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We derive the equations of motion of relativistic, resistive, second-order dissipative magnetohydro-
dynamics from the Boltzmann-Vlasov equation using the method of moments. We thus extend our previous
work [Phys. Rev. D 98, 076009 (2018)], where we only considered the nonresistive limit, to the case of
finite electric conductivity. This requires keeping terms proportional to the electric field Eμ in the equations
of motions and leads to new transport coefficients due to the coupling of the electric field to dissipative
quantities. We also show that the Navier-Stokes limit of the charge-diffusion current corresponds to
Ohm’s law, while the coefficients of electrical conductivity and charge diffusion are related by a type of
Wiedemann-Franz law.

DOI: 10.1103/PhysRevD.99.056017

I. INTRODUCTION

Second-order theories of relativistic dissipative fluid
dynamics play an essential role in understanding the
dynamics of ultrarelativistic heavy-ion collisions [1].
Moreover, strong electromagnetic fields are created in
noncentral heavy-ion collisions [2–5], which give rise to
novel and interesting phenomena in strongly interacting
matter, like the chiral magnetic effect [for a review, see
Ref. [6] and refs. therein]. In order to describe the evolution
of the system, second-order relativistic dissipative fluid
dynamics [7,8] needs to be extended to a self-consistent
magnetohydrodynamic framework [9,10].
In Ref. [11] the equations of motion of relativistic,

nonresistive, second-order dissipative magnetohydrodynam-
ics were derived from the Boltzmann-Vlasov equation. In
a nonresistive, i.e., ideally conducting, fluid the electric field
is not an independent degree of freedom but is related to the
magnetic field by E ¼ −v × B and therefore can be
eliminated from the equations of motion. While this is a
common approximation in magnetohydrodynamics, it can-
not be realized in a fully consistent manner in a system
whose microscopic dynamics is described by the Boltzmann
equation. The reason is that the electric conductivity σE is a
fluid-dynamical transport coefficient and thus, like all other

transport coefficients, proportional to the mean free path of
the particles. Taking the limit σE → ∞ while keeping the
values of all other transport coefficients finite is inconsistent.
In this paper we will dispense with the assumption of

infinite conductivity, and derive the equations of motion
of resistive, second-order dissipative magnetohydrodynam-
ics. As in our previous work [11] we assume a single-
component system of spin-zero particles with electric
charge q undergoing binary elastic collisions. The fluid-
dynamical equations of motion are derived by using the
14-moment approximation in the framework developed in
Refs. [8,12,13]. The electric field is now included explic-
itly, and the resistive magnetohydrodynamic equations of
motion contain new terms with new transport coefficients
due to the coupling of charged particles to the electric field.
The electric conductivity σE is defined through Ohm’s

law of magnetohydrodynamics, Jμind ¼ σEEμ, where Jμind is
the charge current induced by the electric field Eμ. We will
show that the electric conductivity is related to the thermal
conductivity κ, giving rise to a type of Wiedemann-Franz
law, σE ≡ q2κ=T, where T is the temperature of matter.
The paper is organized as follows. In Sec. II we recall

the equations of motion of magnetohydrodynamics. In
Sec. III we derive the infinite set of equations of motion
for the irreducible moments up to tensor-rank two of the
deviation of the single-particle distribution function from
local equilibrium. Section IV is devoted to truncating this
infinite system applying the 14-moment approximation, to
obtain the equations for resistive, second-order dissipative
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magnetohydrodynamics. The Navier-Stokes limit of these
equations is discussed in Sec. V. The last section contains a
summary of this work.
We adopt natural Heaviside-Lorentz units ℏ ¼ c ¼

kB ¼ ϵ0 ¼ μ0 ¼ 1, and the Minkowski space-time metric
gμν ¼ diagð1;−1;−1;−1Þ. The fluid four-velocity is
uμ ¼ γð1; vÞT , with γ ¼ ð1 − v2Þ−1=2 and normalization
uμuμ ≡ 1, while in the local rest (LR) frame of the fluid,
uμLR ¼ ð1; 0ÞT . The rank-two projection operator onto the
three-space orthogonal to uμ is defined as Δμν≡gμν−uμuν.
For any four-vector, Aμ, we define its projection onto
the three-dimensional subspace orthogonal to uμ as Ahμi≡
Δμ

νAν. A straightforward generalization is the symmetric
and traceless projection tensor of rank-2l, denoted by
Δμ1���μl

ν1���νl , such that the irreducible projections are Ahμ1���μli ≡
Δμ1���μl

ν1���νlA
ν1���νl [14]. As an example, the rank-four symmetric

and traceless projection operator is defined as Δμν
αβ ≡

1
2
ðΔμ

αΔν
β þ Δμ

βΔν
αÞ − 1

3
ΔμνΔαβ.

The four-momentum kμ of particles is normalized to their
rest mass squared, kμkμ ¼ m2

0. The energy of a particle in
the LR frame of the fluid is defined as Ek ≡ kμuμ and

coincides with the on-shell energy k0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

0

p
. The

three-momentum of particles, k, is defined through the
orthogonal projection of the four-momenta, khμi ≡ Δμ

νkν, in
the LR frame. The comoving derivative of a quantity A is
denoted by an overdot, i.e., _A≡ uμ∂μA, while the three-
space gradient is ∇νA≡ Δα

ν∂αA, hence in the LR frame
they reduce to the usual time and spatial derivatives ∂tA
and ∇A. Furthermore, we use the decomposition ∂μuν ¼
uμ _uν þ 1

3
θΔμν þ σμν þ ωμν, where we define the expansion

scalar, θ≡∇μuμ, the shear tensor σμν ≡∇hμuνi ¼
1
2
ð∇μuν þ∇νuμÞ − 1

3
θΔμν, and the vorticity ωμν ≡

1
2
ð∇μuν −∇νuμÞ.

II. EQUATIONS OF MOTION OF
MAGNETOHYDRODYNAMICS

The equations of motion of magnetohydrodynamics are
[see Eqs. (24) and (25) of Ref. [11] ]

∂μJ
μ
f ¼ 0; ð1Þ

∂νTμν ¼ −FμλJext;λ: ð2Þ

Here,

Jμf ¼ nfuμ þ Vμ
f ð3Þ

is the electric-charge four-current of the fluid, where nf ¼
uνJνf is the electric-charge density and Vμ

f ¼ Δμ
νJνf is

the electric-charge diffusion current. The electric-charge
four-current is related to the particle four-current Nμ

f by
Jμf ≡ qNμ

f. Similarly, nf ¼ qnf, where nf is the particle

density in the fluid, and Vμ
f ¼ qVμ

f, where V
μ
f is the particle

diffusion current. For the sake of generality, we have also
added a source term from an external charge current Jμext in
the energy-momentum equation (2).
The total energy-momentum tensor of the system is

given by

Tμν ≡ Tμν
em þ Tμν

f : ð4Þ
It consists of an electromagnetic contribution which, for
nonpolarizable, nonmagnetizable fluids, reads [15–17]

Tμν
em ≡ −FμλFν

λ þ
1

4
gμνFαβFαβ: ð5Þ

Here,

Fμν ≡ Eμuν − Eνuμ þ ϵμναβuαBβ; ð6Þ

is the Faraday tensor, which we have decomposed in
terms of the fluid four-velocity uμ, as well as the electric
and magnetic field four-vectors Eμ ≡ Fμνuν and Bμ ≡
1
2
ϵμναβFαβuν, respectively, with ϵμναβ being the Levi-

Civita tensor.
The second part of the energy-momentum tensor (4) is

the contribution from the fluid. For a nonpolarizable,
nonmagnetizable fluid it reads

Tμν
f ≡ εuμuν − PΔμν þ 2WðμuνÞ þ πμν; ð7Þ

where we defined the energy density ε≡ Tμν
f uμuν, the

isotropic pressure P≡ − 1
3
Tμν
f Δμν, the energy-momentum

diffusion current Wμ ≡ Δμ
αT

αβ
f uβ, and the shear-stress

tensor πμν ≡ Δμν
αβT

αβ
f .

Maxwell’s equations read [9]

∂μFμν ¼ Jν; ϵμναβ∂μFαβ ¼ 0; ð8Þ
where Jμ ≡ Jμf þ Jμext is the total electric charge four-
current. These equations imply that

∂νT
μν
em ¼ −FμλJλ: ð9Þ

From this and Eq. (2) follows that the energy-momentum
tensor of the fluid satisfies [18]

∂νT
μν
f ¼ FμλJf;λ: ð10Þ

III. EQUATIONS OF MOTION FOR THE
IRREDUCIBLE MOMENTS

The relativistic Boltzmann equation coupled to an
electromagnetic field [14,15], the so-called Boltzmann-
Vlasov equation reads,

kμ∂μfk þ qFμνkν
∂
∂kμ fk ¼ C½f�; ð11Þ
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where fk is the single-particle distribution function, C½f� is
the usual collision term in the Boltzmann equation, see e.g.,
Eq. (54) of Ref. [11].
A state of local thermal equilibrium is specified by a

single-particle distribution function of the form [19]

f0k ¼ ½exp ðβ0Ek − α0Þ þ a�−1; ð12Þ

with α0 ¼ μβ0, where μ is the (in general space-time
dependent) chemical potential and β0 ¼ 1=T the (space-
time dependent) inverse temperature, while a ¼ �1 for
fermions/bosons and a → 0 for Boltzmann particles.
Unless α0, β0, and uμ are constants (i.e., independent of

space-time coordinates, such that equilibrium is global
instead of local), the distribution function f0k is not a
solution of the Boltzmann equation (11). However, it is
a convenient starting point to derive the equations of
motion for dissipative fluid dynamics using the method
of moments [8,13]. To this end, one decomposes

fk ¼ f0k þ δfk; ð13Þ

where δfk is the deviation of the solution fk of the
Boltzmann equation from the local-equilibrium distribution
function f0k. In the following, we will use the notation

h� � �i≡
Z

dK � � � fk; h� � �i0 ≡
Z

dK � � � f0k;

h� � �iδ ≡
Z

dK � � � δfk; ð14Þ

where dK ≡ gd3k=½ð2πÞ3k0� is the Lorentz-invariant mea-
sure in momentum space and g is the degeneracy factor of
the state with momentum k. From Eq. (13) follows
immediately that h� � �i ¼ h� � �i0 þ h� � �iδ.
The particle four-current and the energy-momentum

tensor of the fluid are given as the following moments
of fk,

Nμ
f ≡ hkμi; Tμν

f ≡ hkμkνi; ð15Þ

and, consequently, we identify the fluid-dynamical
variables introduced in the previous section as,
nf ¼ hEki, Vμ

f ¼ hkhμii, ε ¼ hE2
ki, P ¼ − 1

3
hΔμνkμkνi,

Wμ ¼ hEkkhμii, πμν ¼ hkhμkνii. For reasons of symmetry,
hEr

kk
hμ1 � � � kμnii0 ≡ 0 for n ≥ 1, thus Vμ

f ¼ hkhμiiδ,
Wμ ¼ hEkkhμiiδ, πμν ¼ hkhμkνiiδ.
Now, following Refs. [8,13] we define the symmetric

and traceless irreducible moments of δfk,

ρμ1���μnr ≡ hEr
kk

hμ1 � � � kμniiδ: ð16Þ

Note that the tensors khμ1 � � � kμli are irreducible with
respect to Lorentz transformations that leave the fluid
4-velocity invariant and form a complete and orthogonal
set [14]. In terms of the irreducible moments (16) the
corrections to the equilibrium values of particle density,
nf0, energy density, ε0, and isotropic pressure, P0, are
δnf ≡ nf − nf0 ¼ ρ1, δε≡ ε − ε0 ¼ ρ2, and Π≡ P−
P0 ¼ ðρ2 −m2

0ρ0Þ=3. The particle and energy-momentum
diffusion currents orthogonal to the fluid velocity are Vμ

f ¼
ρμ0 and Wμ ¼ ρμ1, while the shear-stress tensor is π

μν ¼ ρμν0 .
So far, the local equilibrium state introduced in Eq. (12)

has not been defined: the equilibrium variables α0, β0, and
uμ must be properly specified in the context of the
Boltzmann equation. The first step is to define tempera-
ture and chemical potential by introducing matching
conditions, nf ¼ nf0ðα0; β0Þ and ε ¼ ε0ðα0; β0Þ. These
conditions define α0 and β0 such that the particle density
and energy density of the system are identical to those of a
local equilibrium state characterized by f0k. This implies
ρ1 ¼ ρ2 ¼ 0. For the sake of completeness, we shall
continue with the derivation of the equations of motion
for the irreducible moments without specifying the fluid
four-velocity. In this way, the equations of motion derived
in this paper can be made compatible with any definition
of uμ.
Equations (1) and (10) lead to equations of motion for α0,

β0, and uμ:

_α0 ¼
1

D20

½−J30ðnf0θ þ ∂μV
μ
fÞ þ J20ðε0 þ P0 þ ΠÞθ þ J20ð∂μWμ −Wμ _uμ − πμνσμνÞ þ J20qEμVf;μ�; ð17Þ

_β0 ¼
1

D20

½−J20ðnf0θ þ ∂μV
μ
fÞ þ J10ðε0 þ P0 þ ΠÞθ þ J10ð∂μWμ −Wμ _uμ − πμνσμνÞ þ J10qEμVf;μ�; ð18Þ

and

_uμ ¼ 1

ε0 þ P0

�
nf0
β0

ð∇μα0 − h0∇μβ0Þ − Π _uμ þ∇μΠ −
4

3
Wμθ −Wνðσμν − ωμνÞ − _Wμ − Δμ

ν∂κπ
κν

�

þ 1

ε0 þ P0

½qnf0Eμ − qBbμνVf;ν�; ð19Þ
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where h0 ≡ ðε0 þ P0Þ=nf0 is the enthalpy per particle in
equilibrium and the thermodynamic integrals Jnq and Dnq

are defined in Appendix A. Note that these equations
extend Eqs. (70)–(72) of Ref. [11] by terms proportional to
the electric field Eμ.1

For a given fluid four-velocity uμ, the equations of
motion (1) and (10) only specify five of the 14 independent
variables α0, β0, Π, V

μ
f, W

μ, and πμν. In order to close the

system of equations of motion, one needs to specify
additional equations of motion that can be provided by a
suitable truncation of the infinite set of equations of motion
for the irreducible moments ρμ1���μlr . The latter equations are

obtained by calculating the comoving derivative _ρhμ1���μlir ≡
Δμ1���μl

ν1���νl u
α∂αρ

ν1���νl
r , using the Boltzmann equation (11), for

details see Refs. [8,11,13]. For the irreducible moments of
tensor-rank zero one obtains

_ρr − Cr−1 ¼ αð0Þr θ þ G3r

D20

∂μV
μ
f −

G2r

D20

∂μWμ þ θ

3

�
m2

0ðr − 1Þρr−2 − ðrþ 2Þρr − 3
G2r

D20

Π
�

þ
�
rρμr−1 þ

G2r

D20

Wμ

�
_uμ −∇μρ

μ
r−1 þ

�
ðr − 1Þρμνr−2 þ

G2r

D20

πμν
�
σμν

−
G2r

D20

qEνVν
f − ðr − 1ÞqEνρ

ν
r−2: ð20Þ

This equation is very similar to Eq. (75) of Ref. [11] except for the terms proportional to Wμ and the last two terms which
constitute the contributions from the electric field.
The equation of motion for irreducible moments of tensor-rank one reads

_ρhμir − Chμi
r−1 ¼ αð1Þr ∇μα0 − αhr _Wμ þ rρμνr−1 _uν −

1

3
∇μðm2

0ρr−1 − ρrþ1Þ − Δμ
αð∇νρ

αν
r−1 þ αhr∂κπ

καÞ

þ 1

3
½m2

0ðr − 1Þρμr−2 − ðrþ 3Þρμr − 4αhrWμ�θ þ ðr − 1Þρμνλr−2σνλ

þ 1

5
σμν½2m2

0ðr − 1Þρr−2;ν − ð2rþ 3Þρr;ν − 5αhrWν� þ ðρr;ν þ αhrWνÞωμν

þ 1

3
½m2

0rρr−1 − ðrþ 3Þρrþ1 − 3αhrΠ� _uμ þ αhr∇μΠ − αhrqBbμνVf;ν − qBbμνρr−1;ν

þ ðαhrnf0 þ β0Jrþ1;1ÞqEμ þ 1

3
½ðrþ 2Þρr −m2

0ðr − 1Þρr−2�qEμ − ðr − 1Þρμνr−2qEν: ð21Þ

Here we introduced a new dimensionless antisymmetric tensor bμν ≡ −ϵμναβuαbβ, where the unit four-vector in the direction
of the magnetic field and orthogonal to uμ is bμ ≡ Bμ

B , with bμbμ ¼ −1 and B≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−BμBμ

p
[21]. Equation (21) differs from

Eq. (76) of Ref. [11] by the last three terms taking into account the electric field, as well as by the additional terms
proportional to Wμ.
Finally, the equation of motion for the irreducible moments of tensor-rank two is

_ρhμνir − Chμνi
r−1 ¼ 2αð2Þr σμν þ 2

15
½m4

0ðr − 1Þρr−2 −m2
0ð2rþ 3Þρr þ ðrþ 4Þρrþ2�σμν þ

2

5
_uhμ½m2

0rρ
νi
r−1 − ðrþ 5Þρνirþ1�

−
2

5
½∇hμðm2

0ρ
νi
r−1 − ρνirþ1Þ� þ rρμνγr−1 _uγ − Δμν

αβ∇λρ
αβλ
r−1 þ ðr − 1Þρμνλκr−2 σλκ þ 2ρλhμr ωνi

λ

þ 1

3
½m2

0ðr − 1Þρμνr−2 − ðrþ 4Þρμνr �θ þ 2

7
½2m2

0ðr − 1Þρκhμr−2 − ð2rþ 5Þρκhμr �σνiκ − 2qBbαβΔμν
ακgλβρκλr−1

þ 2qEhμρνir − ðr − 1ÞΔμν
αβ

�
qEλρ

αβλ
r−2 þ

2

5
qEðαðm2

0ρ
βÞ
r−2 − ρβÞr Þ

�
: ð22Þ

This equation differs from Eq. (77) of Ref. [11] by the last two terms, which constitute the contributions from a
nonvanishing electric field.

1Note that terms proportional to Wμ also did not appear in Ref. [11], since the equations derived in that reference employed the
Landau frame [20], where uμ is defined as an eigenvector of the energy-momentum tensor, uμTμν ¼ εuν, leading to Wμ ¼ 0.
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In Eqs. (20)–(22), αhr , α
ðlÞ
r , and Gij are thermodynamic

coefficients, which are explicitly given in Appendix A,
while the linearized collision integral is defined as

Chμ1���μlir−1 ≡ Δμ1���μl
ν1���νl

Z
dK Er−1

k kν1 � � � kνlC½f�

¼ −
XNl

n¼0

AðlÞ
rn ρ

μ1���μl
n ; ð23Þ

where the coefficient AðlÞ
rn ∼ λmfp contains time scales

proportional to the mean free path of the particles. Note
that the last equality of the above equation is obtained using
the moment expansion of the single-particle distribution
function first introduced in Ref. [8], which, for the sake of
completeness, is listed in Appendix A.

IV. EQUATIONS OF MOTION IN THE
14-MOMENT APPROXIMATION

In order to obtain a closed system of fluid-dynamical
equations of motion, we now truncate the infinite set (20)–
(22) of equations of motion for the irreducible moments.
The simplest and most widely used truncation is the so-
called 14-moment approximation [7]. First, all irreducible
tensor moments ρμ1���μlr for l > 2 are explicitly set to zero in
Eqs. (21)–(22). Second, the remaining scalar ρr, vector ρ

μ
r,

and rank-2 tensor moments ρμνr are expressed as linear
combinations of the lowest-order moments ρ0 ≡ −3Π=m2

0,
ρμ0 ≡ Vμ

f, ρ
μ
1 ≡Wμ, and ρμν0 ≡ πμν, i.e., in terms of quan-

tities appearing in Jμf and T
μν
f , cf. Eqs. (3), (7). The relations

affecting this truncation are Eqs. (A5)–(A7).
Equation (20) then leads to an equation of motion for the

bulk viscous pressure

τΠ _Πþ Π ¼ −ζθ − δΠΠΠθ þ λΠππ
μνσμν − lΠV∇μV

μ
f − τΠVV

μ
f _uμ − λΠVV

μ
f∇μα0

− lΠW∇μWμ − τΠWWμ _uμ − λΠWWμ∇μα0 − δΠVEqVν
fEν − δΠWEqWνEν: ð24Þ

Similarly, from Eq. (21) we obtain an equation for the particle- and energy-diffusion currents,

τV _Vhμi
f − τVh−10 _Whμi þ Vμ

f − h−10 Wμ ¼ κ∇μα0 − τVVf;νω
νμ − δVVV

μ
fθ − λVVVf;νσ

μν

þ τVh−10 Wνω
νμ − δWWWμθ − λWWWνσ

μν − lVΠ∇μΠþ lVπΔμν∇λπ
λ
ν þ τVΠΠ _uμ

− τVππ
μν _uν þ λVΠΠ∇μα0 − λVππ

μν∇να0 − δVBqBbμνVf;ν − δWBqBbμνWν

þ δVEqEμ þ δVΠEqΠEμ þ δVπEqπμνEν: ð25Þ

The equation of motion for the shear-stress tensor follows from Eq. (22),

τπ _π
hμνi þ πμν ¼ 2ησμν þ 2τππ

hμ
λ ω

νiλ − δπππ
μνθ − τπππ

λhμσνiλ þ λπΠΠσμν

− τπVV
hμ
f _uνi þ lπV∇hμVνi

f þ λπVV
hμ
f ∇νiα0 − τπWWhμ _uνi þ lπW∇hμWνi þ λπWWhμ∇νiα0

− δπBqBbαβΔ
μν
ακgλβπκλ þ δπVEqEhμVνi

f þ δπWEqEhμWνi: ð26Þ

The coefficients appearing in these equations are listed in
Appendix B.
Note that Eq. (25) represents the relaxation equation for

the heat flow defined by

qμ ≡Wμ − h0V
μ
f: ð27Þ

In case we choose the local rest frame following Landau’s
picture (which imposes Wμ ≡ 0), the heat flow is simply
given in terms of the particle diffusion alone, qμ ¼ −h0V

μ
f.

On the other hand, choosing the rest frame according to
Eckart’s picture (which requiresVμ

f ≡ 0), leads to a heat flow
that is solely given by the flow of energy and momentum,
qμ ¼ Wμ. Since the relaxation equations (24)–(26) contain

both diffusive quantities, the equations of motion derived
in this paper are consistent with either choice of local rest
frame.
The coefficients proportional to the electric field in the

equation for the bulk viscous pressure are

δΠVE ¼ m2
0

3Að0Þ
00

�
F ð1Þ

20 −
G20

D20

−
β0
h0

∂F ð1Þ
10

∂β0
�
;

δΠWE ¼ m2
0

3Að0Þ
00

�
F ð1Þ

21 −
β0
h0

∂F ð1Þ
11

∂β0
�
: ð28Þ

The coefficients proportional to the electric field in the
equation for the particle-diffusion current are
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δVE ¼ 1

Að1Þ
00

ð−nf0h−10 þ β0J11Þ; ð29Þ

δVΠE ¼ −
1

m2
0A

ð1Þ
00

�
2þm2

0F
ð1Þ
20 −m2

0

β0
h0

∂F ð0Þ
10

∂β0
�
;

δVπE ¼ 1

Að1Þ
00

�
F ð2Þ

20 −
β0
h0

∂F ð2Þ
10

∂β0
�
; ð30Þ

and the coefficient coupling Wμ to the magnetic field is

δWB ¼ F ð1Þ
11

Að1Þ
00

: ð31Þ

Finally, the coefficients proportional to the electric field in
the equation for the shear-stress tensor are

δπVE ¼ 2

5Að2Þ
00

�
4þm2

0F
ð1Þ
20 −m2

0

β0
h0

∂F ð1Þ
10

∂β0
�
;

δπWE ¼ 2m2
0

5Að2Þ
00

�
F ð1Þ

21 −
β0
h0

∂F ð1Þ
11

∂β0
�
: ð32Þ

The thermodynamic integral F ðlÞ
rn is defined in Eq. (A4).

In the limit of a massless Boltzmann gas with constant

cross section σ, Jnq ≡ Inq ¼ ðnþ1Þ!
2ð2qþ1Þ!! β

2−n
0 P0, and hence

Að1Þ
00 ¼ 4=ð9λmfpÞ,Að2Þ

00 ¼3=ð5λmfpÞ, where λmfp ¼ 1=ðn0σÞ
is the mean free path of the particles. In the massless limit,
m0 ¼ 0, the coefficients δΠVE ¼ δΠWE ¼ 0, while δVΠE
formally diverges ∼1=m2

0. However, the bulk viscous
pressure is Π ¼ −m2

0ρ0=3, which cancels this divergence,
and the remaining term is∼ρ0Eμ. Now, Eμ is of order one in
gradients (see below and Ref. [22]), while ρ0 is actually of

second order, since the coefficient αð0Þr in the Navier-Stokes
term in Eq. (20) vanishes in the massless limit for all r.
Thus, the respective term is of third order in gradients and,
for this reason, we neglect it in the massless limit.

In Table I we list the m0 ¼ 0 values of those coefficients
in Eq. (25), which are not proportional to Π.
Similarly, in Table II we list the m0 ¼ 0 values of those

coefficients in Eq. (26), which are not proportional to Π.

V. NAVIER-STOKES LIMIT, OHMIC CURRENT,
AND WIEDEMANN–FRANZ LAW

In the Navier-Stokes limit, all second-order terms are
discarded from the relaxation equations (24)–(26). We
employ the power-counting advertised in Ref. [22], i.e.,
Eμ is of order one, i.e., of the same order as gradients
of α0, β0, and uμ, or of the same order as the dissipative
quantities Π, Vμ

f, W
μ, and πμν. On the other hand, the

magnetic field is of order zero, like other thermodynamic
quantities. For the bulk viscous pressure and shear-stress
tensor, this ultimately leads to Π ¼ −ζθ and πμν ¼ 2ησμν −
δπBqBbαβΔ

μν
ακgλβπκλ, see the discussion in Sec. IV. B of

Ref. [11], where these equations have already been
analyzed.
However, for the Navier-Stokes limit of the diffusion

currents, the electric field has a non-negligible impact. For
the sake of simplicity and comparison to Ref. [11], we work
in the Landau frame, where Wμ ¼ 0. To first order, the
particle-diffusion current becomes

Vμ
f ¼ κ∇μα0 þ δVEqEμ − δVBqBbμνVf;ν: ð33Þ

The Ohmic induction current is given by the second term of
Eq. (33) (after multiplying by q),

Jμind ≡ σEEμ; ð34Þ

with the electric conductivity

σE ≡ q2δVE: ð35Þ

As originally noted by Einstein [23], the electric con-
ductivity and the particle-diffusion coefficient must be
related by

TABLE I. The coefficients for the diffusion equation for a Boltzmann gas with constant cross section in the ultrarelativistic limit, in the
14-moment approximation, with τð1Þ00 ¼ τV .

κ τV ½λmfp� δVV ½τV � δWW ½τV � λVV ½τV � λWW ½τV � λVπ ½τV � lVπ½τV � τVπ½τV � δVB½τV � δWB½τV � δVE½τV � δVπE½τV �
3=ð16σÞ 9=4 1 −β0=3 3=5 −β0=4 β0=20 β0=20 β0=20 5β0=12 −β20=12 P0β

2
0=12 0

TABLE II. The coefficients for the shear-stress equation for a Boltzmann gas with constant cross section in the ultrarelativistic limit, in
the 14-moment approximation, with τð2Þ00 ¼ τπ .

η τπ½λmfp� δππ½τπ� τππ ½τπ� λπV ½τπ� lπV ½τπ � τπV ½τπ � λπW ½τπ� lπW ½τπ� τπW ½τπ� δπB½τπ� δπVE½τπ� δπWE½τπ�
4=ð3σβ0Þ 5=3 4=3 10=7 0 0 0 0 2=5 2 2β0=5 8=5 0
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σE ¼ q2β0κ; ð36Þ

which is the kinetic-theory version of the famous
Wiedemann–Franz law. For the massless Boltzmann gas,
the validity of this relation can be easily checked using the
relation δVE ¼ 3

16
nf0β0λmfp and the fact that κ ¼ 3

16
nf0λmfp

[8]. As noted in Ref. [24], this relation must also hold for a
different reason: in a state of constant T and uμ and in the
absence of dissipation, an electric field induces a charge-
density gradient such that (in our conventions for metric
and chemical potential),

∇μα0 ¼ −qβ0Eμ: ð37Þ

This relation can also be found from the second-order
transport equation (25), setting all dissipative quantities to
zero, which leads to the condition κ∇μα0 ¼ −δVEqEμ. This
relation together with Eq. (37) then confirms the Einstein
relation (36).
Note that in the presence of a magnetic field Eq. (34) no

longer holds [25]. Using Eq. (21) in the Navier-Stokes
approximation we obtain

ρμr ¼ κμνr ∇να0 þ δμνr qEν; ð38Þ

hence the conductivity tensor can be defined similarly to
Eq. (36)

σμνE;r ¼ q2δμνr : ð39Þ

The rank-two tensor coefficients may be decomposed in the
direction parallel and orthogonal to the magnetic field in
terms of the projection operators, bμbν, Ξμν ≡ Δμν þ bμbν,
and the tensor bμν as

κμνr ¼ κr⊥Ξμν − κrjjbμbν − κr×bμν; ð40Þ

δμνr ¼ δr⊥Ξμν − δrjjbμbν − δr×bμν: ð41Þ

In order to calculate the transport coefficients κμνr or δμνr , we
will follow the inversion procedure of Ref. [11], hence in
the 14-moment approximation (N1 ¼ 1), setting ∇μα0 ¼ 0
we get

δ0jj ¼
β0α

ð1Þ
r

Að1Þ
r0

; δ0⊥ ¼ δ0jj

�
1þ

�
qB

F ð1Þ
1−r;0 þ αhr

Að1Þ
r0

�2�−1
;

δ0× ¼ δ0⊥qB
F ð1Þ

1−r;0 þ αhr

Að1Þ
r0

: ð42Þ

Comparing with Eqs. (101) of Ref. [11], we conclude that

δ0jj ¼ β0κ0jj; δ0⊥ ¼ β0κ0; δ0× ¼ β0κ0×; ð43Þ

confirming that Eq. (36) also holds in tensorial form,
σμνE;r ¼ q2β0κ

μν
r , and irrespective of the limit of a massless

Boltzmann gas.

VI. CONCLUSIONS AND OUTLOOK

Basedon themomentexpansionof theBoltzmannequation
for a single-component gas of charged spin-zero particles
coupled to an electromagnetic field, we have derived the
equations of motion of resistive, second-order dissipative
magnetohydrodynamics in the 14-moment approximation.
New transport coefficients appear due to the coupling to the
electric field.We computed these coefficients in the limit of a
masslessBoltzmanngas.Weanalyzed theNavier-Stokes limit
of the dissipative quantities and recovered Ohm’s law. We
found that the electrical conductivity and theparticle diffusion
satisfy the well-known Einstein relation, which constitutes a
type of Wiedemann-Franz law.
In future studies, one should address the generalization

to particles with nonzero spin. Then, particles have a
microscopic dipole moment which generates nonvanishing
macroscopic magnetization and polarization fields [17,24].
The spin of the particles also gives rise to spin-vorticity
coupling terms, which leads to the so-called chiral vortical
effect [26]. This may necessitate an extension of the
standard fluid-dynamical conservation laws by an equation
of motion for the macroscopic spin tensor [27,28].

ACKNOWLEDGMENTS

The authors acknowledge enlightening discussion with
G. Moore. E. M. acknowledges the warm hospitality of the
Department of Physics of the University of Jyväskylä,
where part of this work was done. This work was supported
by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) through the Collaborative Research
Center CRC-TR 211 “Strong-interaction matter under
extreme conditions”—Project No. 315477589—TRR 211.
G. S. D. thanks for Conselho Nacional de Desenvolvimento
Científico e Tecnológico (CNPq) for financial support.
E. M. is supported by the Bundesministerium für Bildung
und Forschung (BMBF) and by the Research Council of
Norway, (NFR) Project No. 255253/F50. H. N. is sup-
ported by the Academy of Finland, Project No. 297058.
D. H. R. is partially supported by the High-end Foreign
Experts Project No. GDW20167100136 of the State
Administration of Foreign Experts Affairs of China.

APPENDIX A: SOME USEFUL FORMULAS

Following Refs. [8,13], we recall that the single-particle
distribution function fk can be expanded around f0k as,

fk ¼ f0k þ f0kð1 − af0kÞ
X∞
l¼0

XNl

n¼0

ρμ1���μln khμ1 � � � kμliHðlÞ
kn ;

ðA1Þ
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where the coefficient HðlÞ
kn is a polynomial in energy and

defined as,

HðlÞ
kn ¼ ð−1Þl

l!J2l;l

XNl

i¼n

Xi

m¼0

aðlÞin aðlÞim Em
k : ðA2Þ

The coefficients aðlÞij are calculated via the Gram-Schmidt
orthogonalization procedure and are expressed in terms
of thermodynamic integrals Jnq, for more details see
e.g., Ref. [8].
Any irreducible moment of arbitrary order r and tensor

rank l can always be expressed as a linear combination
of irreducible moments of all orders n and the same
tensor rank,

ρμ1���μlr ¼
XNl

n¼0

ρμ1���μln F ðlÞ
−r;n; ðA3Þ

where

F ðlÞ
rn ¼ l!

ð2lþ1Þ!!
Z

dKE−r
k HðlÞ

kn ðΔαβkαkβÞlf0kð1−af0kÞ:

ðA4Þ

In the 14-moment approximation the above expressions
simplify considerably, hence using Eq. (A3) with the
summation limits N0 ¼ 2, N1 ¼ 1, N2 ¼ 0 for different
tensor rank, we obtain the following relations,

ρr ≡
XN0

n¼0;≠1;2
ρnF

ð0Þ
−r;n ¼ −

3

m2
0

ΠF ð0Þ
−r;0

≡ −
3

m2
0

Π
Jr0D30 þ Jrþ1;0G23 þ Jrþ2;0D20

J20D20 þ J30G12 þ J40D10

; ðA5Þ

ρμr ≡
XN1

n¼0

ρμnF
ð1Þ
−r;n ¼ Vμ

fF
ð1Þ
−r;0 þWμF ð1Þ

−r;1

≡Vμ
f
Jrþ2;1J41 − Jrþ3;1J31

D31

þWμ−Jrþ2;1J31 þ Jrþ3;1J21
D31

;

ðA6Þ

ρμνr ≡XN2

n¼0

ρμνn F ð2Þ
−r;n ¼ πμνF ð2Þ

−r;0 ≡ πμν
Jrþ4;2

J42
: ðA7Þ

Note that Eqs. (A5)–(A7) are the same as Eqs. (115)–(117)
of Ref. [11], except for Eq. (A6), which now contains a
term proportional to Wμ when compared to Eq. (116) of

Ref. [11]. Furthermore, for r; n ≥ 0, F ðlÞ
−r;n ¼ δrn, however

Eqs. (A5)–(A7) are to be used for irreducible moments not
only with positive but also with negative r given by

ρμ1���μl−r ¼
XNl

n¼0

ρμ1���μln F ðlÞ
rn : ðA8Þ

Truncating the sum as in Eqs. (A5)–(A7), the coefficients
of Eq. (A8) can be written similarly as in Eq. (67) of
Ref. [8],

ρ−r ¼ −
3

m2
0

γð0Þr ΠþOðKnÞ; ðA9Þ

ρμ−r ¼ γVð1Þr Vμ
f þ γWð1Þ

r Wμ þOðKnÞ; ðA10Þ

ρμν−r ¼ γð2Þr πμν þOðKnÞ: ðA11Þ

In Ref. [8] the coefficients γðlÞr were calculated explicitly in

the Landau frame, hence γVð1Þr ≡ γð1Þr , while γWð1Þ
r is a new

coefficient in the Eckart frame. Note that, in the 14-moment

approximation, γð0Þr ≡ F ð0Þ
r0 , γVð1Þr ≡ F ð1Þ

r0 , γWð1Þ
r ≡ F ð1Þ

r1 ,

γð2Þr ≡ F ð2Þ
r0 .

The usual thermodynamic integrals are defined in local
equilibrium such that,

Inq ≡ ð−1Þq
ð2qþ 1Þ!!

Z
dK En−2q

k ðΔαβkαkβÞqf0k; ðA12Þ

Jnq ≡ ð−1Þq
ð2qþ 1Þ!!

Z
dK En−2q

k ðΔαβkαkβÞqf0kð1 − af0kÞ:

ðA13Þ

Here we also recall the following coefficients appearing in
Eqs. (20)–(22),

αð0Þr ≡ ð1 − rÞIr1 − Ir0 −
nf0
D20

ðh0G2r − G3rÞ; ðA14Þ

αð1Þr ≡ Jrþ1;1 − h−10 Jrþ2;1; ðA15Þ

αð2Þr ≡ Irþ2;1 þ ðr − 1ÞIrþ2;2; ðA16Þ

αhr ≡ −
β0

ε0 þ P0

Jrþ2;1; ðA17Þ

and

Dnq ≡ Jnþ1;qJn−1;q − J2nq; ðA18Þ

Gnm ≡ Jn;0Jm;0 − Jn−1;0Jmþ1;0: ðA19Þ

In the limit of a massless Boltzmann gas with constant

cross section, Jnq ≡ Inq ¼ ðnþ1Þ!
2ð2qþ1Þ!! β

2−n
0 P0, and thus αh0 ¼

−h−10 ¼ −β0=4 as well αh1 ¼ 1, hence the coefficients of
interest are
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γVð1Þ1 ≡ F ð1Þ
10 ¼ 2β0

3
; γVð1Þ2 ≡ F ð1Þ

20 ¼ β20
2
; ðA20Þ

γWð1Þ
1 ≡ F ð1Þ

11 ¼ −
β20
12

; γWð1Þ
2 ≡ F ð1Þ

21 ¼ −
β30
12

; ðA21Þ

γð2Þ1 ≡ F ð2Þ
10 ¼ β0

5
; γð2Þ2 ≡ F ð2Þ

20 ¼ β20
20

: ðA22Þ

Also note that in the derivation of the relaxation
equations we have expressed the proper-time derivative
and spatial derivative of the coefficients γðlÞr by the
following formulas

_γðlÞr ¼ n0
D20

��
J20

∂γðlÞr

∂α0 þ J10
∂γðlÞr

∂β0
�
h0

−
�
J30

∂γðlÞr

∂α0 þ J20
∂γðlÞr

∂β0
��

θ; ðA23Þ

∇μγðlÞr ¼
�∂γðlÞr

∂α0 þ h−10
∂γðlÞr

∂β0
�
∇μα0 − β0

∂γðlÞr

∂β0 _uμ

þ β0
h0

∂γðlÞr

∂β0 qEμ: ðA24Þ

These equations follow from Eqs. (17)–(19) neglecting
terms proportional to the dissipative fields and/or their
derivatives.

APPENDIX B: TRANSPORT COEFFICIENTS

1. Coefficients of the bulk equation

Noting that τð0Þ00 ¼ 1=Að0Þ
00 , the transport coefficients

found in the relaxation equation for the bulk viscosity,
Eq. (24), up to terms N2 ¼ 0;≠ 1, 2, are

δΠΠ ¼ τð0Þ00

3

�
2þm2

0γ
ð0Þ
2 −m2

0

G20

D20

�
;

λΠπ ¼
m2

0

3
τð0Þ00

�
γð2Þ2 −

G20

D20

�
: ðB1Þ

Furthermore, the coefficients proportional to Vμ are

lΠV ¼ −
m2

0

3
τð0Þ00

�
γVð1Þ1 −

G30

D20

�
;

τΠV ¼ m2
0

3
τð0Þ00

�
β0

∂γVð1Þ1

∂β0 −
G30

D20

�
; ðB2Þ

λΠV ¼ −
m2

0

3
τð0Þ00

�∂γVð1Þ1

∂α0 þ h−10
∂γVð1Þ1

∂β0
�
; ðB3Þ

while the new coefficients proportional to Wμ are

lΠW ¼ −
m2

0

3
τð0Þ00

�
γWð1Þ
1 þ G20

D20

�
;

τΠW ¼ m2
0

3
τð0Þ00

�
β0

∂γWð1Þ
1

∂β0 þ 2
G20

D20

�
; ðB4Þ

λΠW ¼ −
m2

0

3
τð0Þ00

�∂γWð1Þ
1

∂α0 þ h−10
∂γWð1Þ

1

∂β0
�
: ðB5Þ

The coefficients of the electric field are

δΠVE ¼ m2
0

3
τð0Þ00

�
γVð1Þ2 −

G20

D20

−
β0
h0

∂γVð1Þ1

∂β0
�
;

δΠWE ¼ m2
0

3
τð0Þ00

�
γWð1Þ
2 −

β0
h0

∂γWð1Þ
1

∂β0
�
: ðB6Þ

2. Coefficients of the diffusion equation

Similarly with τð1Þ00 ¼ 1=Að1Þ
00 , the transport coefficients

found in Eq. (25) are

lVΠ ¼ τð1Þ00 ðh−10 − γð0Þ1 Þ; τVΠ ¼ τð1Þ00

�
h−10 − β0

∂γð0Þ1

∂β0
�
;

λVΠ ¼ τð1Þ00

�∂γð0Þ1

∂α0 þ h−10
∂γð0Þ1

∂β0
�
: ðB7Þ

The coefficients proportional to πμν are

lVπ ¼ τð1Þ00 ðh−10 − γð2Þ1 Þ; τVπ ¼ τð1Þ00

�
h−10 − β0

∂γð2Þ1

∂β0
�
;

λVπ ¼ τð1Þ00

�∂γð2Þ1

∂α0 þ h−10
∂γð2Þ1

∂β0
�
: ðB8Þ

The coefficients proportional to Vμ
f are

δVV ¼ τð1Þ00

�
1þm2

0

3
γVð1Þ2

�
; λVV ≡ 1

5
τð1Þ00 ð3þ 2m2

0γ
Vð1Þ
2 Þ;

ðB9Þ

while similarly the coefficients proportional to Wμ are

δWW ¼ τð1Þ00

3
ð−4h−10 þm2

0γ
Wð1Þ
2 Þ;

λWW ¼ τð1Þ00

�
−h−10 þ 2m2

0

5
γWð1Þ
2

�
: ðB10Þ

The coefficients due to the magnetic field are

δVB ¼ τð1Þ00 ð−h−10 þ γVð1Þ1 Þ; δWB ¼ τð1Þ00 γ
Wð1Þ
1 ; ðB11Þ
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while the new coefficients due to the electric field are

δVE ¼ τð1Þ00 ð−n0h−10 þ β0J11Þ; ðB12Þ

δVΠE ¼ −
1

m2
0

τð1Þ00

�
2þm2

0γ
ð0Þ
2 −m2

0

β0
h0

∂γð0Þ1

∂β0
�
; δVπE ¼ τð1Þ00

�
γð2Þ2 −

β0
h0

∂γð2Þ1

∂β0
�
: ðB13Þ

3. Coefficients of the shear-stress equation

Finally, using τð2Þ00 ¼ 1=Að2Þ
00 , the transport coefficients found in Eq. (26) are

δππ ¼ τð2Þ00

�
4

3
þ γð2Þ2

m2
0

3

�
; τππ ¼

2τð2Þ00

7
ð5þ 2m2

0γ
ð2Þ
2 Þ; λπΠ ¼ 2

5
τð2Þ00 ð3þm2

0γ
ð0Þ
2 Þ: ðB14Þ

Furthermore we have the coefficients of Vμ
f,

lπV ¼ −
2m2

0

5
τð2Þ00 γ

Vð1Þ
1 ; λπV ¼ −

2m2
0

5
τð2Þ00

�∂γVð1Þ1

∂α0 þ h−10
∂γVð1Þ1

∂β0
�
; τπV ¼ −

2m2
0

5
τð2Þ00 β0

∂γVð1Þ1

∂β0 ; ðB15Þ

and the new coefficients of Wμ,

lπW ¼ 2

5
τð2Þ00 ð1 −m2

0γ
Wð1Þ
1 Þ; λπW ¼ −

2m2
0

5
τð2Þ00

�∂γWð1Þ
1

∂α0 þ h−10
∂γWð1Þ

1

∂β0
�
; τπW ¼ 2τð2Þ00

�
1 −

m2
0

5
β0

∂γWð1Þ
1

∂β0
�
: ðB16Þ

The new coefficient due to the magnetic and electric fields are

δπB ¼ 2τð2Þ00 γ
ð2Þ
1 ; ðB17Þ

and

δπVE ¼ 2τð2Þ00

5

�
4þm2

0γ
Vð1Þ
2 −m2

0

β0
h0

∂γVð1Þ1

∂β0
�
; δπWE ¼ 2m2

0τ
ð2Þ
00

5

�
γWð1Þ
2 −

β0
h0

∂γWð1Þ
1

∂β0
�
: ðB18Þ
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