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Abstract: A memristor is a kind of nonlinear two-port circuit element with memory characteristics,
whose resistance value is subject to being controlled by the voltage or current on both its ends, and
thus it has broad application prospects. At present, most of the memristor application research is
based on the change of resistance and memory characteristics, which involves how to make the
memristor change according to the desired trajectory. Aiming at this problem, a resistance tracking
control method of memristors is proposed based on iterative learning controls. This method is based
on the general mathematical model of the voltage-controlled memristor, and uses the derivative
of the error between the actual resistance and the desired resistance to continuously modify the
control voltage, making the current control voltage gradually approach the desired control voltage.
Furthermore, the convergence of the proposed algorithm is proved theoretically, and the convergence
conditions of the algorithm are given. Theoretical analysis and simulation results show that the
proposed algorithm can make the resistance of the memristor completely track the desired resistance
in a finite time interval with the increase of iterations. This method can realize the design of the
controller when the mathematical model of the memristor is unknown, and the structure of the
controller is simple. The proposed method can lay a theoretical foundation for the application
research on memristors in the future.

Keywords: memristor; iterative learning control; cubic nonlinear; resistance tracking

1. Introduction

In 1971, American scientist Chua first proposed the concept of a memristor based on
the completeness of circuit theory [1]. Since at that time the existence of the memristor
was only speculated mathematically, and it was not physically implemented yet, it has not
attracted considerable attention during the more than three decades after it was proposed.
Until May 2008, the nanometer memristor was successfully developed by the United States’
Hewlett-Packard (HP) laboratory to develop a physical model, and the results of this
research were published in “Nature” [2,3]. Since then, there has been a wave of research
on memristors around the world [4]. Essentially, a memristor is a nonlinear resistor with a
memory function. Its resistance value is controlled by the voltage or current added to both
ends, it can maintain the previous value in the case of a power failure, and it will be cleared
only when the current is in the opposite direction. Therefore, it has broad application
prospects in many fields.

Up to now, scholars at home and abroad have mainly studied memristors from three
aspects. The first is how to develop a device with memristive characteristics that is more
economical and easy to implement, using advanced materials based on the idea of the
memristive physical model by HP Labs. According to different materials, it can be divided
into several typical memristors, such as thin film memristors [2], spin memristors [5], three-
terminal memristors [6], phase transition memristors [7], and so on. The second aspect is
to analyze the dynamic behavior of a memristor and the memristive system by following
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the thinking of Professor Chua. For example, the supertrack function of Chua’s oscillator
and Chua’s circuit with a memristor is calculated by using the supertrack method, and
the behavior of the system is explained by such a supertrack function in [8]. A memristor
model with negative resistance is proposed in [9]. This model breaks the resistance state
polarity limitation of the original memristor and provides a richer variation performance
for the memristor to act as a neural network synaptic bionic device. The negative-type
locally active memristor (N-type LAM) neuron circuit is designed by revealing the dynamic
characteristics of LAM in [10]. The dynamic behavior of the circuit is studied quantitatively
by means of Hopf bifurcation and numerical analysis, and a variety of neurmorphic behav-
iors are simulated successfully. The third aspect refers to the relative application studies of
memristors. This aspect is studied mainly based on the various models of memristors and
the nonlinear, nonvolatile, or switching characteristics of memristors [11–23].

The application research on memristors is mainly reflected in the fields of nonvolatile
memory [11], chaotic circuits [12,13], artificial neural networks [14,15], and analog cir-
cuits [16,17]. The weights in the artificial neural network are realized by the multiplier, and
this will lead to two defects. One is that the multiplier must be replaced again when the
neural network needs to be modified, the other is that it is relatively large. If the weight
of the neural network is realized by using the memristor as the electronic synapse, it is
easy to achieve the purpose of modifying the neural network only by applying the external
voltage source to change the resistance of the memristor. Based on this, a recurrent neural
network model is established based on memristors, and the sufficient conditions of global
uniformly asymptotical stability of recurrent neural network are obtained [18]. A neural
network proportional-integration-derivative (PID) controller based on the memristor is
designed by using the nonlinear characteristics and memory function of the memristor [19].
The weight update of the neural network is realized by the memristor, which simplifies the
update algorithm of the network weight and lays the foundation for the realization of the
new intelligent PID controller. The memristive PID controller is designed by replacing the
resistance in the traditional PID controller hardware circuit with a memristor and using
an additional control circuit to realize the adjustment of the memristor [20]. The designed
controller achieves the goal of self-modification of the PID control parameters and thus
can improve the control precision. A gain-adjustable amplifier circuit based on memristors
is designed by changing the resistance of memristor [21,22]. The change of memristor is
realized by changing the frequency and the pulse width of the control input signal. In
general, when the basic arithmetic operations of the signals are implemented by the analog
circuits, they are all represented by the voltage or current. The memristor can replace
the voltage or current that represents the arithmetic operation [23]. The precision of this
method is verified by the simulation experiments.

Throughout the literature on the application research on memristors, it can be found
that the goals of the research are achieved by changing the resistance of the memristor.
This involves how to change the resistance of the memristor and whether the resistance of
the memristor can be changed according to the desired resistance. Therefore, for the two
problems, the paper proposes a resistance tracking control method of memristors based on
iterative learning control.

The idea of iterative learning control (ILC) is for a controlled system with repetitive
operation characteristics, the current control input is continuously modified by using the de-
viation between the actual output and the desired output until the control input converges
to the desired control, thereby achieving the goal of ensuring the actual output complete
tracking of the desired output [24]. Iterative learning control has a strong ability to handle
nonlinear dynamic systems, and can suppress all interference signals that repetitively
appear. At the same time, the design of the controller does not depend on the precise model
information of the controlled system, and its simple structure is convenient for engineering
implementation. Therefore, iterative learning control has achieved fruitful research results
after more than 30 years of development [25–28].
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In view of the above analysis, in order to further broaden the application range of
memristors and lay the foundation for future application research on memristors, this paper
proposes an iterative learning control method for memristors by analyzing the general
mathematical model of memristors. In this method, the resistance of the memristor is
output, and the resistance change rate is the state equation. The derivative of the error
between the actual resistance and the desired resistance is used to continuously modify the
control voltage of the last memristor, so that making the current control voltage gradually
approach the desired control voltage, thereby achieving the purpose of changing the
memristor according to the desired resistance. Furthermore, the convergence condition of
the algorithm is theoretically derived, and it is proved that the proposed method can make
the memristor completely track the desired resistance within a finite time interval with the
increase of iterations. Finally, the simulation examples are given to further validate the
effectiveness of the proposed algorithm.

2. The Model of Memristors

In 2008, the research team of Hewlett-Packard Lab successfully created a physical
model of the memristor using thin TiO2 film and Pt metal. The model is composed of a thin
titanium dioxide (TiO2) film and two pieces of platinum (Pt). The titanium dioxide film
sandwiched between two pieces of platinum is divided into two parts: one is the insulating
layer without impurities (nondoping region), the other is the conduction layer after doping
impurities (doping region). Its structure is shown in Figure 1.
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Figure 1. The HP memristor model. where w is the width of the conduction layer and D is the total
width of the TiO2 film (about 10 nm).

When a voltage is applied to both ends of the memristor, the oxygen vacancy in the
titanium dioxide film will drift under the action of the electric field. When the applied
voltage makes the oxygen vacancy move from the conduction layer to the insulating layer,
the conduction layer becomes wider and the insulating layer narrows gradually, so that
the resistance value of the memristor will decrease; when the applied voltage makes the
oxygen vacancy move from the insulating layer to the guide layer, the insulating layer
becomes wider and the conduction layer narrows gradually, so that the resistance value of
the memristor will increase. According to this principle and Figure 1, the voltage at both
ends of the memristor can be obtained as follows.

v(t) = M(z)i(t) (1)

M(z) = Ronz + Roff(1− z) (2)

where i(t) is the current flowing through the memristor, z = w/D , z ∈ (0, 1) is the
boundary position of the insulation layer and the conduction layer, M(z) is the resistance
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value of the memristor, Ron is the resistance value of the memristor when the titanium
dioxide film is all the conduction layer, and Roff is the resistance value of the memristor
when the titanium dioxide film is all insulating layer.

Under the action of the electric field, the relationship between the ion drift rate and
the change rate of conduction layer width is as follows:

dw
dt

= µv
Ron

D
i(t) (3)

where µv = 10−14 m2 · s−1 · v−1 is the drift rate of the ions in the uniform field. Therefore,
the drift velocity of the interface can be obtained according to (3) and z = w/D:

dz
dt

= µv
Ron

D2 i(t) = ki(t) (4)

Since for the fixed model k = µv
Ron
D2 is a constant, it can be seen from (4) that the ion drift

is linear. However, the memristor is a nanometer device, and a small voltage can produce a
strong electric field, so as to lead to the nonlinear drift of ions, which is more significant at
the edge of the device. In order to characterize the nonlinear drift of ions, it is necessary to
multiply a window function g(z) [29] on the right side of (4), and then we obtain:

dz
dt

= ki(t)g(z) (5)

Equation (4) is also called a linear impurity drift model, and (5) is the window function
model. In addition, a piecewise function model [30] and a cubic nonlinear model [31] are
often used. The advantages and disadvantages of these four commonly used models can
be directly referred to [32].

In [33], the researchers presented general mathematical models of a voltage-controlled
memristor. .

M(t) = f (M, v, t) (6)

i(t) = M−1v(t) (7)

where M is the resistance value of the memristor, f is the nonlinear function, and M−1 = 1/M
is the memory conductance of the memristor.

Since the memristor is a nano-sized circuit component, it has not been marketed due
to the limitations of nano-technology. Therefore, the research into memristors is mainly to
establish the mathematical model of memristors [34,35], the equivalent circuit model [36,37],
and the simulation model [38,39]. The application research for memristors is mainly based
on various models of memristors and the nonlinear, nonvolatile, or switching characteristics
of memristors.

3. The Control Method Design of Memristors

In order to further broaden the application range of memristors, this paper designs
an iterative learning control method by analyzing the mathematical model of voltage-
controlled memristors. This method makes the input voltage of the memristor approach
the desired input voltage gradually with the increase of iterations, so that the resistance
value of the memristor gradually approaches the desired resistance value.

In this paper, let the output of the memristor be y(t) = x(t), where x(t) is the
resistance value of the memristor, let the input voltage of the memristor be v(t) as the
control variable, f (x, v, t) is the nonlinear function of v(t) and x(t), and assuming that
the k-th iteration is currently performed and the time interval of repetitive operation is
t ∈ [0, T], then the voltage-controlled memristor can be expressed as follows:{ .

xk(t) = f (xk(t), vk(t), t)
yk(t) = xk(t)

(8)
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where the subscript k indicates the number of the iterative learnings.

Assumption 1. There exists the partial derivative Ak, Bk of the nonlinear function f (xk(t), vk(t), t)
with respect to x, v, and Ak, Bk are differentiable with respect to t and Bk is bounded, where

Ak = ∂ f
∂x

∣∣∣∣∣ x = ξ ′k
v = η′k

, Bk = ∂ f
∂v

∣∣∣∣∣ x = ξ ′k
v = η′k

, Ak and Bk are functions of ξ ′k, η′k, t. According to

the differential median theorem, ξ ′k is a resistance between xk(t) and xk+1(t), and η′k is a voltage
between vk(t) and vk+1(t).

Assumption 2. The nonlinear function f (xk(t), vk(t), t) is reversible. That is, for a given desired
resistance xd(t), there is a unique desired control voltage vd(t), which can make the state of the
system be the desired value, i.e., satisfying

.
xd(t) = f (xd(t), vd(t), t) (9)

Assumption 3. At each operation, the system satisfies xd(0) = xk(0).

Remark 1. Assumption 2 is the controllability condition of a given trajectory. If the condition is
not satisfied, the control of the system will be meaningless. Assumption 3 requires that each iteration
satisfies the same initial condition, which is the basic condition to realize the perfect tracking control.
In practice, this assumption may not be strictly satisfied, but it can be made consistent with the
actual value by adjusting the initial value of the desired trajectory.

The paper uses the derivative-type (D-type) iterative learning control method to
control the resistance of the memristor. Then the control algorithm is designed as follows:

vk+1(t) = vk(t) + L
.
ek(t) (10)

where L is a learning gain, ek(t) = yd(t)− yk(t) is a tracking error of the resistance. The
system structure figure of the iterative learning control is shown as Figure 2.
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The control objective of this paper is to use the algorithm (10) to control the nonlinear
system (8) satisfying the Assumptions 1–3, so that the actual output yk(t) of the system
can gradually track the desired output yd(t) with the increase of iterations in a finite time
interval.

4. Convergence Analysis of the Control Algorithm

For the convenience of the subsequent convergence proof, the following related defini-
tions are first given here.
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Definition 1 [40]. The λ norm of a vector function h : [0, T] → Rn is defined as

‖h‖λ = sup
t∈[0,T]

{
e−λt‖h(t)‖

}
, (λ > 0)

where ‖·‖ is a norm on Rn.
The main results of this paper are given below.

Theorem 1. The iterative learning control algorithm (10) is adopted to control the nonlinear
system (8) satisfying the Assumptions 1–3. When selecting the bounded learning gain L, satisfying

‖I − BkL‖ = ρ < 1 (11)

then as k→ ∞ , the output yk(t) converges to the desired trajectory yd(t), i.e., lim
k→∞

yk(t) =

yd(t), which means the memristive resistance xk(t) can converge to the desired resistance
xd(t). Among them, the definition of Bk can be found in Assumption 1 above.

Proof of Theorem 1. According to the definition of the tracking error and Assumption 3, we find

ek+1(t) = yd(t)− yk+1(t)
= yd(t)− yk(t) + yk(t)− yk+1(t)
= ek(t)− (xk+1(t)− xk(t))
= ek(t)−

∫ t
0 f (xk+1(τ), uk+1(τ), τ)dτ+

∫ t
0 f (xk(τ), uk(τ), τ)dτ.

(12)

Since it is difficult to obtain the analytic expression of the system (8), the convergence
condition of the iterative learning control algorithm (10) cannot be obtained directly from
(12). As a result, the following processing is needed.

Let δxk = xk+1 − xk, δuk = uk+1 − uk, xk+1 expand at xk, then by (8), we obtain

δ
.
xk = Akδxk + Bkδuk (13)

Combining with (13), (12), (10), and Assumption 3 yields:

ek+1(t) = ek(t)−
∫ t

0 Φk(t, τ)Bk[uk+1(τ)− uk(τ)]dτ

= ek(t)−
∫ t

0 Φk(t, τ)BkL
.
ek(τ)dτ

= ek(t)−Φk(t, t)BkLek(t)
+Φk(t, 0)BkLek(0) +

∫ t
0

∂[Φk(t,τ)Bk L]
∂τ ek(τ)dτ

= ek(t)− BkLek(t) +
∫ t

0
∂[Φk(t,τ)Bk L]

∂τ ek(τ)dτ

= (I − BkL)ek(t) +
∫ t

0
∂[Φk(t,τ)Bk L]

∂τ ek(τ)dτ,

(14)

where Φk(t, τ) simply represents the state transition matrix Φk(ξ
′
k, η′k, t, τ) of Equation (13).

Taking norm of both sides of Equation (14), we derive:

‖ek+1(t)‖ ≤ ‖I − BkL‖‖ek(t)‖+
∫ t

0

∥∥∥∥∂[Φk(t, τ)BkL]
∂τ

∥∥∥∥‖ek(τ)‖dτ (15)

Multiplying both sides of Equation (15) by e−λt, where λ > 0, then there exists

e−λt‖ek+1(t)‖ ≤ ‖I − BkL‖e−λt‖ek(t)‖+b1

∫ t

0
e−λ(t−τ)e−λt‖ek(τ)‖dτ (16)

where b1 = sup
t∈[0,T],τ∈[0,t]

∥∥∥ ∂[Φk(t,τ)Bk L]
∂τ

∥∥∥. According to the definition of λ norm, by Equa-

tion (16) we have

‖ek+1‖λ ≤ ρ‖ek‖λ + b1
1− e−λT

λ
‖ek‖λ=

(
ρ + b1

1− e−λT

λ

)
‖ek‖λ = ρ‖ek‖λ (17)
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where ρ = ρ + b1
1−e−λT

λ . From the convergence condition (11) in Theorem 1, we know
0 < ρ < 1. It is possible to choose a sufficiently large λ so that 0 < ρ < 1 holds. Therefore,
we know from Equation (17) there exists lim

k→∞
‖ek‖λ = 0, that is, lim

k→∞
xk(t) = xd(t). As

such, we have completed the proof of Theorem 1. �

5. The Simulation Experiments

In order to further verify the effectiveness of the proposed algorithm, the simulation
experiments were performed on the following memristors. According to the cubic non-
linear model of the memristor proposed in reference [31], combining with the general
mathematical model of the voltage-controlled memristor, the resistance change rate of the
memristor in the paper is expressed as a cubic nonlinear function of the input voltage. Its
mathematical expression is shown as follows:

.
x(t) = f (x, v, t) = αv + βv3 (18)

where α and β are constant, v is the input voltage (control voltage), x is the resistance
of the memristor, and f (x, v, t) is the cubic nonlinear function of the input voltage. Let
the memductance be W(x, v, t) = x−1, then the output current of the memristor is
i(t) = x−1v(t). This expression (18) is a relatively smooth mathematical model of a
nonlinear function f (x, v, t). Select α = 400 Ω/(V · s), β = 400 Ω/(V3 · s), the initial
value of memristor is x(0) = 70 Ω, the magnitude of the sinusoidal AC voltage of the
memristor is vm, the frequency is f , i.e., v(t) = vm sin(2π f t). As t = 2 s, vm = 1.0 V,
f = 1.0 Hz, Figure 3 is the change curve of the resistance of the memristor with time, and
Figure 4 is voltage-memductance curve of memristor. Assuming vm = 1.0 V stays fixed,
when f is respectively chosen as 0.5 Hz, 5 Hz, 30 Hz, the voltage-current characteristic
curves of memristor are shown in Figure 5; assuming f = 0.5 Hz stays fixed, when vm
is respectively chosen as 0.2 V, 0.6 V, 1.0 V, the voltage-current characteristic curves of
memristor are shown in Figure 6. It can be seen from Figure 2 to Figure 6 that the resistance
of the memristor (18) has nonlinear characteristics, and the hysteresis loop of the memristor
(18) can gradually narrow with the increase of frequency and widen with the increase of
amplitude, that is, Equation (18) accords with the basic characteristics of the memristor.
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In order to verify the control effect of the proposed algorithm (10) on the memristor
resistance, Equation (18) is used to represent the resistance change rate of the memris-
tor. Let the resistance xk(t) be the output yk(t), and vk(t) be the control voltage. Select
α = 400 Ω/(V · s), β = 400 Ω/(V3 · s), the iterative learning gain is L = 0.0001, the
control voltage at first iteration is v0(t) = 0, the simulation time is T = 4 s, the sampling
period is 0.01 s, then the expected resistance of the memristor is divided into the following
two cases:

yd1(t) = xd1(t) = 260 + 240 sin(πt)
x1(0) = xd1(0) = 260 Ω

(19)

yd2(t) = xd2(t) =


1000t, 0 ≤ t < 1
1000, 1 ≤ t ≤ 2
−500t + 2000, 2 < t < 3
500, 3 ≤ t ≤ 4
x2(0) = xd2(0) = 0 Ω

(20)

The simulation results are shown in Figures 7–10. Figure 7 is the tracking curve of the
memristor’s resistance to Equation (19) at different iterations, Figure 8 is the tracking error
curve of the memristor’s resistance to Equation (19), Figure 9 is the tracking curve of the
memristor’s resistance to Equation (20) at different iterations, and Figure 10 is the tracking
error curve of the memristor’s resistance to Equation (20).
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It can be seen from Figures 7 and 9 that at the 60th iteration, the resistance of the
memristor has completely tracked the desired resistance in the time interval [0, 4] s,
rather than the asymptotic tracking with time. At the same time, it can also be seen
from Figures 8 and 10 that the tracking error gradually converges to 0 with the increase
of the number of iterations. Therefore, the control algorithm proposed in this paper can
make the resistance change according to the desired trajectory. The reason is that the input
voltage can approach the desired voltage step by step through the control system in Figure 2
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and the iterative learning control algorithm (10). As a result, the resistance of the memristor
tends to the desired trajectory, step by step.

In order to further verify the effectiveness of this algorithm, the memristor model
represented by Equations (2) and (4) is simulated here. Its simulation parameters are set
as follows: Ron = 100 Ω, Roff = 600 Ω, µv = 10−14 m2s−1V−1, D = 10 nm, the
iterative learning gain L = −0.00001, the control voltage at the first iteration v0(t) = 0,
the desired resistance of memristor Md(t) = 260 + 240 sin(πt), the initial resistance
M(0) = Md(0) = 260 Ω, and the simulation time T = 4 s. The simulation results are
shown in Figures 11 and 12. Among them, Figure 11 is the tracking curve at the 50th, 100th,
and 500th iteration learning, and Figure 12 is the convergence curve of the tracking error
with the iterations. As can be seen from Figures 11 and 12, the algorithm (10) in this paper
can also realize the resistance tracking control for the memristor model represented by
Equations (2) and (4).
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Hardware-adjustable resistors in engineering mainly include rheostats, resistance
boxes, and programmable resistors. The variation of the resistance value of these tradi-
tional hardware-adjustable resistors is discrete, and the accuracy of the resistance value
depends on the set block, the number of resistors, or the number of network nodes. How-
ever, the variable resistance designed by memristor and iterative learning control method
in this paper can be adjusted continuously and can track the desired resistance with ar-
bitrary precision. Therefore, compared with the traditional hardware-adjustable resistor,
the adjustable resistor designed in this paper can improve the continuity, flexibility, and
adjusting accuracy of the variable resistor.
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6. Conclusions

Aiming at how to make the resistance of the memristor change according to the desired
trajectory, this paper proposes an iterative learning control method for the resistance of
the memristor by analyzing the general mathematical model of the voltage-controlled
memristor. The method is to use successive iterative learning to make the control voltage
of the memristor gradually approach the desired voltage with the increase of the iterations,
achieving the purpose of changing the resistance of the memristor according to the desired
resistance. Furthermore, the convergence of the proposed algorithm is mathematically
strictly proved, and the convergence conditions are deduced. The research results show
that the proposed algorithm can make the resistance of the memristor completely track the
desired resistance in a finite time interval with the increase of iterations. The controller
based on this method not only has a simple structure that is convenient for engineering
implementation, but it does not rely on the precise mathematical model of the memristor. At
the same time, compared with the traditional digital potentiometer, the resistance control
system designed in this paper can improve the continuity, flexibility, and accuracy of
variable resistor, which will lay a foundation for the application research on memristors in
analog circuits, digital circuits, and other fields.
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