" PPPL-2131 DR-O 354 0  pPPPL-2131
TC20-G ' . ] l

e ﬂ‘“\ f;(/f7 fjgf ,/b bdﬂ l

AR | ‘

RESISTIVE BALLOONING MODES IN AN AXISYMMETRIC TOROIDAL PLASMA
WITH LONG MEAN-FREE PATH

By

J.W. Connor and L. Chen

AUGUST 1984

PLASMA jm
 PHYSICS il
'LABORATORY &%

~ PRINCETON UNIVERSITY
’ PRINCETON, NEW JERSEY

PREPAREP POR -THR U.3. DEPARTMERT OF ENERGY, .

USDER CONTRACT DE-ACD2-76-CBO-3073.
— DISTRASTOY OF THIS DOTUNERT 19 il TED




DISCLAIMER

ponsored by an agency of the United States

This report was prepared as an account of work §

et nor any agency thercof, nor any of their

Government. Neither the United States Governmi

employees, makes any warranty, cx

RESISTIVE BALLOONING MODES IN AN AXISYMMETRIC TORCIDAL PLASMA

WITH LONG MEAN-FREE PATH

by PPPL--2111
DRG4 017062

J. W, Connorx

mes any legal liability or responsi-
informatien, 2pparatus, product, or
frings privately owned rights. Refer-

pracess, Of service by teade name, trademark,
01 necessarily state or reflect those of the

¥ constitute or imply its endorsement, recom-
Giovernment or any agency thereof. The views

Plasma Physics Laboratory, Princeton University

e Cuhlam Lahoratory, Abingdon,.
523
Evz OX 14 3pB, England
53
5“; g (Euratom/UKAEA Fusion Association)
< 2 g
i anc
8=
£=
Sz L. Chen
(=~
£
SE
g
5

P.O, Box 451, Princeton, NJ 08544

ence herein to any specific commercial product,

manulacturer, or otherwise does not necessaril
mendation, or favoring by the United States
and opinions of authors expressed herein da m

United States Government or any agency thereol.

bility for the aczuracy,

process disclosed

ABSTRACT

devices normally operate at such high temperatures that the
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resistive fluid description is inappropriate. In partieular, the collision
frequency may be low encugh for trapped particles to exist. However, on
account of the high conductivity of auch plasmas, one can identify two
geparate scale lengths when discussing resistive ballooning modes. By
describing plasma motion on one of these, the connection length, in terms of
kinetic theory the dynamics of trapped particles can be incorporated. On the
resistive scale length, this leads to a description in terms of modified fluid
equations in which trapped particle effects appear. The resulting equationg
are analyzed and the presence of trapped particlea is found to modify the

stability properties gpalitatively.
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I. IRTRODUCTION

The simple resistive magnetohydrodynamic (MHD) model predicts the
presence of unatable resistive ballocning modes in toroldal confinement
systems with a finite pressure gradient."2 However, this model does not
provide an adequate description of the hot plasmas encountered in present
experiments. A number of calculations have introduced various aspects of the
Braginskii two-fluid eqqation33 in order to provide a more realistic model,
Thus ion parallel and perpendicular collisional viscosities have been shown to
provide a stabilizing influem:e.4 Similarly, a fuller treatment of the
electron dynamics to include the diamagnetic drift, electron temperature
gradient, and the thermal force in Ohm's law, together with paraliel thermal
conductivity in the electron tqnperafuru equation, leads to greater stability
at higher temperatures.5

However, all these improvements remain within a fluid degscription of the
plasma, valid as long a3 a particle suffers a collision before completing a
transit of the torugs - the so-called Pfirsch—Schl'\.-lter regime. Unfortunately,
typical tokamak devices do not lie in this parameter range, rather they belong
to the ‘'banana' regime where trapped pacticles <an bounce before being
scattered by Coulomb collisions. Such a situation requires a full kinetic
degcription of the plasma and that is the subject of thig paper.

In the treatment of resistive ballooning modes one can expleoit the small
parameter 22/SR, where £ is the mode number and Sp the maghetic Reynolds
nunber, to establish two different scale lengtha.1 In the ballooning
representation stability problems reduce, in leading order, to equations
defined on a coordinate along the magnetic field line. These two scale
lengths then appear as the connection length, reflectiny the toroidal

periodicity, and a longer length inversely related to the resistive layer, It
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is then poasible to average over the shorter connection length to derive
elgenvalue equations delfined on the longer resistive scale. This process
naturally introduces various averages of toroidally modulated quantities
which, when a fluid description is employed, are reminiscent of Pfirach-
Schluter factors, average curvature, etc.

If one wishes to explore resistive ballooning equations in the banana
regimes, 4a similar averaging process applied to the kinetic equations will
generate trapoed particle effects in addition to the fluidlike factors
mentioned above. Thus neoclassical modifications of the conductivity,

7 ete. can be expected to enter. In this paper

perturbed bootstrap currents,
we wish to give a systematic treatment of these effects in an arbitrary
axisymmetric toroidal geometry based on a gyrokinetic degcription of the
plasma particles. In this way we generalize and place on a firmer basis the
ideas of Callen and Shaling.7

In order to do thia, we introduce an ordering scheme designed to
introduce consistently the requisite physical effects and apply this to the
seluticn of the gyrokinetic equations in parallel with Maxwell's equations.
This ordering is chosen to introduce diamagnetic effects, perturbed bootstrap
currents, and trapped particles, but still corresponds to the collisional
fluid limit wv, > kfv%e on the long resistive acale. {Here w and k; are the
mode freguency and wave number parallel to the magnetic field, while Vg and
Vpe are the electron collision frequen. and thermal velocity.) The resulting
eigenvalue eguations therefore have a similar form to those from the two Ffluid
models, but with new interpretations of the coefficients which now involve
trapped particle effects. (These can greatly exceed the PEirach—SchlEtez like
terms of the fluid model !)

Finally, we discues the atability properties of the resulting eguations.
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II. THE GYROKINETIC EQUATIONS AND THE ORDERING SCHEME
The electron and ion distribution functions fj(j. = ji,e) can be taken to

satisfy the gyrokinetic t.uq_uaﬂ:h:maa

an -iLj iLj
v.;_:-ng - ifw - ij)gj +$ o Cj[gje )

-ie, T v, v t‘h?.l
- __lTj pMj(m -ty [3pt0) {# = ——3,) + J,ta) HT] ()
where
e.¢ iL,
R A 3
fj = Tj FMj + gje (2)

with FMj a Maxwellian of density ny and temperature Tj, and ¢, Ay, and éB; are
the pertorbed electrostatlic potential and the components of the vector
potential and perturbed magnetic field parallel to the equilibrium magnetic
field B(xy = B/B). High mcde-number perturbations have eikonal representations

ils(xy=-int
) where ¢ and S are slowly varying functions of the

such as ¢ ~ ¢(xle
spatial position %, the mode number is R >» 1, and w ia the mode frequency.
Equation (1) is expressed in terms of the velocity space variables E, B, and n
where E is the particle energy, u the magnetic moment per unit mass and n the

gyrophase angle, Thus E = (v.2 + vlzl/z and n = "12/23 where v, and v; are

the velocities parallel and perpendicular to g
g:a!v!]p.+vl(cosng¢ +8im g) (3)

where ¢ is the sign of vy, and we have introduced a set of orthogonal unit



vectors p, & and @, = B x Bye with ;v.m:ma.l to a magnetic surface,
¥ = constant. Jy and Jy are l?easel functions and the quantities I.j and aje

representing finite larmor radius (FLR) effects, are given in terms of the

gyrofrequency ﬂj and wave vector k = RYS by

kv
L1 (4)

v
1
I'j bl (kwsinn - kbcosn), aj = ﬂj .

The diamagnetic frequency u*j - (c!.'rj/ej) a:.nnj/aw and the relative

T .
temperature gradient “j =3 in njfa £n Tj, 80 that

LI . - . ]
w ] mj [1 +nJ {TJ 2)] ( )

The magnetic drift frequency ij takes the form

2

k v ax(u¥B+ v e T n) ()

w =
1

1
pj -~ @, ~L
T

and Cj is the Conlomb collision operator for species j. We will characterize
it by a collision frequency vye

We use an orthogonal flux coordinate system in configuration space: ¢
the poloidal flux acts as a radial coordinate, [ is the axisymmetric toroidal

angle, and x is a poloidal anglelike variable. In terms of the Jacobian J,

major radius R, and poloidal magnetic field a;(' we have the gradient operator

(7)
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]
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where‘gw, By and g are unit vectors. In general, the magnetic field can be

expressed as



B= <P x 95 + L)Y (8)
with the safety factor
1 - I1J
qw’"ﬁ-ﬁ"d"’v‘nz' (9)

In order to discuss the stability of high mode numbers, we introduce the

6

ballooning representation,® writing, for example,

evzx) =1 3 g, x - 27p) (10)
p=—=
where p is an integer. Bquation (1) is now to be golved on the infinite
domain - ® ¢ ¥ <« « without the need to consider periodicity constraints -
periodicity is guaranteed by the construction Eg. (10), if § etc., vanish
sufficiently fast aez [y[>= for this sum to exist. sSince § need not be
periodic, we can introduce the eikonal representation

$=¢(x)ei"s (1)

with
s =5 - [Yvax + [Yxtpran (12)
so that g » ¥S = 0; S is of course a secular function of x. The boundary

conditions for Eq. (1) are that g + 0 as h(l +» for eclrculating particlea and

the matching of forward and backward streams at the turning points for trapped

N p e e e—— gy



particles.

To solve Eqs (1) we introduce an ordering scheme constructed to include
the desired phyaical effects, This acheme is based on the small parameter ¢,
where 84 = (nZISR)1/3, which is to be regarded as a technique for bookkeeping
physical effects rather than a guarantee of numerical smallness. We introduce
the _quantities ‘“bj' the bounce of trangit frequency of a particle over a
connection length, the FLR parameter bj = kzj_a?, where a4 is a larmor radius,
and €4, the characteristic length in ballooning space (in terms of connection
lengths) associated with resistive effecta,! Lie., 85 ~ ¢4, ¥ote that ’
due to the secularity of kq,, bj ~ 6; hjo where bjo = kga;‘;.

The first condition that we impose is the "banana" regime of
collisionality

%3

—_—C 1 .

bj

(13)

Secondly, we seek a competition between the effecta of ohmic currents driven
by parallel electric fields on the reaistive scale 84 and bootstrap currents
due to the perturbed pressure gradient. By analcgy with the neoclassical

transport theoryg this requires

mbpe - vbee . {14)
be e 0

Since we are considering pressure driven modes, we balance the expansion

energy againset inertia

2,2 *“D 15)
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vwhere wy does not contain the secularity in Wpy (apy ~ Bgwp) and v ~ w. due to

diamagnetic effects. Further we choose an optimal ordering
w ~ vibi

to include ion collisional perpendicular trangport and viacosity.

MD¢ ~bpl/2 By v condition Eq. (15) reguires
biy2
b, ~ (____ .
i uﬂo

where as condition Eq. {14) implies

i “biy2 1
ol o e
e 3 So

From conditions Eqs. (16}, (1?), and (18) we have

W, . . v, I,
- bjy2/3 1 . _1_3/4
b; (v. ] 8 2/3 * ""bj eo [me) *

g

(186}

Now, since

(17)

{18}

{19)

As will be seen, it is convenient to choose vj ~ c"’bj go that m, ~ e4mi and

1

plasma i3 collisional on the resistive scale length since

av wv 8
-t -

k2 vz wae
1 Te

-2

~ E -

b; ~ €2 (i.es, by ~ €'%) from conditions Eq. (19). This implies that the

(20}

Tn addition, ion sound effects are negligible on the resistive scale

(21}

Yy
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In summary, we solve Eq. (1) with the orderings

W . v
2

le':l. ~e, z - 83, Di ~e5, 2~ bi ~e (22)

bi bi i bi

(] a v

3 D 6
wwe.,e . ':u)__a.es, _e_~89’ -_.e_~al be~E (23}
be be Ye “he

for electrons. Implied in these orderings is weak curvature r /R ~ €2, where

2 from

r, is the density scale length, which follows from w ~ wa; thus B < ¢
the ideal ballooning limit.
In the next section we obtain solutions to the gyrokinetic Egq. (1) in

parallel with the quagineutrality condition

T e | alve =0 (24)
;3 i

and Maxwell's equations

2 amo
_am
i%GBI -_C_JW . (28)

Although we compute jq, directly from fj, it is more convenient to consider a
momentz ey j' ady exp (iL) of the gyrokinetic equation Eq. (1) rather than
]

directly evaluate j,



=10~

i jl
B U -
T T
2 w v, 6B
e 3 * 82 » 17
-g.i‘_[dvp {hv- 0 -39 - (v - )9, 7, ==
w
+Zefd3vg—D-J +iZefd3vag|v|n-VJ (27
j w 0 uj 11 ~~"o

since this automatically accounts for much cancellation in jp due to
guasineutrality.

We have formulated the problem to account for equilibrium temperature
gradients and also perpendicular transport effects. In the presenl paper we
will ignore these complications to emphasize the essentlials of banana regime

dynamics, but propose to continue the full treatment in a later paper.

III. SOLUTION OF THE GYROKINETIC EQUATIONS

Before solving Eq. (1), it is helpful to introduce an auxilliary function

hj such that

e,
3 m.j
—Tl‘; (1 - = W FHj + hj (29)

a
I

where

A =50V {29)
All quantities are assumed to have a dependence on two sgcales 1in the
variable x» Thua we geek sclutions for the field quantities of the form Eg.

(11) in which
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o) =% .2 +%¢“)(x,z) Foeee s

where ¢(0) etc., are regarded ag periodic over a connection length Xo in x but

have secular dependence on the resistive scale

z = fxv'dx,(\:‘ 2 9v/9yp) which has typical scale length ~ e"“xo.

Pirst we congider the solution of the ion gyrokinetic equation.

expand the function hy in Eq. (28) in powers of €, solving for the response of

h; to the field quantities order by order according to Eq. {22},

however, we note that

2
m;C v v v, 2
3 1 13 1 3B I a3 B
“Ly -'éj‘“['ﬁ“a‘—x(-s‘] 2rvgg ey (e T

Thus
ahiw)
3y =0
and
()
v, 3h im,c v, v,
L A7 3 Ty (o (9)
JB 3Y¥ 3 fz1 JB 3y (B ) h.i. + Ci(hi ]
(0) Yagy Ty ia Vi
=-41F_ ¥ —_ — (=
Mi (1 w)T IJB?)((B]'

gince giw) and hi(o’ differ only by a perturbed Haxwellian in €y

anticipating that we shall be able to demonstrate that ¥¢9) = y(o)(z),

periodicity properties of hi(”

conditicn on h; (O}

on the short scale x produce a sclubility
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i 93—:’K c(hi“”] =0 (34)

where the lntegral j represents an integration ﬁ (Jde/v}) aver a connection

X
2
length for passing particles and E f (Jde/[v||). where X1,2 ¥*e the turning
point for the trapped particles. Thus

(0) ni(z)
=—F S {35)

hi n Mi

where n 19 the equilibrium ion and electron density. Intesrating Eq. (33)

(1) imlc v w _
hy =-—ei-—-z IB—'-{ni+;—i‘f(0’[1 -—:—,—j’)}FMi-l-hi“)(Z) . (36)

In next order

M (2) i
-‘-J—Ewhi +-—e—1213-§§['3—)h1 +Ci(hi]=0, (37)
and finally
(3)
v, 9h, m.C v v (0)
(I c N e Ty (@) (2)y _
FEE +1e"zIJBw[B]hi +o(n ) -1em
(o)
5B
_ -ie ) (0 _ o ™1 "5
_?Fm w=-u,) ¢ U} (38)

An equation for n; follows from annihilating the terms in Eq. {(38) involving
h{3) and h{z) vy applying the operator ﬁddx fd3v. Use i@ made of integrations
by parts in X, Eg. (37), and conservation of momentum in ion~ion colligions to

eliminate the second term on the left-hand side. The result is
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W T, 8B :
ne ot (0) {0} i 1
ni--q-(1-_m_] < - +=5 (39)

where <A> = p JAdx/pJdx. Fquation {37) leads to the sclubility condition
JBdy {1) - :
I % ¢ (n" ") =0, (40)

Since C; annihilates a Maxwellian, Eq. (36) implies hf_” satisfies Egq. (34)
(0)
and can therefore be absorbed in hy « Consegquently, the ions possess a

parallel flow velocity

-if1zT ¢ (0) W,
oy L]
Yyt * T, (-3} (41)

which provides a contribution to the fluid inertial energy. Note that this
velocity is generated by the trapped iong - a much smaller velocity exists in
the Pfirsch—Scthxter regime.

Now we turn to the electron equation to determine a form of Ohm's law

valid in the banana regime. Inserting the ordering Eq. (23),

(o)

3h

i’x'5 =0 (42)
{1)

v, 3h

I e {0)

Eax + c(he ] = 0 3 (43)

so that again we have a solubility constraint to determine he(O).

Thus

n (z)
n {0, _e he(” -Ee“’ (2} » (44)
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In next order we repeat Eq. {43) and conclude that

=) _ (2) = (2)
he =0, he = he (z) » (45)
The following order yields

(3}
v, 3ah im © v, v,
- _ e L3 (I {0) = (2)
JB 3y e fez1 I8 ¥y (B ] he +c (he ]

. to) Yugy Me ts Vi
i FMe\! ( T) ?e—-!- zI FB—W [—B-—) . {46)

(3) (2) {0)
The solubility condition on h, shows ﬁe can be abgorbed in h, B

(2)

ie€e, ﬁe = 0, and thus
(3) im ¢ v (0) W
- s ef _ _*e = {3)
h, =—2zIg F, [n, - T (v -59] + 1, . (47)

In fourth order we can introduce the resistive scale into the operator p« Y

(0)
v, dh
-JLB(;)-( he(‘” + v EEE_] +C (h(z)] =0. (48)

(4)
The solubility conditions on he are

Ve ane (3)

B
S 52_'Fhe + e;: C[h e )) =0 for passing particles;
and (49)
X2 (3)
1] (aBaxslvyl) e(n ) =0 for trapped particles,
g x1

Equations (47) and (49} are analogous to the equations of banana neoclassical

Gy
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theory,9 with a perturbeﬁ prassure gradlent across the fleld playing the rolas
of the equilibrium gradient and a parallel pressure gradient playing the role
of the parallel electric fieid. Although we could invoke the techniques of
neoclassical theory to solve Eg., (49) for the £full electron colliaion
operator, we restrict ourselves for simplicity to a Lorentz collision

operator. Allowing for the nonzerc ion velocity given by Eq., (41), we have

(3) 3 "ia (3) n,
Cei(he )=Vei(v"a—uT§;'he +-,F;u|iv| FHQ) . (50)

From Eqs. (47), (4%), amd (50) we can solve for Ee(a’ and corpute

ict T {0) w , n_ T

e eV g 1 \Y] e e B K
u £ ee———TI2zln - (1"_}]-_<—)___—_
[
e e Bn e T, W v g 3z Pe ¢p% B
ik T Iz [ o (0) (m*e = Gy, T, B
_ - ) + =L n,j , (51)
e n Te w Te i (Bz)
where
B—1
k=2 @ [ " DQaycaan /sy, (52)
4]

The effects of trapped particles are proportional to 1 - K. Finally, in fifth

order

(5)
]
v h m ck " a

e (4)y _, e iy, ()
JB ax ¥ C(he ) i_'_e_ZIETa"é-)(-[B_) hy T -iahy

(0}

2
ie (0 _ yto) _ Ze's o B

= E: FHe (m-m*e)[ﬁt - T 5 {53)

80 that the golubility condition on he(s’ determines n_ as in Eg. {39)
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L]

w §B
n =-l‘3(1-—;—e<¢(°)-vm)--°—e ! > (54)

[} Te B

Implicit in Eqs. (39), (41), (51), and (54) is the form of Ohm's law
appropriate to the banana regime; we will present it in the next section where

we analyze Maxwell's equations.

IV. MAXWELL'S EQUATIONS AND THE EIGENVALUE EQUATION

With the information to the distribution functions gleaned in the
previous section we can compute the results of Maxwell's equations and derive
an elgenvalue equation.

From the quasineutrality condition, Eq. (24), we obtain a simple
result. Using the definitions, Egs. {(2) and (28) for the distribution
functions and the solutions Eq. (35) with Eq. (39) and Eg. (44) with Eq. {(54),
it is evident that quasineutrality implies ¢‘°) (X¢3) = ¢(°) {(z) if our
similar assumption about v{0) 58 correct.

Now considering the perpendicular current equation, we use Eqs. (2},
{28), (35), (39), (44), and (54) to calculate ji-" Equation (26) then implies

(0) (a}

éB w,. .
! [=1n o o1 - (1 - e, L] (55)

<&
o2

J

Thus BBI (0;/8 ~ 0(B) < €2 and we can simplify the result Eqg. (55), using the

definition (5) for u,jt

(0}
58
_?'._ =i’% ¢ 10 (56)
w B

vhere we have defined p* = (Ty + T,) 3n/3vy.

Y bre = iy e pmarT—_
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At this point it is convenient to give an explivit form for Ohm's law
using Eqe. (39), (41), (57), and (54} now that we can ignore contributiounsg

(0} 2
from 6By ~¢ “»

3 ikl o pt ¢ ¢t K\
B - = - /
B w 2 <%
v/ T Yeey k @ o, (0) (o)
L e T ) -y (57)
<Bz) w ’on dz
where ny = "“’ei/“ez is the parallel resistivity in the lorentz model. The

first term in jy 1s the perturbed bootstrap current proporticnal to the
fraction of trapped particles while the second term illustrates the role of
trapped parti¢les in reducing the parallel conductivity,

We can determine the relationship between gbw) ana ¥!0) through Maxwell's
Eq. {25) which takes the form

2
Ll 18s1” o 5
3 "% I Ay 8)

In leading orde:r we verify our assumption that y(0) (¥ ,2z) = ¥(0) {(z), while in

next order we obtainh a solubility condition

3,8
——> =0 . (59)
l2s]

Using the form Eq. (57) for j;, we obtain

2,2
(0) n, e’k N !

i
e’xm2/|2512>

at +
dz 4ri (m-m*

2 (0) ig%12p10 O 2 c8®rci/]gs)?s
az (m-m*e) <V /I>K

-X| . (60)
<?/|ys|?s
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Now we turn to the vorticity Egq, (27), expanding the Bessel functions for

& << 1 and performing the integrals over Maxwellians. The first nontrivial
order yields

2

vs| {n (0}
1 s 18817 v ay o areg (033 (1
T 3% [JBz 3)( +v! az )] = - zIp's E [;f) (61)

where we have evaluated the dominant contribution to fdav wng arising from the
secular term in wp, using the results Egs. (35), (39), (44), and (54).

Integrating with reapect to x Yields

[75]2 ,gi1) o _ -
T G E ) s e e (62)
JB )

where the constant of integration \l-'(z) can be determined from the solubility
condition for ¥41). Equation (62) then yields an equation for 3%%'?/3y, which

is a quantity required in the final order of the vorticity equation

2 2
&2_1[1_('25' sy (2, +.,,_(Izsl b g0
mw Tty a2 ¥ LT 82 3z
2 2
+vi.a-—.(Lzs_|._.a_ﬂ]) + v! a_(.l_z_SI_v' “(0)
327 Bz X 3z JBz dz
2
|vs] 2
2 '~ oy 22 3 B (0}
=k -z mn (@ =w,le “QP'W(“P‘LTHﬂ
£z 3 ™ga13 V.,
Pl (63)

Here g' represents corrections to g(OJ which couples to the secular geodesic

part of my and competes with the contributions from q(o’ and the remainder of
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#p; iees, the effects of normal curvature. The eigenvalue equation manifests
itself as the solubility condition for ¥‘2) in Eq. (63).

Firat we note that the definition of h, BEq. (28), implies that the
contribution of the last term to the solubility econdition is

ia N
<Hdv gJ & G oy

2 (1) m.v, v, dh,
JIe%ptz 1 Y 22 3 Y LN AR R BN (64)
cw JBz ax ¢ 3 B JB 4y

vhere we have integrated by parts in x. The term in BY(1)/ax can be evaluated
from Eg. (62}« Using the kinetic equation for h, correct to fourth order in
the expansion parameter €, and taking account of total momentum conservation
in collisions between species, we can write the lagt term as

an{® M)

oy V ¥,
ALY i R ~ iwh + in n, ™15 .

'
B '8 @z 3 Dj g I t65)

-i< ] Jav
3

In deriving this result we have used the facts that the lon-ion collision term
annihilates & shifted Maxwellian and conserves ian momentun. RAs dlacussed
earlier, we have also ignored perpendicular transpor” effects arising from the
ion collision operator. The laat term in Eq. (65} can be shown to vanish by
successive integrations by parts and use of Egs. (36), {37), and (38), again
noting that the ion collision term annihilates a shifted Maxwellian.

Cansequently, we can express Eq. (65) as

on_
li
‘—[1’”i<“>'<;>§'rg'a_zl] {66)

or, introducing the results for u); and ny given in Egs, {39}, (41), and (54),
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222 221 v! a

1 (0)
-Elellin(U-b)*iJ(?>¢--N—<J—B.‘T>p'25(¢ -

¥ « (67}

(0))
When Eg. (41} with the result Eq. (54) is used in expression Eg. (65), we
obtaln a modification to the inertial term arising from the polarization drift
in Eq. (63), 1.e., the first term on the right-hand side.

The solubility zondition on Eg. (63} together with Bgs. (60), (62), and
(67) can be combined to obtain, after considerable algebra, th: desired

eigenvalue eguation. Introducing the scaled variables

A=2,2, Q==1i QO w (68)
where
2 .2 2 2 2,2 2
. c“n 2 <B8%> y173 dRmgn <R <B /RB > 1/6
= 7 J ’
° <Bz/Rsz2> (an%aqsav)?
2 .2 2 2 2,2 2
_ c nli <B > -1/3 4ﬂmin <R"> <B /R Bx >11/3 (69)
% = 2 2. 3. z 2 7
an<B/RB > (4n“ag/av)

with V representing the volume within a flux surface so that <v'/J> = an?

dg/d4v, we obtain

2 _, (0} (0
t d
&% " i - T (1 - F))(a%

ax

)

g
'—.1I§¢

=99 {x%0 -+ F(m+1-F - 11 - ) [wer (110 - F]} .
{70)

Here gh are the scaled versions of w - Ways ' =1+ xzer' and H and Dy have
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bean previously defined by Glasser, Gresene, and Johnson in their study of
resigtive modes in a torus'oa in particular Dy > O implies instebility for

resistive interchange modes in a torus. We have introduced the new quantitiesa

<s?/r%s 2>
w (dg/av) <Bz>
and
T=1=-K ’ (72)

which is proportional to the fraction of trapped particles. It is to be
expected that T will dominate Dp, H, amd L since, for example, in a large
aspect ratio tokamak T = (a/n)’/z whereas the other qguantities are of order
(a/m2 (a is the minor radiuvus). Trapped particle effects manifest themaelves
in two ways. First, they modify the conductivity and introduce a perturbed
bootatrap current through Eq, (60}, Second, they produce anisotropies in the
perturbed pressure producing the contributions lrom Eq. {67), which are absent
in a collisional f£fluid description. Formally, we can recover the resistive

MHD limit by letting L, T > O,

V. RESISTIVE STABILITY
In this saection we discusa the stability properties of the modes
determined by the eigenvalue Eq. {70). solutions of this equation must
converge as |X| * @ and econnect onto solutiona of the ideal ballooning
equation as |X| + =,
Let us consider the behavior of Eq., (70) ag X # O. We cbtaln, reverting

to the variable z,
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: (0)
d 2
3z Z %'zv—i-¢(0)3=0 (73)

where D = E + F + H is the quantity that characterizes the Mercier stahility

criterion D < 1/4. The golutlon of Eq. (73) is

a, a_ :
¢=Cz +C,z (74)
where
- .1 1 _ 5,172
d, ==-3z lig-0"") . (75)

The coefficients Cy and C, must be obtained by numerical solution of the ideal
ballooning equation, which symptotically approaches the form Eg. ‘{74) as
z > “’4.

The solution Eq. {(74) provides a boundary condition at X = 0 for Eg. (70)
which itself will require numerical solution in general. In this paper we
investigate resistive modes which are independent of the matching procedures,
i.e,, are not driven by the energy available in the ideal ballooning region
X << i, Rather we focus on the modes dominated by their behavior in the
/3

regioh X » 1+« These are rapidly growing modes with y « (nz/sR) , analogues

of the resistive interchange modes of registive MHD,.

By conaidering the case where Dp and T are small, it is possible to
obta;n analytic results. Formally ordering Dp ~ T /~ § << t, wé seek
solutions in the region XZ/Q ~ g1 5 11, i.e., essentially electrostatic

perturbations. Bquation (70} then simplifies to
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Q (0}
0
6 Zr4 @ atr - n - Sy x4

Q
-s® {nggi_on_;{a+1(t.-1+ﬂ)]+—-§-u(u+1+1.)} (76)
X

where it is necessary to expand to 0(é).

We now demonstrate instability in the limit H = 0. [A full solution of

Eq. {76) ls presented in the Appendix.] 1In this case, Eq. (76} has a solution

2
¢(0) etk

(77)
provided that
;Qe(L- 1) w = DR - L{y - )T,
a0 -aL(1 - T = o, . (78)
e i
Thus we have an eigenvalue eguation
[og + UL - 1)7] [py + L{z - 1)] = oo, (1 - 1)2 (79)
provided
Rea > 0 . (80)

Recalling that L ~ 1, hf»!%|,nthnhn

2
QQiQe=LT.

(81)
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Since

LT *
2 (82)

Re a > 0 for unstable modes (Re D » 0) if LT < O, which is the case in a
normal tokamak with p'3' < 0. Furthermore, xz/Qe ~ 1/aQa ~ T ~ §1 as we
assumed in deriving Eg. (76).

In the limit w, + 0 Eg., (81) implies
0= {’n3, (83)

whereas if w, > 00y we find an unstable root with a reduced growth rate

Q
9 = [m—"’.)2 iz, (84)

It 1s interesting to evaluate these results for a large aspect ratio

tokamak with circular aurfaces and Bp ~ 1, where BP ~ = Blp/Bzx. We find

that V! :
i
DR"-E%.» H~:—° . L~%e—-, P ~e'/? (es) .

wheree = r/R < 1,

_cemRq’dp o rdp
8 2 de  "p padr
o]

and a= (r/q) (dgq/dr) characterize ideal MHD ballooning instsbility. Thus we

are justified in ignoring DR and H relative to L and T« In terms of these
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quantities, Eq. {83) can be written

o~e"V2 23 g72/3 . (88)

Recalling the definitions given by Eq. (69)

%

S

w723 23 (CRy1/3

e s R T {87)
!2 A

where Sy = Tp/Tp with 15 ~ r2/nge? and 7, = Rq/Vy, Va being the alfven

speed. Thue the growth rate of this mode is given by

2
Y ~e1/6 a2/3 (;’—]1/31—. (88)
A T

A

It ia amusing to compare this with the resistive ballooning mode

discussed previously in the collisional Pfirsch-Schluter regime12'13 which has
a growth iate
© 273 %731
y e AL (89)
» T

Thus they have essentially the same growth rate for reasonable valaes of gl

In the Appendix we discuss the solutions of Eq. {70) more fully., It is
shown that only the lowest harmonic, Eg. (77), is consistent with the
expansien Egq. {76) for finite values of L, Further, for a normal tokamak with
p'a' < 0 there are no additional unstable solutiona of the more exact Eq. (70)-
{(wa do not discuss t;he possibility of matching to the ideal ballooning

region}).
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VI. CONCLUSIONS

We have shown that, even in the banana regime of colliaio}xality,
rcsistive modes in arbitrary axisymmetric toroidal geomatry can be deacribed
by a fluidlike equation. However, the effecta of collisionlesa particle
motion, in particular the dynamics of trapped particles, are represented in
the coefficiznts of these fluidlike equations. This is a consequence of the
fact that in the ballooning space resistive atability is governed by equations
defiped on a long resistive scale, which are obteined by averaging over the
collisionless dynamics on the scale of the connection length. The essential
contribution of this paper i3, indeed, to obtain this effective resistive
fluid equation, Eq. {70).

The pregent discussion has been limited for simplicity to the inclusion
of trapped particle and diamagnetic effects. Extensions to include tharmal

5 are envisaged;

effects, i.e., temperature gradients and thermal transport,
likewise the effects of ion-ion collisions. Furthermore, the intimate
relationship of this theory to neoclassical transport theory suggests that
formulations for arbitrary collision freguency are possible.“

The eigenvalue equation describing resistive stability, Eq. (70), has
been discussed. Iin general, this requires numerical solution but, when
curvature and trapped particle effects are weak, anal.ytic dispersion relations
can be derived. FExamination of thls elgenvalue equation has indicated the
existence of modes driven by trapped particle effects, Eg. (83). The effects
of diamagnetic drifts are included and, as shown in Eq. (84), tend to sﬁppress
but not stablize this instabllity. For the particular case of a large aspect
ratio tckamak with t;:ircular surfaces, we find an instability with a vgrowth

2

rate very similar to that obtained by Gribkow va_t:ﬂ.,1 and@ Carreras and




-2~

Diamond!3 from the resistive MHD equation.

ACKNOWLEDGMENT

This work was supported by U.S. Department of Energy Contract No. DE-

AC02-76~-CHO=3073,




-28=-

APPENDIX

In this Appendix we analyze Eg. (76) more completely.

.«

substitutions

2
o0 L ylI-1)/2 exp(-z.n;g)x Jox)

and the change of variable
2 2
L (14T)—J1/2 ,

XZ
u = E; [QQiQe +

we find ¢ satisfies Whittaker's equation

2
iy S PO S N RS- ) I
v -g+rgrz(G-v =0,
du u
where
1
p=- Z—(ZH + L+ 1) '

[2p, + 218 + + L(L-1) + TL(2H+1-1)]
K =

1/2 *
a{en, o + [t2t1-m2/a]} "/
The condition that this solution is well-behaved 1813

%-+ ¥ -K=-~mn P m is a non-negative integer ,

which provides the eigenvalue equation

With the

(a1)

(A2)

{a3)

(pd)

(a5)

e
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L L 1312
[D + W+ 3 (L= 1} +TL(H+—2-—-2—)]
2 .2 _ 2
= [0, + 7 0 =M (en ¢ 1 - n-20)° . (26)

Eguation (79) will be recognized as the special case H = 0 and m = 0. We

note that if m # 0 we have (with H = 0 for simplicity)

2
-2L°m(2m+1-5)
0.0, =~ (A7)

but these eigenvalues are inconsistent with the expansion 1!2/{!e << 1 used in
deriving Eq. (76). If we seek modes with xz/ge ~ 1, then the eigenvalue is
determined by the finite guantities H and L in the limit Dg, T + 0. Ignoring

FLR effects, setting H = 0 for aimplicity and introducing Y2 = x2/Q, Eq. (70)

becomes
a ¥ a®  wda'? 320
ay 2 aY 7 ar ~eYe . (a8)
1+¥ 14Y

Numerical solution shows no unstable modes exist for a normal tokamak with

L < 0.
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