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The resistive transition of a superconductor with a Gaussian distribution of critical currents is 
analyzed and exact relations for the voltage-current characteristic and the resistive transition 
index (n value) in such a superconductor are developed. Excellent fits are found to the 
experimental transitions in two very different types of superconductor; a Nb-Ti monofilament 
and a Bi,Sr,CazC!u3010 tape. 

I. INTRODUCTION 

The curvature of the voltage-current ( V-I) character- 
istic of superconductors in principle contains much infor- 
mation about the physical processes controlling the critical 
current. Multiple processes can simultaneously affect the 
transition. One process involves the influence of a distribu- 
tion of critical currents on the V-I characteristic. Jones, 
Rhoderick, and Rose-Innes’ and Baixeras and Fournet’ 
modeled this process and the formalism of Baixeras and 
Fournet was later used by Warnes and Larbalestier3*4 to 
detect and control defects within multifilamentary super- 
conductors which limited their overall critical current den- 
sity. Plummer and Evetts’ described the V-I curve that 
results from a Gaussian Ic distribution, and Hampshire 
and Jones6 divided the V-I characteristic for this special 
case into three regions and proposed limiting forms for 
Y(I) in each region. More recent articles have analyzed 
V-I curvature that results entirely from flux creep,7-9 or 
that results from treating polycrystalline superconductors 
as two-dimensional arrays of Josephson-coupled grains.” 
There is great interest in determining the principal mech- 
anism that controls the V-1 curve for high-temperature 
superconductors in which the flux dynamics are particu- 
larly complex. Flux creep generates V-I curvature by in- 
troducing uncertainty into the definition of J, at each point 
within a sample. Critical-current inhomogeneity causes 
similar curvature even for a sample in which Jc can be 
precisely defined everywhere. While models of the-se differ- 
ent processes yield results that are quite distinct mathmat- 
ically, most predict the same general shape for the V-I 
curve. The purpose of this article is to derive an exact 
expression for V(I) which applies at any I to a sample 
with a Gaussian distribution of well-defined critical cur- 
rents. This expression removes an important physical im- 
plausibility inherent in prior expressions. We successfully 
fit the expression to data on two very different types of 
superconducting composite, a Cu-clad Nb-Ti monofila- 
ment and a Ag-sheathed Bi,Sr&!azCu3010 (2223) tape. 
The expression leads naturally to a formula for the n-value, 
which is widely used to characterize the sharpness of a 
resistive transition. 
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II. THE MODEL 

The model can be understood by supposing we pass 
current through a superconducting wire in which Jc is 
constant and well defined at any particular cross section 
normal to the current direction. The critical current at 
position x is then I&x) =A(x) Jc(x). Distributions of 
It(x) may arise from variations in the cross-sectional area 
-4 due to, for example, sausaging, cracks, or surface defects; 
or from variations in Jc due to, for example, composition, 
defect density, or grain size. If many factors vary indepen- 
dently, the central limit theorem predicts that the resulting 
Tc(x) will approach a Gaussian distribution. Such a model 
has been previously discussed, but earlier treatments did 
not adequately account for the important fact that’ a 
Gaussian distribution can extend to unphysical negative 
currents. Since none of the above factors can suppress 
T,-(x) below zero, their variation is not truly independent 
and the negative tail of the Gaussian distribution contracts 
into a delta function at Ic=O, as shown in Fig.’ 1. 

Following Baixeras and Fournet, we write the voltage 
along the wire carrying a current I as 

s 

I 
V(I) =R P(i) (I--i)di, (1) 

0 

where R is the normal-state resistance, usually determined 
by a resistive shunt, and P(i)di is the fraction of wire with 
critical current in the interval di. For a Gaussian distribu- 
tion 

P(i) = 
G-jze ’ 

- [ (i- 7&203 (2) 

Hampshire and Jones6 substituted Eq. (2) for P(i) into 
Eq. ( 1) and extended the lower limit of integration to - QO 
to include the negative tail. The result is their Eq. (6) 
which predicts a finite voltage in the absence of current for 
finite R, a consequence of the artificially large values of 
(I--i) that result from letting i+ - CO. We also use Eq. 
(2) for P(i) in Eq. (1) to evaluate the contribution of the 
positive part of the critical current distribution (0 < i<l). 
To add the effect of the delta function at i=O, we write the 
current in excess of the critical current in Eq. ( 1) as the 
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total current I instead of (I-i), and then integrate from sembles the Y(I) expression proposed for a homogeneous 
- 03 to 0 to give the delta function its proper size (Fig. 1) . superconductor with a Gaussian flux pinning force 
The result is distribution. l1 

-[(i-TcJ2/28] dj . 

We let A=I-7, and change the variable of integration to 
z=i-Fc to obtain 

s 

-r, 
+I 

-co 

then change it again to S= (i-Tc)/(a\/2) and obtain 

em2 ds-ovT 
s 

A/m4 
ees2s ds 

- ~&+fa 

-(f&m 
-l-I s 

e-3 ds 
--m 

es2 ds-A e-‘ds 

--U&7a) 
J 

e-‘ds+I 
0 

4-I e-’ ds 
0 s -cc 

s 
Ahv2 

--id e-‘s ds 
- @chJa 

==G [Aerf(-$)+Fcerf(s)+J 

--F JIcd, e-‘s ds]. 

Changing variables once more to u =?= ( i-Tc>2/( 22) 
yields 

V(I)=: [Aerf(--$)+.,rf($)+l 

e+’ du 
I 

=f [Aerf(-$)-Fcerf($)+J 

o-v2 

-+F 
(,-(A2/202)-,-@2&~ 1 (3) 

This analytic function is valid for any I and shows proper 
limiting behavior. It is apparent that V(0) =0 and 
TV-+ co ) = IR, and straightforward to show that 
dV(rc)/dI=R/2 and dV(I+ CO )/dl=R. The expression 
involves three unknown parameters: R, lc and a, and re- 

Ill. EXPERIMENTAL RESULTS 

To test this new expression, we have compared its pre- 
dictions to measurements on two rather different monofil- 
ament superconductors, shown in Fig. 2. We chose mono- 
filaments in order to avoid the complications that may 
arise from sympathetic sausaging of multifrlaments, as dis- 
cussed by Warnes4 In the Erst case we chose a very uni- 
form, very high-Jc Cu-clad Nb-Ti monofilament.t2 We ex- 
pect that the variation of both the local Jc and the cross- 
sectional area of the filament is very small, comparable to 
the very minimum that it is possible to achieve in a high K 

superconductor. The Nb-Ti filament diameter is 46 ,um, 
and the Cu cladding is 41 ym thick. The largest filament 
irregularities visible in transverse cross section under a 
transmission electron microscope were 0.1 pm across. The 
60-cm-long sample was soldered in a spiral around the 
outside of a stainless-steel tube and measured over 33 cm in 
liquid He with fields up to 80% of H% applied..along the 
axis of the spiral. Figure 3 compares the measured V-I 
characteristics to Eq. (3); the fit is excellent. Table I dis- 
plays values of the three adjustable parameters at each 
field. The small and nearly constant u/fc ratio (0.09 
*O.Ol ) confirms the high uniformity of the wire. 

Figure 4 shows the V-I characteristics of a 3-cm-long 
Ag-clad 2223 tape measured over 5 mm while immersed in 
liquid N2. The tape was prepared by the oxide-powder-in- 
tube method, as described elsewhere.r3 It was rolled and 
then sintered three times with pressings between the heat 
treatments. It has a 2223 core 40 pm thick and 2 mm wide, 
surrounded by a 40-,um-thick Ag sheath. Fields up to 200 
mT were applied perpendicular to the plane of the tape, 
approximately parallel to the 2223 c axis. Figure 2 shows 

FIG. 1. If many variables affected I, independently, the central limit 
theorem predicts that Z, would have a Gaussian distribution as in (a); 
however, all variables are similarly constrained from suppressing Z, below 
zero, so the various effects are not completely independent. The I, dis- 
tribution is thus truncated at zero as in (b). The area of the 6 function at 
Zo=O in (b) equals the area of the hatched negative region in (a). 
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FIG. 2. These scanning electron micrographs show the two samples in 
cross section transverse to the direction of current flow. The upper photo 
shows the homogeneous Cu-clad Nb-Ti monofilament. The lower one 
shows dark second-phase regions dispersed throughout the Ag-sheathed 
2223 tape. 

that the microstructure is extremely variable from place to 
place, the scale of the irregularity being about 10 pm; how- 
ever, the fit between the model and the data is excellent at 
all fields. In contrast to the Nb-Ti data, the a/I= ratio is 
strongly variable, starting at 0.09 (the Nb-Ti value) in zero 

100 t 
B (T): 8 

I P 

0 2 4 6 8 10 12 
transport current (amps) 

0 2 4 6 8 
transport current (amps) 

FIG. 3. V-I curves for a Nb-Ti monofilament in liquid He at three applied FIG. 4. V-I curves for a 2223 tape in liquid N2 at six applied fields. The 
fields. The lines represent Eq. (3) with parameter values from Table I. lines represent Eq. (3) with parameter values from Table I. 
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TABLE I. Mean and standard deviation of the critical current and their 
quotient, and shunt resistance R from fitting Eq. (3). Independent mea- 
surements of R are also shown. 

Sample 
Field ?, 
(T) (A) 

R 
dfc R tit measured 
(%I (Pa) (usl) 

Nb-Ti 2 
mono- 
filament 5 
at 4.2 K 8 

2223 
tape 
at 77 K 

0 5.77 0.53 9.2 57 
0.005 3.69 0.57 15.6 56 
0.01 2.31 0.45 19.4 58 70*2 
0.02 1.72 0.44 25.8 61 
0.05 1.11 0.28 25.6 60 
0.2 0.56 0.26 46.9 63 

8.58 0.15 8.7 28 

5.15 0.49 9.6 29 41*8 
2.38 0.18 7.8 28 

held, and then rapidly increasing to a maximum of 0.47 in 
a field of only 200 mT. Although Hq is uncertain for such 
tapes, the applied fields were definitely less than 0. 1Hq . 
This aspect of the V-1 data contrasts with that observed for 
the Nb-Ti sample. 

We deliberately chose two very different samples. The 
particular differences that we thought would be significant 
are the presence of giant flux creep in the 2223 tape14 and 
its absence in the Nb-Ti, and the uniform microstructure of 
the Nb-Ti compared to the highly inhomogeneous micro- 
structure of the 2223. The model fits the data equally well 
in both cases. Table I includes independent estimates of the 
shunt resistance R, obtained by measuring the parallel re- 
sistance of the steel tube, solder and Cu cladding on the 
Nb-Ti,15 and by measuring the Ag sheath on the 2223. 
Virtually all current in excess of Ic at a particular cross 
section is shunted into the normal metal.’ For both sam- 
ples the model gives values of the asymptotic slope R close 
to, but slightly below, the independent estimates. The 
model values may be too low if the data do not include 
sufficiently high currents. The values of o/It for Nb-Ti are 
consistent with detailed measurements on a wide range of 
composites, for which the n values have been correlated to 
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thi distribution of filament cross sections in multifilamen- 
tary composites.3*16 

IV. ORIGIN OF THE N-VALUE 

A substantial portion of most V-1 characteristics can 
be approximated by the expression”*‘* 

VaI”, 

where the exponent n is given by 

d[log(V)] d[log( V)] dV dI IdV 
n=d[log(I)] = dV =d[log(I)]=G”z’ 

We can differentiate the analytic expression for V(I), Fq 
(3), to evaluate n. The result is 

15 

10 

6 
5 
-5 

FIG. 5. Equation (3) over 16 decades of V using several ratios of stan- 
dard deviation to mean critical current. Equation (4) gives the slope or n 
value at any point. Units are arbitrary. 

I erf( A/d) +I 

n=A erf(A/ov?) -fcerf(fc/au2) +I+&/ $,(e-(Az~z*)-e-@2~)) . 
(4) 

I 

Figure 5 shows a log ( V) -log(l) plot of Eq. ( 3 ) for several 
u/r= values. The slope or “n value” of these curves at any 
point is given by Eq. (4). While the characteristics all have 
finite curvature at finite V, for I4f, the curvature is barely 
perceptible and n is reasonably well defined. However, n 
generally does increase with decreasing electric field, so 
that measured n values should be at least a weak function 
of voltage sensitivity. 

In summary, we have derived an exact expression for 
V(I) that is valid for any I in a sample with a Gaussian 
critical-current distribution. This expression provides ex- 
cellent fits to data from two very different types of high- 
field superconductor, a Cu-clad Nb-Ti monofilament and a 
Bi2Sr2Ca2Cu3010 Ag-sheathed tape. We have further de- 
rived an exact expression for the heretofore empirical n 
value, and we have also illustrated its weak voltage depen- 
dence. 
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