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Resistive hysteresis and interface charge coupling in BaTiO3-ZnO
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�Received 23 February 2009; accepted 18 March 2009; published online 7 April 2009;
publisher error corrected 13 May 2009�

We report on temperature, time, and voltage dependent resistive hysteresis measurements of
BaTiO3-ZnO heterostructures grown on �001� Si substrates by pulsed laser deposition. We observe
a diodelike behavior and cycling-voltage dependent hysteresis formation under forward bias. We
explain these effects with depletion layer formation between the ZnO and BaTiO3 layers, an
additional barrier due to the spontaneous polarization of ZnO and the ferroelectric nature of BaTiO3.
The disappearance of the resistive hysteresis above the ferroelectric-paraelectric phase transition
temperature of BaTiO3 conformed that the hysteresis is related to the ferroelectricity of BaTiO3.
Time dependent resistance measurements reveal memory effects. © 2009 American Institute of
Physics. �DOI: 10.1063/1.3116122�

Device integration approaches scaling dimensions where
quantum principles may dictate incorporation of resistive in-
stead of charge switching concepts. Future electronic
memory concepts may incorporate resistance change upon
external stimuli, either within a material or across a hetero-
structure interface. Bistable, switchable states of resistivity
have been reported for organic and inorganic materials and
heterostructures, including ferroelectric perovskite-structure
materials.1–4 Understanding of the intrinsic physical mecha-
nisms of reported resistance switching is not exhaustive.
In this paper we report on temperature, time, and voltage
dependent resistive hysteresis properties across a
BaTiO3�BTO�-ZnO heterostructure. We identify a physical
control mechanism—the coupling between spontaneous in-
terface charge of the wurtzite-structure ZnO layer and the
perovskite-structure BTO layer �interface charge coupling�.
This coupling provides a permanent offset �bias� for the ex-
ternal stimuli �voltage� under which the actual resistance
switch occurs. This asymmetry may find use for astable,
bistable, or multistable resistance device operation mode.

The room temperature perovskite-structure phase of
BTO possesses electrically reversible spontaneous polariza-
tion and is well investigated due to its piezoelectric, pyro-
electric, and ferroelectric properties.5–7 ZnO received sub-
stantial attention due to its wide spectral transparency and
the strongly excitonic, direct fundamental electronic band-to-
band transition in the ultraviolet region,8 for example. Under
typical growth conditions ZnO crystallizes in the piezoelec-
tric wurtzite-structure phase, and therefore possesses an irre-
versible spontaneous polarization Psz. The spontaneous po-
larization causes a permanent internal electric field.
Heterostructures composed of ZnO and BTO thin films are
interesting because of the anticipated coupling effects be-
tween the electrically switchable spontaneous polarization of
BTO and the nonswitchable spontaneous polarization of
ZnO.9 The nonswitchable spontaneous polarization of ZnO

biases and thereby influences the switching behavior of
the ferroelectric polarization charge in the adjacent
BTO layer.9–13

Electro-optic Raman scattering revealed that the BTO
layer possesses its ferroelectric perovskite structure at room
temperature, and the disappearance of the distinctive perov-
skite structure mode above the Curie temperature indicated
pinning of the perovskite lattice structure by the spontaneous
ZnO interface polarization charge.10 Electric Sawyer–Tower
�S-T� polarization �capacitance circuit� measurements indi-
cated a strongly asymmetric and rectifying behavior of the
heterostructure.12 Electro-optic ellipsometry investigations
were indicative for internal rearrangement of free charge
carriers near the BTO-ZnO interface upon external voltage
cycling, giving rise to index-of-refraction hysteresis resem-
bling the previously observed polarization �capacitance�
hysteresis.11 The S-T measurements detect the charging and
discharging ability �the history of electric polarization versus
applied voltage� of a capacitive sample compared to a stan-
dard ideal capacitor. We developed a dielectric continuum
model that describes the asymmetric polarization hysteresis
behavior and thereby confirmed the influence of the sponta-
neous polarization of ZnO on the BTO switchable ferroelec-
tric spontaneous polarization.13 Our model revealed the ex-
istence of a barrier between the ZnO and BTO interface, the
formation of a depletion layer within the ZnO layer at the
interface, and predicted as a fact that interface charge cou-
pling between the ZnO and BTO layers offset �bias� the
switching points �voltages� of the ferroelectric BTO polariza-
tion. The model predicted further a diodelike rectifying be-
havior, where in “forward” direction electrons can freely
move within the proposed n-type ZnO layer and in “reverse”
direction electrons are drained from the ZnO layer leaving
behind a space charge region of width w at the BTO-ZnO
interface. This region gradually changes the capacitance of
the sample into a series capacitance, controlled by the width
w. Likewise, the resistance across the heterostructure should
increase due to the increased depletion width with the elec-a�Electronic mail: vvoora1@huskers.unl.edu.
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tric potential V mostly dropping across the depleted region of
the ZnO layer. The space charge region is further influenced
by the spontaneous interface polarization. We identified volt-
ages in forward and reverse direction at which the depletion
layer occurs or disappears.13 These voltages reveal the for-
mation of the ferroelectric spontaneous polarization biased
by the ZnO spontaneous polarization. From this model we
calculated the amount of the spontaneous polarization of
ZnO as Psz=−4.1 �C /cm2, which showed to be in good
agreement with previous theoretical predictions.14 In this pa-
per we report on temperature, time, and voltage dependent
resistive �current-voltage� measurements in our BTO-ZnO
heterostructure, and find that the observed behavior matches
the scenario of the proposed interface charge coupling in
BTO-ZnO heterostructures.

The BTO and ZnO layers were deposited by pulsed laser
deposition, successively without breaking the vacuum, at
700 °C and 0.06 mbar substrate temperature and background
oxygen partial pressure, respectively. The number of laser
pulses for BTO was 105, and for ZnO 2�104. A pulse energy
of 600 mJ was used. The bottom and top metal electrodes
were grown by sputtering using Pt forming Ohmic contacts.
The thickness values of df =1.45 �m for BTO and dz
=0.5 �m for ZnO were determined by ellipsometry, x-ray,
and transmission electron microscopy investigations. Struc-
tural �x-ray, electron microscopy�,9 vibrational �Raman�,10

electrical �polarization hysteresis�,12 electro-optic �index-of
refraction� hysteresis,11 and dielectric continuum polarization
model �S-T response�13 analysis were performed as described
previously. The BTO and ZnO layers were highly textured
polycrystalline �BTO with �111� and ZnO with �0001� tex-
ture�. Electrical Hall-effect, infrared ellipsometry,8 and our
dielectric continuum model analysis13 obtained that the ZnO
layer is n-type conductive, with free electron concentration
Nc�5.5�1016 cm−3, while the BTO layer is highly resis-
tive. The current-voltage �I-V� measurements were recorded
at different sweeping �maximum� voltages �Vmax�. In order to
avoid irreversible damage to our sample we limited Vmax to
5 V. The current compliance was set to 1 mA corresponding
to a pad size of 0.07 cm2. The sweeping direction of the
applied bias voltage was −Vmax→ +Vmax→−Vmax.

Figure 1 depicts log�I�-V curves obtained for Vmax=1, 2,

3, 4, and 5 V. For clarity subsequent log�I�-V curves are
shifted by one order of current magnitude. The inset of the
Fig. 1 shows the schematic of the Pt/BTO/ZnO/Pt hetero-
structure. The heterostructure exhibits a diodelike current
characteristics with high resistive behavior for positive volt-
ages and conductive behavior for negative voltages. At
Vmax=1 V, the log�I�-V curve is slightly asymmetric with
higher resistance at positive voltages, and has no hysteresis.
All the other log�I�-V loops show strong asymmetry and hys-
teresis behavior. The hysteresis occurs on the negative volt-
age side and sets in at approximately −1.1 V�Vmax=2 V�,
−0.8 V�Vmax=3 V�, and −0.6 V�Vmax=4 V, Vmax=5 V�.
The resistance drops during the downward sweep at approxi-
mately �1.4 V, and hysteresis increases with increasing
Vmax. Complete saturation of the hysteresis may not have
been reached here at Vmax=5 V, but those at Vmax=4 V and
Vmax=5 V seem very similar indicating that saturation may
be almost reached. Note that the loop at Vmax=5 V is pinned
due to the set current compliance limit.

The resistance switch during the downward sweep at ap-
proximately �1.4 V points to the influence of the spontane-
ous interface polarization charge coupling of ZnO and BTO
layers. This value matches with the previously observed volt-
age shift in electric polarization loops obtained by S-T po-
larization measurements of our sample.13 For small voltage
loops �Vmax=1 V� the log�I�-V resembles the varying resis-
tance due to slight variation in the ZnO depletion layer at the
BTO-ZnO interface. Due to the ZnO spontaneous interface
charge, this depletion layer exists already at zero negative
bias, and does not disappear for small negative bias. Once
the bias reaches below approximately �1.4 V �loop with
Vmax=2 V and higher�, the spontaneous ZnO polarization is
compensated and the depletion layer disappears. Then elec-
tric potential can build up across the BTO layer �the ZnO
layer is seen idealistically as being conductive�, and the
ferroelectric polarization begins to build up. Both the flow of
external charge compensating for the internal polarization
development and the disappearance of the series resistance of
the ZnO depletion layer account for the increase in conduc-
tivity, while the high resistance of the BTO layer limits the
transport. At Vmax=5 V the current density is four orders of
magnitude smaller for positive bias than for negative bias
voltages. With increasing negative bias voltage, the ferro-
electric polarization of the BTO increases and reaches the
maximum value when the voltage reaches its maximum
value of −Vmax. As the bias voltage decreases from −Vmax,
the orientation of the polarization of BTO would ideally re-
main until external bias and spontaneous interface charge
compensate the BTO polarization and reversal of the latter
would occur. This would lead to a square hysteresis loop, and
our previous model analysis suggests this would occur close
to zero bias. However, the BTO polarization occurs in mul-
tiple domains, and as the external voltage sweep is increas-
ing from negative maximum voltage, nonideal depolarization
processes of the BTO ferroelectric domains result in current
decrease prior to the actual switching point. This causes the
slight shift in the hysteresis onset toward smaller voltages for
larger sweeping voltages.

Temperature-dependent I-V measurements shown in Fig.
2 identify the ferroelectric nature of BTO as the major origin
of the resistance hysteresis, while potentially existing defects
and charges trapped at their sites cannot be fully ruled
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FIG. 1. �Color online� I-V hysteresis characteristics of a Pt/BTO/ZnO/Pt
heterojunction. The bias voltage was swept as −Vmax→ +Vmax→−Vmax. Ar-
rows indicate the direction of the sweep. The Vmax is 1, 2, 3, 4, and 5 V. For
clarity each I-V curve, starting from 2 V is shifted successively by one
order of magnitude. The inset shows the schematic of Pt/BTO/ZnO/Pt
heterostructure.
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out.1,15,16 At 125 °C the hysteresis disappeared while the di-
odelike behavior is persistent. A small �logarithmic scale�
hysteresis evolves for small bias voltages, the origin of
which is unclear at this point. The disappearance of the hys-
teresis above the Curie temperature of BTO was also cor-
roborated by our previous findings where at that temperature
also the perovskite-structure lattice mode indicative for
ferroelectric BTO disappeared in electro-optic Raman
investigations.10 The latter proved transition of the BTO
layer from its tetragonal ferroelectric to its cubic paraelectric
phase in our sample. The higher temperature curves appear
characteristic of transport supported by traps and defect
charges. Temperature-dependent measurements of the recov-
ery rate are underway, and will be discussed elsewhere.

We have further studied the time dependence of the ob-
served resistance hysteresis in order to test their usability for
potential information storage upon variation of external
stimuli parameters. The top panel of the Fig. 3 presents time
dependent current measurements at steady voltages. Included
is also the time-dependent course of the external bias volt-

age, which was held constant within and outside the hyster-
esis loop in Fig. 1 �−2 V, 0 V� and ramped to +5 V and
�5 V for short periods of time. The bias of �2 V can be
regarded as read bias. The 0 and 2 V pulse were applied for
the duration of 5 min, and 5 and �5 V pulses were applied
for 1 s. There is no significant change in the current at read
bias after applying a +5 V short pulse. On the other hand the
effect of �5 V short pulse at read bias is significant. The
structure immediately responds into a low resistance state
after applying the large negative voltage pulse, and which
stabilizes after approximately 1 min. The low resistance is
then approximately four times smaller than the high
resistance.

We conclude that voltage dependent resistive hysteresis
in BTO-ZnO heterostructures may enable resistance param-
eter write-read information storage devices. Time-dependent
measurements of recyclability of the read-write process are
currently underway and results will be reported elsewhere.
We identify and discuss the interface charge coupling phe-
nomenon in piezoelectric heterostructures, which may be
employed for permanently biasing resistance switching volt-
ages in such device structures.

We acknowledge support by the Deutsche Forschungs-
gemeinschaft �DFG� within the Sonderforschunsgbereich
“Functional Oxide Interfaces” �DFG Sonderforschungsbere-
ich 762 “Funktionalität Oxidischer Grenzflächen”�, the CoE
at UNL, the J. A. Woollam Foundation, and NSF MRSEC
QSPIN �Grant No. DMR-0820521�.
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FIG. 2. �Color online� The I-V loops of our BTO/ZnO heterostructure at
different temperatures. For clarity, the curve at 85 °C �125 °C� is shifted
upward by one �two� order of magnitude.

FIG. 3. The top panel of the figure shows the leakage current measurements
as a function of time and applied voltage. The lower panel of the figure
shows the voltage pulse sequence. The �2 and 0 V pulses were applied for
5 min, and the 5 and �5 V pulse were applied for one second each.
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