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Abstract 

Cancer chemotherapy resistance (MDR) is the innate and/or acquired ability of cancer cells to evade the effects of 

chemotherapeutics and is one of the most pressing major dilemmas in cancer therapy. Chemotherapy resistance can 

arise due to several host or tumor-related factors. However, most current research is focused on tumor-specific factors 

and specifically genes that handle expression of pumps that efflux accumulated drugs inside malignantly transformed 

types of cells. In this work, we suggest a wider and alternative perspective that sets the stage for a future platform in 

modifying drug resistance with respect to the treatment of cancer.
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Background
In US only, the newly diagnosed cancer patient is 

1,665,540 every year and the estimated death is 585,720 

[1] which are increasing as countries become more devel-

oped and more people reach advanced ages. �erefore, 

many efforts are being done in the war against cancer [2]. 

One of these efforts is the continuous development of 

new drugs and forms of chemotherapy.

In cancer, chemotherapy represents the backbone 

of treatment for many cancers at different stages of the 

disease. �erefore, chemotherapeutic resistance results 

in therapeutic failure and usually, (eventually) death. To 

address these limitations, many researchers focus on how 

cancer cells manipulate their genomes and metabolism 

to prevent drug influx and/or facilitate efflux of accumu-

lated drugs, the so called: “the neostrategy of cancer cells 

and tissues” [3]. In this work, we show that drug resist-

ance is a multifactorial phenomenon that requires atten-

tion to the host as well as the tumor and that such factors 

are organized at different levels (Figure 1).

Macroscopic (systemic) resistance [host–related 
factors]
One of the major effects of host-related factors that 

determine the activity of the drug is pharmacokinetic. 

Pharmacokinetics is defined as the action of the body in 

response to drug and can be divided into the following 

consecutive steps: Absorption, Distribution, Metabo-

lism and Excretion (ADME) [4]. Here we introduce the 

concept of “Pharmacokinetic Resistance” to describe the 

body-related factors that alter the effectiveness of the 

drug, so that it either does not reach its target and/or 

cannot accomplish its intended goal. Chemotherapeutics 

must be in contact with the tumor.

Absorption

�ere are growing evidences suggesting that orally can-

cer chemotherapy is preferable to intravenous admin-

istration, because: (1) it is low-cost from the national 

health services perspective (i.e. does not require hospi-

talisation), (2) it can increase the drug’s antitumor activ-

ity by prolonging it’s time to clearance [5], (3) it reduces 

drug toxicity [6], (4) increase patients’ compliance and 

improve pharmacoeconomic issues [7–9]. However, 

to maintain a sufficient amount of orally administered 

chemotherapeutics, several factors should be taken into 

consideration:
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P‑gp

Permeability glycoprotein (P-gp), also known as multi-

drug drug resistance protein (MDR) is found along the 

gastrointestinal tract (GIT) [10], including the small 

intestine as primary site for the epithelial absorption of 

many orally administered drugs [11]. It has been shown 

that P-gp reduces the oral bioavailability of some anti-

cancer drugs [12]. Concomitant administration of some 

of the antineoplastic agents leads to the overexpression 

of P-gp that results in bioavailability reduction of several 

these agents, e.g. Imatinib [13]. P-gp expression, in the 

gut, is a subject of interindividual variation due to either 

genetic polymorphism or pathologic condition [14, 15] 

and so fluctuates the bioavailability of several antineo-

plastic agents e.g. paclitaxel [12].

Food

�e effects of food on drug absorption and bioavailability 

have been attracting attention very much and stimulated 

a long debate of whether fasting improved or worsened 

a drug’s bioavailability [16–18]. It has been shown that 

the half-life period of orally applied Topotecan is longer 

than that of intravenous administration. �e adminis-

tration of Topotecan with a high-fat breakfast shows a 

small decrease in the absorption rate but does not affect 

the extent of the absolute absorption [19]. St John’s 

wort, induces the expression of Pregnane X receptor, a 

xenobiotic or detoxification sensor, which reduces the 

efficacy of some antineoplastic agents, e.g. Irinotecan 

[4]. CYP3A4 is a metabolising enzyme (see below) which 

has been found in the intestine presumably as a defense 

strategy against xenobiotics [20]. It is well known that 

grapefruit juice abates the presence of CYP3A4, which is 

beneficial for the application of antineoplastic oral agents 

with low bioavailability [21]. �us, it becomes apparent 

that the interaction between food and antineoplastic 

agents should be cautiously monitored to maintain a suf-

ficient bioavailability [22–24].

Distribution

�e “volume of distribution” (Vd) of the drug is a hypo-

thetical volume that outlines drug distribution into tis-

sues [25, 26]. A higher Vd means that more of a drug 

penetrates into a tissue while it is more diluted (present 

at lower concentrations) in the plasma. �e distribution 

of the drug between plasma and tissues relies on several 

factors. Some of them include:

1. Gender Metronidazole, a bactericide and protozoo-

cide, also displays a potential activity as an antican-

cer drug, especially as a radiosensitizer in hypoxic 

regions [27], and shows a lower Vd in women [28] 

Furthermore, women are subject to pharmacokinetic 

variability during their menstrual cycle [29]. �ere-
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Figure 1 Diagrammatic representation describes that cancer chemotherapy resistance is a multi-factorial phenomenon that could be organized as 

multilevel structure.
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fore, it is critical to consider the gender factor also to 

age if the concentration of the drug in the plasma is 

to be determined or needs to be defined.

2. Weight Weight is a paramount factor that determines 

dose adjustment [30]. Cancer patients often lose 

weight during tumor progression [31–33]. �erefore, 

dosing based on body weight should be routinely re-

adjusted to the current weight [34, 35].

3. Plasma proteins when a drug is available in the blood 

(plasma), the drug will be found either in free or 

bound form to plasma proteins (see Figure 2). Albu-

min and Alpha 1-acid glycoprotein are an example of 

drug-binding plasma proteins. While albumin carries 

acidic drugs, the alpha 1-acid glycoprotein will carry 

basic and neutral lipophilic drugs [36–38].

• Albumin: Albumin is an important binding pro-

tein in the blood. It is a powerful prognostic indi-

cator reflecting diseases’ severity [39, 40], and its 

prognostic value is subject to gender differences 

[41]. It has been shown that etoposide is subject 

to individual variations (Population diversity) 

changes in the albumin serum concentration and/

or age [42, 43].

•  Alpha-1-acid glycoprotein (AGP or AAG) some-

times called orosomucoid (ORM) is an acute 

phase plasma alpha globulin glycoprotein. AGP 

is a critical determinant factor for the activity of 

several anticancer agents, e.g. imatinib [44]. Vari-

ation of AGP’s serum concentration also affects 

the anticancer activity of Gefitinib [45]. Wu et al. 

showed that the γ-secretase inhibitor RO4929097 

(Notch signaling blocker) is bound in plasma 

with high affinity to AGP and can be competi-

tively replaced by GDC-0449 (Hedgehog inhibi-

tor). �is consequently increases the availability 

of potentially active RO4929097 [46]. �erefore, 

it was suggested that AGP monitoring is critical 

to predict the pharmacodynamics response to a 

combined RO4929097/GDC-0449 treatment [46].

4. Circadian rhythm �e circadian timing system com-

prises peripheral oscillators located in most tissues 

of the body and a central pacemaker located in the 

suprachiasmatic nucleus (SCN) of the hypothalamus 

[47]. �e circadian rhythm has been implicated in 

the pathophysiology of several diseases [48–50], drug 

action [51, 52] and pharmacokinetics of drugs as well 

[53–55]. Plasma protein levels reach their minimum 

around 4:00 a.m. and start to increase around 8:00 

a.m. [56]. �is circadian rhythm can be masked at 

younger ages, but it aggravates and becomes clearer 

with aging [56]. �erefore, proper dosage timing 

should result in higher drug concentrations reaching 

the tumor site. It has been shown that alpha one acid 

glycoprotein (AGP) is subject to circadian rhythms 

[57]. In cancer, it has been demonstrated that Cis-

platinum shows a considerable variability in its bind-

ing capacity day and night [58, 59]. �us, circadian 

rhythmicity has a significant impact on a drug’s phar-

macophore i.e. the active site of the drug molecule, 

and a delicate balancing between chronotolerability 

(minimum toxicity to host) and chronoefficacy (max-

imum cytotoxicity) is required [60]. Moreover, most 

of currently used anticancer agents act against highly 

proliferating cells, and since the basal metabolic rate 

is increased at night, it seems adequate to administer 

anticancer drugs at night instead of during the day.

Metabolism

Drug metabolism does not reflect the conventional met-

abolic pathways, i.e. anabolic for biomass or catabolism 

for energy production. Instead, drug metabolism involves 

changing drug polarity and thus its hydrophilicity, to 

facilitate its excretion from the body. Drug metabolism 

occurs through two steps: the first involves reactions 

such as hydroxylation or oxidation [61, 62] of lipophilic 

drugs to make it vulnerable to the addition of glutathione, 

glucouronic acid or an amino acid [63, 64]. Although it 

is generally accepted that drug metabolism is a biologi-

cal strategy of detoxification, some metabolism enzymes 

such as cytochrome P450 and glutathione S–transferase 

could be taken advantage of as they can activate certain 

anticancer drugs [65].

 – A group of cytochrome P450 (CYP) enzymes respon-

sible for the first step, the introduction of reactive 

or polar groups into xenobiotic groups [66]. CYP 

enzymes have been shown to activate some of the 

anticancer agents [67], as well as inactivate other anti-

cancer drugs [68]. Overexpression of CYP450 in can-

cer patients might lead to resistance due to the rapid 

inactivation of the drug. Moreover, the presence of 

CYP450 shows interindividual variation [69–71] and 

so its detection, identification, and quantification prior 

to starting treatment is essential.

  – Glutathione–S–Transferases (GSTs) are endogenous 

detoxifying enzymes [72] which mediate the second 

Figure 2 A drug is active while in unbound form. Therefore, the abil-

ity of the drug to bind plasma proteins and tissue reduces its activity 

[221], The drug’s activity is modulated by ifferences in the amount of 

plasma proteins [222–224]. 
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step of drug metabolism [73]. Overexpression of GST 

correlates with drug resistance [74–76]. �is resistance 

could occur pharmacokinetically by metabolizing the 

drugs into inactive molecules [77]. Others suggest this 

resistance corresponds to detoxification via energy-

dependent, transporter-mediated efflux of drugs or 

drug conjugates from the cell [78]. Also, GST generates 

resistance by suppressing apoptosis through its ROS-

scavenging activity [79, 80] or via MAP kinase inhibi-

tion [81]. Conversely, GST is involved in the activation 

of certain drugs such as γ -Glutamyl- α -amino-(2- 

ethyl-N, N, N,N- tetrakis (2-chloroethyl) phosphoro-

diamidate)-sulfonyl-propionyl)-(R)-(-) phenylglycine 

(TER286) [65], 6-mercaptopurine (6-MP) [82], and 

TLK-286 [83]. Because GST shows variability in its 

expression across populations [84–87], GST detec-

tion prior to chemotherapy could be utilized to inform 

established therapeutic strategies. Potential GST 

inhibitors include ethacrynic acid and buthionine sul-

foximine [88]. �ese agents might be consumed con-

comitantly to keep GST in check in cancer and during 

cancer therapy. Interestingly, GST is subject to circa-

dian rhythmicity that also affects the activity of 5–fluo-

rouracil (5-FU) and Oxaliplatin [89–91].

  – Extrahepatic metabolism: Typically, the liver plays a major 

role in drug metabolism. Drug-metabolizing enzymes 

are also present at other sites e.g. lung, gut, kidney, uri-

nary bladder, skin [92–95]. Some of anticancer agent is a 

subjected into extrahepatic metabolism e.g. Oracin [95], 

and Paclitaxel could be subjected to extrahepatic metab-

olism too [96]. Extrahepatic metabolism also subjected 

to interindividual variation [95]. So, this issue should be 

addressed careful monitoring of these agents should dis-

cuss toward individualized chemotherapy [68, 97].

Excretion

Excretion from the body is the final step in drug removal. 

Commonly, excretion of drugs occurs through two main 

routes: biliary and renal excretion.

 – Biliary or bile duct excretion: MDR (ABC) mediates 

biliary excretion of xenobiotics [98]. Overexpression 

of ABC is correlated with an increase in biliary excre-

tion [99–102]. �erefore, careful monitoring of ABC 

expression should be taken into account when defined 

anticancer drug is prescribed for the patients and this 

anticancer drug is knowingly excreted through the bile.

  – Renal excretion: �e kidney is the primary organ by 

which drugs are excreted. Interindividual renal drug 

excretion variability might be due to gender differences 

[103, 104] and ethnic differences [105]. So, changes in 

the glomerular filtration rate (GFR) have a direct effect 

on anticancer drug availability.

Drug–drug interactions

Cancer chemotherapy is administered in the form of a 

cocktail, the combined application of several chemother-

apeutics. Such a combination is designed to reduce toxic-

ity and to decrease the likelihood of resistance. One drug 

alone would require a higher concentration and, so the 

side effects caused would be increased. Using a combina-

tion reduces the side-effects of each single drug as it can 

be applied at a significantly lower concentration [106]. 

A tumor consists of a heterogeneous population and it 

is commonly thought that using a “cocktail” of several 

agents will target different populations and thus reduce 

the selective pressure by using single agents (the use of 

only one single agent might kill one defined population 

and positively select a pre-adapted one that will remain 

and grow). �erefore, a combination therapy is useful in 

treating cancer. Conversely, it needs to be pointed out 

that co-administration of drugs might result in antago-

nism such that one drug may counteract or neutralize 

another one:

 – Agents that target tumor vascularization: tumors 

require a blood supply for the provision of oxygen 

and nutrients [107], removal of metabolites [108] and 

to support metastasis [109]. It is widely assumed that 

administration of agents that target tumor vasculature 

(antiangiogenic therapy) eventually interrupts tumor 

progression. �ere are two classes of these agents (1) 

Angiogenesis inhibitors; they inhibit the tumor that 

has initiated the angiogenic process and (2) vascu-

lar disrupting agents that destruct the existing tumor 

vessels. �ose agents might limit perfusion of cyto-

toxic drugs especially upon chronic administration 

[110]. Moreover, it is postulated that antiangiogenic 

therapy is useful in the management of resistance to 

chemotherapy [111], however, diminishing tumor vas-

cularization may accelerate the adaptation to hypoxia 

while increasing the necrotic zone by accumulation of 

metabolites and so worsen tumor prognosis [112]

  – NaHCO3 has been recently used systemically in the 

treatment of cancer [113]. It induces systemic alkalo-

sis. By elevation of urine pH, methotrexate excretion is 

greatly enhanced. �erefore, NaHCO3 modulates the 

pharmacokinetics of methotrexate [114].

  – Tamoxifen is a prodrug that needs to be metabolized 

to its active form by CYP2D6, CYP3A, CYP2B6 and 

CYP2C19 [115]. Some drugs, particularly from the 

group of selective serotonin reuptake inhibitors, inhibit 

CYP2D6 and so reduce the efficacy of Tamoxifen by 

decreasing amount of its active metabolites [116–118].

  – Pravastatin, an HMG-CoA reductase inhibitor, is cor-

related with biliary excretion [119, 120] as a substrate 

of P-gp [121]. Also, it induces P-gp expression as well 
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[122] and so may promote resistance to other com-

pounds.

Microscopic (local) resistance [tumor related 
factors]
�e loss of ability of drugs to kill cancer cells could also 

be due to failure at the tumor site. Such disability could 

occur via several mechanisms. Some of them are:

Evolutionary resistance

Also termed biochemical resistance [123, 124], acquired 

resistance [66, 125], active resistance [126], or extrinsic 

resistance [127]. Evolutionary resistance is an ancient 

type of resistance that can be found in bacteria even prior 

exposure to antibiotics [128–132]. Evolutionary resist-

ance could occur either through interfering with drug 

resident time intracellularly and/or altering its site of 

action.

Alteration of drug residency in cancer cells

�ere are several proteins that alter drug residency in 

cancer cells. Some of these include:

P‑gp

P-glycoprotein 1 (permeability glycoprotein, abbrevi-

ated as P-gp or Pgp) also known as multidrug resistance 

protein 1 (MDR1) or ATP-binding cassette sub-family 

B member 1 (ABCB1) or cluster of differentiation 243 

(CD243). It is a glycoprotein that in humans is encoded 

by the ABCB1 gene [133, 134]. Commonly, P-gp is local-

ized at the plasma membrane [135] of colon, jejunum, 

bile canaliculi, renal tubular cells, placenta, the luminal 

surface of capillary endothelial cells, testes, pancreas and 

blood–brain barriers (BBB) [135–138]. P-gp might have 

a role in the normal secretion of metabolites. P-gp also 

induces expression of CYP3A4 [139] that in turn may 

deactivate some anticancer drugs (see Table 1 that shows 

the pharmacological modulators of P-gp).

In resistant cancer cell lines, P-gp is localized in the 

Golgi apparatus and the rough endoplasmic reticulum 

[140, 141]. Also, it is expressed in mitochondrial cristae 

[142, 143] to protect the accumulation of mitochondria 

[144] or prevent nuclear accumulation by expression of 

P-gp at the nuclear envelope [141, 145].

Expression of P-gp fluctuates with elevated expression 

level in untreated cancer into higher level upon relapse 

after chemotherapy and undetectable or low level in the 

expression in drug sensitive tumors [134, 146] which 

means there is no unifying theorem correlating expres-

sion of P-gp and cancer treatment.

MRPs Multidrug resistance-associated protein MRP1 

(ABCC1) was the first of the xenobiotic-transporting 

MRP-related proteins to be cloned and was identified 

based on its overexpression in a multidrug-resistant lung 

cancer cell line [147]. �e MRP family consists of the four 

isoforms MRP1-4 [148, 149]. MRPs are similar to P-gp in 

that they are (I) capable of decreasing intracellular drug 

levels and (II) ATP-dependent [150]. Also, MRPs require 

glutathione GSH to extrude xenobiotics [151–154].

MXR �e Mitoxantrone resistance protein MXR or the 

Multixenobiotic resistance protein, also known as BCRP, 

ABCP and ABCG2, is one member of the ABC-super-

family that plays a role in trafficking biological molecules 

across cell membranes [155]. Expression of MXR might 

be an alternative strategy of resistance if cancer cells lack 

p-gp and MRP [156]. MXR preferentially extrudes large 

hydrophobic, positively charged molecules while others 

members of the MRP family can eject both hydrophobic 

uncharged molecules and water-soluble anionic com-

pounds [157].

Alteration of drug target

When the drug reaches its target, another mechanism of 

resistance could be evolved somatically. Examples, which 

explain this mechanism of resistance, is:

 – Methotrexate is a drug of choice for the treatment of 

rheumatoid arthritis [158–160]. Moreover, its activ-

ity against several types of tumors has been shown. It 

inhibits tumor cells via inhibition of the Dihydrofolate 

reductase enzyme (DHFR) which is a co-enzyme in 

DNA-methylation. Both, in  vitro and in  vivo studies 

show that the genomic amplification of the DHFR gene 

is reflected by extra copies of DHFR [161–163].

  – 5-fluorouracil is a thymidylate synthetase inhibitor that 

is widely used in several types of tumors. �ymidylate 

Table 1 Shows the pharmacological modulators of P-gp

Inducers Inhibitor

Prazosin, Topotecan, Amprena [222], Rifampin, Phenobarbital,  
Clotrimazole, Reserpine, Isosafrole, Midazolam and Nifedipine [139, 223], 
Dexamethasone [224]

Morphine [225], Retinoic acid [226], St John’s wort [227]

Carvedilol [228], Cyclosporine [229], Itraconazole [230], Ketoconazole [231],
Synthetic opiates e.g. Meperidine, Methadone, Pentazocine [232], Tamox-

ifen [233, 234], Vandetanib [235], β-elemene [236]
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synthetase is an enzyme used to generate thymidine 

monophosphate, which is subsequently phosphoryl-

ated to thymidine triphosphate for use in DNA syn-

thesis and repair [164]. It has been postulated that one 

mechanism of resistance is the gain of extra copies of 

thymidylate synthetase genes [165, 166].

Microenvironmental resistance

Cancer cells maintain a unique pH gradient; it is more 

acidic extracellularly and more alkaline intracellularly 

about normal tissues [167–169]. Such a pH gradient 

creates a unique environment around cancer cells. �e 

tumor microenvironment becomes one of the cancer’s 

hallmarks [109]. Tumor microenvironment increases 

tumor’s fitness by blunting the immune system [167, 

170], activating endogenous immunosuppressive strat-

egies [171] and inhibiting the growth of the normal cell 

population. Moreover, the tumor microenvironment 

disables the activities of several chemotherapeutic agents 

resulting in resistance and failure in drug response [172] 

either through disturbing drug partitioning, sequestering 

it intracellularly [173, 174] or through induction of MDR 

expression [146].

�ere are several components of the tumor microenvi-

ronment that contribute to drug disability. Some of them 

include:

pH

Most anticancer agents are either weak bases or weak 

acids. Some of them are Zwitterions (see Table  2). 

Weakly basic anticancer drugs are ionizable at the inter-

stitial fluid that decreases their partitioning, and if they 

cross the plasma membrane, they are sequestered into 

acidic vesicles (lysosomes). While weakly acid drugs 

increase their partitioning into the interstitial fluid, they 

will be rendered at cytosol due to intracellular alkalin-

ity, and so they are slightly prevented from reaching their 

targets. �is phenomenon is well known as “ion trapping 

mechanism” [123, 124, 175–177]. While basic drugs have 

reduced efficacy in an acidic microenvironment, Chlo-

rambucil is a weakly acidic compound, and its cytotox-

icity is enhanced by acidic microenvironments [178]. So, 

any attempt to induce intracellular acidification could be 

an avenue to both breaking through MDR and as an anti-

cancer therapeutic approach it own [179].

Oxygen

Intermittent hypoxia has been considered a suggested 

mechanism for the initiation of carcinogenesis [180–183] 

tumor evolution and progression [184–186] and metas-

tasis [187].

Hypoxia somehow handles drug resistance via the fol-

lowing factors:

1. Most anticancer agents act to activate the apoptosis 

pathway, and the presence of free radicals are essen-

tial to promote this process [188]. �erefore, the 

absence of oxygen will diminish the activity of these 

drugs. Hypoxia does not only confer resistance to 

chemotherapy [189–192] but also to radiation [27].

2. Hypoxia induces genes expression that code for 

ABC-transporters [193] and so favors the developing 

of resistance of some of the anticancer drugs e.g. 5–

fluorouracil [194].

3. Hypoxia also alters activity of some of metaboliz-

ing enzymes that are responsible for the activa-

tion and/or inactivation of some of the anticancer 

drugs e.g. conversion of paclitaxel metabolism into 

6-α-hydroxypaclitaxel is reduced upon hypoxic con-

ditions compared to normoxic conditions in HepaRG 

cells [195]. �erefore, hypoxia might alter therapeutic 

effectiveness.

4. Hypoxia is an important evolutionary determinant 

factor that shapes part of the tumor population to 

become hypoxia-adapted [108]. Hypoxia is associ-

ated with cellular senescence [196]. Chemotherapeu-

tic agents which are designed to target cells that have 

high proliferation rates will fail even if they reach 

their site of action in sufficient amounts in poorly 

vascularized regions [197, 198]. Conversely, recent 

data suggests that hypoxia suppresses geroconversion 

(the conversion of arrested cells to senescence) [199] 

which make the role of hypoxia in tumorigenesis and 

tumor resistance still unclear.

Glucose

In the 1920s, Otto Warburg discovered that cancer have 

high aerobic glycolysis even in the presence of oxygen 

[200–202]. Recently, metabolic reprogramming of cancer 

has been adopted as one of the hallmarks of cancer [109]. 

Table 2 Shows pKa of some of commonly used anticancer 

agents

* Although the pKa of 5-FU is higher but it considered as weak acid due to 

electrons withdrawn capacity due to Fluorine atom [124].

Drugs pKa Ionization behavior

Daunorubicin 8.3 Weak base

Doxorubicin 8.3 Weak base

Mitoxantrone 8.3 Weak base

Paclitaxel Zwitterion

5-Fluorouracil 7.76* Weak acid

Cyclophosphamide 6.0 Weak acid

Chlorambucil 5.8 Weak acid

Cisplatin 5.06 Weak acid
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Glucose, especially in high loads, induces over-expres-

sion of Sodium Hydrogen Exchanger 1 (NHE-1) resulting 

in the alkalinization of pHi [203] and in the induction of 

the metabolic transformation that aggravates the tumor 

microenvironment [27]. Moreover, glucose uptake is 

associated with tumor progression [204] as well as chem-

otherapeutic resistance [205]. �erefore, alteration of 

glucose transport [206], glucose deprivation, and fasting 

may enhance tumor sensitivity to chemotherapy [207]. 

However, targeting glucose also leads to interconversion 

of sensitive populations into more resistant populations, 

which may handle relapse [208]. So, targeting glucose as 

a potential strategy for overcoming resistance may be a 

dead end.

Mesoscopic (physical, mechanical) or (regional) 
resistance [tumor—host interacting factors]
�e physics of the tumor site has a great impact on drug 

activity and results in drug resistance as follows:

1. Geometric, or vascular, resistance is a complex func-

tion of vascular morphology, i.e. the number of ves-

sels of various types, their branching pattern, their 

diameter, and length [209]. It has been showing that 

upon clonal tumor expansion, tumor perfusion, and, 

therefore, the amount of drug to reaching its target 

is decreased [198, 210, 211]. Vascular modulating 

agents may alter vascular resistance and diminish the 

drugs reaching their targets [212] while by reducing 

the geometric resistance will enhance the activity of 

chemotherapeutic agents [213].

2. Blood viscosity is very significant especially for intra-

tumoral blood flow [209]. Highly blood viscosity is 

an indicator for blood stasis and thus for the stag-

nation of drugs at certain sites. Moreover, inflamma-

tory mediators at tumor sites might alter erythrocyte 

sedimentation rate and lead to greatly enhanced 

blood viscosity [214], at least at the tumor. Because 

blood flow has been correlated with oxygen diffu-

sion kinetics [215], increasing blood viscosity may 

induces blood flow retardation and hypoxia becomes 

an adaptive strategy of survival especially for xeric 

phenotypes (cancer cells that grow distal from blood 

vessels) [108]. �is also contributes to drug penetra-

tion into intratumor regions (see Figure 3). Anemia 

also might occur due reduction in hematocrit. In 

this regard, bone marrow suppression by chemo-

therapeutic agents should be taken into considera-

tion.

Co-resistance

�e presence of the extracellular matrix (ECM) and a 

stroma are crucial for carcinogenesis. Both of this play 

a significant role in cancer progression, metabolism and 

the metastatic cascade [216]. In this context, the ECM 

plays a critical role in mediating drug resistance [217], 

either by acting as a physical barrier that impairs drug 

diffusion [218] and/or by cooperating with tumor cells 

to generate chemotherapy resistance [219, 220]. In this 

regard, this strategy of resistance could be called ECM-

dependent resistance [220, 221].

Conclusions
From bacteria to cancer, (multi) drug resistance is becom-

ing a central issue and a significant challenge for medicine 

today. Although drug resistance is often studied at the sin-

gle cell level, it is important to realize that the ability of 

a drug to interact with its target is more complex involv-

ing many body compartments. Also, over the past decade, 

there have been significant changes in our understanding 

of some fields from biology. Whereas, before, the key-

lock model was supposed to uncover biology helping us 

to understand life, it is clear today that evolution theory 

needs to be introduced at the single cell level to clarify 

our understanding of some diseases including cancer. �e 

famous key-lock model, as well as the long-awaited magic 

bullet to kill cancer, has to be revised accordingly. �ere-

fore, we suggest reframing the concepts used in drug 

resistance in a more general context thereby dismantling 

the monolithic tone that the resistance is only a matter of 

genes. We propose that drug ineffectiveness results from 

tumor-host interactions and that a clear understanding of 

Figure 3 A hypothetical model describes the sphenoid tumor as 

mutli-habitat or multilayer shows that decrease of oxygen diffusion 

with drug gradients as a function of distance from the blood vessel.
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such an interaction open new opportunities not only for 

the discovery of new drugs but also for new therapeutic 

strategies to overcome the development and evolution of 

resistance to cancer chemotherapy.
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