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Two-dimensional resistive drift-wave turbulence is studied by high-resolution numerical simulations 
in the Iimit of small viscosity. Density and potential fluctuations are cross-coupled by resistive 
dissipation, proportional to the adiabaticity parameter, F, which determines the character of the 
system: adiabatic (ml) or hydrodynamic (Z% 1). Various cases are computed for 0. I ~%<5. 
Energy spectra exhibit a maximum at some wave number k,(@ and an inertial range behavior for 
k>k,. The transfer of energy and vorticity is directly computed and confirms the persistence of 
local cascade dynamics in all regimes: the familiar duaI cascade for the ExB flow eddies, and the 
direct cascade to small scales for the density as it is advected by the eddies, Inertial range spectral 
power laws agree surprisingly well with simple ‘scaling predictions. No prominent large-scale 
long-lived coherent structures are observed, an absence that is consistent with the statistical 
properties, which are found to be perfectly Gaussian for kc ko, but exhibit the non-Gaussian 
behavior, typical for small-scale intermittency, in the inertial range, 0 1995 American Institute of 

I. INTRODUCTION 

The energy losses observed in magnetically confinement 
devices, such as tokamaks and stellerators, are much greater 
than predicted by neoclassical transport theory and usually 
attributed to the presence of small-scale plasma turbulence 
(see, e.g., Ref. 1). It is also well known that spatial gradients 
in the plasma lead to collective modes called drift waves, 
which have wave numbers in the range of the observed den- 
sity fluctuations. Therefore, drift-wave turbulence is consid- 
ered as a natural cause of anomalous transport, in particular, 
in the cool plasma edge region.2*3 

A particularly simple model has been proposed by Ha- 
segawa and Wakatani,4Y5 describing two-dimensional (2-D) 
drift-wave turbulence in a collision dominated plasma with 
an unsheared magnetic field. This is an autonomous system 
describing excitation and damping of modes in terms of a 
few collisionality parameters, leading to a stationary turbu- 
lence level without external driving. fn this paper, the 
Hasegawa-Wakatani equations are studied by high- 
resolution numerical simulations in the limit of small viscos- 
ity, i.e., high Reynolds numbers, which we call the nonvis- 
cous limit. Here the only relevant parameter is the 
adiabaticity parameter ‘C For 5% 1, the adiabatic regime, 
the Hasegawa-Wakatani system, reduces to the Hasegawa- 
Mima system,6 while for v+l, the hydrodynamic regime, it 
reduces essentially to a 2-D Navier-Stokes equation for the 
ExB flow eddies and a passive advection equation for the 
density fluctuations. 

\ 

The Hasegawa-Wakatani model has recently been stud- 
ied using numerical simulations, both as a diagnostic tool for 
the more complex situation involving magnetic shear,’ and, 
in its own right as a model for tokamak edge turbulence.* In 
the former study, an earlier analysis of statistical equilibrium 
ensembles,’ arguing cascade tendencies of the two nonlinear 
operators, was contirmed via direct simulation without dissi- 
pation for C=O and F=a, which stressed their competing 
and opposite tendencies, and the fact that these tendencies 

persist in both extremes (see below). The main feature dis- 
covered and discussed by the second study was the emer- 
gence and persistence of long-lived large-scale coherent 
structures, which occur, in particular, in the hydrodynamic 
regime and appear to reduce the turbulent transport substan- 
tially. In those simulations, the turbulence properties were, 
however, strongly determined by plasma viscosity and den- 
sity diffusivity, in addition to the adiabaticity parameter. By 
contrast, one of the results of this paper is that no such struc- 
tures exist when these dissipative effects are reduced. 

in addition, we find that the saturation level of the total 
energy is minimum for K-1 and increases in both the hy- 
drodynamic and the adiabatic limits. By contrast, the satura- 
tion levels of the enstrophy and the turbulent flux are maxi- 
mum in the hydrodynamic limit, and diminishes as r 
increases. The energy and the enstrophy spectra exhibit 
maxima at some intermediate wave number k, and a power 
law decay toward both small and large k. On the high-k side, 
the spectral properties closely follow simple scaling predic- 
tions. The turbulent density flux agrees well with the quasi- 
linear estimate at the large scales for all K1 At the small 
scales, however, the quasilinear estimate exceeds the turbu- 
lent fiux by a constant factor that increases with decreasing 
r, while there is agreement over the entire spectrum in the 
adiabatic limit. The statistics of potential, density and vortic- 
ity increments over distances 1 are purely Gaussian for large 
scales (/1 ka ‘), while they are increasingly non-Gaussian 
for small scales (l<k& t)t confirming the usual picture of 
intermittency, 

We also directly compute the transfer of kinetic and den- 
sity fluctuation energy and of EXB fluid vorticity between 
different length scales in the saturated turbulent state for 
each computed case. The results show clearly that the trans- 
fer always occurs as a local cascade between length scales 
within a factor of 2 of each other, and that the basic character 
of each nonlinearity remains the same in all regimes, with 
only the relative strength sensitive to %. This extends the 
previous result for dissipationless systems’ to the more real- 
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istic situation in which all the effects of the Hasegawa- 
Wakatani system are present. The system behaves as a forced 
turbulent bath always with the same properties, while only 
the degree of statistical independence between potential and 
density fluctuations is affected by the presence of dissipative 
cross-coupling. 

In Sec. II the Hasegawa-Wakatani model is described. 
The linear analysis of this system is presented in Sec. III. 
The simulation details are discussed in Sec. IV Section V is 
devoted to the basic properties of the saturated turbulent state 
and how it varies with ?Y. Comparison of the results to qua- 
silinear predictions is covered in Sec. VI, and the statistical 
properties are described in Sec. VII. Spectral transfer phe- 
nomena are treated in Sec. VIII. Finally, the conclusions are 
in Sec. IX. Some of the results presented here already ap- 
peared in Ref. 10. 

II. HASEGAWA-WAKATANI SYSTEM 

The model of our numerical studies of resistive drift- 
wave turbulence is the Hasegawa-Wakatani system in slab 
geometry.4s5 The equilibrium magnetic field, B=BC, is con- 
stant in the z direction, and magnetic fluctuations are ne- 
glected. The equilibrium density no is nonuniform with a 
density gradient dnoldx in the negative n direction, such that 
the equilibrium density scale L,=nol~dnoldx~ is constant. 
The simplifications of cold ions and isothermal electrons are 
taken, so that finite Larmor radius effects and temperature 
gradients and fluctuations are neglected: Ti~Te~T. The 
time evolution is then described by two coupled nonlinear 
equations for the fluctuations of the potential &x,y) and the 
density ~T(x,y):~,~ 

;v;J+(ixv,&.v, v:~=F(&ii)+@, (1) 

6 i+(ixv,&.v,ii+ g= sqc+in”>f~. (2> 

where the usual dimensionless variables are defined as 

X Y 
X--t--, 

PS 
y--t -7 

PS 
t-+t g, 

n 
(3) 

and the normalized potential and density fluctuations are 
given by 

&2??, n L ,-=-A. 
3 no Ps 

Here, the drift-wave dispersion scale ps and sound speed c, 
are given by pz= C2MiTle2B2 and cz= TIM,, respectively. 

Equations (1) and (2) are linearly cross-coupled through 
the adiabaticity parameter, 

T ki 
X5=7- 

no= 711 cslL,’ 
(5) B@= d2x(ii9’-c$B+)=m@+9& 

I 

and the fluctuation length scales are assumed to satisfy the 
usual drift ordering, kll=G k, . 
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Equation (2) is the electron continuity equation, whose 
right side represents the effect of parallel electron compress- 
ibility Vlluell , determined by force balance on the electrons 
(the Ohm’s law): 

q$ll= -neiTll=& 
1 T 

+ ; V,,P= z v,,n”- v,,4, (6) 

Eq. (1) is the quasineutrality condition, in which perpendicu- 
lar divergence of the ion polarization drift balances parallel 
compression in the electrons. The polarization drift up results 
from an expansion of the ion equation of motion in p,lL,, 
yielding u,l~~=@fp,lL,), where uE is the EXB drift. Both 
up and uE contribute to the same order in the continuity 
equation because of the incompressibility of uE, therefore 
the disparity in scale is compensated by that in size. It is 
important to note that in the cold-ion limit Eq. (1) is valid for 
arbitrary kp, . 

In the weakly collisional limit Z5% 1, the electron re- 
sponse is nearly adiabatic (n”- &, and Eqs. (1) and (2) re- 
duce to the Hasegawa-Mima equation.6 In the strongly col- 
lisional limit gel, Eq. (1) reduces to the 2-D Navier- 
Stokes equation for the EXB flow, by which n” is passively 
advected. 

There are four different invariants of the system, and 
these can be combined in two relevant invariants with evo- 
lution equations which can be easily interpreted in terms of 
source and sink terms. The invariants of the purely nonlinear 
subset of the Hasegawa-Wakatani system are then the total 
energy, 

E= ; 
I 

d2x(ii2+ IV,$12), (7) 

and the generalized enstrophy, 

UC; d2x(r;-V:+; 
s I 

d2x(ii-fi)2, 03) 

with fi the EXB vorticity (these are explicit invariants of the 
pure Hasegawa-Mima system). Under Eqs. (1) and (2), these 
quantities evolve with time as 

g=r.-r,-9, 

g=r.-SV, 
where 

F,,=-/d2xi($), 

rc= k? 
I 

d2x(ii- b)“, 
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(11) 

(12) 

(13) 

(14) 
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These four quantities constitute the sources and sinks 
with which the turbulence interacts.7 Only I’, can act as a 
source; the other quantities are sinks. The first, Fn, is the rate 
at which fluctuation energy extracts free energy available in 
the gradient (it is proportional to the gradient, which is unity 
in normalized units). The second, lTc, is the rate at which 
fluctuation energy is resistively dissipated. These first two 
quantities represent the collisional drift wave energetics in 
the nonviscous limit. It is important to note that they are 
act&e, only to the extent that the dynamics is nonadiabatic: if 
i= 4, then both ITn and Fc vanish, leaving one with the 
Hasegawa-Mima system, up to viscous dissipation, In this 
spirit, fine dynamics studies are aided by the use of the nona- 
diabatic part of the density fluctuation, h”, defined as 

h”+-4, (15) 

after which one can substitute h” for G in the definition for I?& 
and for Z - 4 in that for IYc. One should also note that the 
nonlinear advection of 6 by the EXB flow vanishes identi- 
cally for adiabatic electrons; this will be important to the 
interpretation of the results, especially concerning energy 
transfer phenomena. Concerning I’,, and Fc, one minor dif- 
ference exists from previous work: since we are interested in 
comparisons to the quasilinear flux, we do not express the 
F’s as amplitude growth rates, as was done previously in 
order to compare with linear growth rates.7’” 

The other two sinks, @ and @, collectively constitute 
“viscous” dissipation: they are contributed to by 9 and @. 
Physically, these arise through collisional diffusion of elec- 
trons perpendicular to B and ion viscosity, respectively.” For 
typical tokamak edge parameters, both of these are very 
small,” to the point that their retention would necessitate 
much finer grids than are necessary: The nonviscous limit, in 
which @ and @ are negligible compared to Fn and lTc, 
requires only that the spectrum be truncated at some 
k,,>p; I. How this is done is unimportant. For this reason, 
we introduce the following high-order diffusion operators: 

P= VQ, vp=l, g= y, v$, (16) 

and we choose 

v+= v, = v, (17) 

such that by taking appropriate values of v, dissipation can 
be confined to the smallest scales resolved in the numerical 
system. We can thus arrange that for sufficiently high spatial 
resolution, the energy dissipation @ in Eq. (9) becomes 
negligible. On the other hand, one can see from Eq. (10) that 
& must remain finite: It has been shown by statistical 
studies’ and confirmed by numericai simulation7 that, in the 
absence of dissipation, the enstrophy spectrum is U,-- k, ba- 
sically different from the decreasing spectrum Uk-k-j‘, 
with p-3 observed for weakly dissipative systems. In this 
paper, the interest is focused on conditions, such that #=O, 
@ finite, which we call the nonviscous limit. Here the only 
salient parameter is F, v determines only the extent of the 
inertial range of the energy and the enstrophy spectra. 

Ill. LINEAR ANALYSIS 

It is interesting to solve the linearized system analyti- 
cally, in order to see the modal distribution of sources and 
sinks of the system’s linear waves and the linear density 
response function. This is useful in comparison to the mode 
structure of the turbulence, as well as between the nonlinear 
turbulent flux and the correspondent quasilinear expressions, 
which are often used in simplified transport models.‘-3 

A. Dispersion relation 

Linearization and Fourier decomposition of Eqs. (1) and 
(2), assuming a modal dependence of the type ei(k+x-Ot), 
leads to a dispersion relation, which has two solutions corre- 
sponding to unstable and strongly damped modes. The un- 
stable modes are the only remaining after the system devel- 
ops for a finite time. They are characterized by a real 
frequency w, and a growth rate y : 

w+=o,-l-fy, (18) 

where 

Cd,= ..&E=i, (191 

y= - h/2 -I- .&3TT, (201 

in which 

,&=ho/2&, (21) 

q/zg (221 

%(1+-t;) 
h=ho+hl= @I +2vk;, 

I 

CT= E-k,/k:. (241 

The linear results are presented in Fig. 1. The behavior 
of y for k,= 0 for v=O is shown as a function of K in Fig. 
l(a). In Fig. l(b), the maximum linear growth rate is shown 
as a function of the adiabaticity parameter 5 and in Fig. 1 (c), 
the values of wave number k,=(O,k,) of the maximum 
growth rate as a function of 55’. The dependence of the linear 
growth rate on the dissipation coefficient v is shown in Fig. 
l(d). 

l3. Linear density response 

From the linear analysis, it is possible to obtain an ex- 
pression for the relation between n’k and &: the linear den- 
sity response expressed as nlk(#&, Similarl_y, the nonadia- 
batic response may be expressed as &(‘;bk). These are 
compared to the corresponding relations for the turbulence in 
subsequent sections. 

The nonadiabatic linear density response function [de- 
fined in (15)], is given by 

&= 
i/c,-(io-vkf)( 1 +k:) - 

iw- vki 4k- (25) 

The total Iinear density response is then expressed as 

&= ( 1 l-fk) ik 3 (26) 

where 
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FIG. I. (a) Linear growth rate y for k,=O, different values of F and v=O, 
V=O.Ol (dots), V==O.l (full line), FT=l (short dashes), ET’=5 (short/long 
dashes), and C= 10 (long dashes). (b) Maximum linear growth rate -y,,, for 
k,=O as a function of 5, for ~0. (c) k, , k, of the maximum growth rate 
as a function of K, for v=O. (d) Linear growth rate 7, for k,=O, F= 1, v=O 
(full line), and v= lE- 8 (dashed line). 

%ky (y+ vk:)k, 
fk=-(1+k:)+(y+uk~)2+o~--i (y+vk;)2+u;’ 

(27) 

where for each k, ?: and o, are those in Eqs. (20) and (19), 
respectively. 

C. Phase shifts 

In most transport modeling, it is assumed that the nona- 
diabatic response is small, entering purely as a shift in phase 
between r7k and &: 

ik=(l -is)&, S-cl, (28) 

with a given S for each Fourier component.‘3 In this para- 
digm, drift waves are thought of as principally ion dynamics 
described by the Hasegawa-Mima system with electrons en- 
tering only in terms of the small phase shift, such that the 
linear waves or turbulence can tap free energy in the gradi- 
ents. However, the energetics represented by Eqs. (11) and 
(12) indicate that drift-wave dynamics are based on the elec- 
trons, and the ions enter only through the inertia, in order to 
keep the system quasineutral. 

In general, ik and & are two complex numbers whose 
ratio can be given in terms of an amplitude and a phase shift, 
and the phase shift may be expressed as 

Sk=Im log nlk*&, (2% 

and directly evaluated from the computations. In the turbu- 
lence it is clearly a function of time, so statistical averages 
are taken. 

For linear waves, the superscript “L” is used to distin- 
guish from the turbulence, and the phase shift & is obtained 
from the response function fk : 

@= -1m log( 1 ffk). (30) 

This linear phase shift also holds in the _case of a quasilinear 
model, in which C# is turbulent, but n”( 4) is assumed to be 
linear. 

With these definitions, it will be possible to check the 
validity of the i-delta model, since it will be clear whether 
the amplitude ratio between Sk and & is close to unity and 
whether ?& is small. It is already known that the i-delta 
model is a disastrous failure for the case of a sheared mag- 
netic fieId.i4 

IV. SlMULATlON DETAILS 

Equations (1) and (2) were solved on a square box of 
size L2 = (2 dKJ2 with periodic boundary conditions, using 
a dealiased pseudospectral algorithm, similar to the one em- 
ployed for a sheared magnetic field.15 The grid size (number 
of collocation points, or nodes) varied from 12g2 (coarse- 
grid) to 1O242 (fine-grid) nodes. Two different box sizes were 
used to concentrate primarily either on high-k (small-box) 
and low-k (large-box) properties; with Ka= 0.15 and 
0.0375, respectively. The dissipation parameter Y was kept 
just large enough to prevent numerical instability at the scale 
of the node spacing. This varied between ~=5X10-*’ for 
fine-grid, small-box runs, to Y= 10U4 for coarse-grid, large- 
box runs. In order to reproduce the results of Koniges et ~1.~ 
additional runs were taken with K, = 0.1, and different dis- 
sipation operators of the form .@= vV:(V: 4) and 
LF= v Viii, with v-0.1. 

Three values of ZP were used in the computations, rep- 
resenting the hydrodynamic (tf?=O.l) and adiabatic (Z=5) 
regimes, with an additional case in the transition regime (e 
= 1). In the adiabatic regime, the slow system response lim- 
ited the value of ?T to 5, since obtaining good statistics in the 
saturated state, would otherwise be too expensive. This slow- 
ness of response can be understood from the linear growth 
rates, which decrease rapidly with %, as well as by the fact 
that in the near-adiabatic limit, spectral transfer in the density 
fluctuations is suppressed by the dissipative cross.coupling 
(nonlinear EXB advection of T? vanishes as n-4). In the 
hydrodynamic regime, SY was limited to 0.1 for a different 
reason: to keep the system in the nonviscous limit Bs must 
be small compared to TC in the energy equation, Eq. (9). An 
additional case with high resolution and ZT=O.Ol was con- 
sidered for comparison with Ref. 8. Though in this case, @ 
is not negligible compared to the other terms in the energy 
equation, coherent structures were not observed, and the 
main characteristics are the same described in the case 
g=o.1. 

The numerical simulations were initialized with a 
random-phase, broadband field for the density and the poten- 
tial fluctuations. The initial state was adiabatic and isotropic, 
exciting all degrees of freedom with a constant amplitude, 
such that 

c a&=;, 
k L 

(31) 
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FIG. 2. Time evolution of the total energy E (full line), the kinetic energy 
E” (short/long dashes), the’ density energy EN (long dashes), and the enstro- 
phy U (dots) is shown for ‘F= 1; V= IO-*, K,,= 0.15, and 512’ grid points. 

and n”,= & . A typical numerical simulation was started with 
128’ grid points and dissipation coefficient V-IO-~. After 
the linear phase, a saturated turbulent state~is reached and 
maintained for a long enough time to obtain good statistical 
averages for the fluctuating qtiantities (t- 1500). The num- 
ber of nodes was then increased to 25c2 and v reduced to 
v-lo-6. A new saturated state was reached in a short time 
(t-80 for ZY’=5 and t--2CJ for g=l), with an energy level 
not appreciably different from mat established prior to th.e 
changes. Further changes took the system to 5122 nodes ,and 
v-10-s, and finally to 1O242 nodes and v-lo-“. Some of 
the diagnostics, such as the energy and enstrophy spectra, 
respond almost immediately to the changes, and need only 
short computation time to be accurate. Global quantities, 
such as the total energy,. which depend mainly on low-k 
(large-scale) modes require longer times to give accurate av- 
erage values. Hence, the 10242-node cases are. presented 
mainly to investigate small-scale properties such, as inertial 
range spectra and high-k statistics, which respond quickly to 
system changes. Test runs with 512: grid points were also 
performed from the initial conditions to, confirm that the ex- 
tended mode number space does not alter the saturation pro- 
cess. The numerical error was tracked in all runs by using the 
energy equation, Eq. (9). The mismatch (due to the artificial 
dissipation and numerical error) was never greater than 
0.02E. 

V. THE SATURATED STATE 

In this section we describe the basic properties of the 
saturated turbulent state: amplitude and e’nergy levels, and 
spectra of both the energy comijonents and .tbe source and 
sink rates. The results discussed in this section are obtained 
from cases with 5 122 nodes for v= 1 O-* and K, = 0.15, with 
only s varying. We refer often to the cascade dynamics of 
the system; although these are not covered in detail Until Sec. 
VIII, they are already known in broad measure.9*7 

Because of the low initial amplitude and the broad pres- 
ence of unstable modes, the evolution of the system follows 
a standard pattern: a linear growth phase followed by non- 
linear saturation. In Fig. 2, the typical time evolution of the 

TABLE I. Saturation and fluctuation values for K, = 0.15, V= lo-‘, and 
512* grid points in the three different regimes. 

gs 0.1 1 5 

E 23.8 4.4 8.3 
6E 20% 16% 8% 
EN 20.0 2.5 6.4 

EN/E 0.84 0.51 0.77 
E” 3.8 1.9 1.9 

E’IE 0.16 0.43 0.23 
u 42.0 12.8 12.1 

al 18% 13% 8% 

rn 2.9 0.73 0.13 

ST, 43% 25% 35% 

rc 2.2 0.72 0.13 

ST, 26% 21% 40% 
GF 0.6 0.0055 0.000 35 

@tr 
g,& 

21% 0,746 0.3% 
99.7% 76.4% 0.6% 

$Qp 0.3% 23.6% 99.4% 
@ 2.8 0.72 0.13 
P’ 7.2 1.0 0.13 

energies and the enstrophy is illustrated for the transitional 
case, %‘= 1. Due to the initial excitation of the high-k modes, 
the enstrophy, U, is qtiite large but then decays rapidly dtie to 
the finite v, and the efficiency of the vorticity cascade to 
small scales. 

Saturated levels of the global quantities such as E, U, 
and the F’s are given in Table I. In addition to these levels, 
the speed with which the system enters saturation is strongly 
dependent on Z?. The saturation time strongly decreases with 
g, primarily for the reason that the ability of n” to decouple 
from & and hence to cascade to small scaIes is much greater 
in the hydrodynamic regime. This is not explained by the 
linear growth rates, since y peaks for intermediate r and 
then drops away to either side. This is a first indication that 
the system’s evolution is decided by its nonlinear properties. 
A second indication is that for the three cases considered the 
saturated energy level, E, is minimum for g=l, in opposite 
tendency to the strength of y. One notes that the variation in 
E with &Y is almost entirely due to that in EN, and that tem- 
poral fluctuation of E is greatest in the hydrodynamic re- 
gime; this indicates that the dissipative cross-coupling is of 
primary importance. When 6 is allowed, statistical indepen- 
dence from 4 the system is at its most robust. The saturated 
enstrophy, on the other hand, decreases uniformly toward the 
adiabatic limit. This is due to the presence of the vorticity 
cascade to small scales in all regimes, coupled with the lower 
lYn in the adiabatic regime. Both rn and rc decrease toward 
the adiabatic limit, as they depend on a finite i, but I?, also 

i depends on a finite ZY, so it is strongest for ZY= 1. 
Comparison of the levels of viscous dissipation (Table I), 

DE and D& to the r’s and to E indicates the role of spectral 
transfer: Di, and hence DE, is lowest in the adiabatic regime 
due to the -weak cascade power in n”, which is strongly 
coupled to 4 with its 2-D fluid inverse energy cascade. So 
although the source rate rn is weak in-the adiabatic regime, 
the dominant energy transfer is toward large scales and I’= is 
also weak; so that the energy level E is comparatively large. 
This situation of high-energy level and weak energy transfer 
is responsible for the slow system response in the adiabatic 
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regime. While in the hydrodynamic regime, DE is mostly 
due to Di, in the adiabatic regime DE, is strongest, since the 
loss of the direct cascade in L has removed 0:. As one 
would expect from the always-robust vorticity cascade, the 
enstrophy dissipation is not negligible in any regime. 

The transitional case %‘= 1 has the strongest combination 
of dissipation-l’, and cascade to small scales, hence excit- 
ing DE-and weakened driving, rn, and so its saturated en- 
ergy level is the lowest. All this serves to demonstrate that 
nonlinear drive and damping rates, not linear growth rates, 
together with the strength of interscale spectral transfer, are 
what determine the character of the saturated state. 

As originally pointed out by Hasegawa and Wakatani,5 
the spatial structure of 4 and n” is clear from the contour 
plots, which are shown in Figs. 3 and 4. The structure of 3 
and fi are not strongly dependent on the regime; C$ collects at 
large scales and fi collects at small scales, reflecting the 2-D 
ExB fluid’s dual cascade. The contours of n”, however, show 
the resnlts of the strength or weakness of the cross-coupling; 
in the hydrodynamic regime, G exhibits pronounced gradient 
sheets, the characteristic feature of a passively advected sca- 
lar as it is cascaded to small scales. In the adiabatic regime 
the cross-coupling forces K to mimic 4. 

All of these considerations are also a$parent from the 
energy and enstrophy spectra, which are shown in Fig. 5. We 
define an angle-integrated spectrum for each of these quan- 
tities; for example, the spectrum of EN is given by summing 
the contributions from each mode k whose magnitude falls 
within Ak of k: 

EN= 
I 

dk E;-AT @v (32) 

Ez= d2k E$--,x EC, k-Akcjkjtk+Ak, (33) J k k 

Efl= ;jik12, 

and similarly for E” with 

El= fl k&12. 

Similar expressions are defined for the other E’s, ,U, gnd the 
r’s and D’s, and in these expressions Ak=O.SK,. 

Generally, Ek exhibits a maximum at a certain wave 
number k= k, . On the high-k side of this, there is an inertial 
range in which Ek follows a decaying power law (Ek- k-“) 
up to the visdous cutoff, k,, introduced by. the increasing 
strength of DE with k. The variation of the spectral exponent 
cz with % is compiled in Table II. 

To understand the dependence of Ek on 87 we consider 
EL and Ef separately. The power exponent for ,!Zl is not very 
sensitive, varying only between LY”= 3.1 and 3.5. This is due 
to the fact that for all three cases, the cascade dynamics for 4 
are similar, and the source/sink rates are ‘negligible in the 
inertial range (which is, of course, a matter of definition; this 
is quantified in Sec. VIII). Indeed, that there is an inertial 

FIG. 3. Contour plots ?f the (a) potential 4&y), (b) density$(x,y), and (cj 
vorticity Huctuations fl(x,y) at the same instant of time in a saturated tur- 
bulent state for K=S, u=lO-*, K,=O. 15, and 512’grid points. The figures 
show only the region [O:TTL]X[O:TLL]. 

range, even for ‘&> 1, results from the smallness of ‘r, , Hasegawa-Mima equation, and in the opposite limit, Eq. (1) 
where the efficient cross-coupling keeps i small: again, in reduces to the 2-D Navier-Stokes equation. For the 2-D 
the limit F--+m, _ E-qs. (1) and (2) simply reduce to the Navier-Stokes system, a simple self-similar vorticity cas- 
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(b) 

(c> 

FIG. .4. t Zontourplots of the (a) potential &x,y), (b) density L(x,y), anI 
volti icity fluctuations &x,y) at the same instant of time in a saturated 
bule nt sl ate for P=O.l, v=lO-*, &=O. 15, and 512’ grid points. The 
ures sho w only the region IO:PL]X[O:?~L]. 

d (4 
tur- 
fig- 

FIG. 5. (a) Total energy spectra E, for g=O.I (full line), g=l (dots), and 
%‘=.5 (dashes). (b) Kinetic energy spectra El for %‘=O.l (full line), @?=I 
(dots), and I?=5 (dashes). (c) Density energy spectra E: for g=O.l (full 
line), g=l (dots), and g=5 (dashes). (d) Enstrophy spectra (I, for @?‘=O.l 
{full line), V=l (dots), and g=5 (dashesj. 

Navier-Stokes mean-squared vorticity, lk2&12. This k-” 
spectral energy power law has been observed for large-scale 
motion in the atmosphere, I7 a well-defined case of driven 
turbulence, which is nearly two dimensional, and it has been 
suggested by simulations of the Hasegawa-Mima and 
Hasegawa-Wakatani systems that were less well 
resolved.“259’8 

Numerical simulations of 2-D Navier-Stokes turbu- 
lence, in general, exhibit a steeper energy spectrum, for in- 
stance, cr,=4.3 in decaying turbulence,‘9.20 or 
cyv=” 3.5-4.5 in stationary turbulence, depending on the 
stirring (low-k external driving). The origin of this discrep- 
ancy can be traced to the presence of pronounced coherent 
structures. If the turbulence is driven with a random forcing, 
which inhibits the formation of such structures, the energy 
spectrum is found to be consistent with the self-similar cas- 
cade model,21 agreeing with the present work and the driven 
cases cited above. In decaying turbulence, ~~“33 is actually 
observed in an early phase, before the appearance of pro- 
nounced coherent vortex structures.” In the present case of 
gradient-driven, collisional drift-wave turbulence, the excita- 
tion represented by rn is extended over a broad range in k, 
and is evidently sufficiently incoherent to prevent the forma- 
tion of coherent structures, so that czV remains close to the 
self-similar model in this case as well. 

TABLE II. Decay exponents for the energy spectra. 

EkV Uk 

cade model predictsI a spectral exponent of 3, and it is to be 
noted that in a high-k inertial range, the Hasegawa-Mima 
enstrophy, I( 1 + k”) &12, is indistinguishable from the 2-D 

0.1 k-l-6 k-3.1 k -1.6 k-L.3 

1.0 k-2.9 k-3.2 k-2.7 k-1.’ 

5.0 k-3.5 k-3.’ k-4.2 k-l.6 
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The form of the density spectrum, Er, on the other hand, 
depends quite strongly on % In the hydrodynamic regime, 
Ye 1, the density behaves essentially as a passive scalar, in 
which case the self-similar cascade model, given the vortic- 
ity cascade model for the EXB eddies, suggests the form 
EF--k2El, which is, in fact, observed: for ZY=O.l, 
El-k-‘.’ and Ef-k-‘.6. The consequence is that in the 
hydrodynamic regime, the density spectrum Er dominates 
the energy spectrum at high k. By contrast, in the adiabatic 
limit, S? B 1, the kinetic energy is dominant at high k, since n” 
is forced by the strong cross-coupling to have the same spec- 
trum as 4 (recall that 4 is the ExB streamfunction). 

It is therefore clear why the sensitivity of E, to g is 
entirely due to that of Er. This is completely consistent with 
the other results: in the hydrodynamic regime, n” decouples 
from (p, and its component of the energy is efficiently trans- 
ferred to small scales, broadening the spectrum, while in the 
adiabatic regime this part of the dynamics is suppressed by 
the cross-coupling of 6 to 4. 

The angle-integrated enstrophy spectrum is defined as 

Uk= c f ltik+k2&12, 
J k A 

[kj E[k-Ak,k+Ak]. (36) 

Like the energy spectrum, Uk has a maximum at k, and 
follows a power law for k>k, . For Uk , the variation of the 
spectral indices with Yis much smaller than that for E, . The 
reason is that U, is dominated by the component, due solely 
to the vorticity, as this involves a much high power of k, and 
we have already established the insensitivity of EL to % Up 
to a correction due to EF that is negligible, especially in the 
hydrodynamic regime, the spectral indices of U, are given 
approximately by those of the vorticity. 

For the total energy, E, two other spectral distributions 
were studied: 

E= 
I 

dk, E(k,)= dk, E(k,). 
I 

(37) 

The energy spectra of E(k,) and E(k,), for !?=5 is shown in 
Fig. 6. For k, , k,> k. , the spectral distribution is isotropic, 
while for k, , k,s kd , it is anisotropic. The contour plots of y 
as a function of k have a similar form as those of E, for 
k< k,, showing that the behavior for k<k, is essentially 
determined by linear forcing, since y is proportional to k, 
and maximum at k,= (O,k,). For r=Gl, we find that 
kc=&,, , while for 0 1, where k, becomes constant at 
about 1.3, the actual spectrum peak drops to lower k as r 
increases. This is another clear result of the inverse energy 
cascade in the adiabatic regime. 

Vi. COMPARISON TO QUASILINEAR THEORY 

An interesting aspect of any turbulence study is to deter- 
mine the importance of the nonlinear terms in establishing 
the turbulent state. A standard way of analyzing how well the 
linear properties characterize the system is to compare non- 
linear quantities with corresponding quasilinear and linear 
quantities. Such a comparison is usually done only with the 

“““4 “““’ 
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FIG. 6. Energy spectra for F=5 E(k,) (full line) and E(k,) (dashes). 

turbulent density flux, often in order to decide from a given 
level of turbulence in an experiment whether the inferred 
quasilinear flux can account for the actual one. This method- 
ology is often carried over into theoretical studies as well.’ In 
the present work, however, we also measure the actual phase 
shift and relative amplitude of the density fluctuations to 
those in the potential, in order to discern explicitly whether 
the often-employed linear response model is valuable. 

Regarding the flux, although the quantity I’, defined in 
Eq. (11) is properly the rate at which the fluctuations obtain 
free energy from the density gradient, it is also equal to the 
turbulent density flux, since Vn is unity in normalized units. 
We therefore refer to rn as the turbulent flux in this section. 

The angle-integrated turbulent flux spectrum is defined 
as in Eq. (34), in terms of 

r,&= ik,&@ 9 (38) 

and for its quasilinear analog, here for convenience called the 
quasilinear flux, 

r$‘= ik,( 1 +.&)I &12, (39) 

where fk is the linear response function defined in Eq. (27). 
In the adiabatic limit (%Y S l), lYn=rq’, while for FS 1, 
I’,<rq’ (see Table I). Their ratio, T,/rq’, decreases with de- 
creasing g approximately as r nirq1- iP3 for ~zS 1. Com- 
parison of the spectral behavior of the two expressions shows 
that for ksk,, I’,(k) -rq’(k) for all values of ZY((see Fig. 7). 

This confirms the importance of the linear properties at 
long wavelength, for ks k, , which was already observed in 
the energy spectrum. However, near the energy peak at 
kzk, , rq’(k) exceeds r,(k) by a factor that increases with 
decreasing %Y In the adiabatic limit g=5, both fluxes coin- 
cide over the entire spectrum. The agreement would seem 
somewhat surprising, since in this regime the (nonlinear) in- 
verse cascade is still robust, and is particularly robust com- 
pared to the linear terms as these are weakened by the strong 
cross-coupling, which gives rise to an energy peak far to the 
low-k side of the most unstable mode ( ko4 k,). On the other 
hand, this argument applies to the kinetic energy spectrum, 
since it is 4, which is still turbulent, and hence to the total 
energy, since although EN resides in n”, it is put where it is in 
the spectrum by the inverse cascade for 4. The response of n’ 
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(a> 
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(b) 
o.o2j----- 7-1 

FIG. 7. Spectral behavior of the turbulent flux l?,(k) (full line) and thi: 
quasilinear flux P’(k) (dashed line) for (a) F==O.l, (b) F=l, and (c) @=5, 
for 256’ grid points, K0=0.0375 and V= 10m4. 

to 3 in the adiabatic regime is dominated by the cross- 
coupling, and so even though the fluctuations are turbulent, 
this part of their dynamics behaves essentially as it does for 
linear waves, which serves to explain the good agreement of 
I’,,(k) and rq’(k). One should not forget, however, that in 
evaluating P we are taking the spectrum of 5 as a given. 
That is, the apparent success of rq’ does not mean that linear 
physics determines rn. What the good agreement between 
I?,, and rq’ at low k shows is that although & is nonlinear, the 
response of Z to it is linear, in the sense that the nonlinearity 
in Eq. (2) is weak compared to the forcing terms. 

The linear and nonlinear phase shifts, @ and 4; were 
defined in Eqs. (30) and (29). The,k dependence of these 
quantities for r=O.l, 1, 5, and 128’ nodes are -shown in 
Figs. 8 and 9, respectively. In all cases the nonlinear phase 
shifts are time averaged over the saturated state. 

For linear waves, the two quantities that oppose the ten- 
dency of the parallel dissipation (L?) to enforce adiabaticity 

03 

FIG. 8. Linear phase shifts & , for (a) g=O.l, (b) F’= 1, and (c) P=5, for 
12S2 nodes and K, = 0~. 15. 

are the density, gradient (Vi) and the ion inertia (k,p,). 
These are weakest at the lowest k [mode (l,l)], so one sees 
the weakest phase shifts there. For large g, the k, depen- 
dence disappears, because the inertia with its higher k depen- 
dence is the dominant phase-shift producing effect. 

For the turbulence, EXB advection is also present to 
oppose the parallel dissipation, and this is obviously more 
important in the hydrodynamic regime. What is interesting is 
that this produces low phase shifts, and the reason it does so 
is that the turbulent advection tends to randomize the rela- 
tionship of 2 to 6. When the EXB advection is dominant, as 
at high k and low V, the two fluctuations become statistically 
independent. For low g the phase shift is strongest at low k, 
because Vn is relatively strongest there, and because the 
opposite cascade tendencies of 4 and K ensure that 4 is 
significantly larger than n’ there. It drops toward zero else- 
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b 

FIG. 9. Nonlinear phase-shifts S, , for (a) F4.1. (b) % 1, and CC) 65 

for 128* nodes and K,,=O.15., 

where because the EXB advection everywhere dominates 
both the parallel dissipation and Vn (in contrast to the result- 
ing k dependence against the linear case). As %? rises, the 
randomizing tendency of the advection is progressively 
weaker, and the stronger inertia at high k causes a larger 
phase shift. 

Because of-tie importance of the dependence of the am- 
plitude ratio <I+ on e and k, it should be clear then that S, 
is not a good way of evaluating the adiabaticity, as is usually 
done, and the concepts of adiabaticity and phase difference 
should be clearly distinguished. 

In analogy to the linear response function fk given by 
Eqs. (27) and (26), it is possible to define a nonlinear re- 
sponse function Ft as 

nk=(l+Y&Sk, (40) 

A 
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FIG. 10. Comparison of the average nonlinear response (Fk) and the aver- 
age linear response (fk) for F=O.l (full linej, ‘F= 1 (dots), and F=5 
(dashes). 

(41) 

which gives a measurement of how much n”, and I& differ. 
As expected, .!Tk and ,fk are larger in the hydrodynamic re- 
gime (P=O.l), decreasing as F increases and for a fixed 
value of Z< they increase toward high-k values. For high k, 
.Fk-k6, where E varies from 3.4 (for V=5) to 4.7 (for 
r=O.l). In Fig. 10, the average nonlinear and the linear 
response functions are compared for ‘g=O,l, 1, and 5, with 
the best agreement for %‘=5, as also occurred for the turbu- 
ient and quasilinear fluxes. It is interesting to note that the 
imaginary parts of the nonlinear and linear response func- 
tions have a better agreement than the real parts. When cal- 
culating r,(k) and rql(k), only the imaginary parts of 9; 
and fk are. used, this helps explaining the good agreement 
between the turbulent and quasilinear Auxes. 

VII. STATISTICAL PROPERTIES 

By statistical properties, we refer to measures of the sta- 
tistical independence of different components of the system. 
These measures can be used to examine the usefulness of 
analytical models of turbulence that rely on a sufficient de- 
gree of randomness to validate expansions about a Gaussian 
distribution of, e.g., relative phases. For example, simple 
analysis of the dissipation-free analog of Eqs. (1) and (2) 
using a cascade model was successful in explaining the spec- 
trum of 1’, .7 In that case, the phase-shift distribution is 
nearly random and uniform, with a small shift toward posi- 
tive values caused by the density gradient acting on the tur- 
bulence in the inertial range, and the amplitude distribution 
is Gaussian. But in-a different system, collisional drift wave 
turbulence in a sheared magnetic field, departures from a 
Gaussian amplitude distribution reflected important compo- 
nents of the system’s dynamics.” It is therefore clearly im- 
portant to develop quantitative measures of the statistical 
properties in order to make clear judgments concerning the 
usefulness of speciticBnalytical models. 

One such measure. is that of the normalized structure 
functions of spatial increments of the physical quantities of 
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interest.23 In the present case, we measure these functions for 
the density, potential, and vorticity, increments Sn’, , S& , 
and Sfi,, defined as 

&,=fi(x+r)-i(x), (42) 

S&=&x+r)--&x), (43) 

f&,=sZ(x+r)--ii(x), (44) 

where 

r=ri, or, r= ri. (45) 

The normalized structure functions for these increments are 
defined as 

(461 

(47) 

(48) 

where the angled brackets indicate ensemble averages. In our 
calculations, we consider r= 2m2~LIN, where N2= 22J is 
the number of grid nodes and L= 2 rrlKO, such that 
r,i”=4TLIN (for PI= 1) and rmaX=~L, (for m=j- l), with 
Y is given in units of ps . In order to study the small-scale 
statistical properties, we considered a relatively small box 
size, K,= 0.15, and high-spatial resoiution, 1O242 nodes, 
such that r,,=0.08 and ~,,=21. Since the turbulence is 
isotropic (cf. Fig. 6), we calculate the structure functions in 
both x and y directions and average in order to improve 
statistics. In Fig. 11, we show the structure functions of den- 
sity, potential, and vorticity, and compare them to the corre- 
sponding Gaussian values. While the large-scale statistics 
(for rZ k; ‘) are essentially Gaussian (in fact, as discussed 
below, almost perfectly Gaussian), statistics become increas- 
ingly non-Gaussian for r<k, ‘, This indicates the existence 
of small-scale intermittency: “intermittency” refers to the 
fact that fluctuations of a particular scale, T, fill less space 
than those of scale 2~, and so on. This feature of the turbu- 
lence is reflected by the fact that the structure functions are 
larger, both for smaller scale r and for higher-order j: at the 
smallest scales the contributions to the moment integrals are 
dominated by the largest values, arising from a small fraction 
of the total area. 

While F2j and H2j show a clear power-law behavior 
with F2j - r@i and H2j - rKr, the structure functions of the 
potential H2/ are approximately Gaussian, even for the 
smallest scales and practically independent of 5:: The struc- 
ture of the density, on the other hand, depends strongly on Y, 
as we have already learned from the contour plots and spec- 
tra. In the hydrodynamic regime we find pj- K~, but for the 
transition case (C= 1) there appears a slight departure, 
pj- 1.5 K~. In the adiabatic regime the departure widens: 
,Bj-0, while ~~ is, like other properties measured concern- 
ing 4, independent of 5: We do find, however, that both pj 
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FIG. 1 I. Density fF2j), potential (G”), and vorticity (Hz”) structure func- 
tions for j=2, 3, 4, #a=O,15, and ‘%=O,l (dots), Y=l (dashes), ‘<=5 
(dots/dashes), and Gaussian values (full line). 

and ~~ increase with j more strongly than linearly, which 
indicates a multifractal behavior, as is well known for hydro- 
dynamic turbulence (see, e.g., Ref. 24). 

In the results just described, the ensemble averages of 
the large-scale component are not very accurate statistically, 
since the computations were not continued for sufficiently 
long times. In order to obtain better averages for large scales, 
numerical simulations with a larger box size (K,= 0.0375), 
and only 256’ nodes were performed. These cases were car- 
ried for many large-eddy turnover times Q, where 
y(uk&’ and u2=EEV/2n, For the adiabatic case %=5, 
which is the one with the slowest response time of the three 
as discussed earlier, ~~-10, and the computations were car- 
ried for t =;: 5 0 r. following an already-established saturated 
state. In this case, rmin=l.3 and rmax=84. Only the results 
for r=& are shown, since for r=ri they were virtually iden- 
tical, in spite of the anisotropy of the spectrum for rS ki ‘. 
The large-scale structure functions are shown in Fig. 12, 
where it can be seen that they are almost perfectly Gaussian, 
This behavior is consistent with the absence of large-scale 
coherent structures. On the other hand, similar diagnostics 
performed on cases reproducing the calculations of Ref. 8, 
which considered much more strongly viscous conditions, 
long-living coherent structures were observed, and the statis- 
tics were far from Gaussian. For the weakly dissipative con- 
ditions considered here, these structures disappear, most 
likely a consequence of the presence of an extended inertial 
range and the high level of small-scale turbulence which that 
entails. 
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FIG. 12. Density (F*j), potential (G*j), and vorticity (Hz’) structure func- 
tions for j=2, 3, 4. K,=0.0375, r=r?, and F=O.l (dots), f?=l (dashes), 
and Gaussian values (full line). 

VIII. SPECTRAL TRANSFER OF FLUCTUATION 
ENERGY 

Discussion of the results up to this point has revealed 
much of the basic character of the turbulence resulting from 
the Hasegawa-Wakatani system. Increased intermittency and 
departure from simple quasilinear theory at small scales for 
Csl reflects the importance of the density nonlinearity 
(vE+V$, as the cross-coupling between L and & is weak- 
ened. Indeed, v,.Vi vanishes as r becomes arbitrarily 
large. One can argue as previously’ that the tendency of tur- 
bulent advection of fi, which, except for the cross-coupling 
would behave as a passive scalar, is to cascade toward small 
scales. Theory and simulation of statistical equilibrium en- 
sembles show this clearly in the limited case of truncated, 
dissipation-free systems7 However, one would like a quan- 
titative demonstration that this physics carries over into more 
realistic systems such as that under study here. 

A useful diagnostic for this purpose is to directly mea- 
sure the spectral transfer function for the fluctuation energy, 
E, defined in Eq. (7). This was done for three-dimensional, 
incompressible, neutral-fluid turbulence by Domaradzski,25 
giving quantitative demonstration that the basic equations of 
fluid turbulence actually displayed the local, direct energy 
cascade long known from the Kolmogorov eddy-mitosis 
model and laboratory experiments26 (this is, of course, in 
contrast to the two-dimensional cases cited in Sec. V). That 
is, energy transferred into a given spectral range, between 
k - dk and k + dk, was seen in the simulations to have origi- 
nated from wave numbers k’ for which k-2k’. Note that in 

the neutral-fluid case, E is indeed the fluid kinetic energy. 

For the present purpose, the transfer function is com- 
puted separately for each nonlinearity, viz., 

q=z T”(k+-k’)+linear terms, (49) 

dEN( k) 
7 = s TN( kc k’ ) + linear terms, 

Wk) 
at=? TW(k+-k’)+linex term, 

where the spectral transfer of fluid kinetic energy from mode 
k’ to mode k is 

and that of density fluctuation activity from mode k’ to mode 
k is 

TN(k+-k’)=2 Re(k,kS,-k:k,)n_k~k-k,nk,, 

while the transfer of mean-squared vorticity from mode k’ to 

mode k is 

TW(ktk’)=2 Re(k,k;,-k:ky)~-k~k-k,‘iZk,. 

In each case, mode k refers to a specific Fourier component 
pair (k, ,ky), and due to the condition that 4 and n” be real 
functions of position, mode -k is given by the complex 
conjugate of mode k, and so the expressions involve both 
beat modes, k+k’ and k-k’. The transfer functions for each 
nonlinearity are defined separately because one is interested 
not only in the evolution of the total energy, as in Ref. 9, but 
in the relative importance and individual properties of each 
of the nonlinear processes in the system as well as the evo- 
lution of each independent fluctuating quantity, as in Ref. 7 
and herein. 

Since in a homogeneous system, one is interested in 
scale transfer, the salient quantities are those that give the 
transfer between ranges of scales, or between “shells” of 
modes (corresponding to the angle integrations for the spec- 
tra). For example, the scale transfer of E” is given as 
T”(k+-k’), where, in each instance, k refers to a range 
[k-Ak,k+Ak], with Ak a fixed interval. Here, Ak is set to 
0.5K,, as usual. 

After each of the three cases described in previous sec- 
tions, CY=O.l, E?‘= 1, and EY=5, reached saturation, the en- 
ergy transfer functions were computed. Due to the incoherent 
nature of the turbulence, time averages over a range At 
= 100 were taken in order to provide good statistics. The 
results are shown in Figs. 13-15 and summarized in Table 
III. In the figures, contours of T(kck’) are shown only 
where it is positive, since antisymmetric about the line 
k= k’, corresponding to the exchange (k++k’) is clear (this 
line is the dashed line drawn in the figures). Further clarify- 
ing the behavior of T(k+-- k’) is the surface of T as a func- 
tion of k and k’. In Table III, the maximum of each 
T(kck’) is given, normalized to the saturated total energy, 
E. Noteworthy in the figures is the local character of the 
spectral transfer: Most of the activity is close to the k= k’ 
line, which shows that the transfer occurs between scales of 
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FIG. 13. Spectral transfers T”, TN, and TW for 8=0.1, 128* nodes and 
FIG, 14, Spectral transfers TV, TN, and TW for ‘C=l, 1282 nodes and 
Ko=0.15. 

K,=0.15. 

motion that are within a factor of 2 of each other; the transfer 
may be properly described as a local cascade. The positive 
contours in TV lie above the k= k’ line, while in TW they lie 
below it, showing that the EXB nonlinearity exhibits the 
familiar dual cascade of a 2-D Auid: toward large scales (in- 
verse) for energy and toward small scales (direct) for vortic- 
ity. Similarly, TN shows the direct cascade one expects since 
ii is passively advected by the EXB flow eddies. 

the cascade, tendency for total energy as r varies from small 
to large. Rather, it is correct to note the unchanged cascade 
tendencies of each nonlinearity, but that their relative mag- 
nitudes are affected by the strength of the cross-coupling. 
The results of investigating’ the energy transfer dynamics 
serve to solidly confirm the arguments to this effect made on 
the basis of absolute equilibrium ensembles in Ref. 7. 

IX. CONCLUSION 

Although the character of the system differs substantially In this paper, the detailed physical properties that deter- 
between the adiabatic and hydrodynamic limits, the function mine the saturated turbulent state resulting from the 
and actual behavior of each nonlinearity remains the same Hasegawa-Wakatani resistive drift-wave model were stud- 
throughout. Only the magnitude of TN is sensitive to F, this ied. The system was solved using high-resolution numerical 
merely reflects that for high F the system is tightly con- simulations in the nonviscous limit, such that the strength of 
strained against strong departures from electron adiabaticity. the dissipative cross-coupling, C3 between the two fluctuat- 
This shows that it would be improper to speak of a change in ing variables, fi and 4, is the controlling parameter. The 
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FIG. 15. Spectral transfers TV, TN, and TW for r=5, 128’ nodes and 
k&=0.15. 

characteristics of the turbulence are quite different in the two 
regimes, hydrodynamic and adiabatic, corresponding to large 
and small C, respectively. Nevertheless, the various diagnos- 
tics employed, especially the direct measurement of the en- 
ergy transfer spectra, has shown that each of the essential 
ingredients of the system-gradient driving, dissipative 
cross-coupling, and turbulent E X B advection-all act with 
the same qualitative effect in all regimes, while the marked 

TABLE III. Maxima of the spectral transfer rates as functions of K 

c T" TN TW 

0.1 1.10 7.04 0.7 1 
1 .o 0.46 0.54 0.47 
5.0 0.51 1.55 0.39 

contrasts in the actual results reflect only that the relative 
strengths of these ingredients changes with the value of %‘. 

Two overall features of the system stand out in impor- 
tance. First, it becomes clear that nonlinear processes are of 
central importance to such quantitative measures as the satu- 
rated amplitudes and the transport produced by the turbu- 
lence. Not only would these not reflect scalings predicted by 
the results for linear waves, even the trends with F one 
would expect from linear analysis do not result: most promi- 
nently, the fact that the fluctuation energy level in saturation 
is lowest for the case with the intermediate linear growth 
rate. Even for the case in which the quasilinear flux estimate 
seems to be reasonable, the adiabatic regime with %‘=5 
where the growth rates and phase shifts are small, the turbu- 
lence is very strong and shifted to long wavelength by the 
robust dual energy/enstrophy cascade for 4. The quasilinear 
procedure takes the fluctuation spectrum as given; it gives no 
method to calculate the spectrum, and simple linear mixing 
models fail to do so. Although to the long-wavelength side of 
the energy peak at k= k, the turbulence is anisotropic and 
highly influenced by the linear properties of the system, the 
nonlinear effects are still important. On the other hand, the 
cross-coupling that makes such a difference between regimes 
is of obvious importance. The result is such to make it highly 
unlikely that simplified expansion procedures that take one 
or another effect as “the dominant one” will be useful in 
capturing the essential dynamics of this system, or even in 
providing simple estimates of fluctuation levels and trans- 
port. 

The other feature is the role played by the differing 
scales, which makes it important that computations of drift- 
wave turbulence be of high resolution (also see Ref. 11). The 
most obvious manifestation of this is the disappearance of 
coherent structures when the viscous damping is reduced. 
This allows the dissipative mechanisms to force the turbu- 
lence sufficiently that highly ordered structure does not form, 
which would mitigate against expectations of such structure 
forming in the more complicated setting of tokamak edge 
turbulence, which is even less viscous than the simulations 
presented here. Isolated, large coherent structures observed 
in more strongly viscous conditions (drift-wave turbulence) 
or in purely inertial ones (2-D Navier-Stokes turbulence) 
seem to have no role in this setting. 

It is interesting to note that when the quasilinear flux 
estimate fails, it does so in the direction of overestimation. 
This is because the density tends to get randomized with 
respect to the potential in the strongly nonlinear, nonadia- 
batic regime. So, the average phase shift is less than a linear 
estimate would suggest, especially at the smaller scales, 
where turbulent advection overwhelms linear forcing. That 
the small-scale phase shift is larger when the electrons are 
adiabatic, also quite counterintuitive from the standpoint of 
linear theory, serves to underscore the importance of nonlin- 
ear effects in producing trends, as well as to the basic char- 
acter. 

The statistical structure of the large scales is almost per- 
fectly Gaussian, which is in agreement with the absence of 
the isolated large coherent structures. The increasingly non- 
Gaussian density and the vorticity structure functions seen at 
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a smaller scale indicate the onset of intermittency as one 
enters the inertial range. This seems merely the effect of the 
cascade process of these quantities toward small-scale dissi- 
pation, and is not strongly reflected in the system energetics. 
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