage as characteristed by soil moisture and shallow ground water level responses? 

Storage dynamics in all soil types were affected by the dry period, but the results 

demonstrated markedly different responses in the resistance, resilience and recovery to 

drought. This can be explained by their relative differences in hydrophysical properties. 

Despite relatively limited drying effects (<40 mm), water storage in the histosols showed a 

high resistence to drought. The high moisture retention capacity in particular is known as a 

key regulator of peatland ecohydrological resilience to perturbations. This is characterised 

by a set of hydrological negative feedback mechanisms that regulate changes in 

preciptiation and temperature (Waddington et al., 2014). For example, water loss in 

peatlands under drought conditions is regulated by increases in near-surface tensions as the 

peat dries, and thereby reductions in the availability of water for evaporation (Kettridge and 

Waddington, 2014). This may perhaps also explain the absence of strong evaporative 

isotopic enrichment effects in the upper histosol profiles, which in northern wetlands has 

only been observed in permanently shallow water surfaces (e.g. Levy et al., 2013).   
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Storage deficits in the podzols were up to 5 times higher than in the histosols and recovery 

in general appeared to take longer. Distinct wetting and drying cycles in winter, the marked 

drying in summer, and reduced damping of isotope variability with depth for the podzols all 

indicated that transmission processes through these soils are faster and less mixing occurs 

(see also Tetzlaff et al., 2014; Geris et al., 2014). Water retention capacities of mineral soils 

in general are lower than those for histosols (Letts et al., 2000). In addition, macropores or 

cracks in the podzol could have caused preferential water flow through the upper soil layer 

to deeper soil horizons. Such quick flow paths could also explain the fast responses 

observed in the the GWL data.  

Nevertheless, although lower than the histosols, the podzols still demonstrated relatively 

high resilience. As storage and transmission dynamics of all hydropedological units 

recovered within a relatively short timeframe (max 3-4 months), it is suggested that no 

significant changes in the soil hydrophysical properties that might affect storage and 

transmission dynamics (e.g. hydrophobicity, soil cracking) occured, such as observed for 

more severe and repeated (laboratory) drought periods in histosols by Holden and Burt 

(2002) and in podzols by Sowerby et al. (2008). This would also be consistent with the lack 

of impacts in the relationship of the storage dynamics in the different units and their 

integrated runoff response at the catchment scale suggesting that runoff generation flow 

pathways remained unchanged (Worrall et al., 2007a).  

However, the results did suggest that land use may have further exacerbated the high 

spatial variability in the resistance and resilience in terms of storage dynamics to drought 

impacts. Dynamic storage changes in the podzols were twice as high under forest cover 

compared to heather vegetation cover. Although it is difficult to fully separate soil, 

vegetation and topography effects on soil water storage dynamics (Lin et al., 2006; Geris et 

al., 2014), evidence from other studies in Scotland suggests that evapotranspiration under 

Scots pine may be larger than under moorland cover (Haria and Price, 2000). Similar findings 

were consistently observed elsewhere (e.g. Green et al., 2006). In addition, it has been 

shown that different water use strategies by vegetation communities can affect the 

downstream water resources impacts of droughts (Leitinger et al., 2015). Although overall 

small, there was a relatively higher fractionation of isotopes resulting from evaporative 

effects in soil water under tree cover at S4. As previously argued by Geris et al. (2014), this 
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could be associated with higher surface roughness and throughfall of fractionated 

interception under forest cover. However, the evaporative enrichment was relatively small 

compared to the additional storage deficits at this site, and did not extend to the deeper soil 

horizons. It is likely that additional water use of trees, which does not alter isotope 

signatures of soil water (Ehrlinger and Dawson, 1992), was the dominant mechanism. Based 

on data from several catchments in central and western Europe, Teuling et al. (2013) 

demonstrated that the effects of low precipitation inputs during droughts are typically 

amplified by additional evapotranspiration. It could further be argued that any intercepted 

water might have fully evaporated, and therefore throughfall of fractionated water was 

limited or non-existing.  

 5.3 Is the catchment response behaviour as a whole affected by the exceptionally dry 

period? 

Using daily data, Tetzlaff et al. (2014) previously demonstrated that the storage dynamics in 

different hydropedological units control hydrological connectivity between hillslopes and 

stream network, runoff generation and the evolution of catchment transit time 

distributions. In addition, Geris et al. (2014) argued that the pedological role on water 

storage and transmission dynamics in northern headwater catchments is stronger than that 

of vegetation. Furthermore, the analyses here have shown that the catchment resistance, 

resilience and recovery to drought are also affected by the impact of drying on the different 

hydropedological units.  

High water storage in the poorly draining histosols and underlying drift of the riparian zone 

sustained flows throughout the dry period, and there were catchment runoff responses to 

even small precipitation events. The strong damping of isotope inputs in the riparian zone 

and connected stream network has been linked previously to considerable mixing of new 

precipitation inputs with a large volume of stored water with relatively long residence times 

(Tetzlaff et al., 2014; Geris et al., 2014). The isotope data further indicated that although the 

riparian wetland was the main continuous source, the relative contribution from deeper 

groundwater increased during the lowest flows (Birkel et al., 2014). This was evidenced by 

increasingly more depleted stream water isotopes during these periods with no additional 

precipitation inputs. Mean ground water isotopes are generally more depleted 
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(approximately δD -61, and δ18O -9, Tetzlaff et al., 2014). For the majority of time, 

disconnectedness of large parts of the catchment from the river network caused a 

significant decrease in flows during the dry period. A strong correlation existed between the 

drought tolerance, i.e. high resistance, resilience, and recovery, of the podzols and the 

catchment as a whole (Figure 4).  

Nevertheless, the analyses have shown that during events, the catchment behaviour as a 

whole shows high resistance as well as high resilience to drier periods. For all 

hydropedological units that showed significant storage changes during the study period, 

there was consistent threshold behaviour in the relationship between the storage in the 

hydropedological units and the catchment response. This suggests that the dynamic storage 

capacity is a dominant factor in controlling initiation of increased runoff and connectivity, as 

also observed elsewhere (e.g. Evans et al., 1999; Detty and McGuire, 2010; Carrer et al., 

2014). These integrated responses at the catchment scale, apart from those of the tree 

covered podzol, appeared not to be affected by relative drying or wetting conditions. Clear 

differences in the relative timings of storage and peak flows were also absent, although it is 

noted that, in our analyses, lag times were not compared directly e.g. with antecedent 

conditions or rainfall intensity (e.g. Haga et al., 2005), which may potentially affect 

variations in lag time responses. We demonstrated that rainfall intensity was not 

significantly different between the three study periods. In addition, antecedent conditations 

were also unlikely to have a considerable effect on the event response lag times,  since if 

such significant impacts of the drought period on event response lag times would have 

occured, these would have emerged out of the natural scatter data plots of Figure 7. 

The consistent threshold behaviour demonstrated that through quick preferential flow 

pathways there was an intermittent connection of the upper hillslopes recharging the 

wetland and stream during events, even during dry periods. Although relatively small 

compared to the precipitation input signatures, this was in extreme cases also evidenced by 

a characteristic response in stream isotope signatures, for example during the event at the 

end of July (Figure 8). Similar findings in resilience to droughts in catchment response in 

northern environments have been reported elsewhere. For a peat-covered upland 

catchment in northwest England, Worrall et al. (2007a) found no permanent effects on 

runoff initiation beyond a 1 in 33 year drought period, also suggesting that flowpaths were 
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resistent against changes in droughts. Likewise, Burt et al. (2014) reported a quick recovery 

in runoff production and solute transport in a headwater catchment in southwest England, 

after the most severe drought ever recorded throughout the UK. However, land 

management practices in these environments such as drainage, vegetation burning, and 

high grazing levels are known to affect water table depths and runoff generation processes 

(e.g. Worrall et al., 2007b; Ramchunder et al., 2009). They may therefore indirectly also 

affect the local susceptibility of such affected areas to droughts.  

The drought sensitivity indices (resistence, recovery, and resilience) which were used here 

are relatively simple, yet they have provided effective tools to compare the responses of the 

different hydropedological units and their integrated response at the catchment scale. 

However, their absolute values are depending on local site conditions including the climate 

regime (overall precipitation totals) and the mean values of flow and storage.  To be able to 

use the indices in a wider context (e.g. comparisons between study sites), equations 1-3 

should consider normalising the data through the use of for example, a rainfall index or 

average soil moisture regimes. Another limitation of the approach taken here relates to the 

clustering of the data. Both the total length as well as the timing of the three periods are 

likely to affect the absolute drought sensitivity indices. If the time periods were much 

shorter than the duration of a season, for example in the order of a few days or a week, the 

absolute values and the relative differences between the sites would most likely be more 

extreme. However, the definition of the exact periods would become even more complex 

owing to the difficulties related to precipitation events with long duration and the 

timescales of the storage responses. The three seasons analysed here were clearly defined 

based on differences in overall hydroclimatological conditions.  

We recognise that the five monitoring sites alone will not represent the full spatial 

heterogeneity of drought impacts on storage and transmission processes within the 

catchment. However, their respective locations were carefully chosen so that the main 

functional landscape and hydropedological units could be characterised, and indeed have 

broad relevance for many northern upland catchments. Furthermore, the combination of 

the hydrometric and isotope datasets has assisted interpreting the integrated catchment 

scale effects of the processes observed at the plot scale. Such integration of processes 

across scales has provided additional insights into the patterns of storage processes in more 
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general terms, for example on the identification and connectedness of stream water sources 

under contrasting hydroclimatological conditions, and the relative effects of evaporative 

processes.  

Although permanent changes in hydrological processes were not observed, the disruption of 

hydrological connection during large parts of the dry period could have had other direct or 

indirect effects on, for example, the biogeochemistry, habitat quality for aquatic organisms, 

food resources, and the strength and structure of terrestrial and aquatic interlinkages (see 

reviews by Humphries and Baldwin, 2003; Lake, 2003; Bond et al., 2008). Furthermore, the 

current work has focussed on short-term (event-based and seasonal) impacts of one 

occurrence of unusually dry conditions only. Climate projections for northern environments 

suggest that prolonged warm and dry periods are likely to become more frequent (Murphy 

et al., 2009; IPCC, 2013). Indeed, decreasing trends in summer low flows have already been 

observed (Stahl et al., 2010) and across Scotland, increases in the frequency of summer 

water resource scarcity have serious management implications (Capell et al., 2013; Gosling, 

2014). As these periods are likely to become more common, and water demand is ever 

increasing (Kowalski et al., 2011) due to other pressures (such as increased energy demands 

and agricultural expansion/intensification), further work is needed on the potential 

cumulative or carry over effects of consecutive dry periods and the role of the spatial 

organisation of hydropedological and vegetation characteristics therein. This is of critical 

importance for ecosystems, where communities can show resilience to low-frequency 

disturbance, but high frequency disturbance may exceed the capacity for recovery (e.g. Lake 

2003; Ledger et al., 2012).  

6. Conclusions 

With water scarcity across the world ever more increasing, catchments, ecosystems and 

communities are becoming progressively more vulnerable to drought conditions (Hoekstra 

and Mekonnen, 2011; Falkenmark, 2013). For a  humid, temperate,northern climate, we 

opportunistically assessed the impacts of an exceptionally dry period on the storage and 

transmission dynamics in different hydropedological units (poorly draining histosols in 

riparian zones and freely draining podzols on hillslopes), and their integrated catchment 

scale response. For this, we used an integrated approach of hydrometric data and stable 
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water isotopes in precipitation, stream, soil, and groundwater. Our key findings were as 

follows:  

1. There was large spatial heterogeneity in the resistance, resilience and recovery to 

drought impacts, associated with differences in dynamic storage changes of the 

hydropedological units. While resistant histosols remained wet thoughout the dry 

period, the podzols showed significant drying. This caused hydrological 

disconnectedness of large parts of the catchment during dry periods.  

2. The spatial heterogeneity in drought tolerance was exacerbated by land use, where 

dynamic storage differences in podzols under tree cover were almost double than 

under heather moorland and recovery took relatively longer.   

3. During events, consistent threshold behaviour in most hydropedological units was not 

affected by relative drying or wetting conditions, suggesting that there was an 

intermittent connection of the upper hillslopes that recharged the wetland and stream 

during events. This caused a strong recovery and resilience of the catchment in its 

overall runoff response. 

4. Overall storage in all hydropedological units and stream flow recovered within a short 

time scale, which may be attributed to the extremely wet conditions that followed the 

dry period.  

5. Our findings provide novel contributions to the understanding of catchment drought 

tolerance heterogeneities, and the important role of hydropedological units in northern 

environments.  
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Table 2: Hydroclimatological Characteristics for the pre, drying, and re-wetting periods 

  February – May 

2013 (Pre)* 

June – September 

2013 (Drying) 

October 2013- 

January 14 

(Wetting) 
4 Monthly  Statistics     

Temperature (°C) Range -6.8 – 12.7 5.7 – 20.2 -4.2 – 15.5 

 Mean 3.0 12.6 4.6 

Potential 

Evapotranspiration (mm) 

Total 157  310 49 

Precipitation (mm) Total 325 193 588 

Longest period witout P 

(days) 

 5 18 4 

No P (days) Total 28 59 25 

Discharge (mm) Total 269 82 355 

Q90 (mm/hr)  0.043 0.014 0.027 

Q50 (mm/hr)  0.073 0.022 0.065 

Q10 (mm/hr)  0.160 0.043 0.258 

Runoff Ratio (P/Q)  0.72 0.43 0.60 

 

 

Table 3: Statistical T-test results (p values) related to event characteristics for the different periods 

Periods 

Event  

Precipitation 

Event  

Duration 

Event  

Intensity 

Maximum Event  

Intensity 

Antecedent  

Precipitation Index 

Maximum 

Peak Flow 

Pre and Drying  0.368 0.302 0.261 0.270 0.028 0.016 

Drying and Wetting 0.004 0.001 0.641 0.992 0.001 <0.001 

Pre and Wetting 0.089 0.024 0.385 0.116 0.576 0.067 
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Figure 1. Bruntland Burn catchment: topography, soil distribution, and monitoring sites. 
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Figure 2: Monthly climatic conditions (Temperature (T) and Precipitation (P)) for the long term 

Braemar monitoring station (339 m AMSL), showing the observed values for the study period (A and 

C for T and P respectively) and the difference with the long term mean (B and D). 
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Figure 3: Temporal dynamics (01/02/2013 – 31/01/2014) in daily (a) Air Temperature and Potential 

Evapotranspiration, (b) Precipitation and Discharge for the Bruntlan Burn and (c) Soil Moisture, and 

(d) Shallow Groundwater Levels for Histosols (S1 and S2) and (e and f) Podzols (S3 and S4,S5), 

respectively. Distinct catchment drying and re-wetting occurred in the periods 01/06 – 30/09 and 

01/10 – 31/01 respectively, as indicated by the dotted lines. 
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Figure 4: Drought tolerance indices (resistance, recovery, and resilience) for percentiles of discharge 

at the catchment outlet and absolute soil moisture estimates at four monitoring sites (soil moisture not 

measured at S5) 
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Figure 5: Precipitation event characteristic boxplots for the ‘pre’, ‘drying’ and ‘wetting’ periods, 
including event total precipitation, event duration, event precipitation intensity, maximum 

precipitation intensity, and maximum Bruntland event peak flow. For each box, the central mark is the 

median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the most 

extreme data points, and outliers are plotted individually. 
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Figure 6: Event Magnitude Characteristics for the ‘pre-drying’, ‘drying’ and ‘wetting’ periods, 
respectively. The top and middle rows show the peak response in soil moisture and groundwater, 

respectively, versus the peak in discharge and the bottom row the peak response in soil moisture 

versus peak response in ground water level. Note the difference in scale for soil moisture at S4, 

compared to S1-S3, and the different absolute range for S1. The last plots of the top and middle row 

are from different sites (S4 and S5 respectively), due to lack of data availability. 
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Figure 7: Event Lag Time Characteristics for the ‘pre-drying’, ‘drying’ and ‘wetting’ periods, 
respectively. The top and middle rows show the event peak timing in soil moisture and groundwater, 

respectively, versus the peak timing in discharge and the bottom row the peak timing in soil moisture 

versus peak timing in ground water level. The last plots of the top and middle row are from different 

sites (S4 and S5 respectively), due to lack of data availability. 
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Figure 8: Daily precipitation and streamwater rates (top) deuterium isotopes (middle and bottom 

respectively). The size of the circles in the lower two plots indicates the magnitude of precipitation 

and discharge respectively. The red lines in the middle plot indicate the deuterium range of the 

discharge deuterium range (shown in the bottom plot). 
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Figure 9: Soil Isotopes on the global and local meteoric water line for Sites 1-4, at depths of 0.1 , 0.3, 

and 0.5 m, for the period prior to and during drying. 
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Figure 10: Stream water stable isotopes on the global and local meteoric water line, for the three 

different hydroclimatic periods (main figure) and for three months in summer, during which no 

precipitation was observed with symbol size reflecting the relative potential evapotranspiration of that 

day (lower right inset). 


