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With the alarming increase of infections caused by pathogenic multidrug-resistant

bacteria over the last decades, antimicrobial peptides (AMPs) have been investigated as

a potential treatment for those infections, directly through their lytic effect or indirectly,

due to their ability to modulate the immune system. There are still concerns regarding the

use of such molecules in the treatment of infections, such as cell toxicity and host factors

that lead to peptide inhibition. To overcome these limitations, different approaches like

peptide modification to reduce toxicity and peptide combinations to improve therapeutic

efficacy are being tested. Human defense peptides consist of an important part of

the innate immune system, against a myriad of potential aggressors, which have in

turn developed different ways to overcome the AMPs microbicidal activities. Since

the antimicrobial activity of AMPs vary between Gram-positive and Gram-negative

species, so do the bacterial resistance arsenal. This review discusses the mechanisms

exploited by Gram-positive bacteria to circumvent killing by antimicrobial peptides.

Specifically, the most clinically relevant genera, Streptococcus spp., Staphylococcus

spp., Enterococcus spp. and Gram-positive bacilli, have been explored.

Keywords: antimicrobial peptides, gram-positive, AMP, resistance, streptococci

INTRODUCTION

Antimicrobial peptides, also known as host defense peptides (HDPs), are found in most life forms,
being part of the innate immune system against pathogenic bacteria, fungi, parasites and viruses
(Zasloff, 2002; Torrent et al., 2012). Due to the alarming increase in antimicrobial resistance to the
commonly used drugs around the world and the lack in discovery of new drugs and alternative
treatments, there is a growing concern among the scientific community that in a near future,
the current clinical approaches might not be able to deal effectively with microbial infections.
Therefore, AMPs have been suggested as an alternative therapeutic strategy, in combination or as a
replacement for traditional antibiotics.

The development of antimicrobial resistance against AMPs is not as prevalent when compared
to antibiotics, since AMPs targets are diverse and changes can interfere with the functionality of
the cell, especially since the cell membrane is the main point of attack (Mahlapuu et al., 2016).
However, bacteria can evolve quickly and grow resistant against AMPs in vitro (Andersson et al.,
2016). Another approach in the use of AMPs is combination with traditional antibiotics, since
both have shown to synergize, reducing microbial resistance (Moravej et al., 2018). A few AMPs
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have been translated into the clinic; polymyxins B, bacitracin,
gramicidin S, daptomycin and vancomycin have been used for
treatment of several types of bacteria. However, a number of
questions are yet to be answered, such as the toxicity and stability
in vivo of many peptides, as thoroughly reviewed (Jenssen et al.,
2006; Vaara, 2009; Yount and Yeaman, 2012). The contact with
human cells, such as erythrocytes, was shown to inhibit the
activity of AMPs (Starr et al., 2016). Furthermore, physiological
conditions of the host can interfere with the effectiveness of these
molecules, along with the peptide’s pharmacokinetics (Jenssen
et al., 2006). Though these are significant challenges, AMPs
remain an interesting strategy and still expanding field, as
many studies have tried molecular engineering as an approach
to solve the concerns cited above. One such example is
the production of synthetic D-enantiomeric peptides to avoid
proteolytic degradation (de la Fuente-Nunez et al., 2015). So
far, over three thousand different peptides have been identified,
distributed among six different kingdoms (animalia, archaea,
bacteria, fungi, plantae, protist), according to the Antimicrobial
Peptide Database (APD) (aps.unmc.edu/AP/) (Wang et al., 2016).
In humans, over 130 peptides have been described, and while the
vast majority has been tested as potential antimicrobial drugs,
AMPs have a larger impact than just direct antimicrobial effects,
actively engaging with the host immune system, modulating its
activity, promoting chemotaxis and cell recruitment, meddling
with the inflammatory and wound healing pathways, among
many different functions (Hancock et al., 2016; Mahlapuu et al.,
2016; Haney et al., 2017). AMPs were also shown to have an
anticarcinogenic effect, as extensively reviewed (Wang, 2014;
Hancock et al., 2016; Haney et al., 2017; Yavari et al., 2018;
Wang et al., 2019; Kunda, 2020).

An important group of antimicrobial peptides is the
cathelicidins. The human representant of this group is LL-37,
a cationic, amphipathic peptide, composed by 37 amino acid
residues. Its precursor, hCAP18, was first isolated in neutrophils
(Cowland et al., 1995; Sørensen et al., 1997) but can also be found
in other cells, such as keratinocytes and mast cells (Frohm et al.,
1997; Di Nardo et al., 2003). After its cleavage by neutrophil
proteases, the peptide acquires its functional form (Sørensen
et al., 2001). LL-37 effects have been extensively investigated, and
include direct antimicrobial activity and immune modulation
(Fabisiak et al., 2016; Mahlapuu et al., 2016; Xhindoli et al.,
2016; Haney et al., 2017; Chen et al., 2018; Moravej et al.,
2018). Cathelicidins are also found inmany vertebrates, including
farm animals, birds, reptiles and fish (Kościuczuk et al., 2012).
Indolicidin, a 13 amino acid peptide expressed in bovine
neutrophils, has antimicrobial activity against Gram-positive and
Gram-negative bacteria (van Harten et al., 2018).

Another class of cationic and amphipathic antimicrobial
peptides is the defensins, which can be divided in three main
groups: α-defensins, β-defensins and θ-defensins. In humans,
only α- and β-defensins can be found, while θ-defensins are
present exclusively in Old World primates (Nguyen et al., 2003).
Among human α-defensins, there are six peptides expressed:
Human Neutrophil Peptide (HNP) 1 through 4 and Human
Defensins (HD) 5 and 6. α-defensins can be found in many
different tissues such as the gastrointestinal and respiratory

epithelia, female reproductive tract and blood cells (Hancock
et al., 2016). These peptides display direct antimicrobial activities
and immunomodulatory effects, including chemotaxis (Wang,
2014; Moravej et al., 2018; Xu and Lu, 2020). β-defensins
are expressed mainly in epithelial cells but also in monocytes,
macrophages and dendritic cells (Hancock et al., 2016) and have
an important role regulating the host microbiome (Meade and
O’Farrelly, 2018; Xu and Lu, 2020).

Human Lactoferrin (hLF) is an 80 kDa bilobal glycoprotein,
present in bodily fluids and neutrophils, which acts in
the transport of metal ions, especially ferric iron (Fe3+)
(Vogel, 2012). hLF displays a bacteriostatic effect through
iron chelation, decreasing the extracellular concentration of
this ion available to the microorganism. Furthermore, the
iron-free molecule, Apolactoferrin (ApoLF), is able to interact
with microbial cellular membranes, undergoing subsequent
proteolysis which results in release of smaller and more potent
cationic peptides, especially those found in the N-terminal lobe:
Lactoferricin (LFcin), Lactoferrampin (LFampin) and LF1-11
(Sinha et al., 2013).

Human lysozyme, also named N-acetylmuramide
glycanhydrolase, is often cited as the first antimicrobial
protein discovered and is extensively used in industry (Ercan and
Demirci, 2016; Wu T. et al., 2019). Lysozyme is a 14 kDa enzyme
that binds to cell wall peptidoglycans, cleaving the links between
different sugars, thus inducing cell rupture (Nawrocki et al., 2014;
Wang, 2014). Similarly, to lactoferrin, peptides derived from
the cleavage of lysozyme exhibit antimicrobial activity against
Gram-positive and Gram-negative bacteria (Ibrahim et al., 2001,
2011; Mine et al., 2004; Hunter et al., 2005; Carrillo et al., 2018).

With an array of antimicrobial peptides being produced by
different human cells, bacteria have developed a number of
strategies to prevent AMP binding, to avoid their lytic effects or
to degrade the peptides, in order to thrive in the human host. In
the next sections, the different mechanisms employed by Gram-
positive bacteria to circumvent AMP action will be explored.
Table 1 and Figure 1 summarize the resistance mechanisms
employed by these bacteria.

AMP RESISTANCE MECHANISMS IN
PATHOGENIC GRAM-POSITIVE
BACTERIA

Gram-Positive Bacilli
Gram-positive bacilli include some pathogenic, anaerobic spore-
forming species, such as Clostridium spp., Listeria monocytogenes,
Bacillus anthracis, and Bacillus cereus (Chukwu et al., 2016;
Schlech, 2019).

The genus Clostridium is composed of about 15 pathogenic
species, of which the most common are Clostridium difficile,
Clostridium perfringens, Clostridium tetani, and Clostridium
botulinum. Although these species are similar, the pathologies
caused by them are diverse (Fisher et al., 2005). C. tetani
produces the tetanus neurotoxin (TeNT) that causes neurological
disease (tetanus), characterized by muscle spasms and spastic
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TABLE 1 | AMP resistance mechanisms in Gram-positive bacteria.

Resistance mechanisms Species References

Modifications in

membrane/cell wall

structure

Gram-positive

bacilli

Staphylococcus Enterococcus GAS GBS Pneumococci

D-alanylation of the

membrane

X X X X X Peschel et al., 1999; Poyart et al., 2001, 2003;

Abachin et al., 2002; Frick et al., 2003; Cao and

Helmann, 2004; Kristian et al., 2005; May et al.,

2005; Fabretti et al., 2006; Fisher et al., 2006;

Kovacs et al., 2006; Palumbo et al., 2006; Walter

et al., 2007; Beiter et al., 2008; Abi Khattar et al.,

2009; Cox et al., 2009; Jann et al., 2009; McBride

and Sonenshein, 2011a; Saar-Dover et al., 2012;

Simanski et al., 2013; Carvalho et al., 2015;

Wydau-Dematteis et al., 2015; Kamar et al., 2017;

Hirt et al., 2018

Lysinylation of the

membrane

X X X Oku et al., 2004; Staubitz et al., 2004; Kraus and

Peschel, 2006; Thedieck et al., 2006; Ernst et al.,

2009; Samant et al., 2009; Bao et al., 2012;

Shireen et al., 2013; Kumariya et al., 2015; Nasser

et al., 2019

O-acetylation of the

peptidoglycan

X X Crisostomo et al., 2006; Pfeffer et al., 2006; Hebert

et al., 2007; Aubry et al., 2011; Laaberki et al.,

2011; Rae et al., 2011

N-deacetylation of the

peptidoglycan

X X Vollmer and Tomasz, 2000; Psylinakis et al., 2005;

Boneca et al., 2007

Glycosylation of the wall

teichoic acids

X Meireles et al., 2020

Deacetylation of the

N-acetylmuramic acid

X X Fukushima et al., 2005; Popowska et al., 2009;

Benachour et al., 2012; Kobayashi et al., 2012;

Grifoll-Romero et al., 2019

Alterations in the

membrane composition

X X X Ming and Daeschel, 1993; Maisnier-Patin and

Richard, 1996; Mazzotta and Montville, 1997;

Verheul et al., 1997; Crandall and Montville, 1998;

Dhawan et al., 1998; Bayer et al., 2000; Tsuda

et al., 2002; Xue et al., 2005; Cremniter et al.,

2006; Naghmouchi et al., 2006, 2007; Hachmann

et al., 2011; Mishra et al., 2011, 2012;

Kandaswamy et al., 2013

Alterations in the

transmembrane pH and

potential

X Bonnet et al., 2006

Alterations in capsular

polysaccharides

X Beiter et al., 2008; Llobet et al., 2008; van der

Windt et al., 2012; Geno et al., 2015; Kietzman

et al., 2016; Bruce et al., 2018

Transport systems and

efflux pumps

Transport systems X X X X X Manson et al., 2004; Matos et al., 2009;

Majchrzykiewicz et al., 2010; McBride and

Sonenshein, 2011b; Suárez et al., 2013; Martinez

et al., 2019; Rafei et al., 2020

AMP sequestration/

inactivation

AMP sequestration X X Braff et al., 2007; Maisey et al., 2008

Inactivation X X Jin et al., 2004; Ren et al., 2004; Braff et al., 2007;

Mukerji et al., 2012

Proteases and other

proteins

Inactivation/degradation X X X Schmidtchen et al., 2002; Sieprawska-Lupa et al.,

2004; Sedgley et al., 2009; Nesuta et al., 2017; Hirt

et al., 2018

Inhibitory molecules X Porta et al., 2019

(Continued)
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TABLE 1 | continued

Resistance mechanisms Species References

Modifications in

membrane/cell wall

structure

Gram-positive

bacilli

Staphylococcus Enterococcus GAS GBS Pneumococci

AMP induced gene

expression/repression

Sigma factors X X Robichon et al., 1997; Dalet et al., 2000; Palmer

et al., 2009; Le Jeune et al., 2010;

Guariglia-Oropeza and Helmann, 2011; Ho et al.,

2011

Regulators X X X X X Dunman et al., 2001; Mascher et al., 2004; Mandin

et al., 2005; Hyyryläinen et al., 2007; Meehl et al.,

2007; Neoh et al., 2008; Dawid et al., 2009;

Hachmann et al., 2009; Pietiäinen et al., 2009;

Arias et al., 2011; Ho and Ellermeier, 2011; Boone

and Tyrrell, 2012; Monniot et al., 2012; Yang et al.,

2012, 2013, 2018; Bergholz et al., 2013; Khosa

et al., 2013, 2016; Shaaly et al., 2013; Patel and

Golemi-Kotra, 2015; Reyes et al., 2015; Wang

et al., 2017; Xu and Lu, 2020

Transcriptome/proteome

alterations

X X Majchrzykiewicz et al., 2010; McQuade et al.,

2012; Mucke et al., 2020

Mannose

phosphotransferase

(Man-PTS) pathway

X X Ramnath et al., 2000; Héchard et al., 2001;

Gravesen et al., 2002a,b; Vadyvaloo et al.,

2004a,b; Diep et al., 2007; Tessema et al., 2009;

Opsata et al., 2010; Kjos et al., 2011; Geldart and

Kaznessis, 2017; Wu X. et al., 2019; Zasloff, 2002

Cell sensors X X X Hamilton et al., 2006; Jones et al., 2007; Li et al.,

2007a,b; Yung and Murphy, 2012; Tran et al.,

2013; Joo and Otto, 2015; Khan et al., 2019;

Martínez-García et al., 2019

paralysis of the limb muscles (Chapeton-Montes et al., 2019).
C. botulinum produces the potent botulinum neurotoxin that
causes a serious and fatal neuro-paralytic disease in humans and
animals (botulism) (Brunt et al., 2018). C. difficile is the main
causative agent of nosocomial diarrhea and gastroenteritis, which
can lead to the development of asymptomatic or symptomatic
diseases. Infection by C. difficile (ICD) has been increasingly
reported in the United States (Lessa et al., 2015; Crobach et al.,
2020). C. perfringens can also cause acute diarrhea, with an
estimated death toll of 200,000 each year in Nigeria according
to The World Health Organization (WHO) (Fisher et al., 2005;
Chukwu et al., 2016).

Listeria monocytogenes is a foodborne pathogen that
causes gastroenteritis in immunocompromised individuals,
children, pregnant women and the elderly (Schlech, 2019).
L. monocytogenes outbreaks in South Africa have reported
around 1000 confirmed cases and 200 deaths in 2017–2018;
in the United States, the bacterium was the causative agent in
147 confirmed cases and 33 deaths, making it the third most
expensive foodborne pathogen in 2010, after C. botulinum (de
Noordhout et al., 2014; Desai et al., 2019).

B. anthracis is the causative agent of anthrax and can manifest
in four ways, namely: cutaneous, inhalation, gastrointestinal or
injectable (Hagan et al., 2018; Chen et al., 2020). B. cereus causes
foodborne diseases, such as gastrointestinal, diarrhea and emesis

(Yu et al., 2019; Huang et al., 2020). In 2016, the European
Union (EU) reported about 413 food-borne outbreaks caused
by Bacillus toxins that affected 6657 people, ranking it the
second most common cause of food-borne outbreaks in that year
(Fiedler et al., 2019).

Mechanisms of AMP Resistance in Gram-Positive

Bacilli

Modifications in membrane/cell wall structure

Since one of the most important mechanisms of AMP-
based killing is the interaction with the negatively charged
membrane, changing the membrane composition is a strategy
used by many bacteria to survive AMPs action. Among those
changes, the insertion of D-alanine in the lipoteichoic acids,
a process named D-alanylation, is used to reduce the negative
membrane charge, thus inhibiting interaction with AMPs. This
resistance mechanism is regulated by the dlt operon, and it
has been described in several Bacillus species, such as B. cereus
(Abi Khattar et al., 2009), B. anthracis (Fisher et al., 2006),
B. thuringiensis (Kamar et al., 2017) and B. subtilis (Cao and
Helmann, 2004; May et al., 2005), L. monocytogenes (Abachin
et al., 2002; Carvalho et al., 2015), C. difficile (McBride and
Sonenshein, 2011a), C. butyricum (Wydau-Dematteis et al.,
2015), Lactobacillus plantarum (Palumbo et al., 2006), and
Lactobacillus reuteri (Walter et al., 2007).
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FIGURE 1 | Resistance mechanisms to antimicrobial peptides in Gram-positive bacteria. AMP resistance mechanisms employed by Gram-positive bacteria are

shown, including alterations in cell envelope charge/composition; AMP inhibition by binding to surface proteins/released capsular polysaccharide; AMP degradation

by bacterial proteases; bacterial adaptation to AMP challenge; AMP extrusion by efflux pumps and transport systems.

Another mechanism of envelope modification is called
lysinylation of the membrane; it consists of addition of L-lysine
to the phosphatidylglycerol. A protein calledMprF is essential for
membrane lysinylation. In B. anthracis, a strain deficient in MprF
was more susceptible to LL-37 and HNP-1 when compared with
the wild type strain (Samant et al., 2009). In L. monocytogenes,
MprF was shown to be essential in protection against gallidermin,
HNP-1 and HNP-2 (Thedieck et al., 2006).

Bacteria can modify cell wall components, such as the
peptidoglycan. O-acetylation of the peptidoglycan is able to
reduce killing by lysozyme in L. monocytogenes and B. anthracis
(Aubry et al., 2011; Laaberki et al., 2011; Rae et al., 2011).
Modifications on cell wall constituents also include the
N-deacetylation of the peptidoglycan and the glycosylation of
the wall teichoic acids, which in L. monocytogenes and B. cereus

(Psylinakis et al., 2005) is crucial to protect against lysozyme
(Boneca et al., 2007), LL-37 and CRAMP, a cathelicidins found
in mice (Meireles et al., 2020).

In B. subtilis, deacetylation of the N-acetylmuramic acid by
the protein PdaC confers resistance against lysozyme attack
(Fukushima et al., 2005; Kobayashi et al., 2012; Grifoll-
Romero et al., 2019). Another protein, PdgA described
in L. monocytogenes is responsible for a similar resistance
mechanism inducing N-acetylation of the peptidoglycan; a study
by Popowska et al. (2009) showed that a L. monocytogenes strain
lacking PdgAwasmore susceptible to lysozyme andmutanolysin.

Changes in lipid composition are able to interfere with
AMPs action, as shown for L. monocytogenes, where different
proportions of lipids are found in bacteriocin resistant strains
(Ming and Daeschel, 1993; Mazzotta and Montville, 1997;
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Verheul et al., 1997; Crandall and Montville, 1998; Naghmouchi
et al., 2006, 2007). In Listeria innocua, changes in the proton
motive force, via FoF1 ATPase, which altered the membrane
potential were related with resistance to nisin (Maisnier-Patin
and Richard, 1996; Bonnet et al., 2006).

A B. subtilis mutant resistant to daptomycin presents an
irregular and more cationic membrane than the wild type, due
to mutations in pgsA gene. The PgsA protein is responsible for
the addition of phosphatidylglycerol to the membrane; in that
sense, the diminished phosphatidylglycerol synthase function in
the mutant strain was responsible for the increased resistance to
daptomycin (Hachmann et al., 2011).

Transport systems and efflux pumps

A strategy employed by many bacterial species to evade
antimicrobial host defense is by expelling the molecules using
efflux pumps or ABC transporters. The same mechanism has
been implicated in AMP expulsion (Bernard et al., 2007; Collins
et al., 2010; McBride and Sonenshein, 2011b).

Subtilin is an antibiotic produced by B. subtilis; to avoid self-
destruction, the bacterium possess an ABC transporter called
SpaIFEG, this transporter ejects the subtilin to the extracellular
environment (Stein et al., 2005). B. licheniformis is capable of
producing bacitracin, an antibacterial peptide also produced by
other Bacilli; similarly, to B. subtilis, the bacterium is immune to
the antimicrobial due to the action of the BcrABC transporter,
which ejects the AMP before it affects the producer cell (Podlesek
et al., 1995; Ohki et al., 2003b).

In C. difficile, the cpr operon is responsible for the
extracellular transport of peptides (McBride and Sonenshein,
2011b; Suárez et al., 2013). A similar ABC transporter, AnrAB,
is also found in L. monocytogenes, able to export AMPs
and antimicrobials, hence hindering their efficiency (Collins
et al., 2010). B. subtilis also has similar detoxification systems,
BceAB-RS, PsdRS-AB (also named Yvc-PQ-RS) and YxdJK-LM.
These transporters are important for resistance and cell wall
stress signaling against AMPs and antimicrobial drugs, such as
bacitracin and lantibiotics (Mascher et al., 2003; Ohki et al.,
2003a; Bernard et al., 2007; Rietkotter et al., 2008; Dintner
et al., 2011; Staron et al., 2011; Kallenberg et al., 2013). The
YtsCD ABC transporter, independently or in association with
YwoA, is responsible for bacitracin resistance in B. subtilis
(Bernard et al., 2003).

AMP induced gene expression/repression

Cell wall signaling can trigger the expression of many resistance-
related genes such as sigma (σ) factors and global regulators
in bacteria. In L. monocytogenes, sigma factors σB and σL and
regulators such as VirR and LiaR regulate the expression of
many virulence genes, such as the dlt operon, MprF – a protein
responsible for adding L-lysine to membrane phospholipids–
and ABC transporters, contributing to antimicrobial resistance
(Mandin et al., 2005; Palmer et al., 2009; Samant et al., 2009;
Bergholz et al., 2013). Lia-related regulators are also present
in B. subtilis; in the presence of peptides that target the
cell envelope, the stress sensor is activated and induces the
expression of resistance genes such as LiaRS and other membrane
modification genes (Mascher et al., 2004; Jordan et al., 2006;
Hyyryläinen et al., 2007; Hachmann et al., 2009).

Clostridium difficile gene expression is also altered in the
presence of AMPs. LL-37 induces overexpression of genes
related to crucial functions; including those involved with cell
wall and envelope homeostasis, ABC transporters and lysine
metabolism (McQuade et al., 2012); similarly, bacitracin and
lysozyme can alter the expression of extracellular σ factors
(Ho and Ellermeier, 2011).

The mannose phosphotransferase (Man-PTS) pathway is
an important resistance mechanism against bacteriocins. In
L. monocytogenes, the activation of the Man-PTS pathway
led to changes in metabolism, alteration of the membrane
charge and addition of alanine in teichoic acids in strains
resistant to class IIa bacteriocin (Ramnath et al., 2000; Gravesen
et al., 2002a,b; Vadyvaloo et al., 2004a,b; Tessema et al., 2009;
Wu X. et al., 2019). Although the Man-PTS pathway is a
target for bacteriocins, in Lactococcus lactis and Lactococcus
garvieae, it was shown to participate in resistance mechanisms,
specifically in combination with LciA (Diep et al., 2007; Kjos
et al., 2011; Daba et al., 2018; Tymoszewska et al., 2018).
This pathway is also involved in bacteriocin resistance in
L. plantarum, Leuconostoc mesenteroides, Lactobacillus salivarius,
and Lactobacillus acidophilus, in combination with PedB, a
protein that provides protection against the bacteriocin pediocin
PA-1, in a complex, being able to avoid cell lysis by this AMP
(Zhou et al., 2016). Similarly, in Listeria innocua, overexpression
of pedB generated a more resistant phenotype (Monniot et al.,
2012). In L. innocua, Man-PTS is regulated by a transcriptional
activator (lin0142); inactivation of lin0142 is related to resistance
to pediocin (Xue et al., 2005).

The B. subtilis sigma factor V (sigV) is activated in presence
of Lysozyme, regulating important resistance genes such as
oatA, dltABCD, and pbpX, promoting protection by virtue of
membrane alterations (Guariglia-Oropeza and Helmann, 2011;
Ho et al., 2011). The alternative sigma factor 54 (rpoN) is relevant
in mesentericin Y105 resistance in Listeria monocytogenes;
strains lacking the monocistronic unit of rpoN showed a
higher susceptibility to this AMP - a phenotype reverted after
complementation - indicating that the resistance genes are under
regulation of rpoN (Robichon et al., 1997).

Staphylococci
The genus Staphylococcus is responsible for various infections
in humans like impetigo, scalded skin syndrome, toxic shock
syndrome, pneumonia, endocarditis, urinary tract infections,
and many others. The most clinically relevant members of this
genus are Staphylococcus aureus, Staphylococcus epidermidis, and
Staphylococcus saprophyticus. They are grape-shaped, catalase
producing Gram-positive spherical cocci. S. aureus are classified
as coagulase positive, while S. epidermidis and S. saprophyticus
do not show coagulase activity. Another trait shared by many
staphylococci species is the presence of a carotenoid pigment
called staphyloxanthin, which gives the colonies a golden color
and has an inhibitory role against microbicide molecules and
reactive oxygen species (ROS). Among their antigenic structures
are the protein A, which binds to Fc region of immunoglobulin
G (IgG) and prevents complement activation; the teichoic acids,
which modulate mucosal adhesion and induce toxic shock
through release of interleukin 1 (IL-1) and tumor necrosis factor
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(TNF); and polysaccharide capsule, with 11 different serotypes.
Defense against AMPs in Staphylococcus spp.

Mechanisms of AMP Resistance in Staphylococci

Modifications in membrane/cell wall structure

Staphylococcus aureus is able to prevent AMP-mediated
killing through modifications of the phosphatidylglycerol
in the bacterial membrane by the multiple peptide
resistance factor protein (MprF). The protein promotes
the reaction of phosphatidylglycerol with lysin, generating
lysylphosphatidylglycerol (Lys-PG), which is then translocated
to the outer leaflet of the membrane (Oku et al., 2004; Staubitz
et al., 2004; Ernst et al., 2009; Nasser et al., 2019). This results
in a shift in membrane charge, and a subsequent repulsion
of cationic AMPs.

The enhanced synthesis of the cationic phospholipid Lys-
PG promotes changes in membrane fluidity also associated
with increased resistance against different classes of AMPs in
staphylococci. A study investigating the development of bacterial
resistance to antimicrobial peptides demonstrated that exposure
of S. aureus cultures to sub-lethal concentrations of magainin
2 and gramicidin D over several passages in vitro promoted
resistance to these AMPs. The bacterial membrane adaptations
induced by AMP exposure included an increase in net charge and
altered membrane rigidity (Shireen et al., 2013).

Similarly, resistance to platelet microbicidal proteins (PMPs)
in S. aureus has been linked with adaptations affecting membrane
fluidity. A study investigating the mechanisms underlying
S. aureus susceptibility to thrombin-induced PMP (tPMP-1)
demonstrated that mutant strains with increased resistance to
this AMP (either naturally occurring or artificially generated)
displayed a high content of unsaturated lipids with longer
chains (Bayer et al., 2000), which led to an enhanced membrane
fluidity. Interestingly, tPMP resistance in S. aureus correlated
with an increased virulence in both human and experimental
endocarditis (Dhawan et al., 1998), highlighting the importance
of this AMP in controlling S. aureus infection.

Resistance to cationic AMPs has also been associated with
modifications in the cell wall teichoic acid by esterification with
D-alanine, through the dlt operon, which reduces the net negative
charge of the molecule. In S. aureus and S. xylosus, deletions of
parts of the dlt operon induced a higher sensitivity to a variety
of AMPs when compared to wild type strains. Interestingly, the
increased susceptibility of the mutant strains were limited to
cationic peptides, suggesting that electrostatic repulsion may be
involved in resistance to cAMPs in S. aureus (Peschel et al., 1999;
Jann et al., 2009; Simanski et al., 2013).

The presence of carotenoid pigments is another described
mechanism of AMP resistance in staphylococci. These molecules
are depicted as virulence factors, for their protective role against
oxidative host defense mechanisms (Clauditz et al., 2006).
Evidence suggests staphylococcal carotenoids can also provide
protection against different antimicrobial peptides, through their
effect on cell membrane stability (Mishra et al., 2011). In that
work, a mutant strain with a defect in staphyloxanthin synthesis
was compared with its supplemented counterpart in terms
of susceptibility to a range of antimicrobial agents, including

human HNP-1, PMPs, and polymyxin B. The supplemented
strain showed a reduced susceptibility to the AMPs, which in
this case was linked to a higher rigidity in the cell membrane.
This apparent contrast with previous work showing a positive
correlation between membrane fluidity and AMP resistance
(Bayer et al., 2000) evidences the intricate balance driving
peptide-cell membrane interactions. In that sense, extremes
in rigidity or fluidity may hinder AMP insertion in the
bacterial membrane.

AMP sequestration/ inactivation

Another mechanism of S. aureus evasion from AMPs is trapping
them by surface or secreted proteins and polysaccharides.
S. aureus secrets a plasminogen activating protein, staphylokinase
(SK), which converts it into plasmin. High concentrations of
plasmin on the bacterial surface promote fibrinolysis, favoring
tissue invasion and dissemination (Braff et al., 2007). It has
been shown that SK can bind to and inactivate mCRAMPs
(cathelicidin murine antimicrobial peptides) and α-defensins
secreted by neutrophils, including HNP 1-3 (Jin et al., 2004;
Braff et al., 2007) reducing the activity of AMPs in 80%. In an
in vivo trial with mice, S. aureus strains expressing SK were more
resistant to α-defensin. Similarly, addition of purified SK was able
to increase survival of strains that did not produce this protein in
presence of α-defensin, in vitro (Jin et al., 2004).

Staphylococcus epidermidis synthesizes the exopolysaccharide
intercellular adhesin (PIA), a positively charged polymer of
the extracellular matrix in biofilms, which can promote
hemagglutination. Studies using mutant strains lacking this
polysaccharide have shown a role for PIA in resistance to LL-37
and β-defensin (HBD-3) (Vuong et al., 2004a,b; Kocianova et al.,
2005). The mechanism responsible for PIA-mediated protection
against AMPs seems to involve electrostatic repulsion, since the
lytic activities of these antimicrobial peptides are dependent
on the salt concentrations (Vuong et al., 2004b). Besides the
protective effect against AMPs produced in the skin, PIA can also
limit destruction of Staphylococcus by neutrophils, by forming a
mechanical barrier that prevents bacterial uptake by phagocytes
(Vuong et al., 2004b).

Additionally, S. aureus is able to sequester iron from the
heme site of hemoglobin through the Iron-regulated surface
determinant (Isd), which is then released into the cytoplasm for
metabolization (Foster et al., 2014). This ability is responsible for
the bacterial resistance to the bacteriostatic effects of lactoferrin
and other iron-binding peptides. Furthermore, resistance to the
bactericidal action of lactoferricin can be induced in S. aureus
by growing the bacterium in increasing peptide concentrations–
which also promoted cross-resistance to other antimicrobials, like
indolicidin and penicillin G (Samuelsen et al., 2005).

Proteases and other proteins

Antimicrobial peptides are relatively resistant to bacterial
surface or secreted proteases, yet some proteases can cleave
a broad spectrum of AMPs; one such example is aureolysin,
which inactivates LL-37 by cleaving peptide bonds in its
C-terminus, between residues Arg19-Ile20, Arg23-Ile24, and
Leu31-Val32 (Sieprawska-Lupa et al., 2004). Thus, Aureolysin
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expression allows a higher survival in environments with
high concentrations of LL-37 such as the phagolysosomes in
macrophages and neutrophils.

AMP induced gene expression/repression

Staphylococcus aureus displays a phenotype known as small
colony variant (SCV), which has been associated with persistent
skin infections (Glaser et al., 2014). This phenotypic change
allows S. aureus strains to evade innate immune responses, one
of those being AMPs, since in SCVs, a higher MIC was observed
(von Eiff et al., 2006; Garcia et al., 2013).

Analysis of four different AMPs found on the skin (beta-
defensin – hBD-2 and -3, RNase 7, and LL-37) showed that
SCV were more resistant to AMPs when compared with the
wild type strains (Glaser et al., 2014). Similarly, a mutant strain
with a hemin biosynthesis gene deletion, hemB, displaying a
SCV phenotype, was less susceptible to three of the four AMPs
tested, when compared with its complemented mutant exhibiting
normal phenotype (Glaser et al., 2014). These results suggest that
phase variation may be a mechanism of bacterial resistance to
AMPs. This effect could be attributed to differences in membrane
charge in the SCV strains, as suggested by Sadowska et al. (2002),
however, in that work, SCVs showed an increased resistance to
only a fraction of the AMPs tested.

Staphylococcus aureus expresses an AMP recognition system
named Antimicrobial Peptide Sensor; this system comprises
a sensor histidine kinase (ApsS), a DNA-binding response
regulator (ApsR) and ApsX, responsible for interacting with the
AMP. The ApsRSX regulators are responsible for the regulation
of important genes related to AMP resistance, such as mprF,
vraFG and the dlt operon (Li et al., 2007a,b; Martínez-García
et al., 2019). Aps from S. epidermidis has shown the ability to
interact with a broad variety of AMPs; in contrast to S. aureus in
which Aps are active over a more limited spectrum of peptides
(Joo and Otto, 2015). The ApsS is a transmembrane protein
with an extracellular group sensitive to AMPs, composed by nine
amino acids with a negative charge, which binds to AMPs and
rapidly inactivates them (Li et al., 2007b).

The GraRS regulators induce the expression of mprF and
dltABCD, when activated together with vraFG, as a response
to AMPs and glycopeptides, whereas mutant strains negative
for graRS or vraFG were more susceptible to the peptides as
the surface alterations generated as protection mechanisms were
reduced (Meehl et al., 2007; Neoh et al., 2008; Yang et al., 2012).

The agr global transcriptional regulator induced a super
expression of dltD, a member of the dlt operon (Dunman et al.,
2001). Another regulator is the LytSR, a transmembrane electrical
potential sensor (Patel and Golemi-Kotra, 2015). AMP cell wall
damage is partially due to changes in membrane polarization;
therefore, deletion of LytSR increased susceptibility to HNP-1
and tPMPs, Interestingly, no conformational changes were found
in mutant cells membrane, indicating an alternative resistance
pathway (Yang et al., 2013).

The VraTSR is a bacterial sensor which responds to stress; it is
involved in S. aureus resistance do methicillin (MRSA) and other
antimicrobials that target the cell wall (Boyle-Vavra et al., 2013;
Lee et al., 2019). Exposure to AMPs activates operons VraSR

e VraDE, leading to a change in the transcriptional profile
with the repression of virulence and metabolism genes, and
an induction of genes that regulate envelope homeostasis
(Pietiäinen et al., 2009).

Enterococcus
Enterococci are a group of Gram-positive cocci comprising
more than 30 species, of which E. faecalis and Enterococcus
faecium are the most clinically relevant (Fiore et al., 2019).
They can be found in several environments such as water, soil
and food, and are able to colonize the gastrointestinal tract of
different animals. Enterococci are a leading cause of nosocomial
infections – including endocarditis, urinary tract infections and
bacteremia–being responsible for 14% of hospital infections in
the United States (Weiner et al., 2016). The problem is aggravated
by the increased intrinsic resistance and tolerance exhibited by
these bacteria against several commercial antimicrobial agents,
including β–lactams such as cephalosporins, and vancomycin
(Kristich et al., 2014). In addition, enterococci rapidly acquire
resistance to many classes of antibiotics upon treatment, thus
posing a great public health threat.

Mechanisms of AMP Resistance in Enterococci

Modifications in membrane/cell wall structure

Similarly, to many other species previously cited, enterococci
reshape their cell envelope composition in response to AMPs
(Cremniter et al., 2006; Mehla and Sood, 2011; Mishra et al., 2012;
Kandaswamy et al., 2013), with lysinated phosphatidylglycerol
(Kraus and Peschel, 2006; Bao et al., 2012; Kumariya et al., 2015),
addition of D-alanine to teichoic acids via dlt (Fabretti et al.,
2006; Hirt et al., 2018) or MprF (Bao et al., 2012), also, the
N-acetylglucosamine deacetylase PdgA (EF1843) contributes to
lysozyme resistance in E. faecalis, by promoting peptidoglycan
deacetylation (Benachour et al., 2012).

Many Enterococci species are able to perform O-acetylation
of the cell wall peptidoglycan (Pfeffer et al., 2006) a mechanism
related with resistance to lysozyme (Hebert et al., 2007).

Proteases and other proteins

Proteases and inhibitors are found in E. faecalis, either degrading
or binding to the peptide, preventing their lytic effects. Among
the proteases, GelE and SerE, a gelatinase and a serine protease,
respectively, are able to degrade LL-37, HYL-20 – an α-helical
amphipathic analog of a natural AMP present in bees – and
GL13K, a peptide found in human saliva (Schmidtchen et al.,
2002; Sieprawska-Lupa et al., 2004; Sedgley et al., 2009; Nesuta
et al., 2017; Hirt et al., 2018). In addition, extracellular dermatan
sulfate – a product released from proteoglycans after the activity
of extracellular proteinases – was able to inhibit the activity of
HNP-1 on E. faecalis (Schmidtchen et al., 2001), representing an
important virulence mechanism for this bacterium.

Transport systems and efflux pumps

The Bcr transporter family is related to bacitracin resistance
and is found in many enterococci species (Matos et al., 2009).
In E. faecalis, BcrABD is an ABC transporter expressed in
the presence of bacitracin. It is regulated by BcrR, which is
responsible for the extracellular pumping of the polypeptide
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(Manson et al., 2004). However, the BcrAB is not the only
mechanism of bacitracin resistance in E. faecalis; other two-
component regulatory systems and ABC transporters were
also described (Gebhard et al., 2014). In S. aureus, LtnIFE is
responsible for protection against lacticin. E. faecium possess
homologs with similar function (Draper et al., 2009).

AMP induced gene expression/repression

In E. faecalis and E. faecium, the Man-PTS pathway is also related
to resistance against bacteriocins, however, there are several
implications in metabolic pathways which could hinder the host
colonization (Héchard et al., 2001; Opsata et al., 2010; Geldart
and Kaznessis, 2017). Undecaprenyl pyrophosphate phosphatase
(UppP) is also related to bacitracin resistance in E. faecium
by reducing the amount of substrate for bacitracin-mediated
cell death (Shaaly et al., 2013). Another regulator crucial for
successful host colonization is the sigma factor SigV, which is
involved in resistance to lysozyme, but not to nisin (Le Jeune
et al., 2010). rpoN is responsible for encoding the sigma factor
54 in E. faecalis, an important factor for bacteriocin resistance.
Interestingly, sensibility to other AMPs did not change in absence
of this sigma factor (Dalet et al., 2000).

Both E. faecalis and E. faecium share the LiaFSR stress-
induced regulatory pathway. LiaFS is the homolog of VraTS
from S. aureus. Strains lacking liaR showed higher sensitivity
against daptomycin, and LL-37, HBD-3, nisin, gallidermin–
a type A lantibiotic, the synthetic antimicrobial peptide RP-
1, mersacidin–a type B lantibiotic and friulimicin, a cationic
lipopeptide in E. faecalis (Reyes et al., 2015; Wang et al., 2017).
The deletion of liaF, along with gdpD, promoted a similar
increase in resistance against daptomycin (Arias et al., 2011).
The liaFSR and related genes, such as liaX, a sensor that inhibits
LiaFSR, are directly related to the cell envelope alterations in
response to antimicrobials (Tran et al., 2013; Khan et al., 2019).

Group A Streptococci
Group A Streptococci (GAS) includes bacterial species such as
Streptococcus pyogenes and Streptococcus mutans (Gold et al.,
1973; Bessen et al., 1996). These bacteria are beta-hemolytic
cocci and known to cause several diseases in humans, including
mild conditions like scarlet fever, impetigo, strep throat,
caries and cellulitis, and more severe illnesses like necrotizing
fasciitis (flesh eating disease) and toxic shock syndrome (TSS)
(Kristian et al., 2005).

Streptococcus pyogenes
Streptococcus pyogenes comprises the considerable majority of
Group A Streptococci (GAS); it is a pathogen responsible for
several human diseases such as pharyngitis, scarlet fever, toxic
shock syndrome, pneumonia and others (Lauth et al., 2009).
Recent studies have shown that GAS was able to resist the action
of several human antimicrobial peptides such as cathelicidin, LL-
37 and the α-defensin (HNP-1) (Kristian et al., 2005; Lauth et al.,
2009; Rafei et al., 2020). The surface exposed M-protein is used
to classify the bacterium into different serotypes (Bessen et al.,
1996; Lauth et al., 2009). Lauth et al. (2009) have shown that

the N-terminal portion of M-protein can interact with LL-37,
preventing its action on the bacterium membrane.

Streptococcus mutans
Streptococcus mutans is an important pathogen that colonizes the
human oral cavity being the most important caries agent (Gold
et al., 1973). Interestingly, several S. mutans strains have been
described as resistant to salivary AMPs and bacitracin (Tsuda
et al., 2002; Kitagawa et al., 2011; Tian et al., 2018).

A study by Phattarataratip et al. (2011) compared S. mutans
strains isolated from 60 children divided into two groups (caries-
free and caries-active) and they found that strains isolated
from the caries-active group were significantly more resistant to
salivary AMPs such as LL-37, α-defensins and β-defensins, in
comparison to caries-free strains. Their analysis also correlates
this resistance to an ecological advantage over the less resistant
strains, which reinforces the importance of AMPs in controlling
S. mutans colonization (Phattarataratip et al., 2011).

Mechanisms of AMP Resistance in Group A

Streptococci

Modifications in membrane/cell wall structure

Since most AMPs present cationic nature, the negative charge
of the bacterial surface is important for the bactericidal activity
of these molecules. Kristian et al. (2005) showed that the
D-alanylation (regulated by the operon dlt (DltABCD)) of
S. pyogenes lipoteichoic acid is related with resistance to cationic
AMPs, lysozyme and low pH, and it was also associated with an
increased survival against neutrophil killing; this phenomenon
is due to the increase of positive surface charge caused by
the D-alanylation on the cell membrane. In another study,
(Cox et al., 2009) using a knockout strain for the dltABCD
operon found that the DltA mutant displayed a drastic reduction
in the expression of M protein and SIC (Serum Inhibitor of
Complement) (Frick et al., 2003), showing that the operon dlt
(DltABCD), specifically the dltA gene regulates the expression of
genes involved in AMP resistance.

A study published by Tsuda et al. (2002) investigated the
mechanisms that allow S. mutans to resist bacitracin; they found
that mutant strains lacking the rgp locus (a six gene operon)
presented up to five times more sensibility to bacitracin than
the wild type counterpart. A possible mechanism to explain
this sensitiveness is the fact that the rgp locus is involved in
the synthesis of rhamnose-glucose polysaccharide (RGP), a cell
wall component; mutations affecting this process render the
bacterium more sensitive to bacitracin (Yamashita et al., 1998).

Proteases and other proteins

Streptococcus pyogenes is able to limit LL-37 action through
degradation by the cysteine proteinase, SpeB. In presence of
the inhibitor E64 (which inhibited the cysteine proteinase) the
bacterium’s ability to degrade LL-37 was hampered, making
it more susceptible to this CAMP. This effect highlights
the importance of proteinase SpeB in LL-37 degradation
(Schmidtchen et al., 2002).

Similarly, to previously described for Enterococci, S. pyogenes
secretes proteases that are able to cleave proteoglycans containing
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dermatan sulfate, releasing it to the extracellular space.
The extracellular dermatan sulfate was able to neutralize
neutrophil-derived alpha-defensin, protecting the bacteria from
its bactericidal activity (Schmidtchen et al., 2002).

M-protein is themost studied protein in S. pyogenes; variations
in M-protein sequence are used to classify the bacterium into
different serotypes (Lauth et al., 2009). A study by Lauth et al.
(2009), showed that the M protein type 1 protects the bacterium
from killing by cathelicidins LL-37 (human) and mCRAMP
(mouse). The proposed mechanism involves M1 binding to and
trapping the cathelicidin before it can reach the cell wall. They
also showed that this protection is type specific once M protein
type 49 did not protects the bacterium the same extension of M1,
moreover, they found that strains isolated from invasive diseases
patients were more resistant to LL-37 action than the strains
isolated from asymptomatic patients (Lauth et al., 2009).

Another strategy employed by S. pyogenes to resist AMP attack
is the Serum Inhibitor of Complement (SIC). This protein was
initially identified as a virulence factor protecting the bacterium
against killing by the complement system membrane attack
complex (Akesson et al., 1996). Further studies from the same
group showed that SIC is important for bacterium full virulence,
once it is able to bind to defensins and LL-37, protecting the
bacterium against these molecules (Frick et al., 2003).

Transport systems and efflux pumps

Streptococcus mutans express the ABC transporter, mbr, an
operon composed by 4 genes. Mutant strains that do not express
the full transporter were 100 to 120-fold more sensitive to
bacitracin than the wild type strain (Tsuda et al., 2002). A more
recent study from the same group, analyzed the transcriptome
of the bacterium after exposure to bacitracin. They found 8
genes (SMU.302, SMU.862, SMU.863, SMU.864, mbrA, mbrB,
SMU.1479, SMU.1856c) that were upregulated upon AMP
challenge; of those, the MbrC protein acts as a transcriptional
regulator for MbrA and MbrB–which are part of the ABC
transporter and are required for bacitracin resistance–and it
also controls the expression of SMU.863 and SMU.864, also
described as ABC transporters involved in bacitracin resistance
by S. mutans (Kitagawa et al., 2011).

The S. mutans bceABRS operon encodes an ABC transporter
(BceAB) and a two-component system BceRS. The entire four-
component system was shown to be important for protection
against bacitracin, defensins (α and β), LL-37 and histatin (Tian
et al., 2018). In contrast with wild type S. mutans, mutant strains
lacking each bceABRS gene failed to form biofilms in response to
a sub-inhibitory concentration of β-defensin. This data suggest
that BceABRS also acts as a sensor, promoting a switch to an AMP
resistant phenotype upon challenge (Tian et al., 2018).

Group B Streptococci
Streptococcus agalactiae, also referred to as Group B Streptococci
(GBS), is an opportunistic pathogen that colonizes the
gastrointestinal, genitourinary tracts and, in women, the
vaginal mucosa. The biggest concern regarding infections with
GBS is in pregnant women, because it can be transmitted
vertically and results in serious neonatal consequences, causing

several diseases to the newborn, such as meningitis, sepsis and
pneumonia (Shabayek and Spellerberg, 2017).

The incidence of infections by S. agalactiae is twice as high in
pregnant women when compared to non-pregnant women. Most
GBS infections occur during labor, but there is also a chance of
infection after delivery. In the United States, GBS infection rates
range from 0.1 to 0.8 per 1,000 childbirths. Worldwide, the rates
in pregnant women are 0.38 per 1,000 childbirths, with 0.2 in
1000 mortality rate (Raabe and Shane, 2019). GBS infection is
also associated with an increased chance of premature delivery.
Around the world, premature birth is an important contribution
to the death of newborns; approximately 10% of deaths in
neonates are caused by GBS infection (Vornhagen et al., 2017).

Mechanisms of AMP Resistance in Group B

Streptococci

Modifications in membrane/cell wall structure

In S. agalactiae, the dlt operon is essential for resistance against
AMPs. Deletion of dltA hinders bacterial survival ability in vivo
and reduces the resistance to AMPs, possibly due to an increased
interaction with the peptide. Interestingly, the D-alanylation of
the membrane seems to induce resistance by enhancing cell
envelope strength rather than the interference with the ionic
charge of the membrane (Poyart et al., 2001, 2003; Saar-Dover
et al., 2012).

Proteases and other proteins

Streptococcus agalactiae is intrinsically resistant to nisin via NSR
or SaNSR, a nisin-specific enzyme that cleaves and hinders the
activity of the peptide. It is expressed by the nsr operon with other
lantibiotic resistance genes, such as nsrFP and nsrRK (Khosa
et al., 2013, 2015, 2016). However, modified nisin molecules
were able to maintain activity against strains possessing SaNSR
(Hayes et al., 2019; Zaschke-Kriesche et al., 2019). Another mode
of escaping the degrading activity of AMPs is via inhibitory
molecules capable of binding to the nisin site of SaNSR (Porta
et al., 2019). A phosphoglycerate kinase of GBS was also identified
to participate in AMP resistance. Though the mechanism is
unknown, it is supposed to include direct binding of the peptides
(Boone and Tyrrell, 2012).

Transport systems and efflux pumps

NsrFP is an ABC transporter which exports nisin to the
extracellular medium. The transporter binds to the N-terminal
portion of the peptide and releases it, preventing cell death,
even in absence of the two-component regulator NsrRK
(Reiners et al., 2017).

In S. sanguinis, a study involving multiple gene screening
reported a role for sag1003 in AMP resistance against nisin
and bacitracin. The gene is predicted to be an efflux pump
against AMPs and a transposon-induced mutagenesis caused a
higher sensitivity against both AMPs in a plate-based minimum
inhibitory concentration (MIC) assay (Boone and Tyrrell, 2012).

AMP sequestration and inactivation

Streptococcus agalactiae pili are important against host defense
mechanisms, such as AMPs. The sequestration of AMPs by
pili prevents the interaction with the membrane targets. Strains
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lacking pilB, one of the pilus subunit proteins, were more
sensitive to AMPs and less virulent overall, supposedly by
virtue of resistance against LL-37, mCRAMP and polymyxin B.
Heterologous overexpression of PilB from S. agalactiae in L. lactis
showed similar results (Maisey et al., 2008).

AMP induced gene expression/repression

The bceRSAB is a detoxification system in GBS, regulating
the gene expression against AMPs, such as dltA, promoting
resistance. Strains lacking the regulator BceR showed an
increased susceptibility against bacitracin and LL-37 and reduced
overall virulence (Yang et al., 2019).

The insertion of an inactivation transposon in sag1003
induced a reduction of phosphoglycerate kinase in the cell wall
(Boone and Tyrrell, 2012).

The two-component regulator NsrRK is responsible for the
transcriptional control of the NSR pathway (nsr and nsrFP) in
L. lactis strains capable of synthesizing nisin. In GBS, a very
similar nsr operon was described, indicating the possibility of an
analogous system (Khosa et al., 2013, 2016).

Hamilton et al. (2006) identified a surface-associated
penicillin-binding protein called PBP1a, which is encoded by
the ponA gene. A mutant 1ponA strain was more susceptible
to AMPs from cathelicidin and defensin families, but the
exact mechanism involved in this protection is still unknown
(Hamilton et al., 2006; Jones et al., 2007).

Streptococcus pneumoniae
Streptococcus pneumoniae (pneumococcus) is responsible for
around 1 million deaths worldwide every year, and an increasing
drug resistance case reporting (Tramper-Stranders, 2018). It
is the main causative agent in community acquired bacterial
pneumonia, and it can also cause otitis media, conjunctivitis,
sinusitis andmore severe diseases like meningitis and bacteremia.

Pneumococci are frequent colonizers of the upper respiratory
tract, and a single person may be colonized with multiple
strains concomitantly for months. Asymptomatic carriers are
also the main source of pneumococcal transmission (Khan and
Pichichero, 2014). In this highly colonized niche, AMP resistance
confers an important competitive advantage both inter and intra
species. Pneumococci display a vast number of adaptations that
promote increased AMP resistance, from envelope modifications
to AMP sequestration, as described next.

Mechanisms of AMP Resistance in S. pneumoniae

Envelope modifications

A vast majority of clinically relevant pneumococcal isolates are
covered by a thick polysaccharide capsule with variable structure,
which protects the bacterium from host immune defenses. Based
on their high immunogenicity and protective efficacy, capsular
polysaccharides comprise the basis of the current pneumococcal
vaccines, alone or in fusion with carrier proteins (Darrieux et al.,
2015; Geno et al., 2015; Converso et al., 2020).

Variations in capsule polysaccharide () locus determine the
classification of pneumococci in over 95 different serotypes.
These includemainly negative structures, with a few being neutral
or positive. Negatively charged free capsular polysaccharides

(but not neutral or positive ones) have displayed a role in
preventing AMP attack. These purified anionic CPS were able to
increase the resistance of non-encapsulated mutant pneumococci
to HNP-1 and polymyxin B, an effect that was abrogated
when the CPSs lost their negative charge through reaction
with polycations. One proposed mechanism is that exposure
to antimicrobial peptides triggers CPS release, which trap the
AMPs and shield the bacterium (Llobet et al., 2008). This
capsule shedding has been demonstrated to occur in vivo, thus
comprising a potential strategy to prevent AMP-mediated killing.
Capsule shedding can be triggered by autolysin (LytA) activity,
promoting bacterial resistance to LL-37 and favoring colonization
(Kietzman et al., 2016).

Surface-attached capsular polysaccharides, on the other hand,
have shown the opposite effect, rendering the bacteria more
susceptible to AMP action, in comparison with non-encapsulated
isogenic mutants (Beiter et al., 2008). This effect was observed
with different capsular types, including CPS 2, 4, 9V and 19F, and
the zwitterionic serotype 1. As shown for other Gram-positive
bacteria, D-alanylation of teichoic acids in non-encapsulated
pneumococci results in increased resistance against killing by
neutrophil extracellular trap (NET)-derived components (Beiter
et al., 2008). This effect is aided by surface proteins, like
the choline binding protein LytA and PgdE, which contribute
to reduce the surface negative charge (discussed further). In
that sense, the presence of capsule could mask the underlying
protective mechanisms against AMPs. This apparent detrimental
effect of capsule production over pneumococcal sensitivity to
AMPs is possibly overcome by the capsule shedding as previously
discussed, and also by its ability to protect the bacterium
against mucus and phagocytic cell repulsion (Geno et al.,
2015). Furthermore, the effect may not be applicable to all
capsular serotypes; great variations in carriage, invasiveness and
prevalence exist among capsule types, which have been associated
with variations in surface net charge (Li et al., 2013). In that
sense, the investigation of AMP resistance in a higher number of
pneumococcal serotypes may provide new insights into the role
of surface CPS on AMP resistance. For instance, type 4 TIGR4
and its isogenic capsule-negative mutant have shown increased
sensibility to CXCL10, LL-37, and nisin, when compared with the
type 2 strain, D39 (Bruce et al., 2018).

Another study has shown that non-encapsulated pneumococci
are more resistant to neutrophil proteases, elastase and cathepsin
G–a feature that also contributes to the ability to colonize the
nasopharynx (van der Windt et al., 2012).

Cell wall modifications by the dlt operon have also been
shown to promote resistance against nisin and gallidermin in
pneumococci, an effect that was consistent with an increased
release of D-alanine upon hydrolysis in wild type versus dltA-
negative mutant stains (Kovacs et al., 2006).

Pneumococci express two enzymes, PgdA and Adr, that
modify peptidoglycans on the bacterial cell wall. PgdA is a
N-acetylglucosamine deacetylase (Vollmer and Tomasz, 2000),
while Adr is an O-acetyl transferase that acetylates muramic acid
residues on the peptidoglycan backbone (Crisostomo et al., 2006).
Double mutant strains unable to perform these modifications
displayed lower ability to colonize lysozyme-sufficient mice, but
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behaved similarly, to wild type pneumococci in mice lacking
lysozyme production. In contrast, mutants in only one of the
molecules colonized mice more efficiently than the wild type
strain, in both Lys-producing and Lys-deficient mice (Davis et al.,
2008). Taken together, these results indicate that the ability to
limit lysozyme attack by modifying the cell wall contributes to
successful colonization of the host.

AMP sequestration/inactivation

Studies from our group and others have reported a role for
pneumococcal surface protein A (PspA) in bacterial resistance to
AMPs. PspA is an exposed virulence factor with structural and
serological variability (Goulart et al., 2013; Converso et al., 2017b)
that has been successfully evaluated as a vaccine candidate in
different infection models (Darrieux et al., 2007; Goulart et al.,
2013; Converso et al., 2017a, 2020). It prevents complement
activation/deposition on the pneumococcal surface, limiting
bacterial uptake by phagocytes (Ren et al., 2004; Mukerji et al.,
2012).

Pneumococcal surface protein A can bind to and prevent
the lytic action of lactoferrin (Hakansson et al., 2001; Shaper
et al., 2004). Furthermore, anti-PspA antibodies induced by
vaccination were able to enhance the bactericidal effect of
apolactoferrin (the iron-free form of the molecule) by blocking
PspA interaction with that protein (Shaper et al., 2004; Andre
et al., 2015). This protective effect of PspA over pneumococci
was diminished when lactoferrin was combined with lysozyme
(Andre et al., 2015). This set of data suggests PspA is able to
prevent the lytic action of cationic peptides against pneumococci,
possibly by binding to these molecules through their active
sites. This interaction has been demonstrated for lactoferrin
(Senkovich et al., 2007).

Pneumococcal surface protein A has also been shown to
interfere with the bactericidal activity of NETs (Martinez et al.,
2019). Mutants lacking PspA were more susceptible to trapping
by NETs, an effect that was dependent on PspA type. In addition,
incubation with anti-PspA antibodies promoted NET formation
(Martinez et al., 2019). Taken together, the data indicates that
PspA is able to directly prevent killing by AMPs, and also to limit
the bactericidal mechanisms of neutrophils.

Efflux pumps and transport systems

Pneumococci express and efflux pump, MefE/Mel, which confers
resistance to macrolides. mfE expression is induced upon
bacterial incubation in presence of LL-37. In consequence,
pneumococci develop resistance to LL-37 and erythromycin
in vitro (Zahner et al., 2010).

A second, MacAB-like efflux pump described in
S. pneumoniae, comprised by the spr0693-spr0694-spr0695
operon, is also involved in resistance against antimicrobial
peptides and antibiotics, like LL-37, nisin and bacitracin
(Majchrzykiewicz et al., 2010; Yang et al., 2018).

The oligopeptide import ABC transport system Opp
(AmiACDEF) has been implicated in resistance against CXCL10,
a chemokine with antimicrobial activity against several pathogens
(Yung and Murphy, 2012). In that work, mutant strains lacking
the permease were less susceptible to CXCL10 and nisin, when

compared with the parent D39 strain. Although the precise
mechanism responsible for this effect is not fully understood,
it is known that AmiA-F has additional pleiotropic roles in
pneumococcal physiology, quorum sensing, and virulence
(Bruce et al., 2018).

AMP induced gene expression/repression

Cell wall modifications in pneumococci can be triggered by
AMPs. Treatment with lysozyme leads to upregulation of the
dlt locus through the CiaRH sensoring system, resulting
in lipoteichoic acid (LTA) modifications and increased
inflammatory responses, which in that case contributed to
bacterial shedding and transmission (Zafar et al., 2019). Thus,
D-alanylation of the cell wall – a mechanism of AMP resistance
shared among different Gram-positive microbes–can be induced,
in pneumococci, by treatment with antimicrobial proteins that
target the bacterial cell wall.

Incubation with LL-37 can also trigger an adaptive response
in pneumococci. The transcriptome analysis of pneumococci
treated with LL-37 revealed a profound effect on the bacterial
genome, with 10% of the genes displaying an altered expression
upon challenge (Majchrzykiewicz et al., 2010). The up-regulated
genes included those involved in cell wall biosynthesis (dlt),
bacteriocin production, virulence (such as the proteases HtrA
e PrtA) and bacteriocin production, as well as transcriptional
regulators and putative ABC transporters. Interestingly, the
serino-protease HtrA is also involved in resistance against other
environmental stressors, like high temperature and oxidative
stress (Dawid et al., 2009). The choline binding protein PspA
and LysM protein (SP 0107)–predicted to be involved in cell
wall metabolism–were down regulated in presence of LL-37.
Interestingly, LL-37 had a much more dramatic effect on
pneumococcal gene expression patterns, when compared with
bacterial-derived AMPs that act on the same bacterial targets
(nisin and bacitracin). Furthermore, mutant strains lacking these
genes revealed an increased susceptibility to treatment with LL-
37, confirming the employment of multiple defense strategies
against AMPs in pneumococci (Majchrzykiewicz et al., 2010).
A more recent study evaluating the proteome of pneumococci
treated with LL-37 has also reported a large number of proteins
with altered abundance, including transporters, proteins involved
in gene regulation and cell wall modification, virulence factors
(such as Pht family) and the protease HtrA (Mucke et al.,
2020). This result suggests that multiple mechanisms cooperate
in pneumococcal response to AMPs.

AMP resistance as a competitive advantage

A study investigating the susceptibility of multiple pneumococcal
isolates – both clinical and from carriage–to LL-37 and HNP-
1 found great variations in AMP resistance, with no correlation
with AMP or capsule type, although clinical isolates were, in
general, more susceptible than were carriage isolates (Habets
et al., 2012). Furthermore, the study reported that AMP challenge
could affect bacterial fitness in competitive assays. This result
suggests a role for AMPs in driving intraspecific competition
among pneumococci in the nasopharynx, contributing the
bacterial genetic diversity in this niche.
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DISCUSSION

Antimicrobial peptides are central players in the innate immune
defense against pathogenic bacteria. Unsurprisingly, microbes
have developed several strategies to overcome AMP activity,
which allow them to efficiently colonize/invade the host. The
present review summarizes the strategies adopted by Gram-
positive pathogenic bacteria to resist AMP action. Some of
these mechanisms, like cell wall modifications, are shared by
several pathogens, highlighting their pivotal contribution to
bacterial survival within the host. Other factors such as surface
proteins and virulence factors are microbe-specific, revealing
a myriad of adaptations that comprise the bacterial arsenal
against AMPs.

The alarming increase in antibiotic resistance has prompted
the search for alternative treatment options. In this scenario,
AMPs emerge as a promising strategy to control bacterial
infections. This rationale is reinforced by the demonstration that
antibiotic resistance in bacteria usually correlates with a collateral
sensitivity to AMPs (Lazar et al., 2018).

Several approaches employing AMPs have been tested
with encouraging results. The use of AMP combinations is

of particular interest, since these molecules can potentiate
each other’s action, and also improve the therapeutic efficacy
of conventional antibiotics, through synergistic interactions
(Reffuveille et al., 2014), This represents an excellent strategy to
slow down or minimize bacterial resistance development. In that
sense, a better comprehension of the mechanisms employed by
bacteria to resist AMP action is pivotal for the development of
more effective therapeutic strategies. Furthermore, since many
bacterial molecules involved in AMP resistance are important
virulence factors, the present review presents numerous potential
targets for vaccine development, and also contributes to elucidate
the mechanisms driving intra-and interspecies competition
within the host.
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