PPPL-2131

DR-O 384.0 PPPL-2131

RESISTIVE BALLOONING MODES IN AN AXISYMMETRIC TOROIDAL PLASMA WITH LONG MEAN-FREE PATH

By

J. TV. Connor and L. Chen

PRINCETON UNIVERSITY PRINCETON, NEW JERSEY

RESISTIVE EALLOONING HODES IN AN AXISYMMETRIC TOROIDAL PLASMA bility for the accuracy, completeness, or usefuiness of any information, apparatus, product, or binocess disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by teade name, trademark, ence herein to any specific commercial product, process, or service by tade name, trademark, manufacturer, or otherwise does not necestarily constitute or imply its endorsentent, recom-
mendation, or favoring by the United States Government or any agency thereot. The views

WITH LONG MEAN-FREE PATH

by
PPPL--2131
DF84 017062
J. H. Connor
Cuhlam Laboratory, Abingdon,
OX 14 3DB, England
(Euzatom/UKAEA Fusion Association)
and
L. Chen

Tokamak devices normally operate at such high temperatures that the resistive fluid description is inappropriate. In particular, the collision frequency may be low enough for trapped particles to exist. However, on account of the high conductivity of auch plasmas, one can identify two separate scale lengths when discussing resistive ballooning modes, By describing plasma motion on one of these, the connection length, in terms of kinetic theory the dynamice of trapped particles gan be incorporated. On the resistive scale length, this leads to a description in terms of modified fluid equations in which trapped particle effects appear. The resulting equations are analyzed and the presence of trapped particlea ts found to modify the stability propertles qualitatively.

I. INTRODUCTION

The simple resistive magnetohydrodynomic (MHD) model predicts the presence of ungtabe resistive balloning modes in toroldal confinement systems with a finite pressure gradient. 1,2 However, this model does not provide an adequate description of the hot plagmas encountered in pregent experiments. A number of calculations have introduced various aspects of the Braginskii twofluid equations in order to provide tore realistic model. Thus ion parallel and perpendicular colligional viscosities have been shown to provide a stabilizing influence. 4 Similarly, a fuller treatment of the electron dynamics to include the diamagnetio drift, eleotron temperature gradient, and tho thermal force in Ohm's law, together with parallel thermal conductivity in the electron temperature equation, leads to greater stability at higher temperatures. 5

However, all these improvenents remain within a fluid description of the plasma, valid as long as a particle suffers a colligion before completing a transit of the torus - the so-called Pfirsch-Schlüer regime. Unfortunately, typical tokamak devices do not lie in this paraneter range, rather they belong to the 'banana' regime where trapped particles can bounce before being scattered by coulomb coliisions. Such a situation requires a full kinetic description of the plasma and that is the subject of this paper.

In the treatment of resigtive ballooning modes one can exploit the small parameter ℓ^{2} / S_{R}, where $\&$ is the mode number and S_{R} the magnetic Reynolds number, to egtablish two different scale lengths. 1 In the ballooning representation stablitit problems reduce, in leading order, to equations defined on a coordinate along the magnetic field line, 6 mese two scale lengths then appear as the connection length, reflecting the toroidal periodicity, and a longer length inversely related to the registive ldyer. It
is then possible to average over the shorter connection length to derive elgenvalue equations derined on the longer resistive scale. This process naturally introduces various averages of toroidally modulated quantities which, when it fluid description is employed, are remisiscent of pfirachSchlüter factors, average curvature, etc.

If one wishes to explore resistive ballooning equations in the banana regimes, a similar averaging process applied to the kinetic equations will generate trarned particle effects in addition to the fluidike factors mentioned above. Thus reoclassical modifications of the conductivity. perturbed hootstrap currents, ${ }^{7}$ etc. can be expected to enter. In this paper we wish to give a systematic treatment of these effects in an axbitrary axisymmetric toroidal geometry based on a gyrokinetic description of the plasma particles. In this way we generallze and place on a firmer basis the ideas of Callen and Shaing. ${ }^{7}$

In order to do this, we introduce an ordering scheme designed to introduce consistentiy the requisite physical effects and apply this to the solution of the gyrokinetic equations in parallel with Maxwell's equations. This ordering is chosen to introduce diamagnetic effects, perturbed bootstrap currents, and trapped particles, but still corresponds to the collisional fluid limit $w v_{e}>\mathrm{k}_{\mathrm{i}}^{2} v_{\mathrm{Te}}^{2}$ on the long resistive acale. (Here ω and $k_{\|}$are the mode frequency and wave number parallel to the magnecic field, while ve and $V_{T e}$ are the electron collision frequen** and thermal velocity.) the resulting eigenvalue equations therefore have a similar form to those from the two fluid models, but with new interpretations of the coefficients which now involve trapped particle effects. (These can greatly exceed the Pfirsch-Schlüer like terms of the fluid model 1)

Finally, we discuss the stability properties of the reaulting equations.
II. THE GYFOKINETIC EQUATIONS AND THE ORDERING SCIIDME

The electron and ion distribution functions $f_{j}(J$. $i, e)$ can be taken to satisfy the gyrokinetic equations ${ }^{8}$

$$
\begin{align*}
& v_{1} n^{\circ} \nabla g_{j}-1\left[\omega-\omega_{D j}\right) g_{j}+\phi \frac{d \pi}{2 \pi} e^{-i L_{j}} c_{j}\left(g_{j} e^{i L_{j}}\right) \\
& =\frac{-i e_{j}}{T_{j}} F_{M j}\left(\omega-\omega{ }_{j}{ }_{j}^{T}\right]\left[J_{0}(\alpha)\left(\phi-\frac{\mathbf{v}_{1}}{c} A_{1}\right)+J_{1}(\alpha) \frac{\mathbf{v}_{\perp}}{\delta_{\perp}} \frac{\delta B_{i}}{c}\right]
\end{align*}
$$

where

$$
\begin{equation*}
f_{j}=-\frac{e_{j} \phi}{T_{j}} F_{M j}+g_{j} e^{i L_{j}} \tag{2}
\end{equation*}
$$

with $F_{M j}$ a Maxwellian of denaity n_{j} and temperature T_{j}, and $\phi, A_{\|}$, and $\delta \mathrm{E}_{\Downarrow}$ are the perturbed electrostatic potential and the components of the vector potential and perturbed magnetic field parallel to the equilibrium magnetic field $B(B=B / B)$. High mede-number perturbations have eikonal representation such as $\phi \sim \phi(x) e^{i \ell S(x)-i u s t}$ where ϕ and S are slowly varying functions of the spatial position α, the mode number is $\& \gg 1$, and ω la the mode frequency. Equation (1) is expressed in terms of the velocity space variables E, μ, and n Where E is the particle energy, u the magnetic moment per unit mass and n the gyrophase angle. Thus $E=\left(v_{1}{ }^{2}+v_{\perp}{ }^{2}\right) / 2$ and $\mu=v_{\perp}{ }^{2} / 2 B$ where v_{1} and v_{\perp} are the velocities parallel and perpendicular to 0

$$
\begin{equation*}
y=\sigma|v| n+v_{1}\left(\cos n e_{4}+\operatorname{sim}{\underset{\sim}{4}}^{e_{4}}\right) \tag{3}
\end{equation*}
$$

where a is the $s i g n$ of v_{1}, and we have introduced a set of orthogonal unit
vectors $A_{1} \varepsilon_{\psi}$ and $\varepsilon_{0}=\mathbb{A} \epsilon_{\psi}$, with ϵ_{ψ}. normal to a magnetic surface, $\psi=$ constant. J_{0} and J_{1} are Bessel functions and the quantities L_{j} and α_{j}, representing finite larmor radius (FLR) effects, are given in terms of the gyrofrequency Ω_{j} and wave vector $k=l \ell s$ hy

$$
\begin{equation*}
L_{j}=\frac{v_{\perp}}{\Omega_{j}}\left(k_{\psi} s \neq \pi n-k_{b} \cos n\right), \alpha_{j}=\frac{k_{\perp} v_{\perp}}{\Omega_{j}} . \tag{4}
\end{equation*}
$$

The diamagnetic frequency $\omega_{j}{ }_{j}=\left(\alpha \ell r_{j} / \rho_{j}\right) \quad \partial \ell n n_{j} / \partial \psi$ and the relative temperature gradient $\mathrm{n}_{\mathrm{j}}^{\mathrm{T}}=3 \ln \mathrm{n}_{\mathrm{j}} / \partial \ln \mathrm{T}_{\mathrm{j}}$, so that

$$
\begin{equation*}
w^{*}{ }_{j}^{T}=w_{j}^{*}\left[1+\eta_{j}^{T}\left\{\frac{m_{j} E}{T_{j}}-\frac{3}{2}\right)\right] . \tag{5}
\end{equation*}
$$

The magnetic drift frequency $\omega_{D j}$ takes the form

$$
\begin{equation*}
\omega_{D j}=\frac{1}{\Omega_{j}} k_{\perp} \cdot \underset{\sim}{n} \times\left(\underset{\sim}{D} B+v_{1}^{2} \underset{\sim}{n} \cdot \underset{\sim}{n}\right) \tag{6}
\end{equation*}
$$

and c_{j} is the Coulomb collision operator for species j. We will characterize it by a collision frequency v_{j}.

We use an orthogonal flux coordinate system in configuration space: ψ the poloidal flux acts as a radial coordinate, 5 is the axisymmetric toroidal angle, and X is a poloidal anglelike variable. In terms of the Jacobian J, major radius R , and poloidal magnetic field H_{X}, we have the gradient operator
where f_{ψ}, f_{γ}, and e_{ζ} are unit vectors. In general, the magnetic field can be expressed as

$$
\underset{\sim}{\mathrm{B}}=-\nabla \psi \times \underset{\sim}{\square} 5+I(\psi) \underset{\sim}{5}
$$

with the safety factor

$$
\begin{equation*}
q(\psi)=\frac{1}{2 \pi} \oint v d x ; v \equiv \frac{I J}{R^{2}} . \tag{9}
\end{equation*}
$$

In order to discuss the atability of high mode numbera, we introduce the ballooning representation, ${ }^{6}$ writing, for example,

$$
\begin{equation*}
\phi(\psi, 5, x)=\sum_{p=-\infty} \bar{\phi}(\psi, 5, x-2 \pi p) \tag{10}
\end{equation*}
$$

where p is an integer. Equation (1) is now to be golved on the infinite domain $-\infty<\chi<\infty$ without the need to consider periodicity constraints periodicity is guaranteed by the congtruction Eq. (10), if $\bar{\phi}$ etc, vanish sufficiently fast as $|X|+\infty$ for this sum to exist. since $\bar{\phi}$ need not be periodic, we can introduce the eikonal representation

$$
\begin{equation*}
\bar{\phi}=\phi(x) e^{i \& s} \tag{11}
\end{equation*}
$$

with

$$
\begin{equation*}
s=\zeta-\int^{X_{v}} v x_{x}+\int_{k(\psi) d \psi} \tag{12}
\end{equation*}
$$

so that 0 - $Q=0 ; S$ is of course a secular function of χ. The boundary conditions for Eq. (1) are that $g+0$ as $|X|+\infty$ for circulating particles and the matching of forward and backward streams at the turning points for trapped
particles.
To solve Eq. (1) we introduce an ordaring scheme constructed to include the desized physical effects, This scheme ia based on the small paraneter ε, where $E^{A}=\left(n^{2} / S_{R}\right)^{1 / 3}$, which is to be regarded as a technique for bookkeeping physical effects rather than a guarantee of numerical smallness. We introduce the quantities $\omega_{b j}$, the bounce of tranait frequency of a particle over a connection length, the $F L R$ parameter $b_{j}=k_{\perp}^{2} a_{j}^{2}$, where a_{j} is a larmor radius, and θ_{0}, the characteristic length in ballooning apace (in terms of connection lengths; associated with resistive effecta, $1, e_{0}, \theta_{0} \sim \epsilon^{-4}$. Note that , due to the secularity of $k_{\psi}, b_{j} \sim \theta_{0}^{2} b_{f 0}$ where $b_{j 0}=k_{b}^{2} a_{j}^{2}$. The first condition that we impose is the "banana" regime of collisionality

$$
\begin{equation*}
\frac{v_{j}}{w_{b j}}<1 \text {. } \tag{13}
\end{equation*}
$$

Secondly, we seek a competition between the effects of ohmic currents driven by parallel electric fields on the reaistive scale θ_{0} and bootstrap currents due to the perturbed pressure gradtent. By analogy with the neoclassical transport theory ${ }^{9}$ this requires

$$
\begin{equation*}
\frac{\omega_{\text {Dqe }}}{\omega_{b e}} \sim \frac{\omega_{b e}}{v_{e^{\theta}}} \tag{14}
\end{equation*}
$$

Since we are considering pressure driven aodes, we balance the expansion energy againet inertia

$$
\begin{equation*}
\omega^{2} \theta_{0}^{2} \approx \frac{\omega_{0} \omega_{D}}{b_{10}} \tag{15}
\end{equation*}
$$

where ω_{D} does not contain the secularity $\operatorname{in} \omega_{\mathrm{D} \psi}\left(\omega_{\mathrm{D} \psi} \sim \theta_{\mathrm{g}} \omega_{\mathrm{g}}\right)$ and $\omega \sim \omega_{\mathrm{t}}$ due to dianagnetic effects. Eurther we choose an optimal orderimg

$$
\begin{equation*}
\omega \sim v_{i} b_{i} \tag{16}
\end{equation*}
$$

to include ion collisional perpendicular transport and viscosity. Now, since

$$
\begin{equation*}
h_{i} \sim\left(\frac{\omega_{b i}}{\omega_{0}}\right)^{2} \tag{17}
\end{equation*}
$$

where as condition Eq. (14) implies

$$
\begin{equation*}
b_{i} \sim \frac{m_{i}}{m_{e}}\left(\frac{m_{j}}{w_{j}}\right)^{2} \frac{1}{0_{0}^{2}} . \tag{18}
\end{equation*}
$$

From conditions Eqs. (16). (17), and (18) we have

$$
\begin{equation*}
b_{i} \sim\left(\frac{\omega_{b j}}{v_{j}}\right)^{2 / 3} \frac{1}{\theta_{0}^{2 / 3}} \cdot \frac{v_{j}}{\omega_{b j}} \sim \frac{1}{\theta_{0}}\left(\frac{m_{i}}{m_{0}}\right)^{3 / 4} . \tag{19}
\end{equation*}
$$

As will be seen, it is convenient to choose $v_{j} \sim E \omega_{b j}$ so that $m_{e} \sim \varepsilon^{4} m_{i}$ and $b_{i} \sim \varepsilon^{2}$ (i.e.. $b_{i 0} \sim e^{10}$) from conditions Eq. (19). This implies that the plasma is collisional on the resistive scale length since

$$
\frac{\omega v e}{k^{2} v^{2}} \sim \frac{\omega e^{\theta} e^{2}}{\omega^{2}} \sim \varepsilon^{-2}
$$

In addition, ion sound effects are negligible on the resistive scale

$$
\begin{equation*}
\frac{\omega}{k_{I} v_{T i}} \approx \frac{\omega}{\omega_{b i}} \theta_{0} \sim E^{-1} \tag{21}
\end{equation*}
$$

In gummary, we solve Eq. (1) with the ordaringa

$$
\begin{equation*}
\frac{\omega_{D}{ }_{p i}}{\omega_{b i}}-\varepsilon, \quad \frac{\omega_{b}}{\omega_{b i}} \sim \varepsilon^{3}, \quad \frac{\omega_{D i}}{\omega_{b i}} \sim \varepsilon^{5}, \quad \frac{v_{1}}{\omega_{b i}} \sim E, \quad b_{i} \sim E^{2} \tag{22}
\end{equation*}
$$

for ions, and

$$
\begin{equation*}
\frac{\omega_{\text {DHe }}}{\omega_{b e}} \sim \varepsilon^{3}, \quad \frac{\omega_{b e}}{\omega_{b e}} \sim \varepsilon^{5}, \quad \frac{\omega_{D e}}{\omega_{b e}} \sim \varepsilon^{9}, \quad \frac{v_{e}}{\omega_{b e}} \sim \varepsilon, \quad b_{e} \sim \varepsilon^{6} \tag{23}
\end{equation*}
$$

for electrons. Implied in these orderings is weak curvature $r_{n} / R \sim \varepsilon^{2}$, where r_{η} is the density scale length, which follows from $\omega \sim \omega_{*}$; thus $\beta \leqslant \varepsilon^{2}$ from the ideal ballooning ilmit.

In the next section we obtain solutions to the gyrokinetic Eq. (1) in parallel with the quasineutrality condition

$$
\begin{equation*}
\sum_{j} e_{j} \int d^{3} v f_{j}=0 \tag{24}
\end{equation*}
$$

and Maxwell's equations

$$
\begin{align*}
& k_{\perp}^{2} A_{1}=\frac{4 i}{c} j_{1}, \tag{25}\\
& i k_{b} 6 B_{1}=\frac{4 \pi}{c} j_{\psi} .
\end{align*}
$$

Although *e compute j_{ψ} directly from f_{j}, it is more convenient to consider a moment $\sum_{j} e_{j} \int d^{3} v$ exp (iL) of the gyrokinetic equation Eq. (i) rather than directly evaluate j_{1}

$$
\begin{align*}
& \frac{\mathbf{i}}{\boldsymbol{w}} \underset{\sim}{B} \cdot \nabla\left(\frac{\mathrm{~J}_{\mathbf{I}}}{\mathrm{B}}\right)= \\
& -\sum_{j} \frac{e^{2}}{T} \int d^{3} v F_{m}\left\{\left[1-\left(1-\frac{\omega_{*}^{T}}{\omega}\right) J_{0}^{2}\right]_{\phi}-\left(1-\frac{\omega_{*}^{T}}{\omega}\right) J_{0} J_{1} \frac{v_{1}}{k_{\perp}} \frac{\delta B_{1}}{c}\right\} \\
& +\sum_{j} e \int d^{3} v g \frac{\omega_{D}}{\omega} J_{0}+\frac{1}{\omega} \sum_{j} e \int d^{3} v \sigma g\left|v_{1}\right| n^{n} \nabla J_{0} \tag{27}
\end{align*}
$$

since this automatically accounts for much cancellation in j_{1} due to quasineutrality.

We have formulated the problem to account for equilibrium temperature gradients and also perpendicular transport effects. In the present paper we will ignore these complications to emphasize the essentials of banana regime dynamics, but propose to continue the full treatment in a later paper,

III. SOLUTION OF THE GYROKINETIC EQUATIONS

Before solving Eq. (1), it is helpful to introduce an auxiliary function h_{J} such that

$$
\begin{equation*}
g_{j}=\frac{e_{j}}{T_{j}}\left(1-\frac{\omega^{\star}{ }_{j}}{\omega}\right) \Psi F_{M j}+h_{j} \tag{28}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{1}=\frac{c}{i \omega} n^{n} \sum^{Y} \tag{29}
\end{equation*}
$$

All quantities are assumed to have a dependence on two scales in the variable X. Thus we seek solutions for the field quantities of the form Eq. (11) In which

$$
\begin{equation*}
\phi(x)=\phi^{(0)}(x, z)+\frac{1}{z} \phi^{(1)}(x, z)+\ldots \tag{30}
\end{equation*}
$$

where $\phi^{(0)}$ etc. are regarded ag periodic ver connection length X_{0} in X but have secular dependence on the resistive scale variable $z=\int^{X^{\prime}} \nu^{\prime} X^{\prime}\left(v^{\prime} \equiv \partial v / \partial \psi\right)$ which has typlcal scale length $\sim \varepsilon^{-4} X_{0}$.

First we consider the solurion of the ion gyrokinetic equation. We expand the function h_{i} in Eq. (28) in powers of E, solving for the response of h_{i} to the field quantities order by order according to Eq. (22). Initially, however, we note that

$$
\begin{equation*}
\omega_{L j}=\frac{m_{j} c}{e_{j}} \ell\left[\frac{v_{1}}{B} \frac{I}{J} \frac{\partial}{\partial X}\left(\frac{v_{l}}{B}\right) z+\mu \frac{\partial B}{\partial \psi}+\frac{v_{l}}{B^{2}} \frac{\partial}{\partial \psi}\left(4 \pi p+\frac{B^{2}}{2}\right)\right\}, \tag{31}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\frac{\partial h_{i}(0)}{\partial x}=0 \tag{32}
\end{equation*}
$$

and

$$
\begin{align*}
& \frac{v_{1}}{J B} \frac{\partial h_{i}^{(1)}}{\partial x}+\frac{1 m_{i} c}{e}-\ell z I \frac{v_{1}}{J B} \frac{\partial}{\partial x}\left(\frac{v_{i}}{B}\right){h_{i}}^{(0)}+c_{i}\left(h_{i}^{(0)}\right) \\
& \quad=-i F_{M i} \Psi^{(0)}\left(1-\frac{\omega_{* i}}{\omega}\right) \frac{r_{i} c}{T_{i}} \ell z I \frac{v_{1}}{J B} \frac{\partial}{\partial X}\left(\frac{v_{\|}}{B}\right), \tag{33}
\end{align*}
$$

since $g_{i}{ }^{(0)}$ and $h_{i}(0)$ differ only by a perturbed itaxwellian in c_{i}. Anticipating that we shall be able to demorstrate that $\Phi(0) \equiv Y(0)(z)$, the periodicity properties of $h_{i}(1)$ on the short scala X produce a solubility condition on $h_{i}(O)$

$$
\begin{equation*}
\int \frac{J B d x}{v_{i}} c\left(h_{i}^{(0)}\right)=0 \tag{34}
\end{equation*}
$$

where the integral \int represents an integration $\oint\left(J B d x / v_{y}\right)$ over a connection length for passing particles and $\int_{0}^{\int} \int_{x_{1}}^{X_{2}}$ (JBCy $/\left|v_{1}\right|$; where $X_{1}, 2$ are the turning point for the trapped particles. Thus

$$
\begin{equation*}
h_{i}^{(0)}=\frac{n_{i}(z)}{n} F_{M i} \tag{35}
\end{equation*}
$$

where n is the equilibrium $10 n$ and electron density. Integrating Eq. (33)

$$
h_{i}^{(1)}=-\frac{i m_{i}^{\ell c}}{e} z I \frac{v_{1}}{B}\left\{n_{i}+\frac{e}{T_{i}}(0)\left(1-\frac{\omega_{i j}}{\omega}\right)\right] F_{M i}+\bar{h}_{i}^{(1)}(z)
$$

In next order

$$
\begin{equation*}
\frac{v_{1}}{J B} \frac{\partial}{\partial \chi} h_{i}^{(2)}+\frac{m_{i}^{c}}{e} \ell z I \frac{v_{1}}{J B} \frac{\partial}{\partial \chi}\left(\frac{v_{1}}{B}\right) h_{i}^{(1)}+C_{i}\left(h_{i}^{(1)}\right)=0 \tag{37}
\end{equation*}
$$

and finally

$$
\begin{gather*}
\frac{v_{i}}{J B} \frac{\partial h_{i}^{(3)}}{\partial X}+i \frac{m_{i}^{c}}{e} \ell=I \frac{v_{1}}{J B} \frac{\partial}{\partial X}\left[\frac{v_{1}}{B}\right] h_{i}^{(2)}+c_{i}\left(h_{i}^{(2)}\right)-i o h_{i} \tag{0}\\
=\frac{-i e}{T_{i}} F_{M i}\left(\omega-\omega_{\#_{i}}\right)\left\{\phi^{(0)}-\psi^{(0)}+\frac{\operatorname{mv}_{\perp}}{2 e} \frac{\delta B_{1}^{(0)}}{B}\right] \tag{38}
\end{gather*}
$$

An equation for n_{1} follows from andihllating the terms in Eq. (38) involving $h_{i}^{(3)}$ and $h_{i}^{(2)} r y$ applying the operator fodx $\int a^{3} v$. Use in made of integrations by parts in X. Eq. (37), and conservation of momentur in ion-ion collisions to eliminate the second term on the left-hand side. The regult is

$$
\begin{equation*}
\left.n_{i}=\frac{n a}{T_{i}}\left(1-\frac{\omega_{+1}}{\omega}\right)<\psi^{(0)}-\psi^{(0)}+\frac{T_{i}}{E} \frac{\delta B_{1}}{A_{1}}\right\rangle \tag{39}
\end{equation*}
$$

where $\langle A\rangle \equiv \mathcal{f}$ JAdx/fudx. Equation (37) 1eads to the colubility condition

$$
\begin{equation*}
\int \frac{\operatorname{Jgdx}}{v_{1}} c_{i}\left(h_{i}^{(1)}\right)=0 \tag{40}
\end{equation*}
$$

Since C_{1} annihilates a Maxwellian, Eq. (36) implies $h_{i}^{(1)}$ satiafies Eg. (34) and can therefore be aborbed in $h_{1}{ }^{(0)}$. Consequently, the ions possers a parallel flow veloctty

$$
u_{1 i}=\frac{-1 \ell I z T_{i} c}{e B n}\left\{n_{i}+\frac{e^{(0)}}{T_{i}}\left(1-\frac{\omega_{\omega i}}{\omega}\right)\right\}
$$

which provides a contribution to the fluid inertial energy. Note that this velocity is generated by the trapped ions - a much smaller velocity exists in the Pfirsch-Schlüter regime.

Now we turn to the electron equation to determine a form of ohm's law valid in the banana regime. Inserting the ordering Eq. (23),

$$
\begin{align*}
& \frac{\partial h_{e}^{(0)}}{\partial x}=0 \tag{42}\\
& \frac{v_{L}}{J B} \frac{\partial h_{e}(t)}{\partial x}+c\left(h_{e}^{(0)}\right)=0
\end{align*}
$$

so that again we have a solubility constraint to determine $h_{e}^{(0)}$. Thus

$$
\begin{equation*}
h_{e}^{(0)}=\frac{n_{e}(z)}{n} F_{M e}, \quad h_{e}^{(1)}=\overline{\dot{h}}_{e}^{(1)}(z) . \tag{44}
\end{equation*}
$$

In next order we repeat Eq. (43) and conciude that

$$
\begin{equation*}
\bar{h}_{e}^{(1)}=0, \quad h_{e}^{(2)}=\bar{h}_{e}^{(2)}(z) . \tag{45}
\end{equation*}
$$

The following order yields

$$
\begin{gather*}
\frac{v_{I}}{J B} \frac{\partial h_{e}^{(3)}}{\partial X}-\frac{i m_{e}^{c}}{e} \& z I \frac{v_{1}}{J B} \frac{\partial}{\partial X}\left(\frac{v_{1}}{B}\right) h_{e}^{(0)}+c_{e}\left(\bar{h}_{e}^{(2)}\right) \\
\quad=-i F_{M e^{\psi}}{ }^{(0)}\left(1-\frac{\omega_{\omega_{e}}}{\omega}\right) \frac{m_{e}^{c}}{T_{e}} \& z I \frac{v_{1}}{J B} \frac{\hat{a}}{\partial X}\left(\frac{v_{1}}{B}\right) . \tag{46}
\end{gather*}
$$

The solubility condition on $h_{e}{ }^{(3)}$ shows $h_{e}{ }^{(2)}$ can be absorbed in $h_{e}{ }^{(0)}$, i.e., $\mathrm{r}_{\mathrm{e}}{ }^{(2)}=0$, and thus

In fourth order we can introduce the resistive scale into the operator A • \downarrow

$$
\begin{equation*}
\frac{v_{1}}{J B}\left(\frac{\partial}{\partial X} h_{e}^{(4)}+v^{\prime} \frac{\partial h_{e}^{(0)}}{\partial z}\right)+c\left(h_{e}^{(3)}\right)=0 . \tag{48}
\end{equation*}
$$

The solubility conditions on $h_{e}^{(4)}$ are

$$
\begin{equation*}
\stackrel{\nu^{\prime}}{\longrightarrow} \frac{\partial n_{e}}{\partial z} F_{M e}+\left\langle\frac{B}{v_{1}} c\left(h_{e}^{(3)}\right)\right\rangle=0 \quad \text { for passing particles; } \tag{49}
\end{equation*}
$$

and

$$
\sum_{\sigma} \int_{X_{1}}^{x^{2}}\left(J B d x /\left|v_{1}\right|\right) c\left(h_{e}^{(3)}\right)=0 \quad \text { for trapped particles. }
$$

Equations (47) and (49) are analogous to the equations of banana neoclasgical
theory, ${ }^{9}$ with a perturbed pressure gradient across the field playing the role of the equilibrium gradient and a parallel pressure gradient playing the role of the parallel electric fieid. Although we could invoke the techniques of neoclassical theory to solve Eq. (49) for the full electron colliaion operator, we restrict ourselves for simplicity to a Lorentz collision operator. Allowing for the nonzero ion velocity given by Eq. (41), we have

$$
\begin{equation*}
c_{e i}\left(h_{e}^{(3)}\right)=v_{e i}\left(v_{1} \frac{\partial}{\partial \mu} \frac{\mu v_{1}}{B} \frac{\partial}{\partial \mu} h_{e}^{(3)}+\frac{m_{e}}{T_{e}} u_{I i} v_{I} F_{M e}\right) \tag{50}
\end{equation*}
$$

From Eqs. (47), (49), ani (50) we can solve for $\bar{h}_{e}^{(3)}$ and conpute

$$
\begin{align*}
& -\frac{i d T_{e}^{I 2}}{e}\left[n_{e}+\frac{e^{(0)}}{T_{e}}\left(\frac{\omega_{\star_{e}}-\omega_{i}}{\omega}\right)+\frac{T_{i}}{T_{e}} n_{i}\right] \frac{B}{\left\langle B^{2}\right\rangle}, \tag{51}
\end{align*}
$$

where

$$
\begin{equation*}
k=\frac{3}{4}\left\langle B^{2}\right\rangle \int_{0}^{B^{-9}} \max \left[\lambda d \lambda /\left\langle(1-\lambda B)^{1 / 2}\right\rangle\right] \tag{52}
\end{equation*}
$$

The effects of trapped particles are proportional to 1 - K. Finally, in fifth order

$$
\begin{align*}
& \frac{v_{1}}{J B} \frac{\partial h_{e}^{(5)}}{\partial x}+C\left(h_{e}^{(4)}\right)-1 \frac{m^{c \ell}}{e^{c \ell}}=I \frac{V_{1}}{J B} \frac{\partial}{\partial X}\left(\frac{v_{1}}{B}\right) h_{e^{(2)}}-i \omega h_{e}^{(0)} \\
& =\frac{i e}{T e} F_{M e}\left(\omega-w_{* e}\right)\left[\phi^{(0)}-\Psi^{(0)}-\frac{m^{e} e^{V_{d}}}{2 e} \frac{\delta B_{1}(0)}{\bar{B}}\right] \tag{53}
\end{align*}
$$

so that the solubility condition on $h_{e}^{(5)}$ determines ne as in Eq. (39)

$$
\dot{-16-}
$$

$$
\begin{equation*}
n_{e}=-\frac{n e}{T_{e}}\left(1-\frac{\omega \kappa_{e}}{\omega}\right)\left\langle\phi^{(0)}-F^{(0)}-\frac{T_{e} \delta B_{i}^{(0)}}{B}\right\rangle \tag{54}
\end{equation*}
$$

Implicit in Eqs. (39). (41), (51), and (54) is the form of Ohm's law appropriate to the banana regime; we will present it in the next section where we analyze Maxwell's equations.
IV. MANTEJ工'S EQUATIONS AND THE EIGENVALUE EQUATION

With the information to the digtribution functions gleaned in the previous section we can compute the results of Maxwell's equations and derive an elgenvalue equation.

From the quasineutrality condition, Eq. (24), we obtain a simple result. Using the definitions, Eqs. $\langle 2\rangle$ and (28) for the distribution functions and the solutions Eq. (35) with Eq. (39) and Eq. (44) with Eq. (54), it is evident that quasineutrailty implies $\phi^{(0)}(X, z) \equiv \phi^{(0)}(z)$ if our similar assumption about $\Psi^{(0)}$ i.s correct.

Now considering the perpenalcular current equation, we use Eqs. (2), (28), (35), (39). (44), and (54) to calculate j_{ψ}. Equation (26) then implies

Thus $\delta B_{1}\left(0 ; / B \sim O(B) \leqslant \varepsilon^{2}\right.$ and we can simplify the result Eq. (55), usifig the definition (5) for $\omega_{* J}$)
(0)

$$
\frac{\delta B \mathrm{~B}}{\mathrm{~B}}=\frac{4 \pi \mathrm{~A}^{\prime} \mathrm{c}}{\omega \mathrm{~B}^{2}} \emptyset^{(0)}
$$

where we have defined $p^{\prime}=\left(T_{i}+T_{e}\right) \partial n / \partial \psi$.

At this point it is convenient to give an explizit form for Ohm's law uging Eqe. (39), (41), (51), and (54) now that we can ignore contributions from $\delta \mathrm{E}_{1}^{(0)} \sim \varepsilon^{2}$.

$$
\begin{align*}
\frac{\dot{j}_{t}}{B} & =\frac{i c^{2} f^{2} I z p^{\prime} \phi^{(0)}}{\omega}\left(\frac{1}{B^{2}}-\frac{K}{\left\langle B^{2}\right\rangle}\right) \\
& +\frac{\left\langle\nu^{\prime} / J\right\rangle}{\left\langle B^{2}\right\rangle}\left(1-\frac{\omega}{\omega}\right) \frac{K}{\eta_{1}} \frac{d}{d z}\left(\phi^{(0)}-\Psi^{(0)}\right) \tag{57}
\end{align*}
$$

where $\eta_{\|}=m_{i} / \operatorname{ne}^{2}$ is the parallel resistivity in the Lorentz model. The first term in in is the perturbed bootatrap current proportional to the fraction of trapped particles while the second term illustrates the role of trapped particles in reducing the parallel conductivity.

We can determine the relationship between $\phi^{(0)}$ and $\psi^{(0)}$ through Maxwell's Eq. (25) which takes the form

$$
\begin{equation*}
j_{\|}=\frac{c^{2} \delta^{2}}{4 \pi i \omega} \frac{|\nabla s|^{2}}{J B} \frac{\partial \psi}{\partial x} \tag{58}
\end{equation*}
$$

In leading orde: we verify our assumption that $\Psi(0)(x, z) \equiv \psi(0)(z)$, while in next order we obtain a solubility condition

$$
\begin{equation*}
\left.\stackrel{j_{f} B}{|\nabla s|^{2}}\right\rangle=0 . \tag{59}
\end{equation*}
$$

Using the form Eq. (57) for j_{1}, we obtain

$$
\begin{align*}
& \frac{d \psi^{(0)}}{d z}\left[1+\frac{n_{1} c^{2} R^{2}}{4 \pi \pm\left(\omega-\omega_{k_{e}}\right)} \frac{\left\langle B^{2}\right\rangle}{\left.\left.\left\langle B^{2} /\right| \nabla s\right|^{2}\right\rangle}\right]= \\
& \frac{d \phi}{d z}+\frac{i R^{2} I z p^{\prime} \phi^{(0)} \eta_{1} c^{2}}{(\omega-\omega) * e^{\prime}\left\langle v^{\prime} / J\right\rangle K}\left[\frac{\left.\left.\left\langle B^{2}\right\rangle\langle 1 /| \nabla s\right|^{2}\right\rangle}{\left.\left.\left\langle B^{2} /\right| \nabla s\right|^{2}\right\rangle}-K\right] \text {. } \tag{60}
\end{align*}
$$

Now we turn to the vorticity Eq. (27), expanding the Bessel functions for a << 1 and performing the integrals over Haxwellians. The first nontrivial order yields

$$
\begin{equation*}
\frac{1}{4 \pi} \frac{\partial}{\partial x}\left[\frac{|\nabla s|^{2}}{J \theta^{2}}\left(\frac{\partial \psi^{(1)}}{\partial x}+v^{\prime} \frac{d \Psi^{(0)}}{d z}\right)\right]=-z I p^{\prime} \phi^{(0)} \frac{\partial}{\partial x}\left(\frac{1}{B^{2}}\right) \tag{61}
\end{equation*}
$$

where we have evaluated the dominant contribution to $\int \mathrm{d}^{3} \mathrm{v} \omega_{\mathrm{D}} \mathrm{g}$ arising from the secular term in ω_{D}, using the results Eqs. (35), (39), (44), and (54). Integrating with respect to X Yields

$$
\begin{equation*}
\frac{1}{4 \pi} \frac{|\bar{Z} s|^{2}}{J B^{2}}\left(\frac{\partial \Psi(1)}{\partial x}+v^{\prime} \frac{\partial \Psi^{(0)}}{d z}\right)=\frac{-z I B^{\prime}}{s^{2}} \phi^{(0)}+\bar{\Psi}(z) \tag{62}
\end{equation*}
$$

where the constant of integration $\bar{\Psi}(z)$ can be determined from the solubility condition for ${ }^{(1)}$. Equation (62) then yields an equation for $3 \psi^{(1)} / \partial \mathrm{X}$, which is a quantity required in the final order of the vorticity equation

$$
\begin{align*}
& \frac{\varepsilon^{2}}{4 \pi \omega} \frac{1}{J}\left[\frac{\partial}{\partial X}\left(\frac{|\nabla S|^{2}}{J B^{2}} \frac{\partial \Psi^{(2)}}{\partial X}\right)+\frac{\partial}{\partial \chi}\left(\frac{|\nabla S|^{2}}{J B^{2}} v \cdot \frac{\partial}{\partial z} \Psi^{(1)}\right]\right. \\
& \left.+v \cdot \frac{\partial}{\partial z}\left(\frac{|\nabla S|^{2}}{B^{2}} \frac{\partial Y^{(1)}}{\partial X}\right)+v^{\prime} \frac{\partial}{\partial z}\left(\frac{|\nabla S|^{2}}{J B^{2}} v \cdot \frac{d Y^{(0)}}{d z}\right)\right] \\
& =-\ell^{2} \frac{|\nabla s|^{2}}{B^{2}} m_{i} n\left(\omega-\omega_{*_{i}}\right) \phi^{(0)}-\frac{2 \ell^{2}}{\omega B^{2}} p^{\prime} \frac{\partial}{\partial \phi}\left(4 \pi p+\frac{B^{2}}{2}\right) \phi^{(0)} \\
& +\frac{\ell \& I}{C} \sum_{j} \int d^{3} v \frac{\operatorname{mv}_{I}}{B} \frac{1}{J} \frac{d}{\partial X}\left(\frac{v_{G}}{B}\right) g^{\prime} . \tag{63}
\end{align*}
$$

Here $g^{\prime \prime}$ zepresents corrections to $g^{(0)}$ which couples to the secular geodesic part of ω_{D} and competes with the contributions from $g^{(0)}$ and the remainder of
ω_{D}; i.e., the effects of normal curvature. The eigenvalue equation manifeats itself as the solubility condition for $\mathrm{F}^{(2)}$ in Eq. (63).

First we note that the definition of h, Eq. (28), implies that the contribution of the last term to the solubility condition is

$$
\begin{align*}
& \frac{\ell z I}{c} \leqslant \sum_{j} \int d^{3} v \frac{m_{j} v_{1}}{B J} \frac{\partial}{\partial x}\left(\frac{V_{1}}{B}\right) g_{j}{ }_{j} \\
& =\frac{I \ell^{2} p^{\prime} z}{c \psi}\left\langle\frac{1}{J B^{2}} \frac{\partial \psi^{(1)}}{\partial X}\right\rangle-\frac{\ell z I}{c}\left\langle\sum_{j} \int d^{3} v \frac{m_{j} v_{1}}{B} \frac{v_{1}}{\sqrt{B}} \frac{\partial h_{j}}{\partial X}\right\rangle \tag{64}
\end{align*}
$$

where we have integrated by parts in X. The term $\operatorname{in} \partial y(1) / \partial X$ can be evaluated from Eq, (62). Usirg the kinetic equation for h, correct to fourth order in the expansion parameter ε, and taking account of total momentum conservation in collisions between species, we can write the lagt term 3 s

$$
\begin{equation*}
-i<\sum_{j} \int d^{3} v \frac{v_{1} v_{1}}{B}\left[\frac{v_{n}}{\sqrt{B}} v^{\prime} \frac{\partial h^{(0)}}{\partial z}-i \omega h_{j}^{(1)}+i \omega_{D j} \sum_{k=1}^{3} h_{j}^{(k)}\right]> \tag{65}
\end{equation*}
$$

In deriving this result we have used the facts that the ion-ion collision term annihilates a shifted Maxwellian and conserves ion momentum. As discussed earliex, we have also ignored perpendicular transpor" effects arising from the ion collision operator. The last term in Eq. (65) can be shown to vanish by successive integrations by parts and use of Eqs. (36), (37), and (38), again noting that the ion collision term annihilates a shifted Haxwellian. Consequently, we can express Eq. (65) as

$$
\begin{equation*}
-\frac{R_{2 I}}{c}\left[m_{1} n \omega i\left\langle\frac{U_{1}}{B}\right\rangle-\left\langle\frac{v^{\prime}}{J B}\right\rangle \sum_{j} T_{j} \frac{\partial n_{j}}{\partial z}\right] \tag{66}
\end{equation*}
$$

or, introducing the results for $u_{1 i}$ and n_{j} given in Eqs. (39), (41), and (54),

$$
\begin{equation*}
-\ell^{2} z^{2} I^{2} m_{i} n\left(\omega-\omega_{\hbar_{i}}\right)<\frac{1}{B^{2}}>\phi-\frac{\ell^{2} I}{\omega}<\frac{v^{\prime}}{\pi B^{2}}>p^{\prime} z \frac{d}{d z}\left(\phi^{(0)}-\psi^{(0)}\right) \tag{67}
\end{equation*}
$$

When Eq. (41) with the result Eq. (54) is used in expression Eq. (65), we obtain a modification to the inertial term arising from the polarization arift in Eq. (63), 1.e., the first term on the right-hand side.

The solubility condition on Eq. (63) together with Eqs. (60), (62), and (67) can be combined to obtain, after considerable algebra, the degired eigenvalue equation. Introducing the scaled variables

$$
\begin{equation*}
X=Z_{0} \mathrm{E}, Q=-i Q_{0}^{\omega} \tag{68}
\end{equation*}
$$

where

$$
\begin{align*}
& Z_{0}=\left(\frac{c^{2} \eta_{1} R^{2}\left\langle B^{2}\right\rangle}{4 \pi\left\langle B^{2} / R^{2} E_{X}^{2}\right\rangle}\right)^{1 / 3}\left[\frac{4 \pi m_{i} n\left\langle R^{2}\right\rangle\left\langle B^{2} / R^{2} B_{X}^{2}\right\rangle}{\left(4 \pi^{2} d q / d V\right)^{2}}\right]^{1 / 6}, \\
& Q_{0}=\left(\frac{c^{2} \eta_{1} R^{2}\left\langle B^{2}\right\rangle}{4 \pi\left\langle B^{2} / R^{2} B_{X}^{2}\right\rangle}\right)^{-1 / 3}\left[\frac{4 \pi m_{i} n\left\langle R^{2}\right\rangle\left\langle B^{2} / R^{2} B_{X}^{2}\right\rangle}{\left(4 \pi^{2} d q / d V\right)^{2}}\right]^{1 / 3}, \tag{69}
\end{align*}
$$

with V representing the volure within a flux aurface so that $\left\langle V^{\prime} / J\right\rangle=4 \pi^{2}$ $d q / d v$, we obtain

$$
\begin{align*}
& \frac{d}{d x} \frac{x^{2}}{\Gamma} \frac{d \phi}{d x}+L(1-T)\left(1-\frac{\eta}{\Gamma}\right) x \frac{d \phi}{d x}^{(0)} \\
& \quad=\phi^{(0)}\left\{x^{2} Q Q_{1}-D_{R}+\frac{H}{\Gamma}\left(H+1-\frac{2}{\Gamma}\right)-L\left(1-\frac{1}{\Gamma}\right]\left[H+T\left(I-1+H-\frac{2}{\Gamma}\right)\right]\right\} \tag{70}
\end{align*}
$$

Here Q_{j} are the gcaled versions of $\omega-\omega_{*_{j}}, \Gamma=1+X^{2} / Q_{e}$, and H and D_{R} have
been previously defined by Glasser, Greene, and Johnson in their study of resiative modes in a torus ${ }^{10}$, in particular $D_{\mathrm{R}}>0$ implies instebility for resiative interchange modes in torus. We have introduced the new quantities

$$
\begin{equation*}
L=\frac{I p^{\prime}}{\pi(d q / a v)} \frac{\left\langle B^{2} / R^{2} B_{x}^{2}\right\rangle}{\left\langle B^{2}\right\rangle} \tag{71}
\end{equation*}
$$

and

$$
\begin{equation*}
T=1-K \tag{72}
\end{equation*}
$$

which is proportional to the fraction of trapped particles. It is to be expected that T will dominate D_{R}, B, and I since, for example, in a large aspect ratio tokamak $T \propto(a / R)^{1 / 2}$ whereas the other quantities are of order (a/R) ${ }^{2}$ (a is the minor zadius\}. Trapped particle effects manifest thengelves In twa ways. First, they modify the conductivity and introduce a perturbed bootatrap current through Eq. (60). Second, they produce anisotropies in the perturbed preasure producing the contributions iram Eq. (67), which are absent in a collisional fluid description. Formally, we can recover the resistive MHD limit by letting $L, T \rightarrow 0$.

V. RESISTIVE STABILITY

In this section we discuss the stability propertied of the modes determined by the eigenvalue Eq. (70), Solutions of this equation must converge as $|x| \rightarrow \infty$ and connect onto solutions of the ideal ballooning equation as $|x|+\infty$.

Let us consider the behavior of Eq. (70) as $X \rightarrow 0$. We obtain, reverting to the variable $z_{\text {. }}$

$$
\begin{equation*}
\frac{d}{d z} z^{2} \frac{d \phi^{(0)}}{d z}+\phi^{(0)} D=0 \tag{73}
\end{equation*}
$$

where $D=E+F+H$ is the quantity that characterizes the Mercier stability criterion $D<1 / 4$. The solution of Eq. (73) is

$$
\begin{equation*}
\phi=c_{1} z^{d}+c_{2} z^{d} \tag{74}
\end{equation*}
$$

where

$$
\begin{equation*}
d_{ \pm}=-\frac{1}{2} \pm\left(\left(\frac{1}{4}-D\right)^{1 / 2}\right] \tag{75}
\end{equation*}
$$

The coefficients C_{1} and C_{2} must be obtained by numerical solution of the ideal ballooning equation, which symptotically apfroaches the form Eq. '\{74〉 as $z \rightarrow \infty^{4}$.

The solution Eq. (74) provides a boundary condition at $x=0$ for Eq. (70) which itself will require numerical solution in general. In this paper we investigate resistive modes which are independent of the matching procedures, i.e., are not driven by the energy available in the ideal ballooning region $x \ll 1$. Rather we focus on the modes dominated by their behavior in the region $x \leadsto 1$. These are rapidly growing modes with $\gamma \propto\left(\pi^{2} / s_{R}\right)^{1 / 3}$, analogues of the resistive interchange modes of resistive MHD.

By considering the case where D_{R} and T are gmall, it is passible to obtain analytic results. Formaly ordering $D_{R} \sim T / \sim S \ll t$, we seek solutions in the region $X^{2} / Q \sim \delta^{-1} \gg 1^{1}$, i.e., essentially electrostatic perturbations. Equation (70) then simplifies to

$$
\begin{align*}
& Q_{a} \frac{d^{2}}{d x^{2}} \phi^{(0)}+L\left(1-T-\frac{Q_{e}}{x^{2}}\right) x \frac{d \phi^{(0)}}{d x} \\
& =\phi^{(0)}\left\{x^{2} \phi Q_{i}-D_{R}-L[H+T(L-1+H)]+\frac{Q_{e}}{x^{2}} H(H+Q+L)\right\} \tag{76}
\end{align*}
$$

where it is necessary to expand to $O(\delta)$.
We now demonstrate ingtability in the 1 imit $H=0$. (A full solution of Eq. (76) is presented in the Appendix.) In this case. Eq. (76) has a solution

$$
\begin{equation*}
\phi^{(0)}=e^{-\hat{a} x^{2} / 2} \tag{77}
\end{equation*}
$$

provided that

$$
\begin{align*}
& \hat{\alpha} Q_{e}(L-1)=-D_{R}-L(1-i) T \\
& \hat{\alpha}^{2} Q_{e}-\hat{\alpha} L(1-T)=Q Q_{i} . \tag{76}
\end{align*}
$$

Thus we have an eigenvalue equation

$$
\begin{equation*}
\left[D_{R}+L(L-1) T\right]\left[D_{R}+L[L-1)\right]=9 g_{i} Q_{e}(L-1)^{2} \tag{79}
\end{equation*}
$$

provided

$$
\begin{equation*}
\operatorname{Re} \hat{a}>0 \tag{80}
\end{equation*}
$$

Recalling that $L \sim 1,|T| \gg\left|D_{R}\right|$, we then have

$$
\begin{equation*}
Q Q_{1} Q_{e}=L^{2} T \tag{81}
\end{equation*}
$$

Since

$$
\begin{equation*}
\hat{\alpha}=\frac{-L T}{\left|Q_{e}\right|^{2}} Q_{e}^{*} \tag{82}
\end{equation*}
$$

Re $\hat{\alpha}>0$ for unstable modes (Re $Q>0$) if LT< 0 , which is the case in a normal tokamak with $p^{\prime} q^{\prime \prime}<0$. Furthermore, $x^{2} / Q_{g} \sim 1 / \alpha_{Q_{g}} \sim 1 / T \sim \delta^{-1}$ as we Essumed in deriving Eg. (76).

In the limit $\omega_{k}+0 \mathrm{Eq}$. (81) implies

$$
\begin{equation*}
Q=\left(L^{2} T\right)^{1 / 3} \tag{93}
\end{equation*}
$$

whereas if $\omega_{*}>9 Q_{0}$ we find an unstable root with a reduced growth rate

$$
\begin{equation*}
Q=\left(\frac{Q_{0}}{\omega_{*}}\right)^{2} L^{2} T \tag{84}
\end{equation*}
$$

It is interesting to evaluate these results for a large aspect ratio tokanak with circular surfaces and $\beta_{p} \sim 1$, where $\beta_{p} \sim=8 \pi p / B_{X}{ }^{2}$. We find that 11

$$
\begin{equation*}
D_{R} \sim \frac{\varepsilon \alpha}{s^{2}}, \quad H \sim \frac{\varepsilon \alpha}{s}, \quad L \sim \frac{q}{s \epsilon}, T \sim E^{1 / 2} \tag{85}
\end{equation*}
$$

where $E=r / R<1$,

$$
a=\frac{-8 n R q^{2}}{B_{0}^{2}} \frac{d p}{d r} \sim \beta_{p} \in \frac{r}{p} \frac{d p}{d r}
$$

and $s=(r / q)(d q / d r)$ characterize ideal MHD ballooning instability. Thus we are justifled in ignoring D_{R} and H relative to L and T, In terms of these
quantities, Eg. (83) can be written

$$
\begin{equation*}
Q \sim E^{-1 / 2} \alpha^{2 / 3} g^{-2 / 3} . \tag{86}
\end{equation*}
$$

Recalling the definitions given by Eq. (69)

$$
\begin{equation*}
Q_{0} \sim E^{-2 / 3} B^{-2 / 3}\left(\frac{S_{R}}{t^{2}}\right)^{1 / 3} \tau_{A} \tag{87}
\end{equation*}
$$

where $S_{R}=\tau_{R} / \tau_{A}$ with $\tau_{R} \sim r^{2} / \eta_{I} c^{2}$ and $\tau_{A}=R q / V_{A}$, V_{A} being the Alfven speed. Thus the growth rate of this mode is given by

$$
\begin{equation*}
Y \sim e^{1 / 6} \alpha^{2 / 3}\left(\frac{\ell^{2}}{S_{R}}\right)^{1 / 3} \frac{1}{\tau_{A}} \tag{88}
\end{equation*}
$$

It is amusing to conpare this with the resistive ballooning mode discussed previously in the collisional pfirsch-Schlüter regiae ${ }^{12,13}$ which has a growth iate

$$
\begin{equation*}
r \sim \alpha^{2 / 3}\left(\frac{R^{2}}{S_{R}}\right): / 3 \frac{1}{\tau_{A}} . \tag{B9}
\end{equation*}
$$

Thus they have essentially the same growth rate for reasonable values of ε l
In the Appendix we discuas the solutions of Fq. (70) more fully. It is shown that only the lowest harmonic, Eq. (77), is consistent with the expansion Eq. (76) for finite values of L. Further, for a normal cokamak with $p^{\prime} q^{\prime}<0$ there are no additional unstable solutions of the more exact Eq. (70) (we do not discuss the posstbility of matching to the ideal ballooning region).

VI. CONCLUSIONS

We have shown that, even in the banana regime of colliaionality, rcsistive modes 1 arbitrary axisymmetric toroldal geomatry can be degeribed by a fluldlike equation. However, the effects of colliaionless particle motion, in particular the dynamics of trapped particles, are represented in the coefficients of these fluidlike equations. This is a consequence of the fact that in the ballooning space resistive atabllity is governed by equations defined on a long resistive scale, which are obtained by averaging over the collisionless dynamics on the scale of the connection length. The essential contribution of this paper is, indeed, to obtain this effective resistive fluld equation, Eq. (70).

The present discussion has been limited for simplicity to the inclusion of trapped particle and dianagnetic effects. Extensions to include thermal effects, i.e., temperature gradients and therral transport, 5 are envisaged; likewise the effects of ion-ion collisions. Furthermore, the intimate relationship of this theory to neoslasical transport theory suggests that formulations for arbitrary collision frequency are possible. ${ }^{14}$

The eigenvalue equation describing resistive stability, Eq. (70), has been discussed. In qeneral, this requires numerical solution but, when curvature and trapped particle effects are weak, analytic dispersion relations can be derived. Examination of this elgenvalue equation has indicated the existence of modes driven by trapped particle effects, Eq, (83). The effects of diamagnetic drifts are included and, as shown in Eq. (84), tend to suppress but not atablize this inetability. For the particular case of a large aspect ratio tokamak with circular surfaces, we find an instability with a growth rate very similar to that obtained by Gribkoy et al., ${ }^{12}$ and Carreras and

Diamond ${ }^{13}$ from the resistive MHD equation. ACKNOWLEDGMENT

This work was supported by U.S. Department of Energy Contract No. DE-ACO2-76-CHO-3073.

appendix

In this Appendix we analyze Eq. (76) more completely. With the substitutions

$$
\phi^{(0)}=x^{(I-1) / 2} \exp \left(\frac{-L(1-T) x^{2}}{4 Q_{e}}\right) \psi(x)
$$

and the chinge of variable

$$
\begin{equation*}
u=\frac{x^{2}}{Q_{e}}\left[Q_{i} Q_{e}+\frac{L^{2}(1-T)^{2}}{4}\right]^{1 / 2} \tag{A.2}
\end{equation*}
$$

we find ψ satisfies Fhittaker's equation

$$
\begin{equation*}
\frac{d^{2} \psi}{d u^{2}}+\ddagger\left[-\frac{1}{4}+\frac{\kappa}{u}+\frac{1}{u^{2}}\left(\frac{1}{4}-\mu^{2}\right)\right]=0 \tag{A.3}
\end{equation*}
$$

where

$$
\begin{align*}
& \mu=-\frac{1}{4}(2 H+L+1) \\
& \kappa=\frac{\left[2 D_{R}+2 L H++L(L-1)+T L(2 H+L-1)\right]}{8\left(Q Q_{i} Q_{e}+\left[L^{2}(1-T)^{2} / 4\right]\right]^{1 / 2}} \tag{A4}
\end{align*}
$$

The condition that this solution is well-behaved $i s^{15}$

$$
\begin{equation*}
\frac{1}{2}+u-k=-m \quad, \quad m \text { is a non-negative integer } \tag{A5}
\end{equation*}
$$

Which provides the eigenvalue equation

$$
\begin{align*}
{\left[D_{R}+\right.} & \left.L H+\frac{L}{2}(L-1)+T L\left(H+\frac{L}{2}-\frac{1}{2}\right)\right]^{2} \\
& =\left[Q Q_{1} Q_{e}+\frac{L^{2}}{4}(1-T)^{2}\right](4 \pi+1-L-2 H)^{2} \tag{46}
\end{align*}
$$

Equation (79) will be recognized as the special case $H=0$ and $m=0$. We note that if $m \neq 0$ we have (with $H=0$ for simplicity)

$$
\begin{equation*}
Q Q_{1} Q_{e}=\frac{-2 L^{2} m(2 m+1-L)}{4 m+1-L} \sim 1 \tag{A7}
\end{equation*}
$$

but these eigenvalues are incongigtent with the expansion $x^{2} / Q_{e} \ll 1$ used in deriving Eq- (76). If we seek modes with $X^{2} / g_{e} \sim 1$, then the eigenvalue is determined by the finite quantities H and L in the limit $D_{R}, T+0$. Ignoring FLR effects, setting $H=0$ for aimplicity and introducing $\mathrm{Y}^{2}=\mathrm{X}^{2} / \mathrm{Q}$, Eq. (70) becomes

$$
\begin{equation*}
\frac{d}{d y} \frac{Y^{2}}{1+Y^{2}} \frac{\partial \phi^{(0)}}{d Y}+\frac{L Y^{3}}{1+Y^{2}} \frac{d \phi^{(0)}}{d Y}=Q^{3} Y^{2} \phi^{(0)} \tag{AB}
\end{equation*}
$$

Numerical solution shows no unstable modes exist for a normal tokamak with L < 0 .

REFERENCES

```
\(1_{\text {M. S. Shance et }}\) al., in Plasma Hygics and Controlled Nuclear Fusion
    Research (Proc, 7th Int. Conf., Innsbruck, 1978) (IAEA, Vienna, 1979) Vol.
    1. 9. 677.
    \({ }^{2}\) G. Bateman and D. Nelson, Phys. Rev. Lett. 41, 1805 (1978),
    \({ }^{3}\) S. I. Braginskil, in Reviewa of Plasma Physics, edited by M. A. Leontovich
    (Consultants Bureau, New York, 1965), vol. 1, p. 205.
    \({ }^{4}\) J. W. Connor et al., in Plasma Phyaics and Controlled Nuclear Fusion
    Research (Proc. 9th Int. Conf., Baltimore, 1982) (IAEA, Vienna, 1983) Vol.
    III, P. 403.
    \({ }^{5}\) A. K. Sundaram, A, Sen, and P. K, Kaw, Proc. 11th European Conf, on
    Controlled Fusion and Plasma Physics (European Physical Society, Geneva,
    1983) Vol. II, D. 217.
    \({ }^{6}\) J. W. Connor, R. J. Hastie, and J. B. Taylor, Proc. R. Soc. London A 365,1
    (1979).
    \({ }^{7}\) J. D. Callen and K. C. Shaing, in Proceedings of the 1983 Sherwood Theory
    Meeting, Arlington, 1983, paper 1E3.
B W. M. Tang, J. W. Connor, and R: J. Hastie, Nucl. Fusion 20, 1439 (1980). \(_{\text {( }}\) (
\({ }^{9}\) R. D. Hazeltine, F. L. Hinton, and M. N. Rosenbluth, Phys. Fluids 15,116
    (1972).
\(10_{\text {A. }}\). Glasser, J. M. Greene, and J. L. Johnson, Phys. Fluids 18, 875 (1975).
\({ }^{11}\) A, H. Glasser, J. M. Greene, and J. L. Johnson, Phys. Fluids 19, 567 (1976).
\({ }^{12}\) V. M. Gribkov et al., in Plasma Physics and Controlled Nuclear Fusion
    Research (Proc. 8th Int, Conf., Brussels, 1980) (IAEA, Vienna, 1981) Vol. 1,
    p. 571 c
\(13_{\text {B. A. Carreras et al., Rhys. Rev. Lett. S0, } 503 \text { (1983). }}^{\text {(1) }}\).
```

14 S. P. Hirshman, Phys. Fluids 21, 224 (1978).
${ }^{15} \mathrm{~L}$. J. Slater, in Handbook of Mathenatical Functiong, edited by
M. Abramowitz and I. A. Stegun, National Bureau of Standards Applied Mathematical Series No. 55 (U.S. Government Printing Office Washington, D.C., 1964) Chap. 13, p. 503.

Plasmb Res Lob, Austra Not'i Univ, Australid Dr. Frenk J. Feolonl, Univ of woltongong, aUSTRALIA
Prof. I.R. Jones, Filnders Untw., AuStralia
prof, Mat. Erennan, Univ syaney, Australia
Prof. F. Cop, Inst Thoo, Pnys, AuStria
Prof. Fronk Verheest: I75t thearetische, BELGIM Dr. D. Pelumbe, Dg XII Fusion Prog, BELGIUM
Ecale Forble Millitalre, Lob de Phys Plasmas, BELGIIM
Dr. P.R. Sakbnake, Unlv Estooubl, BRAZIL
Dr. C.R. Jemes, Univ of Alberta, CANRDA
Prot. A . Teicnmann, Univ of Montresi, camada
Dr. H.M. Skarsgard, Univ of Saskatchemen, CAMADA
Prot. S.R. Sreenlvasan, Unlvarslty of Calgary, GANADA
Prof. iudor W i. Jahneton, INRS-Enargie, CrMADA
Dr. Hannes Barnarc, Univ British Columble, CANADA
Dr. M.P. Bachynski, MPE Technologies, Inc., CMADA
Zhengmu Li, SW Inst Physles, CHINA
Librory, Tsing Hua University, CHINA
Librorion, Institute of Physits, CHINA
Inst Plasme Phys, Academle Sinica, CHINA
Dr. Peter Lukac, Komenskeho Unlv, GZFCHOSLOVAKIA
The Librarian, Culfam Laboratory, ENGLAND
Prot. Schatzman, Observatoite de Hlce, FRANCE
J. Redet, CEM-EPC, FRANCE
sh Dufes Lidrory, am Dupbs Librory, frante
Dr. Tom Musi, Acadenty BIDliographlt. MONG KONG
Preprint LIorary, Cent Res inst Phys, Hungary
Dr. SaK. Trehan, Panjab Universlty, INOIA
Dr. Indra, Mohan Lal Das, Eaneras Hindu Univ, INDIA
Dr. L.K. Chavda, South Gujarat Unly, INDIA
Dr. ReK. Chhajlani, Var Ruchl Marg. tNDIA
P. Kam, Physical Resbarch Lab, INDIA

Or. Phlliljp Rosenau, Israel Inst Tach. ISRAㄴ
Prof. S. Cuperman, Tel Aviv Unlversity, ISRaEL
Prot. G. Rostagn!, Univ DI Padove, ITALY
Librorlan, Int'i Ctr Theo Phys, ITALy
Miss Clella De Palo, Assoc EURATOM-CNEN, ITALY
AIDIIotece, del CNR EURATOM, ITALY
Dr. H. Yameto, Tosmlie Res \& Dev, JAPAN
Prof. M, Yosnlkawar JAERi, Tokai Res Est, JAPAN
Prof. T. Uenios, University of Toxyo, JAPAN
Research Info Conter, Nogova Unlversity, JaPan
Frof. Kyojl Nismikewe, Univ of HIroshlmb, Japan
Pret. Sigery Mort. JRERi, JRPAN
Library, r ato University, JAPAN
Prof. Ier iro Kamakami, Nihon Unlv, JAPAN
Prot. Setoshl Iton, Kyushu Univarsity, JAPAN
Tech Into Dlvisien, Korao Atemle Enargy, KOREA
Dr. R, Englana, Civased Universitarla, MExico
Bidiathena, Fantinst Yoor Piasma, NETHERLANDS
Prof. B.S. Lliay, University of wikato, NEw ZEALAND
Dr. Suresn C. Smarma, Univ of Colabar, NIGERiA

Prof. J.A.C. Cobrei, inst Superior 7ech, PORTuchl Dr. Octevian Petrus, ALI CURA Universlty, ROMANIA Prof. M.A. Helloerg, Unluersity of Netol. SO AFRICA Dr, Johan de VIlliers, Atomle Energy Bd, SO AFRICA Fusion Div. LJdrary, JEN, SPAIN
Prof. Hans Withelmon, Chalmers Univ Tach, SWEDEN Dr. Lennert Stenfio, Unlversity of UMEA, SWEDEN
LIbrary, Royal Inst Tech, SWEDEN
Dr. Erlk T. Karisan, Uppsale Universitet, SNEDEN
Centre de Recharchosen. Eecle Polytach Fad, SwITRERLAND
Dr. W\&L. Welse, Natli Bur Stand, LISA
Dr. H.M. Stacey, Goorg tnst Tech, LKA
Dr. S.T. Hu, Univ Alabere, USA
Prof. Normen L, Dieson, Univ S Florida, UsA
Or. Banjamin Ma, Iowe State Univ, USA
Prot. Magna Kristlensen, Toxes Tach Unly, USA
Or. Roymand Asker, Auburn Univ, USA
Dr. V.T. Tolok, Kharkoy Phys Teen ins, LESR
Or. D.D. Ryutor, Siberlan Aead 5el, USSR
Dr. G.A. Elismev, Kuremetor Institute, LSSR
Dr. V,A. Glukhlkh, Inst Electro-Pnysical, USSR Institute Gen. PhysIes, USSR
Prof. T. $\mathrm{S}_{\text {. Boyd, Unlv Coltege } \mathrm{N} \text { Wales, WALES }}$
Or. K. Schlmder, Ruhr Unlversitot. W. Gepmany
Nuclear hes Estab, Jullon Lid, W, GERMANY
Lidrarlan, Mzir flanck Instifut, w. GEPMANy
Dr. Had. Kampler, Uriversity 5tuttorart, W. GEpanANy
Blbllothek, Inst Plasmbiorsenung. W. GERAANY

