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Summary 
Groynes are commonly used in the major rivers in the Netherlands. They confine the 
flow of the river to a main channel but also act as resistance element once submerged and 
in that way influence the stage discharge relationship of the river. Several formulas exist 
describing groynes as a drag resistance. Another possible way of determining their 
resistance is by using a weir formula and fitting the up and downstream water levels to 
the water level slope of the river. 
 
In this thesis a schematized model of the river Waal is set up and progressively expanded. 
At first seven different drag and weir formulas are compared. There is no consensus for 
resistance is between them. They are therefor compared to a 2DV computer model of 
flow over a highly submerged weir in the SWASH software package. Drag resistance, 
expressed as a function of water depth to groyne height ratio has the same scaling as two 
weir formulas though they do not match in absolute terms. 
 
A 2DH computer model is then used to determine the magnitude of the lateral turbulent 
momentum exchange between the main channel, groyne fields and flood plain. 
Finally a 3D computer model is used to determine groyne resistance and the distribution 
of discharge and momentum around the groyne. Treating groynes as weirs is found to be 
an acceptable assumption. 
 
The schematized model is used to simulate a high discharge of 13.550 m3 s-1. Groynes, 
when seen as a weir, would be responsible for a 36 cm water level increase. Lateral 
turbulent momentum exchange increases this by another 34 cm, while using the groyne 
resistance found in the 3D model added only another 7 cm.  
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1 Introduction 

1.1 General 

Groynes are commonly used in the major rivers in the Netherlands. The function of these 
structures is to direct the main flow away from the banks. Thereby creating a deep main 
channel suitable for navigation and preventing erosion that would result in the natural 
meandering of the river. During low discharges in summer they are emerged and can 
easily be seen. During the high discharges in winter they are submerged and contribute to 
flow resistance. 
 
The “Room for the Rivers” project of Rijkswaterstaat aims to reduce the flood risk of 
rivers. One of the measures is to reduce the height of groynes in certain river sections. 
The reasoning being that since groynes behave as resistance elements reducing their 
height, and thus resistance, will lead to a lower water level for a certain discharge. In 
order to predict the effect of such a measure this resistance should of course be known. 
 
Formulas for groyne resistance have been found through flume tests such as those of 
Yossef (2005) and Azinfar (2010), or numerically by Van Broekhoven (2007). All three 
included a drag coefficient that represents a myriad of effects that together make up the 
resistance of groynes in a river system. To find and effectively model the resistance of 
groynes it should be understood which processes and parameters determine this 
coefficient. 
 
Another way of looking at submerged groynes is considering them to behave as the more 
well studied weirs, such as done by Mosselman & Struiksma (1992). The obvious 
difference is that flow can go around as well as over groynes and groynes can come in 
series. This makes it questionable if groynes can be represented as weirs and if the 
knowledge about the behavior of weirs is sufficient for simply studying groynes. 

1.2 Problem description 

Groynes are common in Dutch rivers and influence the stage discharge relationship. 
In order to reduce flood risk at high discharges ministry of public works is reducing 
groyne height. To predict the effect of such a measure a good description of groyne 
resistance is needed, yet information about it is scarce.  
 
Three studies (Yossef 2005, Van Broekhoven 2007 and Azinfar 2010) compared groyne 
resistance to a drag resistance dependent on varying flow and geometrical parameters. 
Another way of looking at groyne resistance is to compare them to the more well studied 
weirs as was done by Mosselman & Struiksma (1992). Bloemberg (2001) and Fritz & 
Hager (1998) studied flow over submerged broad crested weirs.  
 
Flow over groynes differs from flow over weirs however. Firstly groynes do not extend 
over the full width of the flow and secondly in Dutch rivers multiple groynes in 
succession, or groyne fields, are used. This can be seen in figure 1.1. This arrangement 
causes a large amount of turbulence on the interface between groyne fields and main flow 
with a large gyre (or large coherent structure) between subsequent groynes. If a large 
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amount of streamwise momentum  simply goes around the groyne instead of over it, this 
would make using weir formulas in this case questionable. 
 

 
Figure 1.1: A series of groynes in the river Waal near Haaften. Souce: Google maps. 

 
These issues come together in modeling. To determine the stage-discharge relationship of 
a river with groynes the computer model must either have a fine grid and include groynes 
in the bottom topography, or, if a course grid is used, groyne resistance must be 
approximated with a formula. WAQUA, used by Rijkswaterstaat does this by using a 
weir formulation to calculate energy loss, which is then turned into a higher bottom 
resistance. 

1.3 Goal 

The aim of this thesis is to determine what makes up the resistance of submerged 
groynes, and on which parameters it depends. The second aim is to determine if flow 
over groynes can be compared to flow over weirs even if horizontal momentum exchange 
plays a role. 
 
The following research questions have been formulated: 
1. What is the resistance of submerged groynes and on which parameters does this 
depend? 
2. What is the magnitude of horizontal momentum exchange by large coherent 
structures? 
3. Can groynes be seen as weirs? If so, which formulation is most applicable? 
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1.4 Research approach 

A schematized model of the river Waal is set up and progressively expanded. The basic 
theory needed to understand flow in rivers and the setup of this model is explained in 
chapter 2. 
 
A literature review will be conducted to provide an estimate for the resistance of 
submerged groynes. This knowledge is used in chapter 3 to compare known resistance 
formulas of groynes and weirs to see which of these are useful. Based on these formulas 
an estimate can be made of how important different flow and geometry parameters are.  
 
After that a schematized model for flow in the river Waal is compared to computer 
simulations. The first step is comparing it to a 2DV simulation of flow over heavily 
submerged weirs using the SWASH software. This is found in chapter 4. 
 
A 2DH computer model is used to determine turbulent momentum exchange between 
different river sections. This is added to the schematized model in chapter 5. 
 
The discharge in groyne fields will also be studied to find how this divides itself into flow 
going over and flow going around the groynes. This is done using a 3D computer model 
and will be used to determine if flow in groyne fields can be described using discharge 
formulas for weirs. This is covered in chapter 6.  
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2 Flow in rivers 
In this thesis a schematized model of a river will be used and compared to a computer 
model. The setup of this schematized model will be explained in this chapter. It is based 
on a 1D model of a compound channel. It is expanded to included groyne resistance, 
either as drag resistance or as a weir, as well as horizontal momentum exchange due to 
turbulence. 

2.1 Basic equations 

Starting point for the describing flow in rivers are the continuity (2.1) and horizontal 
momentum (2.2 and 2.3) equations for incompressible flows. The explanation below 
follows that of Jansen (1979). 
                          (2.1) 

                                       (2.2) 

                                       (2.3) 

 
u, v, w = Velocity in x, y and z direction    [m s-1] 
g = Gravitational constant equal to 9.81    [m s-2]   
zw = Water level       [m] 
 
It is very time consuming to model the small turbulent scales present in fluid flows. A 
solution to this is Reynolds decomposition. The velocity components u, v, and w are now 
separated in a time averaged ( ̃) and a turbulent (u’) component (2.4).  
    ̃    , etc         (2.4) 
 
After time averaging this leads to the following equations of motion: 
   ̃     ̃     ̃             (2.5) 

   ̃     ̃      ̃ ̃     ̃ ̃              ̃        ̃        ̃        (2.6) 

   ̃     ̃ ̃      ̃     ̃ ̃               ̃       ̃        ̃        (2.7) 

 
Three new terms have appeared in the momentum equations as a result of performing this 
this operation on the advection terms. These represent the exchange of momentum 
between adjacent areas of the flow due to turbulent fluctuations. When multiplied with 
the density ρ they take the shape of a shear stress and are then called the Reynolds 
stresses (2.8). 
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     ̃        , etc         (2.8) 

 
ρ = Density       [kg m-3] 
τ = Shear stress       [N m-2] 
 
 
While this set of equations can be used to describe flow in a river, a computer would be 
needed to solve these. A far simpler relationship exists that can be solved analytically. If 

the flow can be assumed steady (
 ( )    ), uniform (

 ( )    ) and two-dimensional 

(
 ( )    ). Formula 2.6 is then reduced to: 

                           (2.9) 

 
At the bottom the shear stress is given by the bottom shear stress, while at the water 
surface there is assumed to be none (no wind). This leads to the following distribution 
over the vertical: 
       (    )         (2.10) 

 
d = Water depth       [m] 
 
This allows formula 2.9 to be integrated over the vertical leading to: 
                      (2.11) 

 
In other words the pull of gravity on the body of water is balanced out by the bottom 
shear stress. In order to solve this equation an expression must be found for the Reynolds 
stresses in terms of the main flow field. This known as the turbulence closure problem. 
This will looked at in more detail in section 2.5 for the horizontal stresses, for now only 
the vertical is considered. One solution is the eddy viscosity concept, whereby Reynolds 
stresses are compared a viscous stress: 
                      (2.12) 

 
υt = Turbulent viscosity      [m2 s-1] 
 
This in turn introduces the turbulent viscosity, which must then be described further. One 
relatively simple approach is the model of Prandtl where it is a function of mixing length 
and velocity gradient. 
                     (2.14) 
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lm = Mixing length       [m] 
 
For regions close to the wall, or in this case the bottom, mixing length is related to the 
distance to the wall: 
                (2.15) 
 
κ = Von Kárman’s constant, equal to 0.41   [-] 
 
This relationship can be used to derive a logarithmic velocity profile over the vertical. 
For a full derivation see Jansen (1979). What is important to know is that for such a flow 
in a river an empirical relationship exists between the bottom shear stress and the depth 
averaged velocity ( ̅): 
         ̅           (2.16) 

 
C = Chézy coefficient      [m0.5 s-1] 
 

Combined with formula 2.11 this leads to the Chézy’s law. Since uniform flow was 

assumed, the water level slope (
     ) is equal to the bottom level slope (i):  

  ̅   √            (2.17) 
 
i = Bottom level slope      [m] 
 
The value of the Chézy coefficient can be found with the following empirical 
relationship: 
          (     )         (2.18) 

 
ks = Nikuradse bottom roughness     [m]  
 
Chézy’s law forms the basis of the model that will be used in this thesis. In the following 
sections if will be expanded to accommodate different river sections, groynes and 
horizontal momentum exchange. In the remainder of this thesis all properties, unless 
noted otherwise are assumed to be time averaged. Depth averaging will still be denoted 
by an overbar ( ̅). 
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2.2 1D compound channel model 

The river Waal is a branch of the Rhine river in the Netherlands. During low discharges 
in summer flow is confined to the deep main channel with the aid of groynes and small 
summer dikes (figure 2.1). During high discharges in the winter these are overtopped and 
water flows through the flood plain as well. In that case streamwise velocity varies quite 
a bit over the cross-section due to changes in water depth and bed roughness. Van der 
Wal (2004) for example gives values of 2.5 m/s for the main channel to 0.2 m/s for the 
floodplains. 
 

 
Figure 2.1: River Waal during low discharge with (A) main channel, (B) groyne fields 

and (C) floodplains marked, source: Google Maps. 

 
To deal with this the river is divided into three parts: the main channel, groyne fields and 
the flood plain. In each of these parts Chézy’s law (formula 2.17) is used. The sum of all 
three parts is then the total discharge of the river. This is known as a compound channel 
model (figure 2.2). Each of the three sections can have a different bottom roughness, 
depth and width. There is no interaction between the three separate channels but they do 
share the same water level and slope: 
               √              √              √      (2.19) 

 
Q = Discharge       [m3 s-1] 
B = Channel width       [m] 

A 

B 

C 

B 

C 
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Figure 2.2: Schematization of (half of) the Waal river. The river is divided into three 

parts: a main channel, groyne fields and a flood plain. 

 
A representative geometry is taken from Van der Wal (2004). These are estimates of 
velocity in different parts of the Waal river near Haaften (table 2.1). The total river 
discharge would be 10.900 m3/s meaning the flood plains also carry water. 
 
Table 2.3: Schematization of the Waal river at high discharge (from Van der Wal 2004). 

 (Half of the) main 
channel 

Groyne fields Floodplain 

B[m] 130 50 400 
d [m] 14 8 6 
Q [m3 s-1] 4550 400 500  ̅ [m s-1] 2.5 1 0.2 
 
By assuming a 1∙10-4  slope bottom roughness can be calculated using formula 2.18. This 
leads to a Nikuradse roughness height ks = 0.033 for the main channel and 25.33 m for 
the flood plains. While the former seems reasonable the latter is problematic. A 
roughness height four times the water depth simply does not make sense. In reality the 
width or even the presence of the flood plain on either side of the river is not continuous 
and can be heavily vegetated, which might explain such a low discharge for the stated 
water depth. A value of 1 m is taken as the roughness height for the flood plains instead, 
meaning the velocities there will be higher in the model compared to the data in Van der 
Wal (2004). 

2.3 Groynes as drag resistance 

Groynes, either emerged or submerged, influence the flow in a river. It is characterized 
by the ratio of the distance between groynes S to the groyne length L (figure 2.3). For a 
ratio of S over L smaller than two a single large gyre (C) forms in the embayment. For 
larger ratios a secondary gyre will form near the upstream groyne (D). For very large 
ratios more gyres can appear. After the separation point (A) a mixing layer forms near the 
groyne head. The flow stagnates again when it encounters the downstream groyne (B). 
This mixing layer contains large eddies that exchange momentum between the main flow 
and the embayment. If the secondary gyre grows sufficiently large, large eddies will be 
shed that also join the mixing layer (Uijttewaal et al., 2001). 
 

Bmc B
gf
 B

fp
 

d
mc
 

d
gf
 d

fp
 

y 

z 
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Figure 2.3: Flow near emerged groynes, left: S/L<2, right: S/L>2. Shown are the 

separation point after the upstream groyne (A), stagnation on the downstream groyne (B) 

and the primary (C) and secondary (D) gyre. 

 
While flow in these gyres is mostly 2D, flow is strongly 3D near the interface of the main 
channel and the groyne tips. This does however depend on water depth. When the 
embayment is shallow compared to the main channel the 3D effects are stronger. 
 
Flow in a submerged groyne field is more complex as mass and momentum can now also 
enter the embayment in streamwise direction over the groyne crest (figure 2.4). Lateral 
exchange of momentum is governed by the large eddies shed by the groyne head (C) 
travelling in the mixing layer (A). As a result the mixing layer has a constant width along 
the embayment. When water depth is low compared to crest level large gyres are still 
present as in the emerged case but are occasionally interrupted by flow over the groyne, 
but with high depths flow is constant (Uijttewaal, 2005). A large horseshoe vortex is 
formed in front of the groyne (B) as part of the flow is directed around the groyne while 
the remainder goes over it. 
 

 
         Figure 2.4: Flow near submerged groynes. Shown are the mixing  

         layer (A), horseshoe vortex in front of the groyne (B) and eddies (C). 

 
 

L D 

B A 

C 

B A 

S S 

L 
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The issue remains of how to include their effects in the compound channel model of  
a river. One method is to see them as a form drag resistance (formula 2.20) and include 
them into the momentum equation similar to bottom resistance (formulas 2.21 and 2.22). 

                     (2.20) 

 
Fd = Force due to form drag      [N] 
Cd = Drag coefficient       [-] 
As = Surface area of cross-section     [m2] 
 
Yossef (2005) did this and defined the cross-sectional area of the groyne as hg/S, in effect 
smearing out groyne resistance over the entire length of the embayment: 
                       (2.21) 

 
hg = Groyne height       [m] 
S = Distance between successive groynes    [m] 

 
Total resistance in the groyne fields was then defined as the sum of bottom and groyne 
resistance: 
                   (2.22) 

       √           √          (2.23) 

 
The drag coefficient Cd was then determined experimentally. Van Broekhoven (2007) 
used the same approach and used a numerical model to find a drag coefficient for 
groynes. Azinfar (2010) performed flume tests and also expressed his results as a drag 
coefficient but did not expand upon how to include the values into a model of a river. 

2.4 Groynes as weirs 

Weir formulas can also be used to represent groyne resistance. Mosselman & Struiksma 
(1992) defined the water level drop over a single groyne as S∙i. The reasoning being that 
over a long distance the water level slope in the main channel must match that of the 
groyne fields. Then by assuming groyne resistance is much more important than bottom 
resistance water level is taken to be constant between two successive groynes. The entire 
water level drop would then take place over the groyne (figure 2.5). Discharge over the 
groynes can then be calculated with a discharge formula: 
        (       )        (2.24) 
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Figure 2.5: The water level drop over a groyne is assumed to be equal to the main 

channel slope (i) times the distance between groynes (S). The upstream (h1) and 

downstream (h3) water levels are then used to calculate the discharge according to a 

weir formula. 

 
Flow over weirs is well studied in hydraulic engineering. On the upstream part of a weir 
(between points 1 and 2 in figure 2.6) flow accelerates. Downstream of the weir the flow 
decelerates which comes with an energy loss as the transfer of kinetic energy to potential 
energy is incomplete.  
 
Weirs can be classified based on the Froude number (formula 2.24) over the crest and the 
crest length. The Froude number is the ratio of inertial forces to gravitational forces.  
     √            (2.24) 

 
For a Froude number above one the flow is supercritical and discharge is not a function 
of downstream parameters. A weir with this flow regime is called a perfect weir. Energy 
is dissipated in a hydraulic jump downstream. For a Froude number of one the water 
depth over the crest reaches a minimum. With higher downstream water levels and a 
resulting Froude number below one the weir becomes imperfect. Discharge over the crest 
is now a function of both upstream and downstream conditions. 
 
 
The flow regime downstream of an imperfect weir depends on the Froude number above 
the crest. For values slightly below one energy is dissipated both in surface waves and in 
a gyre near the bottom. For lower Froude numbers the surface waves disappear and 
energy is dissipated in a gyre near the bottom while the main flow goes over it. Such a 
weir is shown in figure 2.6. Submergence is the ratio of downstream water level to 

upstream water level (
    ).  

 

S 

d h1 

h
3
 

i 

h3 – h1 = S∙i 
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Figure 2.6: Parameters relevant for a submerged weir. Flow accelerates between areas 1 

and 2. Energy is lost in a large gyre near the bottom between areas 2 and 3. 

 
The second major aspect that determines discharge is the curvature of streamlines on the 
crest. For broad crests, with a length several times local water depth, flow has time to 
adapt to the new depth with little curvature and can be assumed to be hydrostatic. For 
short crests there are still significant vertical velocities and a higher discharge compared 
to a broad crested weir. There is a limit however as high vertical velocities can cause 
flow separation and vortices leading to energy loss on the crest. The ratio of the upstream 
energy head (formula 2.25) to crest length (Lc) is used to differentiate flow regimes. 
    ̅               (2.25) 

 
H = Head level above crest     [m] 
h = Water depth above crest     [m] 
 
Bos (1989) made the following distinction: 
 
H1/Lc < 0.07  Long crested weir 
0.07 <  H1/Lc < 0.5 Broad crested weir 
0.5< H1/Lc   Short crested weir 
 
Flow over the weir can be considered hydrostatic if 0.07 <  H/Lc < 0.5. For values below 
0.07 the weir is long enough that energy losses over the crest cannot be neglected. For 
values above 0.5 the vertical velocities and curvature of streamlines cannot be neglected. 
 
One way to calculate discharge over a weir is to assume energy losses in the accelerating 
part of the flow at the front slope are negligible, while in the deceleration zone behind the 
weir energy loss is substantial but the pressure remains hydrostatic. Thus the energy 
equation can be used to describe flow over the upstream slope, while the momentum 
balance is used for the downstream slope. In this case simplified to the one dimensional 
continuity equation (2.26), momentum balance (2.27) and energy balance (2.28). 
 

d 

h H 

hg 

Lc 
1 2 3 
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   ̅     ̅     ̅           (2.26)     (     )      ̅                 ̅    
 
    (2.27) 

       ̅           ̅               (2.28) 

 
α = Correction coefficient      [-] 
β = Correction coefficient      [-] 
 
The formulas above make use of the depth average velocity. The coefficients α and β are 
introduced to compensate for the fact that velocity and momentum do indeed differ over 
the vertical axis. As long as the vertical velocity profile remains similar in streamwise 
direction and the riverbed remains relatively smooth α and β remain constant and close to 
1. Solving this set of equations is possible but not straightforward as it has to be done 
iteratively. In this thesis this is done with Ridders’ method.  
 
In practice many discharge formulas are based on the just the energy equation. In case of 
a perfect weir flow over the crest is critical so the Froude number is one. Substituting      ̅ √      into formula 2.28 leads to: 

     √       ⁄          (2.29) 

 
To account for energy losses due to weir geometry a coefficient Cw can be introduced 
leading to the well-known formula 2.30. This coefficient is usually written as Cd in 
literature, but to avoid confusion with the drag coefficient, Cw is adopted here. 
       √       ⁄          (2.30) 

 
Additional coefficients can be introduced to take into account for submergence. Fritz & 
Hager (1998) and Sieben (2003) both used this as a basis for their discharge formula. 
According to Van Rijn (1990) another option for imperfect weirs is to simply use the 
energy equation over the entire weir and add a coefficient m to take into account all 
energy losses (formula 2.31). This coefficient can vary between 0.8 for broad crested 
weirs to 1.35 for short crested ones: 
      √  √             (2.31) 
 
A similar approach was used by Mosselman & Struiksma (1992) to make a schematized 
model of groynes in a river. 
 
Faced with two different ways to calculate flow over groynes it is useful to compare the 
resistance each method gives. This is done by finding an equivalent drag coefficient that 
would give the same discharge as the chosen discharge formula for weirs. First the 
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discharge over the crest is calculated using the weir formula (formula 2.24). Then a 
dimensionless resistance coefficient is found that would give the same discharge in the 
Chézy formula (formula 2.32). Finally, under the assumption there is no bottom 
resistance in the groyne fields, an equivalent drag coefficient is determined (2.33) 
                        (2.32) 

                                  (2.33) 

2.5 Horizontal momentum exchange 

The compound channel model of section 2.2 contains the implicit assumption is that there 
is no net exchange of discharge and momentum between the three channels. In reality a 
turbulent mixing layer would exist between two flows of different velocities. As a 
consequence momentum between the fast and slow moving channels is exchanged 
leading to a smoothing of the velocity gradient between them. This redistribution of 
momentum is not without consequence. Because the slower moving channel has a lower 
depth than the faster moving one, this smoothing out of the velocity profile leads to a net 
decrease in total discharge of the river, known as the kinematic effect. This is shown in 
figure 2.7. The blue areas mark the difference between a velocity profile with and without 
horizontal momentum exchange.  
 

 
Figure 2.7: Reduction of the discharge due to horizontal momentum exchange. Blue 

marks the velocity and discharge exchanged between the channel sections . 

 
It should be noted that by taking a taking into account a smoothing of the lateral velocity 
profile but not the bottom profile leads to an overestimation of the kinematic effect.  
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This effect can be replicated in a compound channel model by including the transverse 
momentum exchange terms of formula 2.6 into the balance of gravity and bottom 
resistance that made up the Chézy formula. Van Prooijen (2004) suggested the following 
for flow in compound channels: 
     √     ̅                    (2.34) 

 
τxy = Transverse shear stress      [N m-2] 

 
The author assumed the depth averaged turbulent shear stress would be the dominant 
factor and modeled it with the eddy viscosity concept as was done for the vertical 
Reynolds stresses in section 2.1: 
          ̅            (2.35) 

         ̅            (2.36) 

 
The mixing length in this case can be described by the width of the mixing layer and a 
constant of proportionality β (formula 2.37). According to Van Prooijen (2004) the 
coefficient β for a river varies between 0.088 to 0.124 in literature. 
                (2.37) 
 
δ = Mixing layer width      [m] 
 
The width of the mixing layer between two regions of different velocity was defined by 
Uijttewaal & Booij (2000) as the velocity difference divided by the maximum velocity 
gradient: 
     ̅  ̅             (2.38) 
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Figure 2.8 The maximum velocity gradient in the mixing layer is 

calculated from the points y25% and y75%. 

 
The maximum velocity gradient is determined from the lateral velocity profile according 
to figure 2.8. Between the two regions the velocity difference is given by: 
   ̅    ̅̅ ̅    ̅̅ ̅          (2.39) 
 
The velocity gradient is determined by two points (y25% and y75%) in the mixing layer 
where the velocity is equal to: 
  ̅      ̅̅ ̅      ̅         (2.40) 

  ̅      ̅̅ ̅      ̅         (2.41) 

 
Van Broekhoven (2007) integrated formula 2.34 over the river width to create a 
compound channel model which included the kinematic effect. The turbulent shear 
stresses were then taken as a function of the velocity difference between channels, 
leading to formula 2.42.  
           |  |         (2.42) 

            ̅         ( ̅   ̅ )| ̅   ̅ |        (2.43)            ̅         ( ̅   ̅ )| ̅   ̅ |        (2.44) 

 
Van Broekhoven (2007) used formulas 2.43 and 2.44 to describe flow in a two channel 
river. For a three channel model, with dmc > dgf > dfp the following set of equations can be 
used: 
        √                   (       )|       |    (2.45) 

 

y
25%

 y
75%

 

�̅�  

�̅�    

�̅�    

�̅�  
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    √        √                   (       )|       |               (       )|       |    (2.46) 

        √                   (       )|       |    (2.47) 

 
This system of equations has to be solved iteratively. In this thesis this is done by using 
Ridder’s method.  
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3. Formulas for groyne resistance 
There are two ways to incorporate groyne resistance in a model of a river. One approach 
is to consider them as drag resistance. This was done by Yossef (2005), Van Broekhoven 
(2007) and Azinfar (2010). The other is to consider a river as a compound channel and 
include a discharge formula akin to a weir for a channel representing groyne fields as 
done by Mosselman & Struiksma (1992) while applying Chezy’s law. Only submerged 
groynes are considered in this thesis, with water depth being sufficiently high that flow 
over the crest would be sub-critical. 
 
In this chapter these and several other weir formulas will be compared to find a value for 
the resistance of gronyes in the Waal river. First this value will be determined for one 
geometry, then this geometry will be varied to see how this influences the different 
formulas.  

3.1 Groynefield geometry 

In order to compare the resistance of each formula a 1D model of a single groyne in an 
infinitely long groynefield is considered as explained in chapter 2. 
 
The geometry is taken from Van der Wal (2004). It represents a cross-section of the Waal 
river near Haaften during high discharge. The total discharge through the river is 10.900 
m3 s-1. The data presented in table 3.1 only concerns the flow over and between 
subsequent groynes. The only exception is the main channel Froude number, which is 
used by the formula of Yossef (2005). 
 

 
Figure 3.1: Model parameters around a groyne. 
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Table 3.1: Model parameters used to compare resistance. 

Channel width Bgf 50 m 
Groyne length L 50 m 
Water depth d 8 m 
Groyne height hg 4 m 
Bottom slope i 1∙10-4 
Depth averaged velocity u 1 m s-1 
Distance between groynes S 200 m 
Crest length Lc 1 m 
Groyne slope m 1:3 
Main channel Froude number Frmc 0.213 

3.2 Overview of formulas 

A total of seven formulas were considered to represent groynes in order to find their 
resistance. These are listed in table 3.2 and more detailed descriptions can be found in the 
appendix. A summary is included below: 
 

 Yossef (2005) used a flume with a 1:40 scale to measure velocities in between 

subsequent groynes and related this to the water level slope and Froude number in 

the adjacent main channel.  

 
 Van Broekhoven (2007) used a computer model to simulated flow over highly 

submerged groynes and expressed this as a drag coefficient. Since a 2DV model 

was used this in essence described flow over submerged weirs expressed as a drag 

resistance.   

 
 Azinfar (2010) directly measured the force on thin plates in a flume. These plates 

were used to represent groynes. Measurements were done at high Froude numbers 

(0.30 to 0.58). In addition the drag coefficient for a series of groynes was 

expressed relative to a uniform velocity far upstream of the groynes instead of in 

between subsequent groynes as Yossef (2005) did. This also makes it 

incompatible with the model of an infinitely long river used in this thesis.  

However, Azinfar (2010) did vary the width and height of the plates, as well as 

the distance between them.  

 

 The formula of Mosselman & Struiksma (1992) is based on the formula for flow 

over submerged short crested weirs (formula 2.31) with a single coefficient m0 to 

accommodate geometric and hydrodynamic influences. This coefficient can be as 

high as 1.3 to take into account non-hydrostatic effects above short crested weirs. 

This value has been used in the rest of this thesis.  It was used as a first estimate 
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of groyne resistance in a schematized model. The upstream velocity head ( ̅    ) is 

neglected compared to formula 2.31 and not without consequence. While the 

upstream velocity head is small compared the water depth, it is large compared to 

the water level drop over the groyne on which the Mosselman & Struiksma 

(1992) formula now depends. 

 

 The formula of Sieben (2003) was designed for summer dikes that are submerged 

during high discharges. These have a similar cross-section and face similar water 

depths as submerged groynes, making application of this formula to groynes 

sensible. It is based on formula 2.30 and includes two coefficients to take into 

account crest length (and slope) and submergence. 

 

 Fritz & Hager (1998) developed an expansive formula to described trapezoidal 

weirs for a large range of situations, including high upstream and downstream 

water depths. This is also based on formula 2.30 and includes two coefficients to 

take into account crest length and submergence, though these coefficients are 

different than Sieben (2003). 

 

 Finally a theoretical solution for flow over a weir is considered by calculating the 

energy and momentum balance over the groyne. Over the upstream slope energy 

is conserved (formula 2.28), while downstream of the groyne momentum is 

conserved (formula 2.27). Empirical constants are still needed to account for 

changes in the vertical flow profile, but these are not used in this thesis. Ridders’ 
method is used to find a solution to the set of equations. 
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Table 3.2: Drag and weir formulas used to represent groyne resistance. 

Name Type Formula Validated range of water 
depth to groyne height 

ratio (
   ) 

Yossef (2005) Drag             (   )   
 

1.05 - 1.70 
 

Van Broekhoven (2007) Drag        (   )      (   )       
2.6 - 10 

Azinfar (2010) Drag        (       )    (   )     (    )     
 

1.2 - 2.0 

Mosselman & Struiksma (1992) Weir     (    )√  (     ) - 

Sieben (2003) Weir      √  √ √     ⁄ √  (    ) 
 

1.50 - 1.75 

Fritz & Hager (1998) Weir      √      
1.17 - 1.67 

Energy and momentum balance Weir 

{  
                          (     )                  

 

- 
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3.3 Resistance 

The (equivalent) drag coefficient given by each formula was calculated for two different 
water depths and is given in table 3.3. Orange denotes that a formula is used outside the 
water depth to groyne height ratio it was validated for.   
 
Table 3.3: Groyne resistance expressed as (equivalent) drag coefficient. 

Formula d = 5.4 m, d/hg = 1.35 d = 8 m, d/hg = 2 
Yossef (2005) 1.18 0.29 
Van Broekhoven (2007) 0.99 0.48 
Azinfar (2010) 2.17 1.86 
Mosselman & Struiksma 
(1998) 

11.88 4.73 

Sieben (2003) 12.73 4.05 
Fritz and Hager (1998) 4.54 0.80 
Energy and momentum 
Balance 

11.71 2.29 

 
The difference between the formulas is very large for both water depths, up to a factor ten 
at a 5.4 m. For the 8 m water depth the resistance of groynes falls somewhere around a 
drag coefficient of 1.5 to 4.5.  
 
The equivalent values calculated from the weir formulas are much higher than those of 
the three drag formulas. This is not surprising as for weirs the entire upstream discharge 
is forced over the weir even at low water levels.  
 
Drag resistance as a function of water depth over groyne height is shown in figure 3.2 for 
the drag resistance formulas and in figure 3.3 for the weir formulas. The dashed line 
represents the area where the formula is used outside of the water depth ratio (d/hg) of the 
experiments it was based on. Even though the formula used by Mosselman & Struiksma 
(1992) has an empirical constant its validated range could not be found and thus is not 
dashed anywhere. 
 

 
Figure 3.2: Drag coefficients of   Figure 3.3: Equivalent drag coefficients of 

groyne formulas.    weir formulas. 
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The weir formulas give much higher resistance values, especially for low water depths. 
Again this is not unexpected as they assume all discharge flows over the crest. For high 
water depths Fritz and Hager (1998) and the momentum balance formulas fall into the 
same range as the drag formulas however.  
 
While the formulas of Yossef (2005) and Azinfar (2010) have a nearly equal validated 
range they give similar values only for low water depths. The higher the water depth 
becomes the closer the value of the formula of Yossef (2005) comes to that of Van 
Broekhoven (2005), which is meant for a very high depth. 

3.4 Sensitivity of formulas 

In section 3.3 the resistance of different formulas was compared for a single geometry. In 
this section the geometry will be varied to see how the formulas scale.  
 
Azinfar (2010) studied the drag resistance of a series of groynes and considered  it to be 

dependent on the Reynolds number, Froude number, blockage ratio (
     ), aspect ratio 

(
   ), water depth (

   ), spacing (
  ), shape (Δ) and angle to the main flow (formula 3.1). 

Van Broekhoven (2007) also looked at the skin friction of groynes, but did not use this in 
his resistance formula. 
     (                          )       (3.1) 

 
Re = Reynolds number       [-] 
Fr = Froude number       [-] 
S = Distance between groynes      [m] 
Δ = Shape factor       [-] 
α = Angle to main flow      [°] 
 

 
Figure 3.4: Parameters in a groyne field. 
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What separates submerged groynes from flow over weirs, which is more well 
documented, is that groynes do not extend over the full width of the flow and that they 
can come in series, so the first can shield the later groynes from the full impact of the 
flow. This introduces blockage ratio, aspect ratio and spacing as extra parameters. 
 
Flow in rivers is considered fully turbulent, so groyne resistance is not expected to vary 
much with the Reynolds number. Yossef (2005) considered a 90 degree angle between 
main flow and groyne to be representative for the Waal river and oblique groynes are not 
further investigated in this thesis. 
 
The formulas are once again included in table 3.4 along with the different parameters 
they depend on. Each one includes water depth and crest height. These parameters are 
dimensionless. In this chapter only one of the underlying properties of the geometry used 
in chapter 3.3 will be changed. For example: to see how the water depth to crest height 

ratio (
   ) influences groyne resistance the water depth will be changed from 4 m to 20 m, 

while the crest height is kept constant. These values are listed in table 3.4. 
 
Table 3.4: Formulas and parameters they depend on. 

Formula Type     
     

Fr m     
   

   

Yossef (2005) Drag        
Van Broekhoven (2007) Drag        
Azinfar (2010) Drag        
Mosselman & Struiksma 
(1992) 

Weir        

Sieben (2003) Weir        
Fritz & Hager (1998) Weir        
Energy and momentum 
balance 

Weir        
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Table 3.5: Parameters that will be varied in this chapter. 

Parameter Dimensionless 
parameter 

Varied by 
changing 

Minimum 
value 

Value used 
in chapter 3 

Maximum 
value 

Water depth 
to groyne 
height ratio 

    
d [m] 4.00 8.00 20.00 

Submergence      
h1 - h3 [m] 0.00 0.02  0.04 

Froude 
number in 
main channel 

Fr Fr [-] 0.050 0.213 0.300 

Slope 1:m m [m] 0 1:3 1:5 
Relative 
crest length 

    
Lc [m] 0 1 8 

Groyne 
length 

   
L [m] 40 50 60 

Distance 
between 
groynes 

   
S [m]  50 200 300 

3.4.1 Water depth 

Water depth is an important parameter in both drag formulas and weir formulas. This 
parameter can be made dimensionless by dividing it by groyne height. Indeed all three 
drag formulas explicitly do this. Weir formulas do not and may behave different for 
different geometries even when this ratio is kept constant.  
 
The three drag formulas differ greatly in their dependence water depth. Figure 3.5 shows 
groyne resistance normalized to the value used in section 3.3. While the one of Azinfar 
(2010) does not seem very sensitive, the formula of Yossef (2005) does. This is because 
Azinfar (2010) identified blockage as most important parameter, which is only partly 
determined by water depth.  
 

 
Figure 3.5: Influence of water depth on Figure 3.6: Influence of water depth on   

drag formulas.    weir formulas. 



  29 
 

 
The same is done for weir formulas in figure 3.6. Scaling with water depth is much closer 
between them, though there are differences. The formula of Mosselman & Struiksma 
(1992) shows increasing resistance with increasing water depth beyond a certain point. 
This is unwelcome because when crest height is small compared to water depth one 
would expect weirs to behave as a normal drag resistance with a constant drag 
coefficient. All other formulas seem to converge to such a constant value for increasing 
water depth. The reason the formula of Mosselman & Struiksma (1992) does not is 
because its discharge scales linearly with water depth above crest height (d-hg), while 
discharge in Chézy’s law scale with depth to the power two third (d2/3).  
 
The formulas of Sieben (2003) and Fritz & Hager (1998) are both based on the formula           √     , with two coefficients for the effect of crest length and 
submergence. These coefficients do not change much within the range of water depth 
used here for the formula of Fritz & Hager (1998). Calculating the energy and 
momentum balance over the weir results in the nearly same scaling with water depth as 

the formula of Fritz and Hager (1998). This is determined by the √      curve. The 
formula of Sieben (2003) does not show the same scaling since its coefficients vary with 
water depth. 
 
The resistance of the weir formulas approaches infinity for a water depth equal to groyne 
height making them very sensitive at low values. 

3.4.2 Submergence 

All selected weir formulas depend on both upstream and downstream water level. The 
difference between these two is very small compared to water depth. In this model the 
water level drop over a groyne is given by multiplying the bottom slope and the distance 

between groynes (i∙S), which is around 2 cm on an 8 m water depth. As such the ratio 
     

is around 0.995.  
 
Submergence is problematic in this model for two reasons. The first has to do with how 
this model is set up. By incorporating groynes as a drag resistance (formula 2.33) in the 

Chézy formula (formula 2.35), the resulting discharge is scales with √  . If the discharge 
formula that is matched with the Chézy formula does not have the same scaling the 
calculated drag coefficient (Cd) will instead depend on S and i. This is the case for Fritz & 
Hager (1998) as shown in figure 3.7. The reason for this is that its coefficient for 
submergence (Ψ) is not sensitive to downstream water level at high submergence. This is 
an unwelcome feature as neither i nor S is expected to influence the form resistance of an 
object unless the distance between them is sufficiently short that they influence each 
other’s flow field. This is not the case here but will be looked at in section 3.4.7. 
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Figure 3.7: Influence of submergence on  

weir formulas. 
 
The second problem is that the coefficient for submergence in the formulas of Fritz and 
Hager (1998) and Sieben (2003) take the shape of a power law with an exponent as 
calibration parameter. This is then made to fit to a data set covering a range from free 
overflow to fully submerged flow. Only a minority of the measurements correspond to 
the highly submerged groynes studied in this thesis. Figure 3.8 from Bloemberg (2001) 
illustrates the problem. The parameter on the x-axis corresponds to same submergence 
parameter h3/h1 used in figure 3.7. The value of the submergence coefficient is on the y-
axis, which is not the same Cd used in figure 3.7. The different lines represent different 
values of the exponent p used to fit the data. In the groyne model used in this thesis h3/h1 

is very close to one and the question is how well the submergence functions of Fritz & 
Hager (1998) and Sieben (2003) work in this area.   
 

 
Figure 3.8: Influence of submergence on the coefficient Cw for  

different slopes,from Bloemberg (2001). 

  



  31 
 

3.4.3 Froude number 

Only the formula of Yossef (2005) varies with the main channel Froude number. It is 
however, a very important parameter for the formula because resistance scales with its 
square. While in reality a river would not vary in Froude number independently of other 
characteristics such as water level and slope, changing it does give insight into the 
behavior of the formula.  
 

 
Figure 3.9: Effect of Froude number in the  

formula of Yossef (2005). 

 
The results are shown in figure 3.9, where the drag coefficient is calculated relative to 
one at a Froude number of 0.213. This scaling is problematic. The Froude number 
certainly influences drag resistance of an object near the free surface, such as a weir 
generating undular waves. It should not matter for fully submerged objects that does not 
influence the surface water level. Froude number remains an important parameter 
regardless of water depth in this formula, which makes its application questionable when 
used for higher water depth to groyne height ratios than it was tested for. 
 
Another issue is that it uses the main channel water Froude number instead the Froude 
number of the flow actually going over the groyne. The author does not explains how or 
why the main channel Froude number relates to groyne resistance. 

3.4.4 Groyne slope 

The formula of Sieben (2003) acknowledges the influence slopes have on discharge over 
a weir. This formula was proposed for the express purpose of studying the effect of 
streamlining embankments. 
 
How this formula scales with different slopes is shown in figure 3.10. The equivalent 
drag resistance this formula gives for a one in three slope on both sides is taken as a 
reference point. Gentler slopes result in a lower resistance than steep slopes and this 
effect is more pronounced for lower water depths. 
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Figure 3.10: Influence of slopes in the formula 

of Sieben (2003). 

3.4.5 Crest length 

Both Sieben (2003) and Fritz and Hager (1998) included crest length as a parameter in 
their discharge formulas. The implementation was different. Fritz & Hager (1998) opted 
for a sine function while Sieben (2003) used a negative exponential formula. This is 
reflected in figure 3.11 which shows the equivalent drag resistance as a function of crest 
length normalized to the value at a crest length of 1 m. The range of the dimensionless 
parameter Lc/H1 extends from zero for a sharp crested weir, to two for a broad crested 
weir where flow can be assumed hydrostatic. 
 

 
Figure 3.11: Effect of crest length in the formulas  

of Sieben (2003) and Fritz & Hager (1998). 

 
The formulas disagree on the effect of crest length. The formula of Sieben (2003) 
attaches greater importance to it. Resistance is much lower for sharp crested weirs but 
increases rapidly with crest length. It is quite sensitive to crest length in the 1m range 
used in section 3.3. In contrast the formula of Fitz & Hager (1998) is more gradual and 
with less extreme values.    
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3.4.6 Groyne length 

Only Azinfar (2010) varied groyne length in relation to channel width. This allows for a 
direct comparison of groyne resistance as a function of groyne length. A length of 50 m 
was used in section 3.3. Now a total length of 180 m is assumed for groyne length and 
half of the main channel combined. Groyne length is then varied from 40 to 60 m, 
resulting in groynes taking up 22 to 34 percent of the total length. Figure 3.12 shows the 
effect on the drag coefficient for different water depths. The longer groynes are relative 
to river width, the larger their resistance is and this effect is more pronounced with lower 
water depths. 
 

 
    Figure 3.12: Effect of relative length based  

on Azinfar (2010). 

3.4.7 Distance between groynes 

Only Azinfar (2010) studied what effect spacing between groynes would have on 
resistance.  He reasoned that groynes are close enough together that they influence each 
other’s flow field, reducing each groynes resistance compared to a single groyne in the 
same current. The closer groynes are to each other the stronger this effect. This scaling of 
the formula shown in figure 3.13.  
 
The results of the measurements of Azinfar (2010) are more complex than the figure 
suggests however. He compared the resistance of each groyne in a field of four to a single 
one for varying distances between them (figure 3.14). The resistance of the first groyne 
seems nearly constant, while the resistance of  second decreases with increasing distance. 
The third groyne has, on average, the lowest resistance and this seems to increase with a 
relative distance above two. The fourth and final groyne shows larger resistance with 
increasing space. 
 
This illustrates a problem with the drag resistance given by Azinfar (2010). It is given 
relative to a velocity far upstream of the groyne or groyne field. Far enough that there is 
no velocity difference between a main channel or groyne fields. In contrast Yossef (2005) 
and the model used in this thesis use a drag resistance related to the velocity upstream of 
a groyne inside a groyne field where there is a marked difference with the velocity of the 
main channel. 
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Figure 3.13: Drag coefficient as a function     Figure 3.14: Groynes in a series compared 

of relative distance between groynes.   a single groyne, data from Azinfar (2010). 

 
It is clear that the resistance of a groyne in a field is much lower than a lone groyne, but 
there is much uncertainty in how much the distance between them influences this. 

3.5 Conclusions 

In this chapter existing groyne and weir formulas where compared to each other in a 
model of the river Waal. This model consisted of the Chézy equation, where in addition 
to bottom resistance, a drag resistance meant to represent groynes balances out the 
gravitational pull of the water level slope. Weir formulas could be included by assuming 
the water level drop over a groyne was equal to the main channel water slope times the 
distance between groynes. 
 
The resistance values of the formulas differed very much. These differences increase as 
water depth becomes lower because weir formulas give an infinite resistance when water 
level is equal to crest height while the drag formulas did not. As a result no value for 
groyne resistance could be determined by looking at these formulas alone, though 
calculating the energy and momentum balance over the groyne can serve as an upper 
boundary. There is agreement that water depth is the most important parameter in 
determining resistance however. 
 
Each of these formulas had its own shortcomings when used. The most common problem 
is that empirical formulas were used outside the parameter range they were validated for. 
Only Azinfar (2010) performed tests at the water depth to groyne height ratio considered 
here.  
 
A second problem is that coupling weir formulas to a drag resistance resulted in 
unwanted scaling with certain parameters, which made them not directly useable. For the 
formula of Fritz & Hager (1998) this resulted in unwanted dependency on the distance 
between groynes and water level slope. For the formula of Mosselman & Struiksma 
(1992) this resulted in resistance increasing with water depth. 
 
Thirdly some of the formulas themselves were suspect. The one of Yossef (2005) 
depends heavily on the main channel Froude number. But why this should be the case is 
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not explained. The formula of Mosselman & Struiksma (1992) is very similar to a well-
known discharge formula for weirs, but it neglects the upstream energy height. This is not 
without consequences. The formula of Azinfar (2010) is not an applicable formula at all, 
but merely the closest fit to an expansive data set for a specific geometry. This is then 
related to a uniform velocity far upstream of a groyne series, making no distinction 
between a main channel or flow in groyne fields. In all fairness the formula is not 
presented as an useful engineering formula, but indeed as merely a way to describe the 
measured data. 
 
The last issue has to do with crest length. Water depth above the groyne is several times 
the crest length in the geometry used. This would classify a weir as short. The energy and 
momentum balance method is valid for only for long weirs because it assumes flow is 
hydrostatic above the crest. The formulas of Fritz & Hager (1998) and Sieben (2003) 
disagree on the effect of the short crest however. The formula of Sieben (2003) is very 
sensitive to crest length, while that of Fritz & Hager (1998) is much less so. 
 
Based on these factors no single formula could be found to represent groynes in the 1D 
schematized model. Those of Azinfar (2010), Mosselman & Struiksma (1998) and Fritz 
& Hager (1998) can be excluded because they do not work with the model due to 
unwanted parameter scaling. This is summarized  below. 
 
Table 3.6: Suitability of formulas to represent groynes in a 1D model . 

Name Type Suitable Why  
Yossef (2005) Drag Maybe  
Van Broekhoven 
(2007) 

Drag Maybe  

Azinfar (2010) Drag No Not an engineering 
formula. 
Resistance given as 
function of uniform 
upstream velocity. 

Mosselman & 
Struiksma (1992) 

Weir No Unwanted scaling 
with water depth. 

Sieben (2003) Weir Maybe  
Fritz & Hager (1998) Weir No Unwanted scaling 

with distance 
between groynes. 

Energy and momentum 
balance 

Weir Maybe  
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4 1D river model 
In the previous chapter groyne resistance was looked at by comparing existing formulas 
for groynes and weirs. No agreement could be found however as the values the formulas 
gave for a geometry representing the river Waal differed. In this chapter a computer 
model will be used to determine groyne resistance. Due to time constraints it is not 
possible to model a river section with gronyes in 3D with high resolution. Therefore a 
single groyne will be modelled in a high resolution 2DV setup. The results will then be 
used to set up a schematized 1D compound channel model of the river Waal. 

4.1 Computer model of flow over a single groyne 

4.1.1 Model setup 

The software package used is called SWASH, short for Simulating WAves till SHore. 
While it is, as the name suggests designed simulating waves close to the coast line it is 
also capable of simulating complex non-hydrostatic flows such as rivers with groynes. 
 
The 2DV model consists of a single groyne in a 200m long channel with a bottom slope 
of 1∙10-4. Groyne geometry is once again taken from Van der Wal (2004) and is the same 
one used in chapter 3. The parameters are summarized in table 4.1. Van der Wal (2004) 
gives an average velocity of 2.5 m s-1

 for the 14 m deep main channel of the river Waal. 
A Nikuradse bottom roughness height of 0.033 m would be needed to achieve this 
according to the Chézy formula (2.9). This value is also used for the model. 
 
Table 4.1: Model parameters for 2DV simulation. 

Water depth d 5.4 - 9.3 m 
Groyne height hg 4 m 
Bottom slope i 1∙10-4 
Distance between groynes S 200 m 
Crest length Lc 1 m 
Groyne slope m 1:3 
Bottom roughness ks 0.033 m 
 
The horizontal grid size is 0.2 m so the groyne crest is covered by five meshes. Vertical 
discretization is achieved with ten layers of varying thickness. From top to bottom  each 
layer is [20, 20, 15, 12, 10, 8, 6, 4, 3, 2] per cent of the water depth. Turbulence is 
handled by a standard k-ε model. According to Ali et al. (2012) this turbulence closure 
model is capable of predicting the energy head loss over weir like structures, even though 
it cannot accurately represent the flow profile behind it. The upstream boundary 
condition was a discharge, while on the downstream end a Riemann boundary was 
imposed. 
 
Groyne resistance is measured by treating them as a drag resistance and setting up a 
control volume from 50 m before the groyne crest to 80 m behind it (figure 4.1). The 
change in momentum within this volume is determined by the up and downstream 
hydrostatic pressures, gravity, bottom resistance and drag resistance of the groyne 
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(formula 4.1). The average velocity 50 m upstream of the groyne is taken as reference 
velocity for drag resistance (formula 4.2). 
 

 
Figure 4.1: Forces acting on the control volume in the model.  

  ∫          ∫                               (4.1)             ̅           (4.2) 

 
ρ = Specific weight of water      [kg m-3] 
u = Streamwise velocity      [m s] 
Fh

 = Hydrostatic pressure      [N] 

Fz = Horizontal component of gravity     [N] 
Fb = Bottom resistance      [N] 
Fg = Groyne resistance      [N]  

4.1.2 Results 

The model was run for varying water depths ranging from 5.40 to 9.30 m. The upstream 
discharge was chosen so that the water level drop over the groyne would be in the order 
of 2 cm, though this value was up to 3 cm for some water depths. The calculated drag 
resistance coefficients are shown in table 4.2. 
 
Table 4.2: Drag resistance coefficient of the groynes in the 2DV model. 

Upstream 
water depth  
 
dx,1     [m] 

Water depth/ 
groyne height 
 
dx,1/hg     [-] 

Froude number 
over crest 
 
Fr   [-] 

Average velocity 50 
m upstream of 
groyne   ̅̅ ̅ [m s-1] 

Drag 
coefficient 
 
Cd    [-] 

9.30  2.33 0.30 1.19 1.01 
8.65  2.16 0.30 1.06 1.25 
8.00  2.00 0.34 1.00 1.41 
7.35  1.84 0.34 0.83 2.01 
6.70  1.68 0.33 0.65 3.20 
6.05  1.51 0.39 0.54 4.64 
5.40  1.35 0.39 0.34 11.31 
 
 

Fz 

Fb 

Fg 

Fh,1 
Fh,2 

𝜌 𝑢  𝑑𝑧𝑑
  

 𝑢  𝑑𝑧𝑑
  

50 m 80 m 

100 m 100 m 
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These values are compared to four formulas in figure 4.2. These are the formulas that 
could potentially describe groyne resistance as determined in chapter 3.   
 

 
Figure 4.2: Model results compared to four formulas. 

 
The model results come close to the values derived from calculating the energy and 
momentum balance over the groyne crest. The results give lower resistance values, but 
this is not surprising as calculating the energy and momentum balances assumes the flow 
above the crest is hydrostatic. In all the cases modelled here the water depth far exceeded 
the crest length so the groyne would be classified as a short-crested weir. Discharge over 
short crested weirs is higher than over short crested weirs, which would translate into a 
lower resistance coefficient. 
 
However, it was also found that the curve of the formula was determined by the 

relationship   √     . Thus the model results can be fit to the curve: 
                     (4.3) 

 
A = Fitting parameter, equal to 5     [-] 

 
The coefficient A could vary with geometry or other parameters as discussed in chapter 
3, but in this case it is equal to five. For high water depths the drag coefficient converges 
to a constant value, as would be expected of a drag resistance. This value is 0.2 and 
seems low for a non-streamlined object. The model results and the fitting curve are 
pictured in figure 4.3. 
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       Figure 4.3: Model results and fitting curve. 

 

 
Figure 4.4: Horizontal velocities in the Figure 4.5: Horizontal velocities in the 

model at d/hg = 1.35.    model at d/hg = 2. 

 
Horiztonal velocities for two model runs are shown in figures 4.4 and 4.5. In both cases a 
there is a small recirculation behind groyne. 

4.2  Schematized model 

Now that resistance of weirs has been determined for a geometry similar to a groyne in 
the Waal river this value can be used in a 1D schematized model. Knowledge of the 
water level is of prime importance for flood risk management. The influence of groynes 
can be expressed as the water level rise they cause. 
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4.2.1 Setup 

The geometry is based on Van der Wal (2004) as explained in section 2.2. It consists of 
dividing the river into three parts (figure 4.6) and Chézy’s law (formula 2.11) is applied 
to each. 
 

 
Figure 4.6: Schematization of (half of) the Waal river. The river is divided into three 

channels. 

 
In the groyne fields the water level slope is assumed to be in balance with both bottom 
friction and groyne resistance. Drag resistance for the groyne (formula 2.21) is 
represented by a drag coefficient of Cd = 1.41 for 4 m high groynes with 200 m spacing 
as determined in the 2DV model. With this value bottom resistance would have to be zero 
to match the 1 m s-1 average velocity given by Van der Wal (2004). Instead a roughness 
height equal to that of the main channel is assumed, and as a result the velocity will be 
lower than in the groyne fields than stated by Van der Wal (2004). 
 
The geometry used for the compound channel model is summarized in table 4.5. The total 
discharge through this hypothetical river would be 13,550 m3 s-1. 
 
Table 4.3: Compound channel model of the river Waal. 

 (Half of the) main 
channel 

Groyne fields Floodplain 

B[m] 130 50 400 
d [m] 14 8 6 
Q [m3 s-1] 4550 260 1965  ̅ [m s-1] 2.5 0.65 0.82 
ks [m] 0.033 0.033 1 

4.2.2 Results: bottom and groyne resistance compared 

Using the previously described model the influence of bottom and groyne resistance can 
be compared. The discharge is kept constant at 13.550 m3/s, which leaves the equilibrium 
water depth as the free variable. Groyne resistance is determined using formula 4.3 and is 
changed by varying groyne height from four meters to zero, at which point they are 
effectively removed from the model. 
 
Bottom resistance of a river is rarely measured and it is often used as a calibration 
parameter in computer modeling. Sieben & Van Essen (2003) give Nikuradse roughness 
heights of 0.02 m in the main channel to 0.5 m near the flood plains for the Waal river. 
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Chézy values measured during a high discharge period were between 50 and 65 m1/2 s-1. 
As such 0.02 m is taken as a lower limit for roughness height. The upper limit is 0.28 m, 
corresponding to a main channel Chézy value of 50 m1/2 s-1. Flood plain bottom 
resistance remains unchanged. 
 
Table 4.4: Water level difference due to changes in bottom and groyne resistance. 

                   Groyne height None Low Calibrated 
Roughness 
height 

                              hg 

ks 
0 m 2 m 4 m 

Low  0.020 m -0.60 -0.43 - 0.21 
Calibrated 0.033 m - 0.36 - 0.20   0.00 
High 0.280 m +0.80 +0.89 +1.05 
 

 
Figure 4.7: Water level difference as a function of bottom resistance  

and groyne height. Values of table 4.4 are marked as circles. 

 
The change in equilibrium water level with respect to the calibrated model is listed in 
table 4.4. Within the chosen range changes in bottom resistance result in a larger 
variation of depth than groyne resistance. The low end value of bottom resistance leads to 
a 21 cm drop and the high end value leads to a 105 cm increase. Completely removing 
groynes from the model results in a 36 cm water level drop. Figure 4.7 shows this 
difference in water level compared to the reference situation. Taken together it shows that 
accurate representation of main channel bottom resistance is a more important groyne 
resistance.  

4.3 Conclusions 

A 2DV computer model was used to find the drag resistance of a heavily submerged 

weir. The model results came close the values obtained by calculating the energy and 
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momentum balance over the groyne crest. Depending on the water depth they could be up 

to 30% lower however. The model scaled with √      in a similar way as the formula of 

Sieben (2003) and calculating the energy and  momentum balance over the crest. For a 

geometry representing groynes in the river Waal resistance is given by           . 

This formula was used to represent groynes in a schematized compound channel model 
of the river Waal during a high discharge. With a main channel water depth of 14 m and a 
total discharge of 13.550 m3, groynes are responsible for a 36 cm water level rise. 
However, uncertainties in bottom  resistances can easily lead to larger water level 
variations. 
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5 2D river model 
In the previous chapter a 1D schematized model was used to determine the influence of 
groynes in a river. The model divided the river in three distinct channels between which 
neither mass nor momentum could be exchanged. In reality this would not be the case. 
Due to the horizontal velocity gradient and large eddies shed by groyne heads large 
amounts streamwise momentum of can be exchanged between the main channel, groyne 
fields and flood plain. Through the kinematic effect this would alter the stage-discharge 
relationship of the river. Goal of this chapter is to find the magnitude of horizontal 
momentum exchange and determine its influence. To do that a 2DH computer model will 
be used. 

5.1 2DH computer model 

5.1.1 Model setup 

The basic geometry used is once again taken from Van Der Wal (2004), the same used in 
previous chapters. It represents a 1400 meter stretch of the river Waal during high 
discharge (figure 5.1). Included are half of the main channel, seven groynes, a summer 
dike perpendicular to them and a flood plain. 
 

 
Figure 5.1: Bottom profile used in 2DH computer model. This represents half of the 

river’s width and includes seven groynes. 
 
Roughness height in the groyne fields was assumed identical to the main channel at 3.3 
cm, just as in the previous chapter. Bottom roughness of the floodplains was kept at 1 m.  
 
Figure 5.2 shows a cross-section of the model. The groynes themselves are 50 meters 
long, with a 1 meter long crest and a 1:3 slope. The slope of the summer dike was 1:3 as 
well, while the slope between the main channel and groyne fields was set at 1:2. Total 
width of the model amounts to 210 m.  
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Figure 5.2: Cross-section of computer model, dashed surface is the location of the 

groyne. 

 
Table 5.1: Model geometry used in 2DH computer model. 

Main channel width Bmc 87 m 
Groyne field width Bgf 62 m 
Flood plain width Bfp 50 m 
Groye length Lg 50 m 
Summer dike crest length Lsd 3 m 
Height difference with flood plain  Δz1 2 m 
Groyne height hg 4 m 
Height difference with main channel bottom Δz2 10 m 
Slope between main channel and groyne fields  α 1:2 
Groyne head slope β 1:3 
Summer dike slope γ 1:3 
Bottom level slope i 1∙10-4 
Groyne crest length Lc 1 m 
Bottom roughness main channel ks 0.0326 m 
Bottom roughness groyne fields ks 0.0326 m 
Bottom roughness flood plain ks 1 m 
 
The grid size is 1 m, as it could be no larger than the crest length. Ideally the crest would 
be covered by five meshes, but this is not feasible since the domain has to be large 
enough to include seven embayments, each 200 m long.  
 
Initially multiple vertical layers were used. Turbulent exchange between these layers 
would be handled with a standard k-ε model. This tended to reduce the size of the gyres 
and a as a result the large eddies that are critical in to horizontal momentum exchange 
were either small or did not appear at all. Therefor the model is run in depth averaged 
mode. This means secondary flows cannot be studied. The influence of grid resolution is 
discussed in detail in section 5.1.2. A standard Smagorinsky model handles subgrid 
horizontal turbulent exchange. A Smagorinsky constant of 0.2 is used.   
 
The upstream boundary condition is given by a specific discharge varied over the width 
of the model. The downstream is a Riemann condition to absorb large scale disturbances. 
Two version of this model are run. One with a 14 m main channel water depth, the other 
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with 11.4 m, corresponding to groyne field water depth to groyne height (dgf/hg) ratios of 
2 and 1.35. These model runs are run for 1 hour. Data is gathered during the last 30 
minutes. 

5.1.2 Influence of grid resolution 

Due to time constraints it is not possible to make a 3D model of a river with groynes with 
the same horizontal and vertical grid resolution used in the 2DV of section 4.1. To that 
end the 2DV model is revisited and grid resolution is changed to see how that influences 
the results. 
 
In total the 2DV model is run in four different configurations: 
 

 Series A is the original data set from section 4.1.2. Horizontal grid resolution is 
0.2 m or five meshes per the crest length. Vertical discretization is achieved with 
ten layers. 

 Series B has the same resolution as A, but flow is assumed hydrostatic. 
 In series C horizontal resolution is increased to 1 m (one mesh per crest length) 

with five vertical layers. Layer thickness was [38, 27, 18, 10, 7] per cent of the 
water depth. Flow is assumed non-hydrostatic.  

 Series D has the same horizontal resolution as C but calculations are done depth-
averaged. This is the same resolution that is used in the 2DH model in this 
chapter . 

 
 Table 5.2: Drag resistance for various 2DV modelling options. 

Series A B C D 
Δx    [m] 0.2 0.2  1 1 
Vertical layers 10 10 5 1 
Upstream water 
depth  
 
dx,1     [m] 

Drag 
coefficient 
 
Cd    [-] 

Drag 
coefficient 
 
Cd    [-] 

Drag 
coefficient 
 
Cd    [-] 

Drag 
coefficient 
 
Cd    [-] 

9.30  1.01 0.53 0.44 0.31 
8.65  1.25 0.65 0.53 0.36 
8.00  1.41 0.74 0.68 0.43 
7.35  2.01 1.02 0.94 0.53 
6.70  3.20 1.58 1.44 0.72 
6.05  4.64 2.29 2.69 1.17 
5.40  11.31 5.57 6.10 2.39 
 
Results are also shown in figure 4.6. Neglecting non-hydrostatic pressures has a large 
effect on the calculated drag resistance and is not recommended. Reducing the resolution 
to 1 m and the amount of layers to five has a large effect on the calculated groyne 
resistance. This is unfortunate since this is resolution that will be used for the 3D model 
of chapter 6. The depth averaged resulted in very distorted resistance values. 
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Figure 5.3: Drag resistance for 2DV various modelling options. 

 
This is unfortunate since in order to consistently generate large eddies in the mixing layer 
the model needed to be run in depth averaged mode. This would result in an 
understatement of groyne resistance and thus change the division of discharge between 
the main channel, flood plains and groyne field. 
 
To combat this the bottom roughness at the location of the groyne will be increased. The 
reasoning being that the total momentum lost over a groyne will be identical in a series A 
run and series D run, even if drag resistance alone is not. This results in a large local 
increase of bottom roughness, shown in table 5.3. 
  
Table 5.3: Increase in roughness of groyne surface. 

Water depth  
 
[m] 

Roughness height of groyne 
in series A  
[m] 

Roughness height of groyne 
needed in series D 
[m] 

8.00 0.0326 2.4450 
5.40 0.0326 1.4996 

5.1.3 Results: average velocity 

Depth and time averaged velocity is measured along a transect halfway the fourth and 
fifth groyne (x = 800).  Results are shown in figure 5.5 for both water depths. For the 
high depth case the resulting velocity profile matched up reasonably well with what was 
assumed in the schematized model of last chapter. In the flood plain the velocity was 
lower however, at 0.75 m s-1

 compared to 0.81 m s-1 in the schematized model. 
 
The mixing layer between groyne fields and main channel is much wider than between 
the groyne fields and the flood plains. This is not unexpected as the velocity difference is 
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also much larger. Figure 5.4 shows the instantaneous velocity of the whole model after 15 
minutes for comparison. 

 

 
Figure 5.4: Streamwise velocity for the high water depth run of the 2DH model. 

 

 
       5.5: Depth and time averaged velocity profile in the 2DH model.  
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From these velocity profiles the mixing length and velocity gradient can be determined 
for both the groyne fields-flood plain interface and the groyne field-main channel 
interface. For the high depth case the mixing lengths are shorter and the velocity 
gradients are steeper than for the low depth case. These values are listed in table 5.4. 
 
Table 5.4: Mixing layer width and velocity gradient in 2DH computer model. 

Water depth Mixing layer width δ [m] Velocity gradient 
  ̅   [-] 

 Groyne fields-
flood plain 

Groyne fields-
main channel 

Groyne fields-
flood plain 

Groyne fields-
main channel 

dgf/hg = 2 13 23 8.87∙10-3 33.9∙10-3 
dgf/hg = 1.35 14 32 7.39∙10-3 28.9∙10-3 

5.1.4 Results: turbulent momentum exchange  

To measure the amount of momentum exchanged in the mixing layers the area around the 
fifth groyne was divided into three parts (figure 5.6). Area A is the border region between 
the main flow and the groyne fields. It also contains the groyne head. The center area B 
leads up to the center of the groyne where the difference between bottom level and crest 
level is at its maximum of 4 m. Area C is the slope of the summer dike where the 
difference between bottom level and crest height is less than 4 m. This would represent 
the border region between the groyne fields and the flood plain. Velocities were 
measured in all seven transects at a rate of 4 Hz, high enough to measure all turbulence 
scales resolved in the momentum equation. 
 

 
Figure 5.6: Area of interest around groyne. Data is measured along the seven transects. 

The area of interest is divided into three parts: (A) is the region near the main channel 

and includes the groyne head, (B) is the center area and (C) is the boundary area with 

the floodplain. 
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Figure 5.7: Turbulence in high depth case.    Figure 5.8: Turbulence in low depth case  

 

The distribution of the properties ∫      ̃      (blue) and ∫      ̃      (red) is shown in 

figures 5.7 and 5.8 for the different model runs. The ( ̃) symbol denotes time averaging. 
Sub-grid turbulence could not be included so only length scales larger than the 1 m grid 
size are represented here. The presence of the mixing layer is obvious in area A. 
Streamwise momentum is transferred from the main channel to the groyne fields almost 
everywhere though it is lessened just upstream of the groyne. In the low water depth case 
this even leads to a net flux of momentum towards the main channel. The interaction 
between flood plain and groyne fields is by comparison much less. 
 
The average turbulent shear stress can be found by integration over the length of the 
transect and dividing it by surface area of the interface. Together with the velocity 
gradient and mixing layer width the value of the dimensionless constant of 
proportionality (formula 2.30) can be found. These values are listed in table 5.5. They are 
quite high, especially for the flood plain interface. Van Broekhoven (2007) found values 
in the range of 0.08-0.12, though he had difficulties modelling the flood plain interface as 
well. 
 
Table 5.5: Magnitude of the turbulent momentum exchange in the 2DH model. 

 Turbulent shear stress     [N m-2] Constant of proportionality β [-] 
 Groyne fields-

flood plain 
Groyne fields-
main channel 

Groyne fields-
flood plain 

Groyne fields-
main channel 

d/hg=2 -3.78 -51.3 0.2460 0.1443 
d/hg=1.35 -1.53 -61.9 0.1954 0.1352 
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5.2  Schematized model 

The schematized model can be expanded to take into account lateral exchange of 
streamwise momentum due to turbulence as explained in section 2.5. The reduction in 
discharge this causes is called the kinematic effect. The approach is identical to that of 
Van Broekhoven (2001). The streamwise velocity in each channel is given equations 
2.38, 2.39 and 2.40. 
 
These equations have to be solved iteratively and do not converge for values of β above 
0.2. Since the values of β found in the model are above that for the groyne field-flood 
plain interface the β value found for the main channel interface will be used for both, up 
to a maximum of 0.144. 
 
Table 5.7: Water level difference due to changes in turbulent momentum exchange and 

groyne resistance.  

                   Groyne height None Low Calibrated 
Turbulent 
exchange 

                              hg 

β 
   0  2 4 

Calibrated  0.000  - 0.36 - 0.21   0.00 
 0.048 - 0.36 - 0.19 +0.06 
 0.096 - 0.33 - 0.14 +0.20 
Model results 0.144 - 0.28 - 0.09 +0.34 
 
The change in equilibrium water depth due to variation in the turbulence constant and 
groyne resistance is shown in table 5.7. The effect of both parameters is of the same order 
of magnitude and they interact with each other. The higher groyne resistance is, the more 
turbulent exchange influence the water level and vice versa. This is not surprising as the 
magnitude of turbulent exchange depends on the velocity gradient. As high groyne 
resistance increases the velocity difference between groyne fields and main channels, so 
will the magnitude of momentum transferred between main channel and groyne fields. 
With the β value found in the 2DH computer model groynes are now responsible for a 62 
cm water level difference, compared to 36 cm without including turbulent exchange. 
Even with the lower β value of 0.096 which is more in line with previous research, 
groynes result in a 53 cm difference in water level. Of course caution should be used 
here, changes in groyne geometry will very likely results in the mixing layer behaving 
differently as well which is not accounted for in this simple model. The influence of 
groyne resistance and momentum exchange is shown again in figure 5.11. 
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       Figure 5.11: Water level difference as a function of the turbulent  

       momentum exchange and groyne resistance. Values of table 5.7  

       marked by circles. 

5.3 Conclusions 

A 2DH computer model representing the river Waal was run with the aim of finding the 
horizontal velocity profile and the amount of turbulent momentum exchange through the 
mixing layers.  
 
The horizontal velocity differed from what was assumed in the 1D schematized 
compound channel model of last chapter. This was due to the presence of a large mixing 
layer of 30 m. This raised velocities in the groyne fields significantly. A constant of 
proportionality β was found for main channel and flood plain interfaces with the groyne 
fields. These were 0.144 and 0.24 for 8 m water depth in the groyne fields. These are 
high, for comparison Van Broekhoven (2007) found values in the range of 0.08-0.12.  
 
The effect of turbulent exchange was incorporated in the schematized model and 
compared to the effect of groyne resistance. Turbulent exchange of momentum in the 
mixing layer can reduce conveyance in a river, known as the kinematic effect. This effect 
is in the same order of magnitude as that of groynes. In addition their effects covary, with 
turbulent exchange becoming increasingly important with higher groyne resistance and 
vice versa. This means any river model that requires sufficient accuracy that it 
incorporates groyne resistance should also include the effect of turbulent momentum 
transfer between the groyne fields and main channel. When a high amount of turbulent 
exchange (β = 0.144) was included in the schematized model groynes were responsible 
for a 62 cm increase in water level. For a more modest value (β = 0.096) in line with 
previous research it is still 53 cm, compared to 36 cm when turbulent exchange is 
neglected. 
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6 3D river model 
Groynes are of course three dimensional objects. In chapter 4 their resistance was 
determined by treating them as a weir, but flow can of course also go around them. To 
measure how much 3D effects around the groyne influence resistance a 3D model of a 
river is used. 
 
It is the same model used in chapter 5, though with five vertical layers of varying width. 
From top to bottom each layer was [38, 27, 18, 10, 7]  per cent of the water depth. 
Turbulent mixing between layers is handled by a standard k-ε model. As before two 
instances of the model were run with differing water depth. This configuration resulted in 
large eddies appearing very late in the model, or not at all for a high water depth. 
Therefore this 3D model will be used to only look at flow near groynes, and not at 
turbulent exchange in the mixing layers. 

6.1 3D computer model 

6.1.1 Drag resistance of groynes  

Groyne resistance was measured by setting up a control volume around the fifth groyne 
in the model (figure 6.1). The change in streamwise momentum within this volume is 
determined by the up and downstream hydrostatic pressures, gravity, bottom resistance, 
the drag resistance of the weir and momentum fluxes through the boundaries. The 
approach is the same as the one used in chapter 4, but now in 3D. The average velocity in 
the groyne fields 100 m upstream of the groyne is taken as reference velocity for drag 
resistance. 
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Figure 6.1: A top-down view of the fifth groyne in the high water depth computer model. 

The edges of the control volume are marked in blue. 

 
This leads to drag coefficients of 0.85 and 3.82 for the high and low water depth 
situations (table 6.1). Compared to the drag coefficients found using the 2DV model with 
the same resolution the values are 25% higher and 37% lower respectively. 
  
Table 6.1: Drag resistance coefficient of groynes. 

Main channel 
water depth  
 
dmc  

Groyne field 
water depth/ 
groyne height 
dgf/hg  

Froude 
number over 
crest 
Fr 

Avarage velocity 
100 m upstream 
of groyne  ̅ 

Drag 
coefficient 
 
Cd 

11.4 m 1.35 0.65 0.68 m s-1 3.82 
14.0 m 2 0.39 1.43 m s-1 0.85 
 
Velocities upstream of the groynes were much higher than in the 2DV case which could 
explain some of the difference. Though the Froude number above the crest remained 
below 0.7 the average velocity 100 m upstream of the groyne was double that of the 2DV 
simulation for the low water depth. The model results of the 3D simulations are 
compared to the results of the 2DV simulations in figure 6.2. Series C was modelled at 
the same horizontal and vertical resolution as the 3D simulations. 
 
 

Water depth [m] 

x [m] 

y [m] 

162m 

200 m 
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        Figure 6.2: Model results of the 2DV and 3D simulations. 

 

6.1.2 Distribution of discharge  

To better understand how flow reacts to the presence of groynes the area around the fifth 
groyne was divided into three parts (figure 6.3) in the same fashion as chapter 5. The 
distribution of discharge measured along seven transects near the groyne is shown in 
figure 6.4 for the high depth case and figure 6.5 for the low depth case. The magnitude of 
flow in streamwise direction is also included in tables 6.2 and 6.3. 
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Figure 6.3: Top-down view of the area of interest around the fifth groyne. Measurements 

are done along the blue transects. The area of interest is divided into three parts: (A) is 

the region near the main channel and includes the groyne head, (B) is the center area 

and (C) is the boundary area with the floodplain. 

 

 
Figure 6.4: Distribution of discharge near  Figure 6.5: Distribution of discharge near 

the the fifth groyne, high depth case.  fifth groyne, low depth case.  

 
Table 6.2: Discharge in the groyne fields d/hg=2. 

 100 m upstream 
of groyne 

Groyne crest 100 m downstream 
of groyne 

Total discharge [m3 s-1] 582 545 582 
% through A 27 % 27 % 27 % 
% through B 61 % 58 % 61 % 
% through C 12 % 15 % 12 % 
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Table 6.3: Discharge in the groyne fields d/hg=1.35. 

 100 m upstream 
of groyne 

Groyne crest 100 m downstream 
of groyne 

Total discharge [m3 s-1] 218 195 234 
% through A 41 % 39 % 38 % 
% through B 50 % 50 % 53 % 
% through C 9 % 11 % 9 % 
 
For the high depth case (table 6.2) 92% of the discharge 100 m upstream of fifth groyne 
does indeed go over groyne itself. The remaining 8% enters the adjacent main channel 
but just downstream of the groyne it all re-enters the groyne fields afterwards. There is 
little interaction with the flood plains. 
 
In the low water depth model run (table 6.3) 84% of the upstream discharge goes over the 
groyne. The remaining 16% enters the adjacent main channel but downstream of the 
groyne much more water re-enters the groyne fields. There is little interaction with the 
flood plains, though a large amount of the flow does go through area C, very close to it. 
Compared to the high depth case a larger portion of the flow goes over the groyne head in 
the region near the main flow. 
 
For the high depth case the assumption that groynes behave like weirs seems reasonable, 
there is little exchange of mass between the groyne fields and the main channel or flood 
plains, while the majority of the discharge goes over the center. In the low depth case 
there is more exchange with the main channel and flow over the groyne head is more 
important. In this case flow has a tendency to go around the groyne instead of over it, 
meaning groynes behave less like weirs. 

6.1.3 Distribution of time averaged momentum 

In addition the transport of streamwise momentum around a groyne was looked at as 
well. Turbulent exchange was covered in chapter 5 using a depth averaged version of the 
model used here. 
 
The distribution of time averaged flux of streamwise momentum largely follows that of 
the division of discharge from the previous chapter. Flux in streamwise direction 

(∫         )  and perpendicular direction (∫         ) are shown in blue and red 

respectively in figures 6.6 and 6.7. 
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Figure 6.6: Advection of streamwise  Figure 6.7: Advection of streamwise 

momentum, high depth case.   momentum, low depth case. 

 
Table 6.4: Time averaged flux of streamwise momentum, d/hg=2. 

 100 m upstream 
of groyne 

Groyne crest 100 m downstream 
of groyne 

Total momentum flux 
[N s-1] 

7.44∙105 11.23∙105 7.45∙105 

% through A 35 % 27 % 35 % 
% through B 55 % 60 % 55 % 
% through C 10 % 13 % 10 % 
 
Table 6.4: Time averaged flux of streamwise momentum, d/hg=1.35. 

 100 m upstream 
of groyne 

Groyne crest 100 m downstream 
of groyne 

Total momentum flux 
[N s-1] 

2.03∙105 3.84∙105 2.21∙105 

% through A 61% 36 % 55 % 
% through B 33 % 55 % 40 % 
% through C 6 % 7 % 5 % 
 
Table 6.5: Lateral exchange of time averaged streamwise momentum. 

Water depth Interface Upstream of 
groyne  
 
[N] 

Downstream 
of groyne  
 
[N] 

Total 
 
 
[N] 

Average 
flux per 
m2 

[N m-2] 
d/hg = 2 Groyne field-

main channel 
 5.98∙104 -6.04∙104 -609 - 0.38 

Groyne field-
flood plain 

-1.46∙103  1.59∙103 -125 - 0.15 

d/hg = 1.35 Groyne field-
main channel 

 3.37∙104 -6.01∙104 -2.64∙104 - 24.51 

Groyne field-
flood plain 

-1.15∙103  948 -198 - 0.71 
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In the high depth case this embayment seems very much in balance. The amount of 
streamwise momentum 100 m before the groyne is equal to that 100 m downstream, as is 
the distribution. 60 % of the momentum flux over the groyne goes over the crest in the 
center, with around a quarter going over the groyne head instead. For the low depth case 
this is different. Flow is more concentrated in area A near the main channel. More than 
one third of the total momentum flux goes over the groyne head. The groyne head plays a 
much more important role in the low water depth situation.  
 
The time averaged lateral exchange of momentum was also measured (the red areas in 
figures 6.6 and 6.7). The results are listed in table 6.5. In the high depth case is quite 
obvious that a part of the streamwise momentum goes around the groyne head. There is a 
flux towards the main channel upstream of the groyne, which is completely cancelled out 
by a flux towards the groyne fields downstream. The same happens between the main 
channel and flood plains though the transport there  is much less. Compared to the lateral 
turbulent flux (table 5.5) the time averaged flux is two orders of magnitude smaller and 
thus negligible. 
 
The same does not hold true for the low depth case. There is a significant import of 
streamwise momentum from the main channel downstream of the groyne. This raises the 
question if the model area was long enough or if the groyne fields are simply more 
volatile at low water depths. In any case the time averaged flux is still less than half of 
the turbulent one. Interaction between groyne fields and flood plain is still minimal. 

6.2 Schematized model 

Now that groyne resistance has been measured in a 3D computer model the schematized 
model can be revisited. This is not straightforward as the resolution of the 3D model was 
not enough to accurately represent groynes. The 3D model results were compared to 2DV 
results of the same resolution however. This led to a 37% decrease and 25% increase in 
drag resistance for the two cases compared to the 2DV results.  
 
Assuming the same ratio holds for a higher resolution 3D model capable of accurately 
representing groynes the drag coefficients would be around 7.13 for a depth of 5.4 m in 
the groynefields and 1.77 for 8 m water depth.  
 

The simple relationship            used for the 2DV model results cannot be made to fit 

the two data points of the 3D model, at least not with a constant parameter A. What can 
be done is determining what the water level would be when consecutively groynes (with 
resistance based on the 2DV model), turbulent horizontal momentum exchange and 3D 
effects (groyne resistance measured in the 3D model) are added. The schematized cross-
section of half the river is once again included in figure 6.8. 
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Figure 6.8: Schematization of (half of) the Waal river. The river is divided into three 

channels. 

 
Results are listed in tables 6.6 and 6.7 for the same two situations used in the computer 
models. The high discharge corresponds to 13,550 m3

 s
-1

 the lower one equals  
8,095 m3 s-1. 
 
Table 6.6: Water depth in the schematized model of the Waal river at high discharge. 

Situation Drag coefficient 
used for groynes 

Main channel 
water depth [m] 

Increase in water 
level [m] 

Without groynes 0  13.64  - 

With groynes as weir 1.41  14.00  0.36 

With groynes as weir and 

turbulent exchange 

1.41  14.34  0.34 

With groynes as 3D object 

and turbulent exchange 

1.77  14.41  0.07 

 
Table 6.7: Water depth in the schematized model of the Waal river at low discharge. 

Situation Drag coefficient 
used for groynes 

Main channel 
water depth [m] 

Increase in water 
level [m] 

Without groynes 0  11.06  - 

With groynes as weir 11.31  11.40  0.34 

With groynes as weir and 

turbulent exchange 

11.31  11.94  0.54 

With groynes as 3D object 

and turbulent exchange 

7.13  11.86 -0.08 

 
In both cases treating groynes as if they are weirs adds around 35 cm to the water level. 
Including turbulent exchange has around the same effect, though it is more important 
when the discharge is lower. Finally using the groyne resistance as found in the 3D model 
results in only small changes of 7 and 8 cm. In essence treating groynes as 3D objects has 
little added value. Using a weir formula is a reasonable approximation, especially for a 
higher water level, but including turbulent momentum exchange between fast flowing 
and slow flowing parts of the river is equally important.  

Bmc B
gf
 B

fp
 

d
mc
 

d
gf
 d

fp
 

y 

z 
  



  60 
 

6.3 Conclusions 

A 3D computer model was used to simulate flow in a river with submerged groynes. Two 
models with different water depths were run. In the high depth case the local water depth 
was twice the crest height of the groynes, in the lower case this ratio was 1.35. Groyne 
resistance was expressed as a drag resistance with coefficients of 0.85 and 3.82 
respectively. These values are 37% lower and 25% higher than those found using a 2DV 
model at the same resolution.  
 
Using these values in the schematized model of the river Waal had little added value. 
Using resistance values found in the 2DV model gave similar water depths. Far more 
important is including the effect of turbulent momentum exchange between fast and slow 
moving parts of the river. 
 
The time-avaraged exchange of momentum between groyne fields, main channel and 
floodplains was negligible in the high water depth case. Not so for the lower depth case. 
Exchange of streamwise momentum along groyne field-main channel interface was about 
half that of the turbulent transport. 
 
In the high water depth case groynes can be seen as weirs. 92 % of the discharge in the 
groyne fields goes over the groyne itself and the streamwise momentum flux is more or 
less evenly divided over the length of the groyne. 
 
For the low water depth case the groyne behaves somewhat different then a weir. Even 
though 84 % of the discharge in the groyne fields still goes over it, a significant amount is 
concentrated around the groyne head, meaning this part likely plays an important part in 
determining the total resistance of the groyne.  
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7 Conclusions 

7.1 What is the resistance of submerged groynes and on which parameters does this 

depend? 

Drag resistance was calculated for groynes in both a 3D and 2DV computer model. The 

results of the high resolution 2DV model can be described by the relationship           , 

with A equal to 5.  
 
A 3D computer model was used for two different water depths to see how much the 
ability of flow to go around groynes instead of over them affected resistance. Compared 
to values of a 2DV simulation of the same resolution the values were 37% lower at a low 
water depth 25% higher at a high water depth.  
 
Based on a review of seven different formulas the most important parameter in groyne 
resistance was the water depth to groyne height ratio. 
 

7.2 What is the magnitude of horizontal momentum exchange by large coherent 

structures? 

The turbulent momentum exchange was studied with a 2DH computer model. This 
resulted in a mixing layer with a characteristic length in the order of 30 m between the 
groyne fields and the main channel and around half that for the groyne fields-floodplains 
interface. Values of the constant β were found of 0.14 for the main channel-groyne fields 
interface and up to 0.25 for the groyne fields-flood plain interface. These values are 
higher than in previous research. However, even if lower values are used turbulent 
momentum exchange is just as important for the stage-discharge relationship as groynes. 
The higher groyne resistance is the larger the influence of turbulent momentum exchange 
and vice versa. Thus any river model where sufficient accuracy is required to include 
groyne resistance should also include horizontal mixing. 
 

7.3 Can groynes be seen as weirs? If so, which formulation is most applicable? 

Submerged groynes can be seen as weirs. A 3D computer model was used to look at flow 
around submerged groynes for two different water depths. In both cases the vast majority 
of the discharge measured 100 m upstream went over the groyne. 
 
The majority of the momentum flux went over the center of the groyne as well. Flux over 
the groyne head accounted for one quarter (high depth) to one third (low depth) of the 
total flux over the groyne. 
 
Even though submerged groynes can be seen as weirs, that does not mean just any weir 
formula can be used to describe them. Care should be taken when using empirical 
formulas outside their there validated range. Seven formulas were then attempted to fit 
the results of a 2DV model of flow over a highly submerged weir. Calculating the energy 
and momentum balance over the crest gave values closest to the model results. The 
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model results were up to 30% lower however. This can be explained by the fact that the 
energy and momentum balance method described long crested weirs in which flow over 
the crest is assumed hydrostatic. In the parameter range studied in this thesis water depth 
above the groyne was always larger than crest length, which would classify them as short 
crested weirs. 
 

7.4 Summary of 1D, 2D and 3D effects of groynes 

A schematized model of the river Waal was set up to determine the influence of groynes 
on water depth. The total discharge the model had to convey was 13.550 m3 s-1. Groynes, 
when treated as weirs were responsible for a 36 cm water level rise. Including horizontal 
turbulent momentum exchange raised the water level by another 34 cm. Using the 
resistance values from the 3D model resulted in only a further 7 cm increase. In other 
words the added benefit of taking into account 3D effects around a groyne are small if 
one is interested in a stage-discharge relationship of a river. Taking into account the 
momentum exchange between the fast and slow moving parts is more important.  
 
  



  63 
 

8 Recommendations 
In this thesis a schematized model was created an expanded to include the 1D, 2D and 3D 
effects of goynes on the stage-discharge relationship of a river. The next step is to 
compare the results found in this thesis to flume experiments. These can be similarly 
divided.   
 

 A long flume with a series of submerged weirs can be used to determine their 

resistance as a drag coefficient. Does the            relationship hold? If so, then 

how do submergence, crest length, Froude number and the distance between 
subsequent weirs influence the coefficient A? 

 
 A wide flume can be used to find the magnitude of momentum exchange between 

the main channel, submerged groynes and the flood plain of a river. Key issue is 
then how groyne geometry and the distance between them influences this. 

 
 The final test would be to measure the resistance of submerged groynes in a 

similar wide flume. This is not straightforward as it would be difficult to measure 
the small velocity and water level changes over a groyne unless the flume is very 
large. The results could be compared to the resistance of the submerged series 
weirs to determine experimentally if weir formulas are a valid approximation of 
submerged groynes. 
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A Drag resistance formulas 

A.1 Yossef (2005) 

Yossef (2005) researched the effect of lowering groyne height on river morphology. As 
part of this research a 1:40 scale experiment was performed with a fixed smooth bottom 
(ks = 6.27∙10-4) to measure the resistance of groynes. The model represents half a river 
with a series of groynes along the bank (figure A.1).  
 

 
Figure A.1: Scale model setup, from Yossef & De Vriend (2005). 

 
The velocities and water depth in the fourth groyne field as well as the water level slope 
in the main channel of the flume were measured. The water level drop over a groyne 
could not be measured as it was too small, instead it was assumed the water level slope in 
the groyne fields was the same as in the main channel. Drag resistance coefficient was 
calculated with formula A.1.  
                                 (A.1) 

 
Yossef (2005) did not consider the formula of Mosselman & Struiksma (1998) useful as 
it required a coefficient m0 far above 1 to fit his data. Instead he proposed to represent the 
resistance of weirs as a drag resistance (formula A.2). He scaled the drag coefficient of 
the weir with water depth and main channel Froude number. Table A.1 shows the range 
of parameters used in the experiments.  
              (   )   

        (A.2) 

      

The flow pattern near the submerged groynes was described as an alternately accelerating 
pattern between flow over and around the groynes. 
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Table A.1: Parameter range used by Yossef (2005).     

h2/h1 Fr m     
   

   

1.05-1.70 >0.97 0.08-0.28 1:3 ? 0.4 2.25 
 

A.2 Van Broekhoven (2007) 

In order to find the effect of groyne height reduction on the capacity of the Waal river 
during high discharges Van Broekhoven (2007) created a 1-D schematized model and 
compared it to  numerical 2D and 3D model results. 
 
The 1D model was made up of three compound channels with an equal water level slope. 
Fluid could not be exchanged but a term was added to the momentum balance to 
represent the exchange of momentum in the shear layer. The resistance of groynes was 
modeled using a weir based formula from Mosselman & Struiksma (1992) and a drag 
formula from Yossef (2005). The author preferred the drag formula since the weir based 
formula required a large coefficient m0 of three to give a plausible stage-discharge 
relation. 
 
Van Broekhoven  used a 2DH computer model to find his own function for a single 
groyne based on the drag method as well. He assumed the resistance to be solely a 
function of crest height for submerged weirs and found formula A.3.  
        (   )      (   )            (A.3) 

 
He stated that bottom friction does not influence groyne resistance.  
 
Finally he used a 3D model in FINLAB to determine the ratio of groyne resistance to 
total resistance and found that analytical formula to provide a good estimate. 
 
Table A.2: Parameters range used by Van Broekhoven (2007).     

h2/h1 Fr m     
   

   

2.6-10 >0.99 0.15-0.20 1:3 ? - - 
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A.3 Azinfar (2010) 

Azinfar (2010) studied the backwater effect of groynes in a 0.8 m wide flume with a 
smooth bottom (figure A.2). He used thin plates as groynes and placed multiples to 
simulate groyne fields. Velocities and water depths were measured upstream and 
downstream of the groynes. 
 

 
Figure A.2: Submerged plate in flume, from Azinfar 2010. 

 
The force on groynes was both directly measured and calculated with the momentum 
equation using flow parameters. His data fit the following formula:  
        (       )    (   )     (    )     

     (A.4) 

 
He stated that the most important parameter that determined the coefficient was the 

blockage ratio         . The drag coefficient also decreases with aspect ratio (
   ) and 

submergence ratio (
   ).  

 
Multiple groynes were also placed in series as he believed that the first groyne would 
shield the subsequent groynes from the full force of the main flow if they were within a 
certain distance of each other. The combined drag resistance of a groyne field would 
therefore be likely less than the summation of individual groynes calculated with formula 
3.9. The average drag coefficient of up to 15 groynes in series could be calculated by 
formula 3.10, but a value of m = 5 is chosen for use in this thesis. 
                  (    )    (  )            (A.5) 

 
n = Number of groynes      [-]   

 
If the resistance of groynes would diminish with the ability of one to direct flow away 
from the subsequent groynes it stands to reason that this effect would scale with 
submergence and the distance between them. For high submergence a large part of the 
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flow would simply go over the groyne, while if the distance between groynes was large 
the main channel flow would eventually just reattach to the bank, both resulting in little 
shielding and high resistance.  
 
Unfortunately the number of groynes (n) is the most important parameter in formula A.5 
so it does little to describe the resistance of a groyne in an infinitely long series. Since 
flume length is limited fewer groynes were used for tests with high distance between 
them. The high value of the first groyne is thus averaged with fewer low resistance 
subsequent groynes. This is a possible explanation why n is the most important parameter 
and suggests that the influence of submergence and relative distance is understated. 
 
A second issue is that groyne shape may influence this shielding effect. Flow could go 
more easily over a sloped groyne, reducing it. It should also be noted that these 
experiments were conducted at high Froude numbers (see table A.3), so a one to one 
translation to a Dutch river seems unlikely. 
 
Table A.3: Parameter range used by Azinfar (2010). 

     
h2/h1 Fr m     

   
   

Single groyne 1.03-3.0 ? 0.30-0.58 0 0 0.125-0.75 - 

Groyne series 1.2-2.0 ? 0.53-0.56 0 0 0.25 1-15 
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B Discharge formulas 

B.1 Mosselman & Struiksma (1992) 

Mosselman & Struiksma (1992) provided an estimate for the effect of lowering groynes 
on the water level during high discharges in the Waal river. They used an schematized 
three channel model in which they assumed resistance in the groyne fields was solely 
dependent on the groynes. The model did not include exchange of mass or momentum 
between channels. Discharge formula B.1 was used to represent groynes. 
      (      )√           (B.1) 

 
B = Channel Width       [m] 
m0 = Discharge coefficient      [-] 
dmc = Water depth in main channel     [m] 
Δh = Water level drop over groyne     [m] 
 

The coefficient m0 was assumed to be 1 and the effect of bottom roughness was neglected 
in the channel with groynes. For sharp crested groynes this coefficient can be as high as 
1.3, while a bottom value for long weirs is 0.8 (Sieben, 2003). A value of 1.3 is used in 
this thesis. The water level drop over the groynes was given by: 
                (B.2) 
 
S = distance between two successive groynes    [m] 

B.2 Fritz and Hager (1998) 

Fritz and Hager studied flow over trapezoidal weir and created an expansive discharge 
formula that takes into account submergence and crest length. The weir had a crest of  
300 mm and crest lengths of 0, 50, 100, 200 and 300 mm were used. Submergence varied 
from 1.17 to 1.67 as shown in figure 3.5. The slope was a constant 1 in 2. 
 

 
Figure B.1: Free surface profiles,  

from Fritz and Hager (1998). 

  



  72 
 

Discharge was given by:  
       √              (B.3) 
 
Ψ = Discharge reduction due to submergence    [-] 
Cd = Discharge coefficient due to crest length     [-] 

   (    )  ⁄          (B.4) 
 
n = Fitting parameter, n = 6      [-] 

                       (B.5) 

 
yt = Submergence ratio      [-] 
yl = Modular limit       [-] 

                  (B.6) 

                      (B.7) 
 
ξ = Relative crest length      [-] 

 
                    (B.8) 

                ( (      ))       (B.9) 
                      (B.10) 

 
Discharge is a function of submergence through Ψ, crest length through Cd and upstream 
energy head H1. For values of H1/hg < 1/6, α = 1. For higher values  α = 5/3. The 
discharge coefficient depends on crest length and has a minimum of 0.33 for infinitely 
long crests and 0.43 for crests of zero length. The modular limit yl is the boundary limit 
above which the weir can be considered drowned and also depends on crest length.  
 
Table B.2: Parameter range used by Fritz & Hager (1998).     

h2/h1 Fr m     
   

   

1.17-1.67 0 – 0.98 ≈0.2 1:2 0 - ≈10 - - 
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B.3 Momentum Balance 

The discharge can also be found by solving the momentum equation over the upstream 
slope of the groyne (formula 2.31) and the energy equation over the downstream slope 
(formula 2.32) as long as it can be assumed that the water level over the crest does not 
change. In other words h2 = h3. In this fashion the discharge of a fully drowned, or 
imperfect, weir can be calculated. For a full description of the procedure see Sieben 
(1999). All coefficients α and β were assumed to be 1. 

B.4 Sieben (2003) 

To determine the effect of the shape of a weir on its discharge Sieben (2003) conducted 
an expansive literature review and together with laboratory tests done by Bloemberg 
(2001) proposed the following formula: 
       √  √ √     ⁄ √  (    ) 

       (B.11) 

                  ⁄ (             )        (B.12) 

              (            ⁄ ) (               ) 
                    (B.13) 
 
mu = Upstream slope       [-] 
md = Downstream slope      [-] 

 
This was used to study the influence of sloping and crest length. In the experiments only 
the downstream slope was varied. 
 
Table B.3: Parameter range used by Bloemberg (2001).     

h2/h1 Fr m     
   

   

1.50-1.75 0 - 0.99 0.03-0.18 upstream: 1:4 
downstream: 0-1:15 

? - - 

 
 


