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£ X e S I § 1 I •§ | ABSTRACT 

Tokamak devices normally operate at such high temperatures that the 

r e s i s t i v e f l u i d d e s c r i p t i o n i s inappropriate . in p a r t i c u l a r , the c o l l i s i o n 

frequency may be low enough for trapped p a r t i c l e s to e x i s t . However, on 

account o f the high conduct iv i ty of such plasmas, one can i d e n t i f y two 

separate s c a l e lengths when d i scuss ing r e s i s t i v e bal looning modes. By 

describing plasma motion on one o f t h e s e , the connection l ength , in terms of 

k i n e t i c theory the dynamics o f trapped p a r t i c l e s can be incorporated. On the 

r e s i s t i v e s c a l e l ength , t h i s leads to a d e s c r i p t i o n i n terms o f modified f lu id 

equations i n which trapped p a r t i c l e e f f e c t s appear. The r e s u l t i n g equations 

are analyzed and the presence of trapped p a r t i c l e s i s found to modify the 

s t a b i l i t y propert ies q u a l i t a t i v e l y . 
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I. INTRODUCTION 

The simple res is t ive magnetohydrodynamic (MHD) model predicts the 

presence of unstable res i s t ive ballooning modes in toroidal confinement 

systems with a f in i te pressure grad ient . 1 ' 2 However, this model does not 

provide an adequate description of the hot plasmas encountered in present 

experiments. A number of calculations have introduced various aspects of the 

Braginskii two-fluid equations 3 in order to provide a more real i s t ic model. 

Thus ion parallel and perpendicular colliaional v iscos i t ies have been shown to 

provide a stabilizing influence. 4 Similarly, a fuller treatment of the 

electron dynamics to include the diamagnetic dri f t , electron temperature 

gradient, and tho thermal force in Ohm's law, together with parallel thermal 

conductivity in the electron temperature equation, leads to greater s tabi l i ty 

at higher temperatures. 

However, a l l these improvements remain within a fluid description of the 

plasma, valid as long as a particle suffers a co l l i s ion before completing a 

transit of the torus - the so-called Pfirsch-Schluter regime. Unfortunately, 

typical tokamak devices do not l i e in this parameter range, rather they belong 

to the 'banana' regime where trapped p<uticles can bounce before being 

scattered by Coulomb co l l i s ions . Such a situation requires a full kinetic 

description of the plasma and that i s the subject of this paper. 

In the treatment of res is t ive ballooning modes one can exploit the small 

parameter Jt / S R , where Jt i s the mode number and S R the magnetic Reynolds 

number, to establish two different scale lengths. In the ballooning 

representation s tabi l i ty problems reduce, in leading order, to equations 

defined on a coordinate along the magnetic field l ine . These two scale 

lengths then appear as the connection length, reflecting the toroidal 

periodicity, and a longer length inversely related to the res is t ive layer. I t 
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is then possible to average over the shorter connection length to derive 

eigenvalue equations defined on the longer resistive scale. This process 

naturally introduces various averages of toroidally modulated quantities 

which, when a fluid description is employed, are remir.iscent of Pfirach-

Schluter factors, average curvature, etc. 

If one wishes to explore resistive ballooning equations in the banana 

regimes, a similar averaging process applied to the kinetic equations will 

generate trapped particle effects in addition to the fluidlike factors 

mentioned above. Thus neoclassical modifications of the conductivity, 

perturbed bootstrap currents, etc. can be expected to enter. In this paper 

we wish to give a systematic treatment of these effects in an arbitrary 

axirjymmetric toroidal geometry based on a gyrokinetic description of the 

plasma particles. In this way we generalise and place on a firmer basi3 the 

ideas of Callen and Shatng.7 

In order to do this, we introduce an ordering scheme designed to 

introduce consistently the requisite physical effects and apply this to the 

solution of the gyrokinetic equations in parallel with Maxwell's equations. 

This ordering is chosen to introduce diamagnetic effects, perturbed bootstrap 

currents, and trapped particles, but still corresponds to the collisional 
2 2 

fluid limit u v e > k,v£ e on the long res is t ive .icale. (Here <u and k| are the 

mode frequency and wave number parallel to the magnetic f ie ld, while v e and 

v T e are the electron col l i s ion frequen-.— and thermal velocity.) The resulting 

eigenvalue equations therefore have a similar form to those from the two fluid 

models, but with new interpretations of the coefficients which now involve 

trapped particle effects . (These can greatly exceed the Pfirsch-Schluter l ike 

terms of the fluid model t) 
Finally, we discuss the stabi l i ty properties of the resulting equations. 
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I I . THE GYROKINETIC EQUATIONS AND THE ORDERING SCKEME 

The e l ec t ron and i on d i s t r i b u t i o n funct ions fj ( j » i , e ) can be taken to 

s a t i s f y the gyrokinet ic equations 

- i L . i t . 
v | 5 . V g . - i(o. - % . ) g j + y — e ^ ( g . e ' ) 

3 -I 

v, SB. 
(1) 

where 

e • iL 
: T̂  M3 a

3 

with FH^ a Maxwellian of dens i ty n.. and temperature T• , and +, A | , and 6u u are 

the perturbed e l e c t r o s t a t i c p o t e n t i a l and the components of the vector 

p o t e n t i a l and perturbed magnetic f i e l d p a r a l l e l to the equil ibrium magnetic 

f i e l d Bl& = JB/B). High mode-number perturbat ions have e l tonal representat ions 
iAS(;5)-iust 

such as <j> ~ <t>(x)e ' where 4 and S are s lowly varying functions of the 

s p a t i a l p o s i t i o n JJ, the mode number i s £ » 1 • and <u i s the mode frequency-

Equation (1) i s expressed i n terms of the v e l o c i t y space var iab le s E, u , and n 

where E i s the p a r t i c l e energy, u the magnetic moment per u n i t mass and i\ the 

2 3 2 

gyrophase angle . Thus B - (v ( + v^ ) / 2 and ]t =* v^ /2B where v ( and v^ are 

the v e l o c i t i e s p a r a l l e l and perpendicular to n 

v = o|vI |n + v^lcosn e^ + sinn e^) (3) 

where a is the sign of v, , and we have introduced a set of orthogonal unit 
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vectors a, &, and fl^ " n x SA* with fij, - normal t o a magnetic s u r f a c e , 

ip = constant . JQ and J-, are Besse l funct ions and the q u a n t i t i e s lu and a.=, 

representing f i n i t e larmor radius (PLR) e f f e c t B , are g i v e n i n terms of the 

gyrofrequency flj and wave vector J{ • JtSlS by 

v l kJLv± 
t . - jj— (k sinn - hj^oosn), o « - ^ — . (4) 

The diamagnetic frequency U*J « ( c t T i / e j ) ainn.i/a\|i and the r e l a t i v e 

temperature gradient t)j • } In n^/S i n TJ , so that 

I B j , 
. 0 * ^ = u > j [l + T ) j ( ^ - - f ) ] . (5) 

The magnetic d r i f t frequency iaD^ takes the form 

. 2 
u . = jr— k » n x (u7B + v. n ' J n ) ( 6 ) 

and Cj is the Coulomb collision operator for species j. We will characterize 

it by a collision frequency v*• 

We use an orthogonal flux coordinate system in configuration space: I|I 

the poloidal flux acts as a radial coordinate, c is the axisymmetric toroidal 

angle, and x * 3 a poloidal anglelike variable. In terms of the Jacobian J, 

major radius R, and poloidal magnetic field H., we have the gradient operator 

where'<&,, e , and e- are unit vectors. In general, the magnetic field can be 
expressed as 
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B * -Ĵ i x 7? + I(I(P )Vr (8) 

with the safety factor 

R 

In order to discuss the stabi l i ty of high node numbers, we introduce the 

ballooning representation, 6 writing, for example. 

•M*,?,X> = X ¥ U>A, X - 2wp) (10) 
p=-=> 

where p is an integer. Equation (1) is now to be solved on the infinite 

domain - °> < x < ™ without the need to consider periodicity constraints -

periodicity is guaranteed by the construction Eq. (10), if J etc, vanish 

sufficiently fast as jx (•»*• for this sum to exist. Since ^ need not be 

periodic, we can introduce the eikonal representation 

* =<Mx) e 1 * S (11) 

with 

S = c - / Xvdx + J^k^d* (12) 

so that a ' SLS " Of S ia of course a secular function of x- T n e boundary 

conditions for Eq. (1) are that g + 0 as |x | •*— for circulating particles and 

the matching of forward and backward streams at the turning points for trapped 
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partic les . 

To solve Eq. (1) we introduce an ordering scheme constructed to include 

the desired physical effects . This scheme la based on the small parameter e, 

where e*5 - ( r z / S R ) 1 ' ' 3 , which i s to be regarded as a technique for bookkeeping 

physical effects rather than a guarantee of numerical smallness. We introduce 

the quantities w b j , the bounce of transit frequency of a particle over a 

connection length, the FLR parameter bj • k x a j ' w h ' r e a j i s a l«mor radius, 

and 6 Q , the characteristic length in ballooning space (in terms of connection 

lengths) associated with res is t ive a f fec t s , 1 i . e . , 8g ~ e" 4 . Note that , 
2 2 2 

due to the secularity of fy, bj ~ 6 0 bjg where b j Q = k£aj. 
The f irs t condition that we impose i s the "banana" regime of 

co l l i s ional i ty 

v . 
- 3 - <. 1 . ( 133 

b3 

secondly, we seek a competition between the effects of ohmlc currents driven 

by parallel electric fields on the resistive scale 6 Q and bootstrap currents 

due to the perturbed pressure gradient. By analogy with the neoclassical 

transport theory9 this requires 

WDte ube 
be e 0 

Since we are considering pressure driven modes, we balance the expansion 

energy against inertia 



- 8 -

where o)D does not contain the secular!ty in " M I ^ M " "ô D̂  aa^ u *" w * d u * t o 

diamagnetic effects. Further we choose an optinal ordering 

in ~ v i b i (16) 

to include ion collisions! perpendicular transport and viscosity. Now, since 

tiijuj, ~ b /2 '"bi' c o n d i t i o n 83• OS) requires 

0 

where as condition Eq. (14) implies 

From conditions Eqs. (16), (17), and (IS) we have 

3 e Q ' b] o e 

Ag will be seen, i t ia convenient to choose tfi ~ Etiî i so that me ~ £ m̂  and 

bi ~ e 2 ( i . e . , b 1 0 ~ e 1 0 ) from conditions Eq. (19). This implies that the 

plasma is collisional on the resistive scale length since 

2 
<i)v oiv e „ , 

e e 0 -2 ,_„. 

— — - - E . (20> 

I Te 

rn addition, ion sound effects are negligible on the resistive scale 

- H - e n ~ e " ' . (21) 
ID, , 0 'Ti bi 
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In summary, we s o l v e Eq. (1) with t h e orderinga 

! s t i „ e , ^ _ ~ e

3 , !aL- e 5 f ^ . e , b e 2 
%t %± v w b i i 

for i o n s , and 

U D*e 3 ID 5 U D e 9 V e . 6 . _ , . 
—-Z e , e , e , ~ e , b ~ e (23) 
"be "be "be "be 

for e l e c t r o n s . Implied i n these orderings i s weak curvature r n /R — e , where 

r n i s the dens i ty s c a l e l e n g t h , which fo l lows from u ~ <i>«; thus (3 < z from 

the i d e a l bal looning l i m i t . 

In the next s e c t i o n we obtain s o l u t i o n s t o the gyrokine t i c Eg. (1) i n 

p a r a l l e l with the quas ineutra l i ty condi t ion 

I e, / d 3 v f. = 0 (24) 
j 3 J 

and Maxwell's equations 

k 2 A. = §• j , (25) 
1 

1 "b S Bi - ? " ^ * < 2 6 > 

Although *e compute jj, directly from fj, it is more convenient to consider a 

moment J e^ / d 3 v e 
3 3 

d i r e c t l y evaluate j | 

moment I e , j d 3 v exp ( i l ) of the gyrokine t l c equation Eg. ( t ) rather than 
3 J 
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T T 

-X ~ / d3v F {[l - [1 - — ) j 2 ] * - (1 - — ) j r t J, ^ — | ~ T ' m l L l u> J „ J T v w ' 0 1 k, c ' 
J 0 1 

+ I • / d 3 v g JJ^ J Q + i I e / d 3 v <j g | v , | n«7 J o (27) 

s i n c e t h i s automatical ly accounts for much c a n c e l l a t i o n in j ( due to 

q u a s i n e u t r a l i t y . 

We have formulated the problem to account for equil ibrium temperature 

gradients and a l s o perpendicular transport e f f e c t s . In the present paper we 

w i l l ignore these complicat ions t o emphasize the e s s e n t i a l s of banana regime 

dynamics, but propose to continue the f u l l treatment in a l a t e r paper. 

I I I . SOLUTION OP THE GYROKINETIC EQUATIONS 

Before so lv ing Eg. ( 1 ) , i t i s he lpful t o introduce an aux i l iary function 

hj such that 

h=^7n--J-),IF»i + h i ( 2 8 ) 

where 

^— n-V¥ . (29) 
no ~ ~ 

All quantities are assumed to have a dependence on two scales in the 

variable x> Thus we seek solutions for the field quantities of the form Eq. 

(11) In which 
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*<X> = * i 0 ) (X,z) + j - + t 1 ) ( X I z ) + . . . , (30) 

where fy^0' e t c . are regarded as per iod ic jver a connection length XQ i n x but 

have secular dependence on the r e s i s t i v e s c a l e var iab le 

z = / v ' d y < ' v ' E 3v/3it>) which has typ i ca l s c a l e length "- e ~ 4 x o ' 

F i r s t we consider the s o l u t i o n of the ion gyrok ine t i c equation. We 

expand the function h^ i n Eq. (28) i n powers of e , so lv ing for the response of 

h^ to the f i e l d q u a n t i t i e s order by order according to Eq, { 2 2 ) . I n i t i a l l y , 

however, we note that 

2 
m.c v. 3 v. - n v, . 2 

Thus 

3 h . < ° > 

3X 
= 0 {32) 

and 

v, dhL

n) im.c 

JB 3X + -f-^lkk&h™*^0*) 

g ^ " ' and h ^ 0 ' d i f f e r only by a perturbed Maxwellian in C±. 

Antic ipat ing that we sh^l l be able to demonstrate that * ( o ; = <r(0)(z) , the 

p e r i o d i c i t y propert ies of h^ on the short s c a l e x produce a s o l u b i l i t y 

condit ion on h^ (0) 
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/ ^ c ( h . « » ) = o ( 3 4 ) 

where the integral / represents an integration £ (JBdx/v,) over a connection 
X2 

length for passing particles and £ / (JB£X/[V| |/> where Xi 2 a r e t n e t u r n i n g 
« X, ' 

p o i n t for t h e t rapped p a r t i c l e s . Thus 

(0) n (z) 
h i = - n - F M i < 3 S > 

where n i s t h e equ i l i b r ium i o n and e l e c t r o n d e n s i t y . I n t e g r a t i n g Eq. (33) 

(1) i m,£c 
h . 

1 

In next order 

i L - z I B L K + f - * ( 0 , ( 1 - - i r ) } F M i < - V 1 ) < z > • <36> 

', a ( 2 ) m < c v « a V | ( 1 ) - ( 1 ) -
JB 3X 1 e JB 3y l B •* i r - i > (37) 

and finally 

v. 3h. < 3 ) m.c v. . v (0) 

^I-Ix- + iH"*- ^ f e t r ) \™ W O " *• *i 
2 (o) 

- ^ ^ t " - ^ > u ( 0 ) - * < 0 , * - ^ - - V - } . T. Mi 
1 

An equation for n̂  follows from annihilating the terms in Eq. (38) involving 

h{ 3 ' and h [ z ' *ry applying the operator j>Jdx /d 3 v. Use ia made of Integrations 

by perts in Xr ES» (37), and conservation of momentum in ion-ion collisions to 

eliminate the second term on the left-hand side. The result i s 
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^ - f O - ^ M ( 0 > - * ( 0 , * ^ > <»> 

where <h> s p JAdx/^Jdx. Equation (37) leads to the solubil i ty condition 

/ ^ C i ( h i ° , ) « 0 . (40, 

Since C i annihilates a Maxwellian, Eq. (36) implies h^ 1' sa t i s f i e s Eq. (34) 
(0) 

and can therefore be absorbed in h^ • Consequently, the ions possess a 

parallel flow velocity 

- i t lzT.c „,(0) ID.. % 

- . i --aB i -K* J Sr-C'-- iS) < 4 1 > 

which provides a contribution to the fluid inert ial energy. Note that this 

velocity i s generated by the trapped ions - a much smaller velocity exists in 

the Pfirsch-Schluter regime. 

Now we turn to the electron equation to determine a form of Ohm's law 

valid in the banana regime. Inserting the ordering Eq. (23), 

3 h e

( 0 > 
55P - 0 , !42, 

H I T - * « " . * > - < > • , 4 3 ) 

so that again we have a solubility constraint to determine h e
< 0 ) . 

Thus 

C " - * £ ' . . . •.."'-*.<"<.>. 
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In next order we repeat Eq. (43) and conclude that 

h e = 0 , h e - h^ (z) . (45) 

The fol lowing order y i e l d s 

v . 3h ira c v. . v. , „ . , „ . 
JL _J5 i_ o , i _ L L f ' i J O ' x ^ fT <2>1 - * - A z I — — f—1 h ( 0 ] + C f h { 2 > 1 JB 3x e * z I JB 3 X

 L B ^ e + C e l e J 

, n , w # ^ m c v, » v, 
(46) 

(3) „ (2) (0) 
The s o l u b i l i t y condi t ion on h e shows n e can be absorbed i n h » 

,- (2) i . e . , n ==0, and thus 

(3) im c V. (0) ID 
h . ^ ' ^ B ^ H e k - f - ^ - — ) ] * ^ ' t«> 

e 

In fourth order we can introduce the r e s i s t i v e s c a l e i n t o the operator a • X 

(4) 
The s o l u b i l i t y condi t ions on h f t are 

v - 3 n B < 3 ) 

< T ~ > BIT FHe + V " C ^ h e ^ = ° f o r P 3 9 3 1 ^ P a r t i c l e s ; 

and (49) 

X2 <3> 
I / («radx/|v, |) c ( h e ) = 0 for trapped p a r t i c l e s . 
a x l 

Equations (47) and (49) are analogous to the equations of banana n e o c l a s s i c a l 
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theory, with a perturbed pressure gradient across the field playing the role 

of the equilibrium gradient and a parallel pressure gradient playing the role 

of the parallel electric field. Although we could invoke the techniques of 

neoclassical theory to solve Eq. (49) for the full electron collision 

operator, we restrict ourselves for simplicity to a Lorentz collision 

operator. Allowing for the nonzero ion velocity given by Eq. (41), we have 

(3) a uv , C3) m 
C e i ( h e ) = v J v l ^ ~ r k h e + T* "l i v l FH*) • < 5°> 

e 

From Bqs. ( 4 7 ) , ( 4 9 ) , and (SO) we can s o l v e for h ' 3 ' and coupute 

iot T w { 0 ) u ,̂ , 3n T _ „ 

u„ £ i x[n - ^ L _ ( 1 - J2)] -_L.<^1> • - • » £ 
De e Bn L e T *• w y j v . J 3 z r a 2 V n 

e e <B > 

where 

B"1 

K = i - < E 2 > / m a X [XdX/«1-XB)V 2» . (52) 
* 0 

The effects of trapped particles are proportional to 1 - K. Finally, in fifth 

order 

sr - i f - * <V*') - >• - 5 - •• 3k fc IF-' "." - " . " 

•^^.Ma'->m-'-4-s^C-\ 
so that the solubility condition on h * s ' determines n a a«* in Eg* <39) 



- 1 6 -

W T «B ( °> 

i m p l i c i t i n Eqs. ( 3 9 ) , ( 4 1 ) , ( 5 1 ) , and (54) i s the form of Ohm's law 

appropriate to the banana regime; we w i l l present i t i n the next s e c t i o n where 

we analyze Maxwell's equat ions . 

IV. MAXWELL'S EQUATIONS AND THE EIGENVALUE EQUATION 

With the information to the d i s t r i b u t i o n funct ions gleaned i n the 

previous s e c t i o n we can compute the r e s u l t s o f Maxwell's equations and der ive 

an e igenvalue equation. 

From the q u a s i n e u t r a l i t y cond i t ion , Eq. ( 2 4 ) , we obta in a simple 

r e s u l t . Using the d e f i n i t i o n s , Eqs. (2) and (28) for the d i s t r i b u t i o n 

funct ions and the s o l u t i o n s Eq. (35) with Eq. (39) and Eq. (44) with Eq. ( 5 4 ) , 

i t i s ev ident that q u a s i n e u t r a i i t y impl ies $'") (Xr z ) = $ (z) i f our 

s i m i l a r assumption about f ' 0 ' i s c o r r e c t . 

Now considering the perpendicular current equation, we use Eqs. ( 2 ) , 

( 2 8 ) , ( 3 5 ) , ( 3 9 ) , ( 4 4 ) , and (54) to c a l c u l a t e j ^ . Equation (26) then impl ies 

(0) (0) 
6B • ._ 11.. , „ , *).. . $B 

^U-?-«v -ci--?a- j «- 5 H. (55) 
B J 

Thus 6Bj ' ° ' / B ~ 0(B) < e 2 and we can s impl i fy the r e s u l t Eq. ( 5 5 ) , usir.g the 

d e f i n i t i o n (5) for (D«JI 

(0) 

f i t - , W g • «> (56) 
B

 U B 2 

where we have defined p ' - ( T ± + T e ) in/Zp. 
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At t h i s point i t i s convenient to <five an e x p l i c i t form for Ohm's law 

using Bqe- ( 3 9 ) , ( 4 1 ) , ( 5 1 ) , and (54) now that we can ignore contr ibut ions 

, ( 0 ) 2 from 6B| ~- e . 

B U) L 2 ~ _ 2 . ' 

+ Sf (1 -^k^^-^ 
where nj = n w e i / n e i s the p a r a l l e l r e s i s t i v i t y i n the Lorentz model. The 

f i r s t term i n j | i s the perturbed boots trap current proportional to the 

frac t ion of trapped p a r t i c l e s whi le the second term i l l u s t r a t e s the ro le of 

trapped p a r t i c l e s in reducing the p a r a l l e l c o n d u c t i v i t y . 

We can determine the r e l a t i o n s h i p between 4^° ' and y ' 0 ' through Maxwell's 

Eq. (25) which takes the form 

3 « " 4niu JB 3 X ' < 5 6 ) 

In leading order we ver i fy our assumption that V ( 0 ) ( x . z ) = f ' 0 ) <z>. whi le in 

next order we obtain a s o l u b i l i t y condi t ion 

< r> ~ 0 . (59) 

Using the form Eq. (57) for j , , we obtain 

«"%. , "l^' <B2> 1 

d Z L 4 T i ( ^ * e , K < B 2 / | 7 s t 2 > ' 
^(0) i^IspV' i^c 2 <B2><1/|7s|2> 

dz + iu-v.J < v V J > K t ^ , , ^ " K ] ' < 6 0 ) 
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Now we turn to the v o r t i c i t y Eq, (27 ) , expanding the Bessel functions for 

a « 1 and performing the i n t e g r a l s over Maxwellians. The f i r s t nontr iv ia l 

order y i e l d s 

| V S | 2 . „ ( ! ) J U I <0) i a r ^ ' f av ' " dv'"\i 7Tn,,,,(0) 9 f M ( 6 1 ) 
J B " " K a Z " a X V 

where we have evaluated the dominant contribution t o / d v u^g ar i s ing from the 

secular term i n u) D , using the r e s u l t s Eqs. (35 ) , (39 ) , ( 4 4 ) , and ( 5 4 ) . 

Integrat ing with respect t o x y i e l d s 

where the constant of in tegrat ion ¥ ( z ) can be determined from the s o l u b i l i t y 

condi t ion for f* 1 ' . Equation (62) then y i e l d s an equation for B?^1 '/<*X > which 

i s a quantity required in the f i n a l order of the v o r t i c i t y equation 

4na. j i a x ^ J B 2 H ' 3x l

 J B 2 az J 

+ v . „ ( _ _ _ _ } + v . _ ( _ _ , . _ _ ) ] 

IZ S! 2 rm « 2 

B <uB T 

. Jtzl p r 3 m V l 1 8 f V (63) 

Here g' represents correc t ions to g* ' which couples to the secular geodesic 

p a r t o f co_ and competes with the contributions from g * 0 ' and the remainder of 
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w D ; i.e., the effects of normal curvature. The eigenvalue equation manifests 
itself as the solubility condition for * < 2 > in Eq. (63). 

First we note that the definition of h, Eq. (26), implies that the 
contribution of the last term to the solubility condition is 

where we have integrated by pazta in x. The term in SV^'/Sx oan be evaluated 
from Eq. (62). Using the kinetic equation for h, correct to fourth order In 
the expansion parameter e, and taking account of total momentum conservation 
in collisions between species, we can write the last term as 

-i<I/a3v^-[^v. {^L-^OU,. j „<»]>. <65, 
3 J J k=1 J 

in deriving this result we have uaed the facts that the ion-ion collision term 
annihilates a shifted Maxwellian and conserves ton, uaoentua. ka discussed 
earlier, we have also ignored perpendicular transpor' effects arising from the 
ion collision operator. The last term in Eq. (65) can be shown to vanish by 
successive integrations by parts and use of Eqa. (36), (37), and (38), again 
noting that the ion collision term annihilates a shifted Maxwellian. 
Consequently, we can express Eq. (65) as 

- if! [.twi < ̂ Li > - < ̂  > I T. £ ] (66) 

or, introducing the results for u, ^ and iu given in Eqs. (39), (41), and (54), 
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- • V l V . - W # i ) < -L > • - Ll < -XJ > p.. fj- (•«> - *<°>) . (67) 

When Eq. (41} with the r e s u l t Eq, (54) i s used i n expression Eq. ( 6 5 ) , we 

obta in a modif icat ion to the i n e r t i a l term ar is ing from the p o l a r i z a t i o n d r i f t 

i n Eq. ( 6 3 ) , i . e . , the f i r s t term on the right-hand s i d e . 

The s o l u b i l i t y cond i t ion on Eq. (63) together with Eqs. ( 6 0 ) , ( 6 2 ) , and 

(67) can be combined to o b t a i n , af ter cons iderable algebra, the des ired 

eigenvalue equation, introducing the scaled var iab le s 

X = Z Q z , Q = - i C 0 i o (68) 

where 

c 2 n . a 2 <B2> . . . «cm.n <R2> <B 2 /R 2 B 2 > , . , 
0 "• 2 2 2 ^ *• r 2 \ 2 J 

4T<B':/R':B S ( 4* dq/dv) ' 

2 2 2 2 2 2 2 
c n,£ <B > , , , 4nra.n <R > <B /R B > , , , 

o = r • r 1 / 3 r _ i x 11/3 
T ) ^ 2 2 2 J L r 2 i 2 J ' 

(69) 

with V represent ing the volume within a f lux surface so that <\)'/J> = 4ir 

dq/dV, we obta in 

A V 2 A f c ( 0 ) 1 A k ( 0 ) 

= 4 , ( 0 ) I X 2 ^ - D R + » (H + 1 - f) - 1(1 - f) [H+T (fc-UH - I]]} . 
(70) 

Here QJ are the sca led vers ions o f to - u * j , r - 1 + X 2 / Q e , and H and D R have 
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been previously defined by Glaaser, Greene, and Johnson In their study of 

resistive modes in a torus10} in particular D R > 0 implies instability for 

resistive interchange nodes in a torus. We have introduced the new quantities 

, <B 2/R 2B 2> 
L - ,? , M . = — * — (71) 

if (dq/dV) < B 2 > 

and 

1 - K , <72) 

which is proportional to the fraction of trapped particles. It is to be 

expected th&t T will dooinate D R, H, and L since, for example, in a large 

aspect ratio tokamak T « (a/JO ' whereas the other quantities are of order 

(a/R) (a is the minor radius). Trapped particle effects manifest themselves 

in two way3. First, they modify the conductivity and introduce a perturbed 

bootstrap current through Eq. (60). Second, they produce aniaotropies in the 

perturbed pressure producing the contributions -Tram Eq. (67), which are absent 

in a collisional fluid description. Form.-illy, we can recover the resistive 

MHO limit by letting L, T * o. 

V. RESISTIVE STABILITY 

In this section we discuss the stability properties of the modes 

determined by the eigenvalue Eq. (70), Solutions of this equation must 

converge as |x| + « and connect onto solutions of the ideal ballooning 

equation as |x| + «. 

Let us consider the behavior of Eq. (70) as X + 0. we obtain, reverting 

to the variable z. 
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d 2 d h ( 0 ) (0) 
_ 2 O _ _ + ^ B l . 0 ( 7 3 ) 

where D = E + F + H i s the quantity that characterizes the Mercier s t a b i l i t y 

c r i t e r ion D < 1/4. The solution of Eq. (73) i s 

if = C 1 2 + C 2 Z (74) 

where 

d ± = - j i Uj- D ) 1 / 2 J . (75) 

The coefficients C, and C 2 must be obtained by numerical solution of the ideal 

ballooning equation, which symptotically approaches the form Eq. (74) as 

z + °° 4 . 

The solution Eq. (74) provides a boundary condition at X = 0 for Eq. (70) 

which i t s e l f wi l l require numerical solution in general . In th i s paper we 

inves t iga te r e s i s t i ve modes which are independent of the matching procedures, 

i . e . , are not driven by the energy available in the ideal ballooning region 

X << 1. Rather we focus on the modes dominated by the i r behavior in the 

region x £ 1. These are rapidly growing modes with Y ™ ( n 2 / s R ) ' / ' 3 , analogues 

of the r e s i s t i v e interchange modes of r e s i s t ive MUD. 

By considering the case where DR and T are small, i t i s possible to 

obtain analyt ic r e s u l t s . Formally ordering DR ~ T /~ S « 1 , we seek 

solutions in the region X2/Q -» S" 1 >> I 1 , i . e . , essent ia l ly e l ec t ros t a t i c 

per turbat ions . Equation (70) then simplifies to 
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- < t - t 0 ) { x 2 ^ - D R - l [ n + T ( L - 1 + H)] + - | H ( H + 1 + L ) } (76) 

where i t i s necessary t o expand t o 0(6 ) • 

We now demonstrate i n s t a b i l i t y i n the l i m i t H - 0 . (A f u l l s o l u t i o n o f 

Eq. (76) i s presented i n the Appendix*} In t h i s c a s e , Eq. (76) has a s o l u t i o n 

(0) -aix2/2 i • e 

provided that 

OQ (L - 1 ) - - D - L(l - 1 )T , 

(77) 

O*Qe - oL(1 - T) - QBi . (78) 

Thus we have an e igenvalue equation 

[ D R + l (L - l )T] [ D R + L(L - l ) ] = Bfiif ij l . " l ) 2 <79> 

provided 

Re a > 0 . (80) 

Recal l ing that L ~ 1 , | T | » JD | , we then have 

Q Q ^ - L2T . (81) 



-24-

since 

Re a > 0 for unstable nodes {Re Q > 0) if LT < 0, which is the case in a 

normal tokamak with p'q' < 0. Furthermore, X /Q_ ~ V ° S 6 ~ 1/T - & as we 

assumed in deriving Eq. (76). 

In the limit ui* + 0 Eq. (81) implies 

Q = ( L 2 T ) 1 / 3 , (83) 

whereas i f ID, > QQQ we f ind an unstable root with a reduced growth ra te 

Q = ( ^ ) 2 L 2 T . (84) 

I t i s i n t e r e s t i n g t o evaluate these r e s u l t s for a l arge aspect r a t i o 
o 

tokaraak wi th c i r c u l a r sur faces and 0 ~ X, where f5 ~ = 8up/B „ , We f ind 

D R ~ - T , H ~ — , L ~ _ . , T ~ E t 85) 
9 

where e = r/R < 1, ; 

a = -ft'Rq 2 j £ ^ g e £ d £ 
R 2 dr B p p dr 

and s= (r /q ) (dq/dr) charac ter ize i d e a l MHD bal looning i n s t a b i l i t y . Thus we 

are j u s t i f i e d i n ignoring D R and H r e l a t i v e to L and T. In terms o f these 
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q u a n t i t i e s , Eq. (83) can be wr i t t en 

Q ~ e " 1 ' 2 a 2 ' 3

 a ~ 2 ' 3 . (86) 

Recal l ing the d e f i n i t i o n s g iven by Eq. (69) 

where S R = T R / T A with T H ~ r 2 / t i | C 2 and T A » Rq/V A , V A being the Alfven 

speed. Thus Che growth ra te of t h i s mode i s g iven by 

1/6 2/3 /IZT1/3 1 (88) 

I t i s amusing to compare th i3 with the r e s i s t i v e bal looning mode 

discussed previous ly i n the c o l l i s i o n a l PfirBch-Schluter r e g i m e 1 2 ' 1 3 which has 

a growth rate 

* 2 / 3 ( | V / 3 f . (B9> 
B A 

Thus they have e s s e n t i a l l y the sane growth r a t e for reasonable values o f el 

In the Appendix we d i scuss the s o l u t i o n s o f Eq. (70) more f u l l y , i t i s 

shown that only the lowest harmonic, Eq. ( 7 7 ) , i s c o n s i s t e n t with the 

expansion Eq. (76) for f i n i t e values of L. Further, for a normal tokantak with 

p 'q' < 0 there are no addi t ional unstable s o l u t i o n s o f the more exact Eq. (70) 

(we do not d i scuss the p o s s i b i l i t y o f matching t o the idea l bal looning 

r e g i o n ) . 
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VI. CONCLUSIONS 

We have shown that, even in the banana regime of collisionality, 

resistive modes in arbitrary axisymmetric toroidal geometry can be described 

by a fluidlike equation. However, the effects of colliaionless particle 

motion, in particular the dynamics of trapped particles, are represented in 

the coefficients of these fluidlike equations. This ia a consequence of the 

fact that in the ballooning space resistive stability is governed by equations 

defined on a long resistive scale, which are obtained by averaging over the 

collisionless dynamics on the scale of the connection length. The essential 

contribution of this paper is, indeed, to obtain this effective resistive 

fluid equation, Eq. <70). 

The present discussion has been limited for simplicity to the inclusion 

of trapped particle and diamagnetic effects. Extensions to include thermal 

effects, i.e., temperature gradients and thermal transport, are envisaged; 

likewise the effects of ion-ion collisions. Furthermore, the intimate 

relationship of this theory to neoclassical transport theory suggests that 

formulations for arbitrary collision frequency are possible.14 

The eigenvalue equation describing resistive stability, Eq. (70), has 

been discussed. In general, this requires numerical solution but, when 

curvature and trapped particle effects are weak, analytic dispersion relations 

can be derived. Examination o£ this eigenvalue equation has indicated the 

existence of modes driven by trapped particle effects, Eq. (83), The effects 

of diamagnetic drifts are included and, as shown in Eq. (84), tend to suppress 

but not stablize this instability. For the particular case of a large aspect 

ratio tokamak with circular surfaces, we find an instability with a growth 

rate very similar to that obtained by Gribkov ^t ^ l ^ , 1 2 and Carreras and 
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Diamond 3 from the resistive HHD equation. 
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APPEHDIX 

In this Appendix we analyze Eq. (76) more completely. With the 

substitutions 

*e 

and the change of v a r i a b l e 

X 2 f ™ ~ L 2 (1~T) 2 - i1 /2 u » — [QQ.Q + ^ 1 ' , 

we find <|i s a t i s f i e s Whittaker's equation 

where 

y = - j ( 2 H + L + l ) 

(A2) 

du u 

(fl-J) 
[2D + 2LH + + L(Ir-1) + TU2H+L-1)] 

S l W i Q e * [ L 2 ( 1 - T ) 2 / 4 ] } 1 / 2 

The condi t ion that t h i s s o l u t i o n i s well-behaved i a 1 5 

— + u - K = -m , l i s a non-negative i n t e g e r , !&5) 

which provides the e igenvalue equation 
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[DR + LH + ~ (L - 1) + TL(H + | - J)]2 

2 
- [ f i G ^ + J - O - • 1 ) 2 ] ( 4 « + 1 - L - 2H)2 . <A6> 

Equation (79) wil l be recognized as the special case H - 0 and m » 0. We 

note that i f m ̂  0 we have (with H - 0 for simplicity) 

2 
-2L n>(2m+1-L) , ,._> 

«2±°e ' 4m7i=L 1 ' < A 7 ) 

but these eigenvalues are inconsistent with the expansion X / Q 8 « 1 used in 

deriving Eq. (76). i f we seek modes with X 2 /B e ~ 1 • t n e n t n e eigenvalue i s 

determined by the f in i te quantities H and L in the limit D R f T + 0. Ignoring 

FIJI effects , setting H • 0 for simplicity and introducing Y2 = X2/Q, Eq. (70) 

becomes 

i ? ^ - S ^ - « • * ' " • 
Numerical solution shows no unstable modes exist for a normal tokamak with 

L < 0. 
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