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We derive the equations of motion of relativistic, resistive, second-order dissipative magnetohydro-
dynamics from the Boltzmann-Vlasov equation using the method of moments. We thus extend our previous
work [Phys. Rev. D 98, 076009 (2018)], where we only considered the nonresistive limit, to the case of
finite electric conductivity. This requires keeping terms proportional to the electric field E# in the equations
of motions and leads to new transport coefficients due to the coupling of the electric field to dissipative
quantities. We also show that the Navier-Stokes limit of the charge-diffusion current corresponds to
Ohm’s law, while the coefficients of electrical conductivity and charge diffusion are related by a type of

Wiedemann-Franz law.
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I. INTRODUCTION

Second-order theories of relativistic dissipative fluid
dynamics play an essential role in understanding the
dynamics of ultrarelativistic heavy-ion collisions [1].
Moreover, strong electromagnetic fields are created in
noncentral heavy-ion collisions [2-5], which give rise to
novel and interesting phenomena in strongly interacting
matter, like the chiral magnetic effect [for a review, see
Ref. [6] and refs. therein]. In order to describe the evolution
of the system, second-order relativistic dissipative fluid
dynamics [7,8] needs to be extended to a self-consistent
magnetohydrodynamic framework [9,10].

In Ref. [11] the equations of motion of relativistic,
nonresistive, second-order dissipative magnetohydrodynam-
ics were derived from the Boltzmann-Vlasov equation. In
a nonresistive, i.e., ideally conducting, fluid the electric field
is not an independent degree of freedom but is related to the
magnetic field by E =—-vx B and therefore can be
eliminated from the equations of motion. While this is a
common approximation in magnetohydrodynamics, it can-
not be realized in a fully consistent manner in a system
whose microscopic dynamics is described by the Boltzmann
equation. The reason is that the electric conductivity o is a
fluid-dynamical transport coefficient and thus, like all other
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transport coefficients, proportional to the mean free path of
the particles. Taking the limit 6z — oo while keeping the
values of all other transport coefficients finite is inconsistent.
In this paper we will dispense with the assumption of
infinite conductivity, and derive the equations of motion
of resistive, second-order dissipative magnetohydrodynam-
ics. As in our previous work [11] we assume a single-
component system of spin-zero particles with electric
charge q undergoing binary elastic collisions. The fluid-
dynamical equations of motion are derived by using the
14-moment approximation in the framework developed in
Refs. [8,12,13]. The electric field is now included explic-
itly, and the resistive magnetohydrodynamic equations of
motion contain new terms with new transport coefficients
due to the coupling of charged particles to the electric field.
The electric conductivity o is defined through Ohm’s
law of magnetohydrodynamics, Ji | = opE*, where Jf, ; is
the charge current induced by the electric field E#. We will
show that the electric conductivity is related to the thermal
conductivity k, giving rise to a type of Wiedemann-Franz
law, 6z = q’x/T, where T is the temperature of matter.
The paper is organized as follows. In Sec. II we recall
the equations of motion of magnetohydrodynamics. In
Sec. III we derive the infinite set of equations of motion
for the irreducible moments up to tensor-rank two of the
deviation of the single-particle distribution function from
local equilibrium. Section IV is devoted to truncating this
infinite system applying the 14-moment approximation, to
obtain the equations for resistive, second-order dissipative

© 2019 American Physical Society
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magnetohydrodynamics. The Navier-Stokes limit of these
equations is discussed in Sec. V. The last section contains a
summary of this work.

We adopt natural Heaviside-Lorentz units # =c¢ =
kg = €y = po = 1, and the Minkowski space-time metric
¢ = diag(1,—1,—1,—-1). The fluid four-velocity is
u =y(1,v)T, with y = (1 —v*>)""2 and normalization
wu, =1, while in the local rest (LR) frame of the fluid,
ul p = (1,0)T. The rank-two projection operator onto the
three-space orthogonal to u* is defined as A" = ¢g"* —u*u”.
For any four-vector, A#, we define its projection onto
the three-dimensional subspace orthogonal to u* as A¥ =
AYAY. A straightforward generalization is the symmetric
and traceless projection tensor of rank-27, denoted by
A’,fll.'.'f;’ , such that the irreducible projections are Alne) =
AL AV e [14]. As an example, the rank-four symmetric

and traceless projection operator is defined as A’;/”} =

5 (AGAY 4+ ARAL) — T A A .

The four-momentum k* of particles is normalized to their
rest mass squared, k“k, = mj. The energy of a particle in
the LR frame of the fluid is defined as Ey = k*u, and
coincides with the on-shell energy k° = /k? + m3. The
three-momentum of particles, k, is defined through the
orthogonal projection of the four-momenta, k%) = Akk?, in
the LR frame. The comoving derivative of a quantity A is
denoted by an overdot, i.e., A= uf‘aﬂA, while the three-
space gradient is V,A = A%),A, hence in the LR frame
they reduce to the usual time and spatial derivatives 0,A
and VA. Furthermore, we use the decomposition d,u, =
u,it, + %G’AW + 0, + ®,,, where we define the expansion
scalar, 0= Vﬂu”, the shear tensor o* = VW) =
H(VRuY + Vi) —10A, and  the
%(V"u" = VPuh).

vorticity ' =

II. EQUATIONS OF MOTION OF
MAGNETOHYDRODYNAMICS

The equations of motion of magnetohydrodynamics are
[see Egs. (24) and (25) of Ref. [11]]

@J]? =0, (1)
9, T = =F"*Je . (2)

Here,
Je=mput + Vi (3)

is the electric-charge four-current of the fluid, where n; =
ul,J]; is the electric-charge density and \/f: A’JJJA’;r is
the electric-charge diffusion current. The electric-charge
four-current is related to the particle four-current Nﬁﬁ by

JJ’} = Q]N’}. Similarly, ny = qny, where ny is the particle

density in the fluid, and V; = qV*, where V* is the particle
diffusion current. For the sake of generality, we have also
added a source term from an external charge current J,, in
the energy-momentum equation (2).

The total energy-momentum tensor of the system is

given by
T = Tl 4 T, (4)

It consists of an electromagnetic contribution which, for
nonpolarizable, nonmagnetizable fluids, reads [15-17]

1
Thm = —F"FY + 1 FYFPF . (5)
Here,
F*" = E'u’ — E'ut + ePu, By, (6)

is the Faraday tensor, which we have decomposed in
terms of the fluid four-velocity u*, as well as the electric
and magnetic field four-vectors E¥ = F*u, and B =
1e"PF su,, respectively, with €% being the Levi-
Civita tensor.

The second part of the energy-momentum tensor (4) is
the contribution from the fluid. For a nonpolarizable,
nonmagnetizable fluid it reads

T = eu'u’ — PAM + QW) 4 i, (7)

where we defined the energy density &= T u,u,, the
isotropic pressure P = —3T%’A,,, the energy-momentum
diffusion current WH = AZT;’-ﬂ ug, and the shear-stress
MW — AHY af
tensor 7t = AaﬂTf. .
Maxwell’s equations read [9]

QP =0, P, F,y =0, (8)

where J = J]? + JL, is the total electric charge four-
current. These equations imply that

BDTQ% — —FIMJ];L. (9)

From this and Eq. (2) follows that the energy-momentum
tensor of the fluid satisfies [18]

aDT?D = F’M\ij. (10)

III. EQUATIONS OF MOTION FOR THE
IRREDUCIBLE MOMENTS

The relativistic Boltzmann equation coupled to an
electromagnetic field [14,15], the so-called Boltzmann-
Vlasov equation reads,

0

RO+ ap k=

fx = Clfl. (11)
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where f) is the single-particle distribution function, C[f] is
the usual collision term in the Boltzmann equation, see e.g.,
Eq. (54) of Ref. [11].

A state of local thermal equilibrium is specified by a
single-particle distribution function of the form [19]

fox = [exp (BoEx — ag) + a] ™", (12)

with ag = ufy, where p is the (in general space-time
dependent) chemical potential and g, = 1/T the (space-
time dependent) inverse temperature, while a = £1 for
fermions/bosons and a — 0 for Boltzmann particles.

Unless «ay, fy, and u# are constants (i.e., independent of
space-time coordinates, such that equilibrium is global
instead of local), the distribution function fy, is not a
solution of the Boltzmann equation (11). However, it is
a convenient starting point to derive the equations of
motion for dissipative fluid dynamics using the method
of moments [8,13]. To this end, one decomposes

Jx = fox + 6/« (13)

where 6f) is the deviation of the solution fy of the
Boltzmann equation from the local-equilibrium distribution
function fy. In the following, we will use the notation

<~~~)E/dK-~fk, <"'>OE/dK"'f0kv
(= [ @Ko (14

where dK = gd’k /[(27)3k°] is the Lorentz-invariant mea-
sure in momentum space and g is the degeneracy factor of
the state with momentum k. From Eq. (13) follows
immediately that (---) = (-- )+ (- )5

The particle four-current and the energy-momentum
tensor of the fluid are given as the following moments

of fi,

and, consequently, we identify the fluid-dynamical
variables introduced in the previous section as,
np=(Ex), Vi=(kW), e=(E), P=—%(0"kk,),
WH = (Ex k™), n#* = (kk*)). For reasons of symmetry,
(Epkn..jonl)y =0 for n>1, thus VA= (kW)
WH = (Ex k)5, 2 = (kKWk¥))5.

Now, following Refs. [8,13] we define the symmetric
and traceless irreducible moments of dfy,

P = (k) (16

Note that the tensors k%1 ...k#) are irreducible with
respect to Lorentz transformations that leave the fluid
4-velocity invariant and form a complete and orthogonal
set [14]. In terms of the irreducible moments (16) the
corrections to the equilibrium values of particle density,
nyy, energy density, &, and isotropic pressure, P, are
ong=ng—np =p;, oe=e—¢g =p;, and I[I=P—
Py = (p, — m3py)/3. The particle and energy-momentum
diffusion currents orthogonal to the fluid velocity are V? =

pp and W¥ = p, while the shear-stress tensor is 7#* = pj;”.

So far, the local equilibrium state introduced in Eq. (12)
has not been defined: the equilibrium variables «y, f,, and
u* must be properly specified in the context of the
Boltzmann equation. The first step is to define tempera-
ture and chemical potential by introducing matching
conditions, n; = ns(a.fy) and & = gy(ay.fy). These
conditions define @, and f, such that the particle density
and energy density of the system are identical to those of a
local equilibrium state characterized by fo,. This implies
p1 =pr =0. For the sake of completeness, we shall
continue with the derivation of the equations of motion
for the irreducible moments without specifying the fluid
four-velocity. In this way, the equations of motion derived
in this paper can be made compatible with any definition
of ut.

Equations (1) and (10) lead to equations of motion for «,

o MY v
Ny = (k). Ty = (k). (15) Po, and u*:
|
. 1 .
ay = D—20 [—J30(Vlf()9 + a”V;) + Jzo(&'o + PO + H)9 -+ J20(3”W” - W”u” - ﬂ'ﬂyﬁﬂy) -+ JQOQ]E'MVf’”], (17)
Po = D [—J20(ns00 + 0, V%) + J1o(eg + Po + 110 + J 19(0,W* = Wi, — 26,,,) + J10QE V5], (18)
and
i =L "0 (g — g THBy) — i+ VATT = S WHO — W, (o — ) — W — AL
&0 + PO ﬂo 3
+ noE" — qBb™V, ), 19
80+P0[Q] 10 q £ (19)
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where h = (&9 + Py)/ny is the enthalpy per particle in
equilibrium and the thermodynamic integrals J,,, and D,,,
are defined in Appendix A. Note that these equations
extend Eqgs. (70)—(72) of Ref. [11] by terms proportional to
the electric field E.'

For a given fluid four-velocity u#, the equations of
motion (1) and (10) only specify five of the 14 independent
variables a, S, I1, V;, WH, and ##*. In order to close the
|

G3r
Dy

G2r
Dy

2,V —

;br_cr—l - ()0+ f

Gy \.
+ <rp’:_l + D—2 W") i, — Vol
20

DZO - (r - 1)Q]Ezzpl;_2'

0
o, W
3"

system of equations of motion, one needs to specify
additional equations of motion that can be provided by a
suitable truncation of the infinite set of equations of motion
for the irreducible moments p;' **. The latter equations are

obtained by calculating the comoving derivative p<” ) =

AL U0 pr' Y, using the Boltzmann equation (11), for
details see Refs. [8,11,13]. For the irreducible moments of

tensor-rank zero one obtains
H}

G2r
D5

7= Dz = (4 2, =3
] -

G2r
+ |- na 4 52

(20)

This equation is very similar to Eq. (75) of Ref. [11] except for the terms proportional to W# and the last two terms which

constitute the contributions from the electric field.

The equation of motion for irreducible moments of tensor-rank one reads

pl = C¥ = al ) Vray — al W+ rpl i, éwmapr_l — pri1) = DG(V,p, + a0, a)
+ % m3(r = V)ph_y = (r + 3)plf = 4afWHO + (r = 1)pi50,,
g (= Vprcay = (2r 4 3)pry = SEW,] + (o + AW, Jor
+ % m3rp,o = (r+ 3)p,y = 3alTIit* + ! VHIL = alqBb™ V., — aBb*p,_;,
+ (afnp + Pod ry1.1)QE + % [(r+2)p, = mi(r = 1)p,o]aB" — (r = 1)p2,qE,. (21)
Here we introduced a new dimensionless antisymmetric tensor b** = —e***y b 5, Where the unit four-vector in the direction

of the magnetic field and orthogonal to u* is b* = 5, with b*b,

= —land B = ,/-B"B, [21]. Equation (21) differs from

Eq. (76) of Ref. [11] by the last three terms taklng into account the electric field, as well as by the additional terms

proportional to W¥.

Finally, the equation of motion for the irreducible moments of tensor-rank two is

P =€) = 200 - (= )y~ B2+ 3)p, (o A)py o + it — (o 5)ol ]
~ Ol = )] + iy = NP (= 1) 4 2 )
IR = Dy = (o 410+ 2 d(r = Dy — (2r + )51 — 2aBbP Mg ot
+2aE%) — (= 1A% |aEp + 2 aE (ol )| (22)

This equation differs from Eq. (77) of Ref. [11] by the last two terms, which constitute the contributions from a

nonvanishing electric field.

'Note that terms proportional to W* also did not appear in Ref. [11
Landau frame [20], where " is defined as an eigenvector of the energy-momentum tensor, u, T

056017-

], since the equations derived in that reference employed the
eu”, leading to W#* = 0.
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In Egs. (20)—(22), o, ag), and G;; are thermodynamic
coefficients, which are explicitly given in Appendix A,
while the linearized collision integral is defined as

clu e = Ape / dK E;7'k0 - - kv Clf]

= - ZAM plte (23)

where the coefficient A%) ~ /lmfp contains time scales
proportional to the mean free path of the particles. Note
that the last equality of the above equation is obtained using
the moment expansion of the single-particle distribution
function first introduced in Ref. [8], which, for the sake of
completeness, is listed in Appendix A.

THH + H = —(9 61‘[1‘[1—19 + /11‘[7[77.'”

—fnvv Vf vV’

IV. EQUATIONS OF MOTION IN THE
14-MOMENT APPROXIMATION

In order to obtain a closed system of fluid-dynamical
equations of motion, we now truncate the infinite set (20)—
(22) of equations of motion for the irreducible moments.
The simplest and most widely used truncation is the so-
called 14-moment approximation [7]. First, all irreducible
tensor moments py'** for # > 2 are explicitly set to zero in
Egs. (21)—(22). Second, the remaining scalar p,, vector p,
and rank-2 tensor moments p,’ are expressed as linear
combinations of the lowest-order moments p, = —3I1/m3,

= V?, P} =WFH and p’ = 7", ie., in terms of quan-
tities appearing in J; and T, cf. Egs. (3), (7). The relations
affecting this truncation are Eqgs. (AS5)—(A7).

Equation (20) then leads to an equation of motion for the
bulk viscous pressure

- fnwaW” - THWWMuﬂ — Anw W*# vﬂao - 5HVEQ]Vva - 5HWEQ]W E,. (24)

Similarly, from Eq. (21) we obtain an equation for the particle- and energy-diffusion currents,

TVv;M> - Tvl’lal W<”> + V/;' —

— T\/ﬂﬂ"wl/.ly + /IVHHVM(ZO

hEI Wk = Kv”ao - TVVf.uwW - 5VVVI;"9 - ﬂvaf.yG’w
+ T\/halwvaﬂ —_ 5wwwﬂ0 —_ AWWWUGIM/ -

fvnvﬂn + f\/”Aﬂyviﬂi + TVHHl:lﬂ
— Ay o'V, oy — OypqBb* Vs, — SwpqBb*' W,

+ 5VEQ]E” + 5VHEq]HEM + 5VﬂEq]”Iwa- (25)

The equation of motion for the shear-stress tensor follows from Eq. (22),

7,7 4 g = 2pet + 21 ﬂéﬂ "

- Tﬂvvf

— 8,0 — T,,,,ir’””a;) + A nllo*

+f,,VV”Vf +)«”vavba0—fﬂwwﬂu —I—f,,WV”W” +/1WW”V”

— 5,3qBb™ AWQA/}”M + 8,y qEY V s SawrQEH WY (26)

The coefficients appearing in these equations are listed in
Appendix B.

Note that Eq. (25) represents the relaxation equation for
the heat flow defined by

qgt''= W+ — hOV;. (27)

In case we choose the local rest frame following Landau’s
picture (which imposes W# = (), the heat flow is simply
given in terms of the particle diffusion alone, ¢* = —hj V?.
On the other hand, choosing the rest frame according to
Eckart’s picture (which requires V', = 0), leads to a heat flow
that is solely given by the flow of energy and momentum,
g" = W¥. Since the relaxation equations (24)—(26) contain

l
both diffusive quantities, the equations of motion derived
in this paper are consistent with either choice of local rest
frame.

The coefficients proportional to the electric field in the
equation for the bulk viscous pressure are

5HVE:—m% ( () _%_ﬁ_oafm)
340 "Dy hy 9y )’
m} o OF\)
5 —_0(}'(1)__0_11) 8
ET A0\ ko 9 @)

The coefficients proportional to the electric field in the
equation for the particle-diffusion current are

056017-5
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TABLE L. The coefficients for the diffusion equation for a Boltzmann gas with constant cross section in the ultrarelativistic limit, in the
14-moment approximation, with TOB =1y.
K tv[dmep)  Svvlev]  Swwlevl Avwvlev]l Awwlev]l  Avelev]l Cvilev]  valev] Svsley] Swslev]l  Sveley]  Svaeley]
3/(16s)  9/4 1 —Bo/3  3/5  —Po/4  Po/20  Bo/20  Bo/20  5pp/12  —p5/12  Pypi/12 0
TABLEII. The coefficients for the shear-stress equation for a Boltzmann gas with constant cross section in the ultrarelativistic limit, in
the 14-moment approximation, with 10%, =17,
n Tr [Amfp} 57[7! [Tﬂ] Tan [Tﬂ] ’1er [Tﬂ} fﬂV [Tﬂ] Trv [Tﬂ} j'/zW [Tﬂ] fT[W [Tﬂ} Taw [Tﬂ] 5113 [Tﬂ} 67[VE [Tﬂ} 57[WE [Tﬂ]
4/(36p) 5/3 4/3 10/7 0 0 0 2/5 2 2p0/5 8/5 0
1 In Table I we list the my = 0 values of those coefficients
- (_ -1 0
Ove = .A(()l) (=ngohg’ +Bolv). (29) in Eq. (25), which are not proportional to I1.
0 Similarly, in Table II we list the m, = 0 values of those
0) coefficients in Eq. (26), which are not proportional to II.
1 2 (1) 2P0 0F 1y
5VHE:_W 2+m0f20 _moh_w )
Mo%00 0 0 V. NAVIER-STOKES LIMIT, OHMIC CURRENT,
s 1 < 0 _Fo afﬁ)’) 30) AND WIEDEMANN-FRANZ LAW
VzE = — 1) - )
" A(()%)) 0 hy 9B In the Navier-Stokes limit, all second-order terms are

and the coefficient coupling W# to the magnetic field is

(1
].‘

Swe =1} (31)
AOO

Finally, the coefficients proportional to the electric field in
the equation for the shear-stress tensor are

()
2 ) 2By OF
Savp = —— 4+ mdFL) —m3teZ 10 )
e 5.,4(()%)) < 07 20 "hy OBy
2m2 [y PodFW
5, :—°<.7-"()——°—“>. 32
i 5A2 " ho 9By (32)

The thermodynamic integral 5 is defined in Eq. (Ad).

In the limit of a massless Boltzmann gas with constant

—2((2";:1);”%"@0, and hence

AS) = 4/ (9hmgy)s Aly) =3/ (5ny) where Ay = 1/(n0)
is the mean free path of the particles. In the massless limit,
mqy = 0, the coefficients oy = dpgwr = 0, while Sypg
formally diverges ~1/ m%. However, the bulk viscous
pressure is I1 = —m%po/ 3, which cancels this divergence,
and the remaining term is ~poE¥. Now, E¥ is of order one in
gradients (see below and Ref. [22]), while pj is actually of
second order, since the coefficient ag()) in the Navier-Stokes
term in Eq. (20) vanishes in the massless limit for all r.
Thus, the respective term is of third order in gradients and,
for this reason, we neglect it in the massless limit.

cross section o, J,, =1,, =

discarded from the relaxation equations (24)—(26). We
employ the power-counting advertised in Ref. [22], i.e.,
E* is of order one, i.e., of the same order as gradients
of ay, Py, and u*, or of the same order as the dissipative
quantities TI, V%, W, and ##*. On the other hand, the
magnetic field is of order zero, like other thermodynamic
quantities. For the bulk viscous pressure and shear-stress
tensor, this ultimately leads to I1 = —{6 and 7 = 2no"* —
8,5qBb™ Nogg;sm™, see the discussion in Sec. IV.B of
Ref. [11], where these equations have already been
analyzed.

However, for the Navier-Stokes limit of the diffusion
currents, the electric field has a non-negligible impact. For
the sake of simplicity and comparison to Ref. [11], we work
in the Landau frame, where W# = 0. To first order, the
particle-diffusion current becomes

Vi = kVFaq + Sy QB — 8ypqBb*V,.  (33)

The Ohmic induction current is given by the second term of
Eq. (33) (after multiplying by q),

Jg = opE", (34)
with the electric conductivity

op = Uq]z(sVE. (35)
As originally noted by Einstein [23], the electric con-

ductivity and the particle-diffusion coefficient must be
related by

056017-6
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O = Q]ZﬂoKa (36)

which is the kinetic-theory version of the famous
Wiedemann—Franz law. For the massless Boltzmann gas,
the validity of this relation can be easily checked using the
relation Sy = 71 yofoAms, and the fact that k = 21 oA,
[8]. As noted in Ref. [24], this relation must also hold for a
different reason: in a state of constant 7" and u* and in the
absence of dissipation, an electric field induces a charge-
density gradient such that (in our conventions for metric
and chemical potential),
Viay = —qfoE*. (37)

This relation can also be found from the second-order
transport equation (25), setting all dissipative quantities to
zero, which leads to the condition kV¥ay = —6ypqE*. This
relation together with Eq. (37) then confirms the Einstein
relation (36).

Note that in the presence of a magnetic field Eq. (34) no
longer holds [25]. Using Eq. (21) in the Navier-Stokes
approximation we obtain

pr=Kr'V,a0 + 8 qE,, (38)

hence the conductivity tensor can be defined similarly to
Eq. (36)

o, = Q8" (39)

The rank-two tensor coefficients may be decomposed in the
direction parallel and orthogonal to the magnetic field in
terms of the projection operators, b*b*, E* = A* + b* b,
and the tensor b*¥ as

K = K B =k DD = Ky DM, (40)
FY = 5, F — 5, BB — 5, b, (41)
In order to calculate the transport coefficients &4 or &, we
will follow the inversion procedure of Ref. [11], hence in

the 14-moment approximation (N; = 1), setting V¥ay, = 0
we get

) (1) ANES
poct’ Firo + o
o) = : SoL = 6o |1 + | gB——7— ,
| -A(r(l)) I A%)
]:(1_), +al
Sox = 601qB % (42)
A

Comparing with Egs. (101) of Ref. [11], we conclude that

60“ = ﬂOKOH’ 60l = ﬂOKO’ 50>< = ﬂOKOX’ (43)

confirming that Eq. (36) also holds in tensorial form,
o, = q*foKy”’, and irrespective of the limit of a massless
Boltzmann gas.

VI. CONCLUSIONS AND OUTLOOK

Based on the moment expansion of the Boltzmann equation
for a single-component gas of charged spin-zero particles
coupled to an electromagnetic field, we have derived the
equations of motion of resistive, second-order dissipative
magnetohydrodynamics in the 14-moment approximation.
New transport coefficients appear due to the coupling to the
electric field. We computed these coefficients in the limit of a
massless Boltzmann gas. We analyzed the Navier-Stokes limit
of the dissipative quantities and recovered Ohm’s law. We
found that the electrical conductivity and the particle diffusion
satisfy the well-known Einstein relation, which constitutes a
type of Wiedemann-Franz law.

In future studies, one should address the generalization
to particles with nonzero spin. Then, particles have a
microscopic dipole moment which generates nonvanishing
macroscopic magnetization and polarization fields [17,24].
The spin of the particles also gives rise to spin-vorticity
coupling terms, which leads to the so-called chiral vortical
effect [26]. This may necessitate an extension of the
standard fluid-dynamical conservation laws by an equation
of motion for the macroscopic spin tensor [27,28].
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APPENDIX A: SOME USEFUL FORMULAS

Following Refs. [8,13], we recall that the single-particle
distribution function f} can be expanded around f as,

o Ny

fx = fox + fox(1 —afox) ZZPI "k,

=0 n=0

14
>H£(n)’

(A1)
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where the coefficient an) is a polynomial in energy and
defined as,

o _ =1 ZN” Zi () ()
= a:’a: .
kn f!JZf_f / . in “im ~k

I=n m=

(A2)

The coefficients al(-f)

orthogonalization procedure and are expressed in terms
of thermodynamic integrals J,,, for more details see
e.g., Ref. [8].

Any irreducible moment of arbitrary order r and tensor
rank ¢ can always be expressed as a linear combination
of irreducible moments of all orders n and the same
tensor rank,

are calculated via the Gram-Schmidt

nq-»

Ny
p!rll"'ﬂf _ zf:pl:;lmwf(—i),n, (A3)
n=0
where
F =" dK Eg"HY) (AP koky) for (1
rn —m k kn( a ﬂ) fOk( —afOk)-

(A4)

In the 14-moment approximation the above expressions
simplify considerably, hence using Eq. (A3) with the
summation limits Ny =2, Ny =1, N, =0 for different
tensor rank, we obtain the following relations,

S ) 3 0
Pr= Z pnf—r,n - __an_r’o

n=0,#1,2 my
_ 3 _JwoD3o+ 106G+ J00D0

=-—11 . (A5)
myg J20D2o + J30G12 + J40D1o

N,
plt = prtl}—(—lr)n = V?}—(—]),O + W”J:(—]r)J
n=0

_ V/;]r+2,l‘l4l —Jry31/31 4w —Jr21d31 +J 31021

Ds, D5,
(A6)
N, 7
P = Zpﬁ”}"(})ﬂ = ﬂ””f-(_zr).o = gt %4’2. (A7)
“— 42

Note that Egs. (A5)—(A7) are the same as Eqs. (115)—(117)
of Ref. [11], except for Eq. (A6), which now contains a
term proportional to W# when compared to Eq. (116) of
Ref. [11]. Furthermore, for r,n > 0, F (_f,),, = §,,, however
Egs. (A5)-(A7) are to be used for irreducible moments not
only with positive but also with negative r given by

Ng
p/i]r"'ﬂf — Zpﬁlﬂff%) (AS)
n=0

Truncating the sum as in Eqs. (A5)—(A7), the coefficients
of Eq. (A8) can be written similarly as in Eq. (67) of
Ref. [8],

3
por = =57+ O(Kn), (A9)

g
P =7 OV Dwr 1 O(Kn),  (A10)
P =y 4 O(Kn). (A11)

In Ref. [8] the coefficients ygf) were calculated explicitly in

the Landau frame, hence yy(l) = yﬁl), while YXV(I) is a new

coefficient in the Eckart frame. Note that, in the 14-moment

approximation, y\” = .7-"58), y = .7-'53)), = .7-"%),

@ _ @
Yro =500
The usual thermodynamic integrals are defined in local
equilibrium such that,

(_1)(1 / n—2q
IL,=—-" " KE AP 4 Al2
ng (Zq + 1)” d k ( kak/)') fOkv ( )
J I Gt Vi dK E72 (A% k k)9 fo (1 — afor)

(A13)

Here we also recall the following coefficients appearing in
Egs. (20)—(22),

0 Mo
a£,)E(l—V)Irl_IrO_DL(hOGZr_G&’)? (A14)
20
1 _
o) = Jrirn = hg' i (A15)
2
a) = Log+ (r=1Dlpan, (Al6)
h ﬂ()
= _ J , Al7
r € n P() r+2,1 ( )
and
Dy =Jnirgdnrg =2 (A18)
Gnm = Jn,OJm,O - -]n—l.OJm-‘rl,O' (Alg)

In the limit of a massless Boltzmann gas with constant

+1)! _
%ﬁ% nPo, and thus (Xg =

—hy' = —py/4 as well a’f =1, hence the coefficients of
interest are

cross section, J,, =1,, =
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1 2ﬂ() V(1 1 z
71“ -7:30)_ 3 72()5}—(20)—?0’ (A20)
W) _ () 6 W) _ () 0
no =y -1 2 =Ty 1 (A21)
o_F@_b 0 _B
V1= ‘FIO - 5 ’ ‘7:20 20 <A22)

Also note that in the derivation of the relaxation
equations we have expressed the proper-time derivative

and spatial derivative of the coefficients y£ by the
following formulas
(&) _ Mo oy Oyr
Y= J J h
g Dy [( * Dy o 3ﬂ0> ’
8yr 87/,
J J 0, A23
< 0 Dy +J20 9, )} (A23)
a},(f) ay(f) 87/
Y e e AV '
4 8(10 + 0 8ﬂ0 ay — ﬂo aﬁ
Po 3}’55))
+ == qFE*. A24
ho 9o (A2

These equations follow from Eqgs. (17)-(19) neglecting
terms proportional to the dissipative fields and/or their
derivatives.

APPENDIX B: TRANSPORT COEFFICIENTS

1. Coefficients of the bulk equation

Noting that r(()%) =1/ A(()%), the transport coefficients

found in the relaxation equation for the bulk viscosity,
Eq. (24), up to terms N, = 0,# 1, 2, are

(0)

T G
Sers — 00 (9 2,0) 2520 .
s ( e = Dy
m2 0 2 G
Jo =0 ) (2 _ Y20 B1
Tz 3 Too |\ 72 D) (B1)
Furthermore, the coefficients proportional to V# are
m o viy Gz
£ — !} ( _ 50
SR (7 Dzo>’
mo 8}’1 G30
- B2
ny = TOO < 0 ﬂ D20> ’ ( )
m2 o a},v(l) ayV(l)
2 _ __0 (0) 1 h—] 1 , B3
v 3 oo datg +hy b, (B3)

while the new coefficients proportional to W# are

2
__mg o way G
== (14 32).

2 a w(1) G
71 20
2— ’
= TOO ( " 9p, * Dzo)

_ 871 —1 a?’fm)

The coefficients of the electric field are

5 o va)y G Po 37}/(1
NVE — 5 %oo | V2 _D—zo_h_o aﬂo s
2 ﬁ ayW(l)
W P L

2. Coefficients of the diffusion equation

Similarly with r&)) =1/ A(()z)), the transport coefficients

found in Eq. (25) are

(0)
- 0 - 4
fVH:T(()Q(hOI_V(l))’ TVH:T(()Q (hol_ﬂo l >’

o
a7’1 67(())
Ay = hy' =),
VII T()O <8 + 0 aﬂo

The coefficients proportional to 7#* are
_ oY
Lyr = Tg)z))wol —7§z)>7 Tyg = ( ( — fo— )
(o L or,”
' %\ dag " apy )

The coefficients proportional to V? are

(B7)

m32 1
Oyy = T(()})) (1 + ?0}’;/(1)), Ayy = gT(()i))(S + 2’“33’;(1))’
(B9)
while similarly the coefficients proportional to W# are

(1)

T,
Sww = % (—4h5" + m2yy W)y,
2
Aww _TE,(Q( —hg! +? v )>. (B10)

The coefficients due to the magnetic field are

Sy =0 (=h5' +71"). Swp=gry . (BI1)
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while the new coefficients due to the electric field are

Oyp = Té:))(—nohEI + BoJ11), (B12)
(0) (2)
1 (1)< 0) Po O, ) (1)( @  BPoor )
o =——1y | 2+ mdy;y —mi—=—1— ], Ovzg =T, -—— . B13
VIIE m% 00 072 0 ho Ofo VaE 00 | 72 ho Oy ( )
3. Coefficients of the shear-stress equation
Finally, using r(%) =1/ .A(()%), the transport coefficients found in Eq. (26) are
4 m2 21'(2) 0
Opz = T(()%)) (g + 7&2) ?0> , Trp = % 5+ Zm%y(zz)), Mgl = gr(%) 3+ m%yg )) (B14)
Furthermore we have the coefficients of V?-,
/o _2_’7137(2)7/(1) P _2_1718 ) 3)/1( ) . aylvm o _z_mgf(z)ﬂ ay‘l/(l) (B15)
zV 5 fool1 v 5 0\ Haq O "ap, )’ v 5 foolo 9o’
and the new coefficients of W#,
2 2 W) 2m2 @ ayW(l) B 37/W(]) @ m2 ayw(l)
Caw = gféo (1 =mgr, ), Aaw = —Tofoo 610:0 + I a,lﬂo ) Taw = 2700 ( 1 —?0 0 6}60 (B16)
The new coefficient due to the magnetic and electric fields are
Sup = 2057 (B17)
and
ZVE 0r2 0 he 9Py ) AWE = "5 72 he 9Py )

[1] U. Heinz and R. Snellings, Ann. Rev. Nucl. Part. Sci. 63,
123 (2013).

[2] V. Skokov, A.Y. Illarionov, and V. Toneev, Int. J. Mod.
Phys. A 24, 5925 (2009).

[3] W.T. Deng and X.G. Huang, Phys. Rev. C 85, 044907
(2012).

[4] K. Tuchin, Phys. Rev. C 88, 024911 (2013).

[51 A. Bzdak and V. Skokov, Phys. Lett. B 710,
(2012).

[6] X.-G. Huang, Rep. Prog. Phys. 79, 076302 (2016).

[71 W. Israel and J. M. Stewart, Ann. Phys. (N.Y.) 118, 341
(1979).

[8] G.S. Denicol, H. Niemi, E. Molnar, and D. H. Rischke,
Phys. Rev. D 85, 114047 (2012); 91, 039902(E) (2015).

171

[9] S.R. de Groot and L. G. Suttorp, Foundations of Electro-
dynamics (North-Holland Publishing Company, Amsterdam,
1972).

[10] L. Rezzolla and O. Zanotti, Relativistic Hydrodynamics
(Oxford University Press, New York, 2013).

[11] G.S. Denicol, X. G. Huang, E. Molndr, G. M. Monteiro, H.
Niemi, J. Noronha, D. H. Rischke, and Q. Wang, Phys. Rev.
D 98, 076009 (2018).

[12] G.S. Denicol, T. Koide, and D. H. Rischke, Phys. Rev. Lett.
105, 162501 (2010).

[13] G. S. Denicol, E. Molnéar, H. Niemi, and D. H. Rischke, Eur.
Phys. J. A 48, 170 (2012).

[14] S.R. de Groot, W. A. van Leeuwen, and C. G. van Weert,
Relativistic Kinetic Theory—Principles and Applications
(North Holland, Amsterdam, 1980).

056017-10


https://doi.org/10.1146/annurev-nucl-102212-170540
https://doi.org/10.1146/annurev-nucl-102212-170540
https://doi.org/10.1142/S0217751X09047570
https://doi.org/10.1142/S0217751X09047570
https://doi.org/10.1103/PhysRevC.85.044907
https://doi.org/10.1103/PhysRevC.85.044907
https://doi.org/10.1103/PhysRevC.88.024911
https://doi.org/10.1016/j.physletb.2012.02.065
https://doi.org/10.1016/j.physletb.2012.02.065
https://doi.org/10.1088/0034-4885/79/7/076302
https://doi.org/10.1016/0003-4916(79)90130-1
https://doi.org/10.1016/0003-4916(79)90130-1
https://doi.org/10.1103/PhysRevD.85.114047
https://doi.org/10.1103/PhysRevD.91.039902
https://doi.org/10.1103/PhysRevD.98.076009
https://doi.org/10.1103/PhysRevD.98.076009
https://doi.org/10.1103/PhysRevLett.105.162501
https://doi.org/10.1103/PhysRevLett.105.162501
https://doi.org/10.1140/epja/i2012-12170-x
https://doi.org/10.1140/epja/i2012-12170-x

RESISTIVE DISSIPATIVE MAGNETOHYDRODYNAMICS FROM ...

PHYS. REV. D 99, 056017 (2019)

[15] C. Cercignani and G.M. Kremer, The Relativistic Boltz-
mann Equation: Theory and Applications (Birkhiuser,
Basel, 2002).

[16] J.D. Barrow, R. Maartens, and C. G. Tsagas, Phys. Rep.
449, 131 (2007).

[17] W. Israel, Gen. Relativ. Gravit. 9, 451 (1978).

[18] C. Eckart, Phys. Rev. 58, 919 (1940).

[19] F. Jiittner, Ann. Phys. (N.Y.) 339, 856 (1911); Z. Phys. 47,
542 (1928).

[20] L. D. Landau and E. M. Lifshitz, Fluid Dynamics, 2nd ed.
(Butterworth-Heinemann, Oxford, 1987).

[21] X.-G. Huang, A. Sedrakian, and D. H. Rischke, Ann. Phys.
(Amsterdam) 326, 3075 (2011).

[22] J. Hernandez and P. Kovtun, J. High Energy Phys. 05 (2017)
001.

[23] P.B. Arnold, G. D. Moore, and L. G. Yaffe, J. High Energy
Phys. 11 (2000) 001.

[24] P. Kovtun, J. High Energy Phys. 07 (2016) 028.

[25] J.D. Bekenstein and E. Oron, Phys. Rev. D 18, 1809
(1978).

[26] D.T. Son and P. Surowka, Phys. Rev. Lett. 103, 191601
(2009).

[27] W. Florkowski, B. Friman, A. Jaiswal, and E. Speranza,
Phys. Rev. C 97, 041901 (2018).

[28] F. Becattini, W. Florkowski, and E. Speranza, Phys. Lett. B
789, 419 (2019).

056017-11


https://doi.org/10.1016/j.physrep.2007.04.006
https://doi.org/10.1016/j.physrep.2007.04.006
https://doi.org/10.1007/BF00759845
https://doi.org/10.1103/PhysRev.58.919
https://doi.org/10.1002/andp.19113390503
https://doi.org/10.1007/BF01340339
https://doi.org/10.1007/BF01340339
https://doi.org/10.1016/j.aop.2011.08.001
https://doi.org/10.1016/j.aop.2011.08.001
https://doi.org/10.1007/JHEP05(2017)001
https://doi.org/10.1007/JHEP05(2017)001
https://doi.org/10.1088/1126-6708/2000/11/001
https://doi.org/10.1088/1126-6708/2000/11/001
https://doi.org/10.1007/JHEP07(2016)028
https://doi.org/10.1103/PhysRevD.18.1809
https://doi.org/10.1103/PhysRevD.18.1809
https://doi.org/10.1103/PhysRevLett.103.191601
https://doi.org/10.1103/PhysRevLett.103.191601
https://doi.org/10.1103/PhysRevC.97.041901
https://doi.org/10.1016/j.physletb.2018.12.016
https://doi.org/10.1016/j.physletb.2018.12.016

