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Abstract

The stability of the quiescent ground state of an incompressible, viscous and elec-
trically conducting fluid sheet, bounded by stress-free parallel planes and driven by
an external electric field tangential to the boundaries, is studied numerically. The
electrical conductivity varies as cosh?(x1/a), where z; is the cross-sheet coordinate
and a is the half width of a current layer centered about the midplane of the sheet.
For a S 0.4 the ground state is unstable to disturbances whose wavelengths parallel
to the sheet lie between lower and upper bounds depending on the value of a and on
the Hartmann number. Asymmetry of the configuration with respect to the midplane
of the sheet, modelled by the addition of an externally imposed constant magnetic

field to a symmetric equilibrium field, acts as a stabilizing factor.

PACS Numbers 52.30.-q, 47.65.4a, 95.30.Qd



I. INTRODUCTION

The equilibrium states of electrically conducting fluids or plasmas have been a
subject of intense study for a long time, motivated in particular by the interest
in controlled thermonuclear fusion, as well as that in space and astrophysical
phenomena such as plasma loops in the solar corona. If high temperatures prohibit
solid walls, a conducting fluid can be held together by the action of an electric
current passing through it with the pressure gradients being balanced by the
Lorentz force. The resultant configuration is known as a pinch.

Pinch configurations are subject to various instabilities'?. Of special interest
here are the tearing modes, which belong to the class of finite-resistivity instabil-
ities. By destroying magnetic surfaces, they can shorten the confinement time of
fusion plasmas. Tearing modes represent one of the basic mechanisms for magnetic
reconnection and are also thought to play a role in the explosive release of mag-
netic energy in space and astrophysical plasmas ( e.g., substorms in the terrestrial
magnetosphere and solar flares?).

In a plane sheet geometry, the pinch with the fluid at rest is absolutely stable
if the electrical conductivity is infinite —the case of ideal magnetohydrodynamics
(MHD)— but may be destabilized by resistivity. A systematic theory of the resis-
tive instability of the plane sheet pinch was developed by Furth et al.*, who used
a boundary layer approach, dividing the sheet into a narrow inner resistive layer
and outer regions with perfect conductivity (accounts of this approach may also be
found in Refs.""*%). Numerical confirmation of the analytical results of Furth et al.
was obtained by Wesson®, Schnack and Killeen?, and Steinolfson and Van Hoven®,
who studied the basic equations of Furth et al. without making the boundary-layer
approximation. These basic equations are the general MHD equations, but with
viscosity neglected. As noted by Dahlburg et al.?, the stability boundaries of the

sheet pinch are determined by the Hartmann number Ha. A similar result for



the cylindrical pinch was proven by Montgomery'®. Ha is the geometric mean
of two Reynolds-like numbers, one being kinetic and the other magnetic. These
do not influence the stability boundaries independently, but only in combination
in the Hartmann number. Thus, all calculations of stability boundaries in which
viscosity is neglected pertain to the limit Ha — oo and the stability boundaries
obtained are independent of the remaining (magnetic) Reynolds-like number.

A recent study!! has been done on the MHD equations without any boundary-
layer approximation and with viscosity taken into account, in a voltage-driven
incompressible sheet pinch with spatially and temporally uniform kinematic vis-
cosity and magnetic diffusivity, as well with impenetrable stress-free boundaries.
It is found that the quiescent ground state (in which the current density is uni-
form and the magnetic field profile across the sheet is linear) remains stable, no
matter how strong the driving electric field. This contrasts with results of Shan,
Montgomery, and Chen'? for the voltage-driven cylindrical pinch. These authors
observed, as an externally applied electric field was raised, transitions first to
stationary states with flow and eventually to turbulent states. The situation is
reminiscent of the difference between plane and rotating hydrodynamic Couette
flow!3. Specifically, for the plane Couette flow —the flow between infinite paral-
lel planes with one moving boundary— the ground state with a linear shear flow
profile is stable. For the rotating Couette flow —the flow between differentially ro-
tating coaxial cylinders of which the inner one rotates faster— the laminar ground
state becomes unstable if the rotation rates of the two cylinders are sufficiently
different.

In the present paper the sheet-pinch study of Ref.!! is extended to the case
of electrical conductivity varying across the sheet. This results in the profiles of
the equilibrium magnetic field deviating from linear behaviour. In particular, the
conductivity profile may be chosen such that the magnetic-field and/or current

profile has inflection points. Inflection points in the velocity profile are known to



be necessary (but not sufficient) for the instability of inviscid plane shear flows'?.
With respect to the plane sheet pinch, Dahlburg et al.® observed instability to be
associated with inflection points in the current profile. These authors along with

1415 9 related work, studied quasi-equilibria, namely, states

Saramito and Maschke
with a nonuniform current density in a fluid with uniform resistivity (such states
decay resistively). The present study investigates eract pinch equilibria, driven by
an external electric field tangential to the boundary planes. Our main concern is
with the influence of the cross-sheet resistivity profile on the stability boundaries.
The resistivity profile determines the current profile and the magnetic field profile
can then still be modified by an externally imposed constant field. Given the cross-
sheet profiles, the stability boundaries are determined by the Hartmann number.
We consider a configuration with a current sheet centered about the midplane
of the sheet and study in detail how the degree of current concentration in the
sheet center influences the stability properties. We also study the influence of
asymmetries in the magnetic field profile, introduced by adding an externally
imposed field to the self-consistently supported one.

In Sec. II we outline the governing equations and define the boundary con-
ditions and the equilibrium state. Then, in Sec. III we describe the method of
stability analysis and discuss some general properties of the problem. In Sec. IV
we present and discuss our numerical results. In Sec. V, finally, a brief summary

and an outlook are given.

II. BASIC EQUATIONS, BOUNDARY CONDITIONS, AND EQUILIB-

RIUM

We use the nonrelativistic, incompressible MHD equations,

p(aa—‘t’%—(v-V)v) = pvV?v — Vp+J x B, (1)



OB
5 =~V x (nHod —v x B), (2)

V-v=0, V-B=0, (3)

where v is the fluid velocity, B the magnetic induction, J the electric current
density (= V x B/ug, 110 denoting the magnetic permeability in a vacuum), p
the mass density, p the thermal pressure, v the kinematic viscosity, and n the
magnetic diffusivity [(zon) ! is the electrical conductivity]. No externally applied
force appears in Eq. (1). While p and v are assumed constant, 7 is allowed to vary

spatially (but not temporally):

n(x) = nofj(x), (4)

where 7 is a dimensional constant and 7j(x) a dimensionless function of position.
Let L = L, and By denote arbitrary units of length and magnetic induction.
Writing v4 = By/\/fop for the Alfvén velocity corresponding to By, we transform

to dimensionless quantities according to
L
x/L —x, B/By— B, v/vg—>v, t/— —t,
VA
B
p/pv’ = p, J/—OL —J, E/Byus — E. (5)
Ho

E is the electric field. Egs. (1) and (2) then become

ov

o= —(v-V)v+ M7V — Vp+J x B, (6)

0B

—— = -V x (8] — v x B), (7)

ot

where

M = vak and S = vak (8)
v o

are Reynolds-like numbers based on the Alfvén velocity: S is the Lundquist num-

ber and M its viscous analogue. The dimensionless Ohm’s law becomes
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S i) =E+v x B, 9)

We use Cartesian coordinates x1, x9, x3 and consider our magnetofluid in the
slab 0 < z; < 1. In the z9 and x5 directions periodic boundary conditions are
assumed. The geometry of the slab configuration is shown in Fig. 1.

The boundary planes are assumed to be impenetrable and stress-free, i.e.,

O 0o~ 01 (10)

M= ="
8:1:1 8:1:1

The system is driven by an electric field of strength £* in the x5 direction,
which can be prescribed only on the boundary. We further assume that there is

no magnetic flux through the boundary,
B1 =0 at T = 0, 1. (11)

Conditions (10) and (11) imply that the tangential components of v x B on the
boundary planes vanish, so that according to Eq. (9)

S
JQ = 0, Jg = — at I = 0, 1, (12)
UL

where 7, is the value of 77 on the boundaries. The boundary conditions for the

tangential components of B then become (J = V x B in the dimensionless units)

0By, E*S  0Bjs
= =0 atz; =0,1. 13

A discussion of these boundary conditions is found in Ref.!!.

Any stationary state with the fluid at rest has to satisfy the equations

~Vp+JIxB=0, (14)

V x (7J) = 0. (15)

For 77 depending only on the cross-sheet coordinate x1, Egs. (14), (15) and the

boundary conditions are then satisfied with



J=J°=(0,0,7 'E*S), (16)

B = B* = (0, E*SIy(x1) + B3, BS), (17)
B2
p=p°= 9 (18)

where overbars denote spatial averages and Io(z1) = [ tdxy — [~ 'da;.

We use the diffusivity profile
i = cosh®[(x; — 0.5)/al, (19)

where a is the current sheet half width. The magnetic field unit, By, is chosen in
such a way that, in the case of B§ = 0, |BS| = 1 on the boundary planes. This

fixes the value of E* such that

B = [STy(1)] 1, (20)
and then the equilibrium magnetic field can be written as

BS = [tanh(1/2a)] ! tanh[(z; — 0.5)/a] + BS. (21)

This is the frequently studied Harris'® sheet.

ITII. STABILITY ANALYSIS

The system of Eqgs. (3), (6), and (7) has been studied by means of a pseudo-
spectral method in Fourier space. The treatment is analogous to that of the case

1.'Y and details may be

with spatially uniform magnetic diffusivity in Seehafer et a
found there. As in the case of uniform 7, the spatial means of vs, v3, By, and Bj
are independent of time. Without loss of generality we have restricted ourselves
to the case of 75 = T3 = 0, since the mean flow can be removed by a Galilean

transformation. The mean values BS and B$ are considered as parameters.

We use the notation

1
P:p+§B2, b=B-B° j=J-J9 (22)



where v and b are our dynamical variables, for which the complete boundary
conditions are as follows :

81}2 (%3 abQ ab?,
81’1 8z1 ! 8:1:1 85171 0 atn 07 ( 3)

U1
We Fourier expand into modes ~ exp{i(koxy + k3z3)} in the 25 and 3 direc-
tions. Let vk, by, and j; denote the Fourier coefficients of v;, b;, and j;, respec-

tively, for wavenumber k = (ks, k3). Linearizing about the static equilibrium, Eqgs.

(6) and (7) become

i = =P — M1 (k? — D?)vyy + i Ficbuy,

Vo = —ikyPx — MY (k?* — D?)vgy + i Ficboy + (BS) by,

U3 = —iks P — M1 (K* — D?*)vsy + i Fycbsy,

b = iFvi — S ikofjsr — iksijol,

bore = i Fyevor — (BE) vik — S [iksijue — (7ai)],

bs = iFxvsk — 5™ [(jox) — ki, (24)

where Fy = koBS + k3B and D = ' = d/0z;. Both equilibrium magnetic field
components, BS and BS, are combined in one single profile function, Fy(z).
The special modes with k9 =0 cannot become unstable since BS does not enter
the equations for them; they thus always behave as if E* =0 [cf. Eq. (17)]. For
modes with ky#0 a constant field component B§ in the sheetwise direction paral-
lel to the driving electric field acts in the same way as a constant field component
BS (= (ks/k2)BS). Tt does not lead to oscillations as incorrectly argued in a for-
mer article!” where a Squire’s theorem for a voltage-driven sheet pinch is proved,
stating that for each unstable three-dimensional perturbation there exists a more
unstable two-dimensional one (with vectors v and b lying completely in the z1-x2
plane and having no z3 dependence). Also, as the Reynolds-like numbers M and
S are raised from small values, two-dimensional perturbations become unstable

first. This proof is valid for B§=0. An immediate implication is that an unstable

8



equilibrium with B§ = 0 can never be stabilized by adding a nonvanishing BS.
As is seen from the definition of the profile function Fy, B influences only the
stability of modes with k3#0 and does not influence the (in the absence of a BS)
most unstable modes, for which k3 =0. Therefore the field component BS cannot
increase the global stability. It is possible, however, that the addition of BS makes
an equilibrium less stable (see Sec. IV B).

To determine the stability of the Harris sheet equilibrium, with 7 and B§
given by Egs. (19) and (21), the eigenvalues of the Jacobian matrix of our system
at the equilibrium (i.e., the eigenvalues of the linear operator on the right-hand
side of the system (24)) have been calculated. Since a nonvanishing B§ can be
formally transformed into a B and for vanishing BS the Squire’s theorem is valid,
the calculations have been restricted to the case of B = 0 and to two spatial
dimensions. The remaining current density component is jzx =by, — tkabyy.

We have used expansions of v; and by in pure sine series and of v9 and b in pure
cosine series with respect to x1, in correspondence with the boundary conditions.
The numerical calculations were made with 64 (and partially with 128) collocation
points in the cross-sheet (x;) direction and just one wave number, ks = F27/ Lo,
in the x5 direction.

At the stability threshold two identical real eigenvalues were always observed
to pass through zero. The fact that unstable eigensolutions are non-oscillatory
has been known since the paper of Furth et al.* The multiplicity of the eigenval-
ues is obviously due to the O(2) symmetry of the problem with respect to the
xo direction: The translational symmetry in this direction combined with the pe-
riodic boundary conditions gives a circle symmetry SO(2), which together with
the symmetry to reflections in the planes x5 = const. leads to an O(2) symme-
try. O(2) symmetry, however, always forces the eigenvalues to have multiplicity

two'®, simply because with each eigenmode ~exp{ikx} there is another, ‘reflected’



eigenmode ~exp{—ikx} for the same eigenvalue, and the two modes are linearly
independent. (This argument does not apply to modes with ky=0.)
Since the critical eigenvalues are real, one has v = b = 0 at the stability

threshold. In this case the rescaling
M71/2’U'7‘k — VUjk, Sil/ijk — bjk, Sil/QPk — P

in Eqgs. (24) leads to equations (valid at the threshold) in which M and S do
not occur separately but only arise when combined in the Hartmann number
Ha = (MS)"?, which thus determines the stability boundary®!®'® — together
with the current sheet half width a, the constant magnetic field component BS
(both contained in the equilibrium profile Fy), and the wave number ky of the

perturbation.

IV. RESULTS AND DISCUSSION
A. Equilibrium with B§=0

In this subsection we present numerical results for the case of B§ =0. We have
studied equilibria with ¢ > 0.1. The minimum Hartmann number necessary for
instability is then Ha=64.6 (reached for the parameters a=0.1, L, =2.4). Figure
2 shows, for different values of the Hartmann number, numerically determined
stability boundaries in the a-L, plane. Each stability boundary consists of two
branches —an upper one and a lower one— with the unstable region lying be-
tween both branches (to the left of the total, parabola-like stability curve). The
equilibrium is found to be stable for @ > a, and unstable for a < a., where a,. is a
critical current sheet half width. The parameter a, depends on Ha, but a,. <0.41
(see below). In the case of instability, the wavelengths of the unstable modes in the
x5 direction lie between lower and upper bounds depending on a. As a approaches

a., the unstable wavelength interval shrinks to zero. The previously studied case
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of a spatially uniform resistivity and a linear magnetic field profile!! corresponds
to the limit ¢ — oo.

Figure 3 shows magnetic field lines and velocity stream lines of an unstable
mode, for the parameters Ly =3, a=0.15, and Ha=100. The typical tearing-mode
pattern is clearly visible. Null points of B —a chain of O points and X points in
alternating order, the O points being centers of magnetic islands— coincide with
stagnation points of the flow, which is organized in convection-like cells.

The magnetic field profile has an inflection point in the center of the sheet (the
inflection points of the magnetic field profile simply correspond to extrema of the
current profile) while the current profile has two inflection points, one on either
side of the midplane 1 =0.5. We also note that for values of a well above 0.41,
the two inflection points in the current profile are still situated well within the
sheet. So their presence in the sheet (combined of course with a sufficiently strong
driving to overcome dissipation) is not enough for instability, but the current must
be sufficiently concentrated in the sheet center. The reverse holds if the current is
unidirectional and sufficiently concentrated. In this case, the current profile must
have inflection points within the sheet.

Traditional boundary-layer theory of the sheet pinch? finds tearing modes to
be stable for large and unstable for small wavenumbers £,. If the equilibrium is
just the Harris sheet, koa < 1 is the condition for instability. This result refers to
infinitely distant walls or very small values of a, lying in a region to the left of
that covered in Fig. 2. For our smallest value of a, 0.1, we have found a critical
lower wavelength of Ly~ 0.63 (see the lower branch of the curve for Ha=107 in
Fig. 2), corresponding to kya=(27/0.63)0.1~1, in agreement with the condition
from the boundary-layer analysis.

In Appendix G of Furth et al.? the influence of walls at a finite distance is
also considered. In that paper the current-sheet half width a is used as the unit of

length, so that instead of a the distance of the walls has to be varied. By modifying
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the solution in the outer, perfectly conducting regions, the walls have a stabilizing
influence. If, in our units, @ approaches the value 1/2.4 from below, the minimum
wavelength for instability tends to infinity, so that for a>1/2.4 absolute stability
is achieved. Also, the lower branches of the curves in Fig. 2 steeply increase as a
approaches a., but the upper critical wavelengths simultaneously decrease sharply
such that the marginal stability curves in the a-wavelength plane have turning
points at @ = a.. An upper critical wavelength for instability is not reported in
Furth et al., and has not been observed in subsequent studies using the same
basic equations. Our calculations with very high Hartmann numbers indicate that
a=0.41(...0.42) is a limiting value for the location of the turning point (see Fig.
2 for Ha = 107), which is thus not shifted to larger values for Ha — oo. This
conclusion is supported by the result in Furth et al., namely, the stability for
a>1/2.4, as well as by numerical results of Saramito and Maschke'*, who found
stability of the quasi-stationary (n was assumed uniform) Harris equilibrium for
atS2.5.

With respect to the treatment in Appendix G of Furth et al., we note that
an ‘infinite-conductivity’ equation is solved there to determine the lower critical
wavelength (or upper critical wave number, respectively) for instability and its de-
pendence on the distance of the walls. However, in the case of marginal stability
this equation is valid without the division into resistive and ideal regions. Specif-
ically, in the paper of Furth et al. the ‘infinite-conductivity’ equation, Eq. (G.1),
is seen to follow from Eq. (17) (of Ref.?) if the growth rate of the instability is
set equal to zero. Equation (17) is one of the linearized equations determining the
stability and is, except for the neglect of viscosity, still general. This fact was used
by Shivamoggi?® to study the effect of the walls without the division into separate
regions (but also neglecting viscosity). The only remaining approximation is then
the neglect of viscosity, which amounts to studying the limit Ha — oo. One can

be rather confident, therefore, that the limit a.<1/2.4= 0.417 holds.
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We include some more speculative considerations in the following. It is well
known that the wavelength of a perturbation parallel to the equilibrium field has
to exceed a critical value in order for the tearing mode to lead to instability. The
driving mechanism of the instability is the mutual attraction of parallel currents,
and the separate pinches into which the sheet breaks have to be sufficiently long
compared to the current-sheet thickness. This leads to the lower branches of the
stability boundaries in Fig. 2. On the other hand, if the magnetic islands and the
convection cells become too long, diffusion across the sheet —Ohmic and viscous—
might become important and quench the instability. This would explain the upper
branches in Fig. 2. Instead of thinking of the islands becoming longer, one may
equivalently imagine that the walls come closer to the midplane of the sheet. The
latter enhances the diffusive damping of perturbations (due to steeper gradients
with respect to x1), in a similar way as increased values of the diffusivities would.
The Hartmann number necessary for instability then becomes larger, leading to
the upper branches in Fig. 2. Also, increasing the current-sheet half width a acts
as if the walls would come closer (if we had chosen a as the unit of length, we
would have to vary the distance of the walls instead of varying a). This can explain
the decrease of the upper critical wavelength with increasing a. It does not explain
yet why the turning point where lower and upper branches meet is not shifted to
larger and larger values of a as Ha — co. Seemingly, for walls which are too close
or current profiles which are too flat the basic driving mechanism of the tearing

instability no longer works.

B. Equilibrium with B$#0

In this subsection the influence of an asymmetry of B on the stability is studied.
For this purpose we vary B§ in the interval [0,1] [cf. Eq. (21)]. Figure 4 shows,

for Ha = 103 and Ha = 10%, respectively, the stability boundaries for different
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values of B§. Again the unstable regions lie to the left of the respective curves. In
the case BS =1 there is no surface Fi =0 or no reversal of the equilibrium field
in the sheet, so that magnetic islands cannot form and the equilibrium remains
stable. The larger the constant part of the profile, the more stable the equilibrium
becomes, i.e., the smaller the unstable region in the a-L; plane between the two
branches of the stability boundary. As B — 1, the unstable wavelength interval
shrinks to zero. Figure 5 shows magnetic field lines and velocity stream lines for
a typical asymmetric case.

Let ©y denote the ratio of the maximum self-consistently supported magnetic
field to the externally imposed magnetic field, i.e., ©y=1/B$ in our dimension-
less units. Figure 6 shows stability boundaries in the Ha-Oy plane, calculated
for three different parameter sets (a, Ly). The curves shown here are global sta-
bility boundaries, i.e., the envelopes of all the modal stability boundaries in the
respective cases. Quiescent states with high Hartmann numbers (with strong cur-
rents) are possible, provided Oy is small enough. Diamonds in Fig. 6 correspond
to parameters (Ha, BS) for which stability boundaries are shown in Fig. 4.

It is now possible that the addition of a B makes an asymmetric equilib-
rium less stable or even a stable one unstable. Let BS(z1) be a symmetric profile
admitting unstable two-dimensional perturbations, and let the constant B§ be
chosen such that BS = Bg(x,) + BS does not change sign within the sheet. The
corresponding equilibrium is then stable to all two-dimensional perturbations, as
seen before. However, for a given k= (ks, k3), BS can always be found such that
Fi(x,) changes sign within the sheet, for instance by the choice B =—(ko/k3)BS.
The stability problem [for the mode with k = (ko, k3)] is then equivalent to the
case with BS = B¢ and Bg =0. The Squire’s transformation connects the three-
dimensional mode with wave vector k= (ks, k3) to a two-dimensional mode with

wave number ks = (k2 + k2)'/2, and the two modes are simultaneously stable or
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unstable.!” If the profile B then admits growth of the two-dimensional mode with
wave number k» (our numerical results show that this is certainly possible), the
equilibrium is unstable to a three-dimensional perturbation, though it is stable
to all two-dimensional perturbations. In such a case a Squire’s theorem clearly
cannot be valid.

At least for our special choice of the functional form of the resistivity profile,
however, a Squire’s theorem seems to be valid even with BS#£0 if the equilibrium
BS is symmetric with respect to the midplane of the sheet. Namely, for a given
k = (ky, k3), k3 # 0, a nonvanishing B can be ‘transformed’ into a BS, so that
the profile BS becomes asymmetric. For the new, asymmetric profile the three-
dimensional (k3 # 0) perturbation is less unstable than some two-dimensional
perturbation (Squire’s theorem for a case with B§ = 0), which in turn is less
unstable for the asymmetric than for the original, symmetric profile. So in the
symmetric case BS does not influence the global stability.

For a voltage-driven cylindrical pinch, with the plasma or magnetofluid oc-
cupying a full cylinder, the driving external electric field being axially directed,
and the resistivity increasing with distance from the axis or being spatially uni-
form, it was found'%!%:2! that the quiescent ground state can be stabilized by an
externally imposed axial magnetic field component. However, in the case of the
sheet pinch dc fields parallel to the driving electric field can never stabilize an
equlibrium which is unstable in their absence (cf. Sec. IIT) and are completely ir-
relevant for the global stability if the configuration is symmetric to the midplane
of the sheet. This difference seems to be connected with the fact that the insta-
bilities of the cylindrical pinch are inherently three-dimensional, while the most
unstable perturbations to the basic, symmetric sheet-pinch equlibrium are purely

two-dimensional.

15



V. SUMMARY AND OUTLOOK

The stability of the quiescent ground state of a Harris-type sheet-pinch equilibrium
has been studied numerically by means of a pseudo-spectral method. The cross-
sheet resistivity profile was chosen such as to make the equilibrium an exact one.
The stability of the quiescent ground state was found to be determined by the
half width a of the current layer centered about the midplane of the sheet, the
Hartmann number, and the degree of asymmetry of the cross-sheet magnetic field
profile. Only if the magnetic field profile is asymmetric can a dc field parallel to the
driving electric field influence the global stability. Such a field can never stabilize
an equilibrium which is unstable in its absence. For a S 0.41, the symmetric
ground state is unstable to disturbances whose wavelengths parallel to the sheet
lie between lower and upper bounds which depend on the value of a and the
Hartmann number. An upper critical wavelength for instability has not been noted
before. Asymmetry of the configuration with respect to the midplane of the sheet,
introduced by the addition of an externally imposed constant magnetic field, acts
as a stabilizing factor (and can, if sufficiently strong, completely stabilize the
pinch).

A stability analysis may be considered as a part of a bifurcation analysis, by
which one tries to determine the set of possible time-asymptotic states, the attrac-
tors, for given values of the system parameters. The bifurcations from the Harris
sheet have hitherto been studied for the case of two spatial dimensions'#'%22, The
new time-asymptotic states are then of the tearing-mode type, characterized by
a magnetic island structure with a chain of X and O points and an organiza-
tion of the fluid motion in convection-like cells or rolls. We note here that even
though with increasing Reynolds numbers the equilibrium first becomes unstable
to two-dimensional perturbations, the new final states might be three-dimensional

(already after the primary bifurcation). This problem is the subject of ongoing
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studies.
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FIGURES

Fig. 1.  Geometry of the magnetohydrodynamic sheet pinch. Arrows in the shaded

plane indicate the direction of the equilibrium magnetic field.

Fig. 2. Stability boundaries in the a-Ls plane for different values of the Hartmann
number Ha. The parameter a is the current sheet half width of the equilibrium con-
figuration and Lo = 27 /ky is the wavelength of the perturbation in the zo direction.
Asterisks denote calculation with 128 collocation points in the xy direction; the other

calculations were made with 64 collocation points.

Fig. 3. Magnetic field lines and velocity stream lines for a = 0.15, B = 0, Ly = 3,
and Ha = 100. Solid (dashed) velocity stream lines correspond to clockwise (counter-
clockwise) motion. A mixture of 20% perturbation b and 80% equilibrium field B¢ was
taken for the magnetic field. The lower left panel shows the undisturbed cross-sheet

equilibrium profile BS(z1).

Fig. 4. Stability boundaries for different values of B¢ (see legend in left panel) in the

a-Lo plane for Ha=10% and Ha=10* Triangles denote calculated points.

Fig. 5. Magnetic field lines and velocity stream lines for a=0.15, B =0.4, Ly =6, and
Ha=1000. The indication of the flow direction and the mixture ratio for the magnetic
field are as in Fig. 3. The lower left panel shows the undisturbed cross-sheet equilibrium

profile BS(x1).
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Fig. 6.  Global stability boundary in the Ha-0g plane, where ©y = B_Sfl, for three
cases: (1) a=0.15 and Ly =3.0; (2) a =0.25 and Ly =6.0; (3) a=0.25 and Lo = 3.0.
Crosses denote calculated points. Points below the dashed line correspond to completely

stable equilibria. Diamonds indicate the parameters of the stability curves in Fig. 4.
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