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Based on the s-d interaction model for dilute magnetic alloys we have calculated the scatter
ing probability of the conduction electrons to the second Born approximatism. Because of the 
dynamical character of the localized spin system, the Pauli principle should be taken into account 
in the intermediate states of the second order terms. Thus the effect of the Fermi sphere is 
involved in the scattering probability and gives rise to a singular term in the resistivity which 
involves clog T as a factor, where c is the concentration of impurity atoms. When combin:::d 
with the lattice resistivity, this gives rise to a resistance min~mum, provided the s-d exchan:~e 
integral J is negative. The temperature at which the minimum cccurs is proportional to c 115 

and the depth of the minimum to c, as is observed. The predicted log T dependence is tested 
with available experiments and is confirmed. The value of J to have fit with experimmts 
is about -0.2 ev, which is of reasonable magnitude. Our conclusion is that J should be negative 
in alloys which show a resistance minimum. It is argued that the resistance minimum is a 
result of the sharp Fermi surface. 

§I. Introduction 

37 

A minimum in the resistivity-temperature curve of dilute magnetic alloys has 
been found in a number of alloys, including alloys of Cu, Ag, Au, Mg, Zn with 
Cr, Mn, Fe, Mo, Re, Os as impurities, and detailed experimental investigations 
have been made of various proJ=erties of these alloys. 1

) A criterion of occurrence 
of the resistance minimum deduced from these observations may be that it is 
closely connected with the existence of localized magnetic moments of impurity 
atoms. Thus the only case of alloys of Au with the second series of transition 
elements which shows a minimum in resistivity is the alloys with Mo, which is 
also the only case where negative magneto-resistance is found so that localized 
moments are involved. 2 ) We also find no resistance minimum in alloys of AI, where 
no evidence of localized moments is found from the measurements of susceptibility. 

The most convincing demonstration of the criterion is the observation made 
by Sarachik3 ) that the dilute alloys of Fe (one atomic rercent) with the series 
of NbMo alloys as host metals show a marked resistance minimum in the range 
of concentration ratio, where the measurements of susceptibility revealed the 
existence of localized moments of Fe atoms and none where localized moments 
were not found. Thus when a resistance minimum is found, we invariably find 
some evidence of localized moments, and inversely when localized moments are 
revealed from some measurements, we usually obEerve a mm1mum in resistl v1ty. 
This conclusion indicates that the resistance minimum is a direct consequence of 
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38 J. Kondo 

the interaction between spins of the localized and conduction electrons, and is not 

connected with some specific assumptions concerning the band structures or crystal 

symmetries of host metals nor with characteristics of the d-levels of magnetic 

ions, such as the number of d-electrons, the location of d-levels relative to the 

Fermi surface or the features of splitting of degeneracy due to the crystalline field. 

Thus the resistance minimum must be deduced from a simplified model for 

the system consisting of localized spins and conduction electrons, without intro

ducing any specific assumptions. The model, which we take in the followings, is 

the s-d exchange model, which is due to Zener, 4 ) Kasuya 5) and Y osida 6) and has 

been applied to many magnetic metals and alloys. 

Then our subject is to find which effect deduced from this model will lead 

to the resistance minimum. For this purpose we shall stress the following two 

experimental observations. 
1. The temperature at which the minimum occurs, which we shall denote by 

Trnin, is roughly proportional to c115, where c is the concentration of impurity 

atoms. 2
).7) This fact indicates that Trnin is quite insensitive to the concentration. 

It is usually about 10 to 20°K for the concentrations of available experiments. 

This temperature is usually quite high compared with the magnitude of the ex

change interaction between the localized spins. For example in the case of CuFe 

alloys Tmin for the smallest concentration (c = 5 X 10-6) ever measured is still 

10°K.2
) Thus we see that the localized spins are not correlated (completely 

paramagnetic) at the temperatures around Tmin and above. 

2. The depth of the minimum, which is defined by the resistivity at absolute 

zero (p1·=o) minus that at Trnin (pmin), is roughly proportional to c. 2) PT=o is not 

strictly defined but usually defined as measured at the lowest temperature or 

extrapolated to the absolute zero. Since Pmin is also proportional to c, the relative 

depth of the minimum is indepedent of c. Its magnitude is usually about 10%. 

From these two observations it is clear that the appearance of resistance 

minimum is not due to a correlation between localized spins but is a result of 

adding contributions from each spin. 

It is true that when the concentration is large correlation between spins has 

some effects on the resistivity at low temperatures where the exchange interaction 

between spins is not negligible. A maximum following the minimum for some 

·alloys of higher concentrations is evidently related to this effect. However for 

lower concentrations the maximum moves to lower temperatures rapidly, while 

the minimum still remains above the helium temperature. Thus our conclusion 

is that the resistance minimum must be deduced from the s-d exchange model at 

temperatures where localized spins are not correlated without introducing specific 

assumptions. 
At the paramagnetic range of temperature the resistance due to the s-d inter

action is independent of temperature, when the transition probability is calculated 

in the first Born approximation. In the following sections we sh~Jl show that 
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Resistance Mininwrn in Dilute Magnetic Alloys 39 

a temperature-dependent term is obtained when the transition probability IS 

calculated to the second Born approximation and that this term r;rorerly 
accounts for the resistance minimum when combined with the lattice resistivity. 

§2. Calculations 

We take as the unperturbed hamiltonian the following ex presswn : 

(1) 

where sk is the one-electron energy of the conduction electron with the wave 
number k, aks and aks* are its annihilation and creation operators, s denoting the 
component of the spin along the z-direction. According to the statement in the 
introduction, we have neglected the energy related to the localized spin system, 
the exchange and anisotropy energy. The perturbing hamiltonian is given by 

H' = - (J / N) bnkk' exp {i (k-k') · Rn} 

X { (ak'+ * ak+ -ak'-* ak_)Snz+ ak'+ * ak-Sn-+ak'-* ak+SrH}, (2) 

where Rn denotes the position vector of the n-th impurity atom, whose spin 
operator is denoted by Sn. Sn± is defined by Sn, + iSnY . vV e may choose any set 
of three mutually orthogonal space directions as the coordinate axes, because (2) 
has an isotropic form of the exchange interaction between the localized and 
conduction electrons. N is the total number of atoms in the crystal. 

The expression (2) has been led by Kasuya,4
) who has taken account of 

the direct exchange interaction between the localized and conduction electrons. 
J denotes the magnitude of the interaction and may be positive. On the other 
hand, we have shown8 ) that the mixing of the wave functions of the localized 
and conduction electrons can lead to an interaction of the same form as (2) with 
J negative. Both effects may exist and in the present paper we regard J as 
a parameter, of which the sign and· magnitude will be determined later to have 
fit with experiments. 

The transition probability per unit time from the initial state a to the final 
state b is given to the second Born approximation by 

W(a~b) = (2n/n)o(Ea-- Eb) 

X {H'abHfba+ ~ala(I-I'aaH'abi-I'ba+comp. conj.)/(Ea-Ea)}, (3) 

where a, b and c denote total states of the system and Ea, Eb and Ea are their 
total energies.*) The second term in the bracket represents the second Born 

*) It should be noted that in a previous paper, 9) where we have deduced the anomalous Hall effect 
based on the localized d-electron model, we have taken two factors of the matrix elements in the second 
term of (3) from the s-d exchange interaction (2) and the last factor from the hamiltonian which 
involves the spin-orbit interaction as a factor. It is what we have neglected in that paper as irrelevant 
to the anomalous Hall effect which we now take up in the present paper. 
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40 J. Kondo 

approximation for the trans1t10n probability and is usually smaller than the first 
by a factor JlzF, where ev is the fermi energy. It will be found, however, that 
it involves a factor which has a singular dependence on the energy of the initial 
state. 

In order to show this, let us first consider the process, in which the electron 
with the wave number k and the positive sign of the spin (which will be denoted 
by k +) is scattered to the final state k' with the same sign of the spin (k' +). 
It should be noted that we are considering Slater determinants for the initial, 
final and intermediate states. The matrix elements in (3) should be taken between 
them. The intermediate states for this process can be devided into four groups. 
1. The electron with k + is first scattered to the unoccupied state q' + and 
then to k' +. 
2. The order of the successive processes may be interchanged. One of the 
occupied electrons, which we shall denote by q +, is first scattered to k' + and 
then the electron with k + fills up the state q + which is now empty. 

It should be noted that the final states obtained by the above two processes 
have the opposite sign. For the first we may write the process as 

l···q+···k+ >~l···q+· .. q'+ >~l···q+···k'+ ), 

whereas for the second as 

l· .. q+· .. k+) ~l .. ·k'+ .. ·k+ > ~J .. ·k'+· .. q+ >. 

3. The ~ign of the spin may be changed in the intermediate states. The electron 
with k + is scattered to the state q'-, while the z-component of the spin of the 
n-th atom, which we shall denote by Mn, is increased by unity (Mn~ Mn + 1). 
After that the electron is again scattered to k' +, while the z-component of the 
n-th spin returns to Mn. 

4. The reverse of the above. One of the occupied electrons, denoted by q-, 
is scattered to the state ·k' +, Mn being decreased by unity. The electron with 
k + fills the state q-, Mn returning to the initial value. The final states of the 
above two processes also have the opposite sign. 

Then the second term in the bracket of (3) can be written as 

bq'H' k+, q'+I-1' q'+, I{'+H' k'+, k+ (1- j 0 q1) I (ek -zq 1) 

- bqH'q+,k'+H'k-t, q+H'k'+, k+f0ql (zq -zk') 

+ bnq H' k+Nn,q 1-Mn+1 H' q1-Mn+b k'+MnH
1
k1+, k+ (1-j0q1 ) I (ek --zqr) 

- bnql-J' q-fiin, k'+Nn-1 H' k+Mn-b q-fiinf-I' k'+, k+f0ql (eq -zkr) 

+comp. conj., (4) 

each term corresponding to the above four processes in the written order. Note 
the negative sign before the second and fourth term. Here the matrix elements 
are taken between one-electron states. f 0 

q is the Fermi distribution function for 
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Resistance Minimurn in lJilute Magnetic Alloys 41 

the electron with the energy cq. As mentioned in the introduction, we neglect 

correlation between any pair of localized spins. Then the above expression becomes 

2( :-J/ N) 3~nMn3 ~q1 (1- j 0
q 1 ) / (ck -cq') 

-2( -J/N) 3 ~nMn3 ~qj0q/(cq -ck1) 

+2( -J/N) 3 ~nMn(S-Mn) (S+ Mn+ l)bq1 (1-j 0q1)/(ck-eq1 ) 

-2( -JjN) 3 ~nMn(S+ Mn) (S- U~+ l)~qj0q/(eq -Ek'). (5) 

Taking account of the energy conservation (ck=ek'), we see that the first and 
second term combine to give 

(6) 

which is just what is obtained when we take no account of the Pauli principle.*) 
This state of affairs is usually encountered when the perturbing system has no 
internal degrees of freedom. Thus the problem of potential scattering of the 
conduction electrons in metals can be treated by the one-electron approximation, 
the exclusion principle being discarded. The scattering through intermediate states 
without change of the spin direction (the processes 1 and 2) may be regarded 
of the same nature as the potential scattering. 

As a result of this fact, the expression (6) has little dependence on the initial 
energy ck and we will neglect it. For the same reason we shall discard the term 
which does not involve f 0

q in the third and fourth term of (5). On the other 
hand the term involving f 0

q does not vanish there, which becomes 

(7) 

This term has remained because of the difference of matrix elements between 
the process 3 and 4. In the third process we first increase the z-component of 
a localized spin and then decrease it, whereas in the fourth we first decrease it 
and then increase it. The two processes do not give the same answer, which 
means S+S--S-S+*-0. This simply expresses the dynamical character of the 
localized spin system. It has the internal degrees of freedom. 

From the assumption that the localized spins are randomly oriented, we may 

have 

Using this equation and introducing a notation 

(8) 

*) The fact that this expression diverges arises from our neglect of the dependence of J on the 
wave number difference k-k'. Its proper account makes the expression convergent. But this problem 
is not our main concern. 
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42 J. Kondo 

we have the following expressiOn for the transition probability from k + to k' + : 

As can easily be shown, this also gives the probability of the transition from 
k- to k'-. 

In the next place we shall consider the process in which the electron with 
k + is scattered to the state k'-, while the n-th spin increases its z-component 
by unity (Mn~ Mn + 1). The intermediate states for this process can also be 
devided into four groups. 

1. The state of the electron is first changed from k + to q'-, the z-component 
of the n-th spin being increased to Mn + 1, and then from q'- to k'-, Snz 

remaining to be Mn + 1. 

2. One of the occupied states, denoted by q-, is changed to k'-, all the z

components of the locali-;,ed spins being unchanged, Note that in this process 
Snz remains to be Mn (not Mn + 1 as in the first process). Then the electron 
with k+ fills up the empty state q-, while Mn is increased to Mn + 1. The 
final state obtained in this way has the opposite sign to that of the first process. 

3. The electron with k + is scattered to the unoccupied state q' +, all the z

components of the localized spins being unchanged, and then to the state k'-, 
while Mn being increased by unity. 

4. One of the occupied state q + is changed to the state k'-, while Mn being 
increased by unity. Then the electron with k + is scattered to the empty state 
q +, all the z-components of the localized spins being unchanged. Note that in 
the latter process Snz remains to be Mn + 1. T'he final state obtained in this way 
also has the opposite sign to that of the third process. 

The transition probability is easily calculated as in the first case and is 
giVen by 

W(k + Mn~k'- Mn + 1) = (2rcJ2 /ftN2
) (S- Mn) (S + Mn + 1) 

x {1+4Jg(zk)}o(zk-zt,1). 

Similarly we obtain 

W(k- Mn~k' + Mn -1) = (2rcJ 2 /ftN2
) (S + 1\ILJ (S- lv1n + 1) 

X {1 + 4Jg(zk)} o(ek- ek'). 

no) 

(11) 

Summing these expressions over the impurities, we have the following expressiOn 
for the transition probability of the spin-flip processes: 

W(k + ~k' +) = ~n W(k ± 1\fn->k' + 1\1n± 1) 

= {4rcJ 2S(S+1)c/3ftN} {1+4Jg(zk)}o(zk-Zk'), (12) 

which 1s just twice of (9). 
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l~esistance Min£mum in Dilute Magnetic Alloys 43 

We shall investigate the dependence of (9) and (12) on the energy of the 
initial state, e:k, which is entirely involved in the function g(e:k). At the absolute 
zero of temperature, f 0

q can be replaced by a step function, which is unity when 
q<!?-0 and zero when q>ko, where k0 is the magnitude of the Fermi momentum. 
Then assuming that e:k = fi 2 k2 /2m, we obtain 

g(e:k) = (3z/2s~,) {1 + (k/2ko) log I (k- ko) / (k + ko) I} T= 0, (13) 

where z is the number of conduction electrons per atom. The singular nature 
of this function/ is common to the problems concerning the Fermi surface and 
reflects its sharpness. From this expression and (9) and (12), we see that W 
increases when the electron approaches the Fermi surface, provided J is negative. 
Since at T=F 0 the average of ! k- ko I for thermally excited electrons is propor
tional to T~ we can, even at this stage of calculation, expect a term proportional 
to log T in the expression of the resistivity. 

It 1s true that g(e:k) diverges when e:k approaches to s~,. This divergence 
arises from our neglect of the energy of the localized spin system. The spin 
levels of the localized system are completely degenerate. Both the exchange 
interaction between the localized spins and the anisotropy energy for the direction 
of the spin relative to the crystalline axes can lift the degeneracy and we shall 
have a convergent result. As stated in the introduction, we are interested in the 
temperature range much higher than these splittings, where we need not be worried 
about the divergence. 

At a finite temperature it is not legitimate to use (13) for g(e:k), because we . 
are interested in the electrons in the energy range of k T from the Fermi surface. 
It p1akes the calculation easier to retain the definition of g(e:k), (8), here and to 
carry out the summation after we get the expression for the resistivity. 

The rate of change of the probability j±k with which the state k + is occupied 
due to the collision with the localized spins is given by 

(fJj±kjfJt) coil= bk' W(k + ---7 k' +) (/±k'-/±k) 

+ bk' W(k + -?k' +) (f'Fk'-j±k). (14) 

When the electric field E is applied along the x' -direction, we may put 

(15) 

for the stationary distribution of /±k. Then we have 

(fJj±kjfJt)coll =-(/±I(-/ 0k) bk' { W(k + -?k' +) + W(k + -?k' +)} 

==- (/±k-/ 0k) /r:k, (16) 

where r: k 1s defined by 

(17) 
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44 J. Kondo 

Then from a standard theory we can easily obtain the conductivity: 

(18) 

where vk=hklm. The resitivity is the inverse of a and is expressed from (17) 
as 

Pspin=CpM{l- (fi2Jircrnko) ~g(c:k) (dj0 /dc:k)d3 k}, 

where PM is defined by 

. V denoting the volume of the crystal. 

(19) 

(20) 

We shall neglect all the terms of the order (kTic:)<') 2
• The integral m (19) 

IS carried out as follows : 

~g(c:k) (df0ldc:k)d3 k 

= (V l8rc3 N) ~~j0k' (dj0kl dc:k) I (ck'- c:k) d 3 kd3 k' 

=- ( 4m3 V ln:N'h6
) ~~ (c:c:') 112 

/
0 (c:) (d/ 0 I de:')/ (c:' -c:)dc:dc:' 

= - (8m3 Vc:Fin:N'h6
) 

- (4m3 Vc:Fin:N'h6)~~logl c-v;---.1~'-)l(v;--+v~T) I (d/0ldc:) (df0ldc:')dc:dc:'. 

The integral in the last ferm may be calculated as 

~~~~log I Cc:- c:') I 4c:l,, I Cd/0 I de:) (d/0 I de:') dc:dc:' 

= const. +log 1~ 

Combining these results together m (19) and neglecting all terms of the order 
(Jic:F) except tl:e one involving log T as a factor, we have 

(21) 

As we have expected, this contains a singular term involving log T which 
increases towards low temperature, if J is negative. This term arises from the 
second Born approximation as a result of the dynam!cal nature of the spin system. 
Its singularity is associated with the sharpness of the Fermi surface. As stated 
above, the divergence of (21) at T= 0 does not ccc:.1r, if a proper account of the 
splitting of the Zeeman levels of the localized spins is taken. Then log T should 
be replaced by log 1~ at T< 1~, where 1~ 1 o is an energy o£ the order of the 
splitting. 
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Resistance Minimum zn Dilute A1agnetic Alloys 45 

§3. Comparison with experiments 

We assume that the total resistivity can be expressed as the sum of three 
terms: viz., the lattice resistivity P£, the resistivity arising from the impurity 
potential and that due to the spin scattering (21) : 

(22) 

where cpA is the resistivity due to the impurity potential, which involves many 
causes, such as the difference of valence, the redistribution of the conduction 
electrons around the impurity atom and the lattice distortion around it. 

First we assume a phenomenological expression for the resistivity of alloys 
which is given by 

(23) 

and see how far it can represent the experimental results. Differentiating it with 
respect to T, we see that the temperature at which the minimum occurs IS given 
by 

(24) 

This dependence of Tmin on the concentration of impurity atoms IS a consequence 
of the logarithmic term in the resistivity. 

In the next place, the depth of the minimum IS given by 

(25) 

where T 0 is as explained in the preceding section. Actually it will be more 
appropriate to take it as the lowest temperature at which the measurement is 
carried out for samples of lower concentration. Since 7~nin is very insensitive to 
c and is about 20°K and To may be taken below 1 °K, the last factor of (25) is 
practically independent of c and has a value around 3 or so. Thus the depth of 
the minimum is proportional to c, as is observed. 

Knook2
) has experimentally determined 1~nin and Pr=o- Pmin as functions of 

the concentration of Fe atoms in Cu. For c between 5 X 10-6 and 10-3 , his results 
may approximately be represented by Tmin = 115c115

'
3 degrees and Pr=o- Pmin = lOOc 

.ut2cm. From the latter relation and (25) we find that p1 = 33 ,u.Qcm, when the 
last factor of (25) is assumed to be 3. Then from (24) with P1 given above 
and a=2.6X10-10 (the value for pure copper), we have Trnin=120c115 degrees, 
which is in good agreement with Knook's result. The choice of the value for 
the last factor of (25) involves an ambiguity, but since the fifth root of p1 is 
involved in (24), it causes only a little difference. From (24) we understand 
the experimental fact that Tmin is usually lower for Ag and Au than for Cu, 
because a for the former are much larger than that for Cu. ~ 

Thus we have seen that the phenomenological expression (23) for the resistivity 
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46 J. Kondo 

of alloys well represents the experimental observations. Now our calculation shows 
that P1 is given by 

(26) 

The residual resistance p0 defined in (23) is the sum of PA and PM. Its value is 
1000 ,u..Qcm for iron in copper. We can expect that both PA and PM are of com
parable magnitude and we shall arbitrarily take pM=500',u..Qcm. Then from (26) 
with p1 =33 we have J/cF= -0.022 or J= -0.15.ev if cw=7 ev. This magnitude 
of J is quite reasonable. 

In order to test the logari
thmic dependence on T we 
have made a comparison of 
(23) with an experiment10

) 

made on the alloys of iron 
with gold, in which the resis
tivity has been measured to 
very .low temperatures. In Fig. 
1 the three curves drawn 
represent the three functions, 
0.20-0.0078logT, 0.077-0.004 
X logTand 0.034-0.0016logT, 
respectively from the above, 
in units of ,uQ em. The agree
ment is quite good, particu
larly the steep rise at the 
lowest temperature is well 
represented by a logarithmic 
function. From (22) both the 
constant terms and the coeffi
cients of the logarithmic terms 
must be proportional to con
centration. Nominal solute 
concentration is indicated in 

pDcm pDcm 
0.090 .------------------'--, 0.200 

o.088 I 

0.086 ~\ 
0084 
p 

0.082 

0.080 

0.078 

0.076 

0.074 

0.034 

0.032 

'• 

AuFe 

0.02 at. % Fe 

0.006 at. % 

0.198· 

0.196 

0.194 
p 

0.192 

0.190 

0.188 

0.186 

0.184 

0.030 '-:-----'-----~--~----'--__j 
0 1 2 3 4 °K 

Fig. 1. 

T 

Comparison of experimental and theoretical 
p-T curves for dilute AuFe alloys. 

the figure. The indicated values, however, are in proportion neither to the constant 
terms nor to the logarithmic terms. This may be due to inaccurate experimental 
determination of concentration. We see, however, that the three constant terms 
are in the ratio of 2.5 : 1 : 0.44, while the logarithmic terms are in the ratio of 
2.0 : 1 : 0.40. This again confirms (23). If we assume that the concentration of 
the alloy with nominal 0.006 at. % iron is as indicated, we find from (23) that 
p1=67,uQcm. Then again with pM=500,u..Qcm and cF 5.5 ev, we have J= -0.25 
ev, which is also of reasonable magnitude. 

For many other alloys including CuMn, CuCr and CuFe we obtain good 
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Resistance Minimum in Dilute Magnetic Alloys 47 

agreements between theoretical and experimental p- T curves above the temperature 
at which the steep rise towards low temJ=erature is suppressed by spin ordering 
and below the temperature where the lattice resistivity becomes predominant. In the 
temperature range where the steep rise due to lattice scattering sets in, we always 
find that theoretical curves (23) show less steep rise than experimental points, 
if parameters are adjusted at lower temperature and a is chosen for pure copper. 
At present we have no explanation of this fact. r 

Recently Coles11) observed a new type of low-temperature resistivity anomaly 
in alloys of Rh with Fe. Instead of showing a minimum, the resitivity decreased 
more rapidly towards low temperatues. We found that this phenomenon can be. 
accounted for by the present theory if J is assumed to be positive. (Although 
Coles reported that magneto-resistance is normal, the susceptibility measurement 
by Clogston et al_1 2

) revealed a localized magnetic moment for: this alloy.) The 
resistivity increase due to alloying (denoted by Llp) is found to be proportional 

to c. The best fit with experimental 
results (dashed curves in Fig. 2) is 
obtained by Llp/ c = 3.4 + 30 logT ,u..Qcm, 

which is represented by the continuous 
curve. Thus we have P1 = -30 ,u.Qcm, 

which is of the same magnitude as in 
the CuFe case but of the opposite sign. 
The constant term is much smaller here 
than in the AuFe case. In the present 
case the perturbation expansion should 
be carried out to higher orders. It is 
surprising that a single logarithmic 
term represents the experimental results 
rather well over a wide range of tern-
perature. 

§4. Conclusion and discussion 

We have calculated the scattering 

120 pilcm RhFe 

100 

80 

c 
60 

c=5Xl0-3 

40 - c=8.5Xl0- 3 

20 

0 
LO _____ l~0----2~0----~3~0----4~0--~50°.K 

T 
Fig. 2. Resistivity increase divided by iron 

concentration. 

probability for the conduction electrons due to the s-d exchange interaction to the 
second Born approximation without introducing any s~ecific assumptions concerning 
the band structure and the location of the d-levels and have found a temperature 
dependent term for resistivity, which gives rise to a minimum in resistivity when 

combined with the lattice resistivity, provided the exchange interaction J between 
the conduction and localized electrons is negative (favourable for anti parallel spins). 
One of the important conclusions reached in this paper is that J should be negative 
in alloys showing resistance minimum. Our problem is then to find the origin 
of negative J. This was the subject of a previous paper8) 1n which we showed 
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that the effect of m1xmg wave functions of conduction electrons and d-electrons 
leacs to a negative J. The sign of J is then determined by the balance between 
the direct exchange interaction and the mixing effect. Our conclusion above 
shows that the resistance minimum is likely to be observed where the effect of 
mixing is large. In this connection the experiment by Sarachik3) is interesting. 
She observed a resistance minimum in the critical range of concentration ratio of 
Mo to Nb where magnetic moment begins to appear. Here the effect of mixing 
may be expected to be so large that J is definitely negative. 

We can correctly predict both the magnitude and the concentration dependence 
of the depth of minimum and the temperature at which the minimum occurs. 
A logarithmic term in resistivity is predicted and confirm.ed experimentally. 

It must be stressed that the logarithmic term in resistivity can be traced back 
in its origin to the dynamical character of the localized spin system. Because of 
this the problem of s-d scattering is not properly treated in one-electron approxi
mation and the effect of other electrons, that is, the effect of the Fermi sphere are 
involved. We encounter a similar situation in the case of the electron-phonon 
interaction. Because of the dynamical character of phonon (emission probability 
is not equal to absorption probability), electrons in phonon field are not properly 
treated in one-electron approximation but a kind of electron-electron interaction 
comes into play. This plays a part of attractive potential between electrons and 
causes superconductivity. It also has an effect of clothing conduction electrons and 
causes mass shift. This cloud on the conduction electrons is thus quite different 
in character from that on polaron. It involves a logarithmic function arising from 
the effect of the Fermi sphere. 13

) In our case of the s-d interaction, too, mass 
shift should occur. This point will be a subject of further publication. An effect 
of the Fermi sphere is usually reflected in a singular logarithmic function in 
perturbation calculation as a result of the sharpness of the Fermi surface. Thus 
our conclusion is that the resistance minimum itself is a result of the sharp Fermi 
surface. 
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