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Resolution Analysis in a Lens-Free On-Chip Digital

Holographic Microscope
Jialin Zhang , Jiasong Sun , Qian Chen, and Chao Zuo , Member, IEEE

Abstract—Lens-free on-chip digital holographic microscopy
(LFOCDHM) is a modern imaging technique whereby the sample
is placed directly onto or very close to the digital sensor, and
illuminated by a partially coherent source located far above it. The
scattered object wave interferes with the reference (unscattered)
wave at the plane where a digital sensor is situated, producing a
digital hologram that can be processed in several ways to extract
and numerically reconstruct an in-focus image using the back prop-
agation algorithm. Without requiring any lenses and other interme-
diate optical components, the LFOCDHM has unique advantages
of offering a large effective numerical aperture (NA) close to unity
across the native wide field-of-view (FOV) of the imaging sensor in
a cost-effective and compact design. However, unlike conventional
coherent diffraction limited imaging systems, where the limiting
aperture is used to define the system performance, typical lens-free
microscopes only produce compromised imaging resolution that far
below the ideal coherent diffraction limit. At least five major factors
may contribute to this limitation, namely, the sample-to-sensor
distance, spatial and temporal coherence of the illumination, finite
size of the equally spaced sensor pixels, and finite extent of the
image sub-FOV used for the reconstruction, which have not been
systematically and rigorously explored until now. In this article,
we derive five transfer function models that account for all these
physical effects and interactions of these models on the imaging
resolution of LFOCDHM. We also examine how our theoretical
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models can be utilized to optimize the optical design or predict
the theoretical resolution limit of a given LFOCDHM system. We
present a series of simulations and experiments to confirm the
validity of our theoretical models.

Index Terms—Lens-free microscopy, digital holography
(LFOCDHM), resolution analysis.

I. INTRODUCTION

H
IGH-THROUGHPUT optical microscopy is essential to

various biomedical applications such as cell cycle assay,

drug development, digital pathology, and high-content biolog-

ical screening [1], [2]. For conventional whole slide imaging

(WSI) systems, in order to capture a high-throughput image with

both high-resolution and large field of view (FOV), mechanical

scanning and stitching are required to expand the limited FOV of

a conventional high magnification objective [3], which not only

complicate the imaging process, but also significantly increase

the overall cost of the system. The recently developed com-

putational microscopy techniques provide new opportunities to

create high-resolution wide FOV images without any mechan-

ical scanning and stitching, such as synthetic aperture interfer-

ometric microscopy [4]–[9], Fourier ptychography microscopy

(FPM) [10]–[16], and lens-free on-chip microscopy [17]–[20].

Among these approaches, the lens-free on-chip microscopy has

unique advantages of achieving a large effective numerical aper-

ture (NA) ∼ 1 across the native FOV of the imaging sensor (tens

ofmm2), based on a so-called unit-magnification configuration,

where the samples are placed as close as possible to the imaging

sensor [21], [22]. Without requiring any lenses and other optical

components between the object and the sensor planes, lens-free

on-chip microscopy allows to significantly simplify the imag-

ing system and meanwhile effectively circumvent the optical

aberrations and chromaticity that are inevitable in conventional

lens-based imaging systems [23], [24]. There are two typical de-

signs for a lens-free on-chip microscope, so-called contact-mode

shadow imaging-based microscope [17], [25] and lens-free on-

chip digital holographic microscope (LFOCDHM) [21], [26].

In the contact-mode shadow imaging-based microscopes, the

distance between the sample and the sensor needs to be quite

small (typically less than 10 µm), and the captured shadows of

the objects can be regarded as a two-dimensional absorption

image of the specimen [27]. However, the small distance is

very difficult to achieve in practice due to the existence of

protective glass covering the surface of the camera sensor. In

LFOCDHM, the distance between the objects and the sensor

chip can be sizeable, and diffraction patterns are generated from

the interference between the scattered light from each object
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and itself or the unscattered background light. The diffraction

patterns are digitally processed to reconstruct an image of the

specimen, and the associated twin-image artifacts need to be

eliminated or partially removed relying on computational phase

retrieval algorithms [28], [29]. In the following analysis, we will

examine LFOCDHM exclusively.

Despite the advantages mentioned earlier, the LFOCDHM

systems generally suffer from low imaging resolution which

is far from enough to meet the demand of recent biomedical

research, particularly with respect to the visualization of cellular

or subcellular details of biological structures and processes. Un-

like conventional coherent diffraction limited imaging systems,

where the limiting aperture is used to define the system perfor-

mance, typical LFOCDHM systems only produce compromised

imaging resolution that far below the ideal coherent diffraction

limit. According to Nyquist-Shannon sampling theorem, the

resolution of the holographic reconstruction is fundamentally

limited to the sampling resolution of the imaging devices since

the recorded holographic fringes are not magnified. In other

words, the physical pixel size is one important limiting factor

of these lens-free imaging systems [27]. Because of the spatial

aliasing/undersampling, the imaging sensor will fail to record

holographic oscillation corresponding to high spatial frequency

information of the specimen. To address this problem, pixel

super-resolution (SR) methods have been proposed in which

the hologram with a smaller effective pixel size can be synthe-

sized from multiple low-resolution (LR) measurements through

specific computational algorithms [17], [18], [25], [26], [30].

With these pixel SR methods, the imaging resolution of the

LFOCDHM systems can be improved from Nyquist-Shannon

limit (half-pitch lateral resolution of ∼2 µm, effective NA of

∼0.1− 0.2) to an effective numerical aperture of ∼0.4− 0.5
[17], [18], [26], [31].

However, the achieved imaging resolution is still only less

than half of the ideal coherent diffraction limit (NA ∼ 1). The

reason for this is that besides the pixel size of the sensor,

other features, e.g., the pixel averaging effect within the finite

detection size of one pixel (the fill factor), may also result in

the LR reconstructions [32]. Although all these characteristics

of sensors may lead to the unsatisfactory reconstruction resolu-

tion, in the current common LFOCDHM systems, the incident

angle of the illumination light has not exceeded the limit of the

camera, and the pixel size is attributed to the main factor in the

characteristics of the sensor [27]. Besides the pixel size, at least

four additional factors act to significantly limit the performance

of LFOCDHM systems, namely, the sample-to-sensor distance,

spatial and temporal coherence of the illumination, and finite

extent of the image sub-FOV used for the reconstruction. This

is not unexpected and has been discussed by other authors,

for example, Refs. [18], [27]. However, either only qualitative

analyses were presented [33], [34], or only one or two of these

factors on the imaging resolution have been considered [32],

[34]–[36]. In these quantitative analyses [32], [35], [36], the

discrete features of the sensor attracts more attention, but the

other basic parameters of the LFOCDHM systems, e.g., the

sample-to-sensor distance [37], spatial and temporal coherence

Fig. 1. (a) General lens-free imaging experimental setup. (b) Schematic of a
lens-free holographic microscope. The sample is illuminated with wavelength λ,
the spectral width∆λ, the diameter of the light-emitting area∆s. The diffraction
patterns are registered by a sensor with pitch ∆p at a distance z2.

of the illumination [34], and finite extent of the image sub-

FOV [38], are sporadically mentioned in the off-axis/in-line

digital holographic microscopy. The influence of these five

factors on the imaging resolution of LFOCDHM has not been

systematically examined and rigorously explored until now.

In this work, we conduct a systematical research on the effect

of five major factors on imaging resolution of a LFOCDHM

system, i.e., the sample-to-sensor distance, spatial and temporal

coherence of the illumination, finite size of the equally spaced

sensor pixels, and finite extent of the image sub-FOV used

for the reconstruction. We derive five transfer function models

that account for all these physical effects and their interactions

on the imaging resolution of LFOCDHM. We further combine

all these effects into a unified transfer function, which is the

continued multiplication of the five sub-transfer functions. We

examine how these theoretical models can be utilized to predict

the theoretical resolution limit of a given LFOCDHM system

or provide a useful guide to the selection of different system

parameters for the optimization of the imaging resolution when

designing a new LFOCDHM system. A series of simulations

and experiments are presented to confirm the validity of our

theoretical models. In order to avoid the influence of multi-height

selection on the reconstruction quality, in the following part of

this work, all simulations and experiments will be carried out

with single-height measurement.

II. PRINCIPLE

A. Typical Optical Setup for LFOCDHM

In the lens-free holographic microscope as depicted in

Fig. 1(a), the source can simply be a laser [20], [39], [40],

a LED (an array of LEDs) [41]–[44] or even a smartphone

screen [17]. The coherent or partially coherent light illuminates

the specimen, and then the scattered light and the transmitted

light co-propagate in the same direction, finally forming interfer-

ence fringes on the imaging device. In the ideal case, the sample

should be placed on a sensor array which can directly capture

the shadows of the objects and avoid the twin-image artifacts.
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However, due to the existence of protective glass covering the

surface of the camera sensor, there is usually always a certain

distance between the sample plane and the detector plane (typi-

cally 0.3− 2 mm) [22], [26], [45]. The distance is much larger

than the wavelength, and thus the object information (including

both amplitude and phase) is encoded into the diffraction pat-

terns, which needs to be computationally reconstructed by phase

retrieval and numerical back propagation algorithms.

As illustrated in the schematic diagram Fig. 1(b) of the

lens-free holographic microscope, neglecting the noise effect,

the achievable resolution of LFOCDHM is determined by the

maximum visualized radius R of the diffraction patterns, which

refer to the cut-off frequency of the transfer function. This

transfer function can be further decomposed into five sub-

transfer functions, and the least cut-off frequency of the five

transfer functions limits the maximum imaging resolution of

LFOCDHM. The five sub-transfer functions respectively cor-

respond to the impact of the defocus distance z2, the temporal

coherence (the spectral width ∆λ), the spatial coherence (the

diameter of light-emitting area ∆s) of the source, the finite pixel

size (∆p), and the finite extent of the image sub-FOV used for the

reconstruction (the side length ∆L). The absorption and phase

transfer functions resulting from propagation are respectively

denoted as ATFP and PTFP . Then the temporal coherence

transfer function, the spatial coherence transfer function, pixel

size transfer function, the reconstructed region transfer function

are severally expressed as TCTF , SCTF , PSTF , RRTF .

Here, the latter four sub-transfer functions are mutually in-

dependent, and together have impacts on the final imaging

results.

B. Theoretical Analysis of Resolution in LFOCDHM

1) Influence of Sample-to-Sensor Distance on Imaging

Resolution: In this subsection, we adopt the weak object approx-

imation to simplify the mathematical formulation and linearize

the phase retrieval problem [46], [47]. Before reaching the digital

camera, the object complex wave-front is propagated over the

distance of z2 in air (the medium of refractive index ≈1) with

the angular spectrum method [48], and thus the spectrum of the

complex wave-front on the camera planeWcam(u) is equivalent

to introducing an imaginary part into the transmitted complex

wave-front in the Fourier domain (see details in Appendix A).

In the frequency space, the intensity spectrum can be obtained

by calculating the autocorrelation of Wcam(u) [48]:

Ĩcam (u) = Wcam (u) ∗W ′
cam (−u)

≈ a20P
′(0)P (0) + a0A (u) [P ′(0)P (u) + P (0)P ′ (u)]

+ ia20Φ(u) [P ′(0)P (u)− P (0)P ′ (u)] , (1)

whereu is the two-dimensional coordinate in frequency domain,

∗ denotes the convolution, ′ represents the complex conjugation,

δ(u) is the Dirac Delta function, A(u) and Φ(u) respectively

represent the Fourier spectrum of the absorption and phase distri-

bution,P (u) represents the defocus pupil function. In Eq. (1), we

have neglected the high order convolution terms between A(u)
and Φ(u) [49]. Thus, the absorption transfer function (ATFP )

and phase transfer function (PTFP ) of LFOCDHM with the

Fig. 2. The absorption transfer function ATFP (u) (a) and phase transfer
function PTFP (u) (b) for various defocus distances. λ = 600 nm, the spatial
frequency coordinate is normalized against the resolution limit 1/λ.

defocus distance z2 can be written as:

ATFP = a0 [P
′(0)P (u) + P (0)P ′ (u)]

= 2a0 cos

[

kz2

(

1−
√

1− λ2|u|2
)]

, (2)

PTFP = a20 [P
′(0)P (u)− P (0)P ′ (u)]

= −2a20 sin

[

kz2

(

1−
√

1− λ2|u|2
)]

. (3)

The transfer functions of ATFP (u) and PTFP (u) with the

wavelength 600 nm are shown in Fig. 2 for various defocus

distances and the response value of them has been normalized

to 0− 1. The sample-to-sensor distance z2 varies from 1 µm

to 3 µm. Fig. 2(a) shows that with the increase in defocus

distance, ATFP (u) decreases earlier and the declining rate

of these curves accelerates. Moreover, the increase in defocus

distance also introduces higher oscillation frequency with more

zero-crossings. The low responses of frequency around these

zero-crossing points pose severe difficulties for the information

reconstruction at these corresponding frequencies, suggesting

that the information at these frequencies can no longer transfer

into intensity and such high oscillation should be avoided as

much as possible. Thus, for ATFP (u), the smaller defocus

distance will benefit for the reconstructed intensity image. How-

ever, for phase imaging PTFP (u), Fig. 2(b) shows that the

response of frequency around the origin is always very low,

suggesting the low-frequency phase can hardly transfer into

intensity via defocusing. As the defocus distance getting large,

the response at low frequencies gradually increases. In other

words, large defocus distance is conducive to the recovery of

the low-frequency phase information. Nevertheless, the accom-

panied high oscillation frequency will also introduce a large

number of zero-crossing points.

Thus, for the reconstruction of phase objects based on sin-

gle sample-to-sensor distance, the selection of the defocus

distance faces a fundamental tradeoff between low-frequency

information reconstruction quality and the loss of frequency

components. In general, multiple sample-to-sensor distances are

required to construct a synthetic phase transfer function with

high responses over a wider range of spatial frequencies:

ATFPsyn (u) =
1

Ntotal

Ntotal∑

i=1

∣
∣ATFP

(
zi2,u

)∣
∣
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Fig. 3. (a) The synthesized absorption transfer function ATFPsyn(u) and
synthesized phase transfer function PTFPsyn(u) with various defocusing
distances (z2 = 1, 2, 3 µm); (b) The absorption transfer function ATFP (u)
and phase transfer functionPTFP (u)with z2 = 400 µm;ATFPsyn(u) and
PTFPsyn(u) with various defocusing distances (z2 = 400, 410, 420 µm).

PTFPsyn (u) =
1

Ntotal

Ntotal∑

i=1

∣
∣PTFP

(
zi2,u

)∣
∣, (4)

where zi2 represents the different defocus distances and Ntotal is

the total number of defocus planes. Under the same simulation

conditions, the synthesized transfer functions of ATFPsyn(u)
and PTFPsyn(u) are shown in Fig. 3(a). Fig. 3(a) shows

that the multi-height measurements can significantly reduce the

number of zero-crossings by synthesization of transfer function.

However, the recovery of the very low frequency (near zero fre-

quency) phase component is still quite difficult. In the practical

experiment, due to the cover glass of the sensor, the defocusing

distance usually exceeds 400 µm, and the oscillation frequency

of ATFP (u) and PTFP (u) is extremely high, as shown in

Fig. 3(b). Fortunately, such a large distance can effectively

reduce the low-response frequencies range, which is beneficial

to recover the frequency components near zero-crossing points.

Generally, when the components of the lens-free imaging

system such as the light source and the sensor have been prede-

termined, multi-height measurements can optimize the synthetic

transfer functions, which is beneficial for the intensity and phase

reconstruction quality. But for single-height measurement, lim-

ited by the relatively large defocusing distance, the influence of

defocusing distance on the reconstruction result can be neglected

due to the rapid oscillation of the transfer functions.

2) Influence of Temporal Coherence on Imaging Resolution:

In this subsection, we will analyze the influence of temporal

coherence on imaging resolution, which can be attributed to the

temporal coherence transfer function (TCTF ). It is assumed

that the temporal coherence is the only factor affecting the

reconstruction resolution. Suppose that the central wavelength

λ, the spectrum width ∆λ, the spectral distribution Sλ(λi) are

the predetermined parameters, and other system parameters are

close to ideal values (do not affect the imaging resolution).

If we further invoke the paraxial approximations [47], the

two transfer functions Eqs. (2) and (3) can be simplified as

ATFP ≈ 2a0 cos(πz2λ|u|2), PTFP ≈ −2a20 sin(πz2λ|u|2).
If the effect of spectral width of the illumination source is further

taken into account, the absorption and phase transfer functions

of LFOCDHM with the sample-to-sensor distance z2 and the

actual wavelength λi can be represented as:

ATFp+t (u) = 2a0

∫

Sλ (λi) cos
(

πz2λi|u|2
)

dλi

Fig. 4. The temporal coherence transfer function TCTF (u). (a) TCTF (u)
for various spectral width ∆λ with the defocusing distance z2 = 200 µm.
(b) TCTF (u) for various defocusing distances with the spectral width ∆λ =
30 nm.

PTFp+t (u) = −2a20

∫

Sλ (λi) sin
(

πz2λi|u|2
)

dλi. (5)

In most cases, the spectral distribution Sλ can be approximated

by a Gaussian function:

Sλ (λi) = e−
(λi−λ)2

0.36∆λ2 , (6)

where λ can be noted as the mean value and the standard devia-

tion is 0.424∆λ. Here standard deviation 0.424∆λ is assumed to

ensure that the normalized intensity of the wavelengths varying

in the range of [λ −∆λ/2, λ +∆λ/2] is not less than half

maximum intensity. By incorporating the effect of temporal

coherence, the transfer functions can be further expressed as

the integrals over the full spectral range:

ATFp+t (u) = 2a0

∫ ∆λ/2+λ

−∆λ/2+λ

e−
(λi−λ)2

0.36∆λ2 cos
(

πz2λi|u|2
)

dλi

PTFp+t (u) = −2a20

∫ ∆λ/2+λ

−∆λ/2+λ

e−
(λi−λ)2

0.36∆λ2 sin
(

πz2λi|u|2
)

dλi.

(7)

Although Eq. (7) is an integrable function in real space the-

oretically, the result cannot provide a well-defined analytical

cut-off frequency expression. To give the theoretical cut-off

frequency limit, in consideration of the ideal spectral distribu-

tion, we assume that Sλ(λi) is a rectangular function, and then

ATFp+t and PTFp+t will be noted as:

ATFp+t (u) = ATFP (u) sinc

(

z2
∆λ

2
|u|2

)

PTFp+t (u) = PTFP (u) sinc

(

z2
∆λ

2
|u|2

)

. (8)

Therefore, the finite spectral width is equivalent to introducing

an additional sinc term into the transfer functions. Since the tem-

poral coherence of the LFOCDHM system plays equally impor-

tant role in the ATFP (u) and PTFP (u), we use TCTF (u)
to represent the overall influence of finite spectral width:

TCTF (u) = sinc

(

z2
∆λ

2
|u|2

)

. (9)

Then the temporal coherence transfer functions TCTF (u)
for different spectral width ∆λ and various defocus distances

are shown in Fig. 4. In Fig. 4(a), under the condition of z2 =
200 µm,λ = 660 nm, the spectral width∆λvarying from 10 nm

to 30 nm, as ∆λ gets wider, the frequency response decreases

more rapidly and reaches zero earlier (at so-called the first
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Fig. 5. The quantitative reconstruction results varying in the different spec-
tral width ∆λ. The simulation condition: z2 = 500 µm, λ = 660 nm, ∆λ =
0, 5.2, 26 nm. The first row: the raw images; The second row: the directly
reconstructed images with the angular spectrum method; The third row: the
line profiles corresponding to the marks on the image in the second row; The
fourth row: the standard resolution target for the simulation.

zero-crossing or the first cut-off frequency). The response of

the frequencies above the first cut-off frequency may slightly

overshoot, but these frequency components are difficult to be

recovered since the response is highly fluctuant. In contrast, for

a given defocusing distance z2, higher temporal coherence of

the light source (decreasing ∆λ) provides a wider range of the

high-response frequency regions and higher cut-off frequency,

which is beneficial to improve the imaging resolution. In actual

experiments, ∆λ usually is pre-defined parameter while the

defocus distance z2 is flexible, and thus the frequency response

curves will be similar to those shown in Fig. 4(b). The first cut-off

frequency will gradually increase as the defocusing distance

decreases when the parameters of the light source are fixed.

From Eq. (9), we can deduce that the first cut-off frequency is

|u| =
√

2
z2∆λ

, and the corresponding reconstructed half-pitch

resolution is

q =
1

2 |u| =
√

z2∆λ

8
. (10)

To verify the resolution limit resulting from the finite spectral

width ∆λ, we simulate a resolution target under conditions of

z2 = 500 µm, λ = 660 nm, as shown in Fig. 5. From the line

profiles in Fig. 5, we can see that each element of the resolu-

tion target can be recovered when the light source is perfectly

coherent, but the high-frequency elements gradually become

blurred with the increase of ∆λ. More specifically, when ∆λ

is 5.2 nm, the theoretical half-pitch resolution is q = 0.57 µm,

which coincides well with the simulation result shown in Fig. 5.

For ∆λ = 26 nm, the elements of group 3 can be distinguished

easily, but elements of group 2 are barely discernable. According

to Eq. (10) (the theoretical resolution q = 1.27 µm), group 2 of

the target should be completely indistinguishable, so the slightly

discernible elements may result from the non-zero responses of

the transfer function beyond the first cut-off frequency, as shown

in Fig. 4.

In summary, the temporal coherence has an impact on the

ultimate imaging resolution of the LFOCDHM system. In-

creasing temporal coherence of the source by using a laser, or

inserting a narrow band-pass filter in front of the source can

directly reduce its influence on the resolution. When the light

source of the system is determined (∆λ is a constant value),

it should be guaranteed that the object-to-sample distance z2
must be smaller than 2λ2/∆λ (guarantee q is smaller than

λ/2) so that the temporal coherence of the source does not

influence the final resolution, and the reconstructed resolution

will be only affected by the ideal coherent diffraction limit

(λ/2). For example, when the spectrum width of illumination

source is about 20 nm and the ideal half-pitch resolution limit is

0.3 µm, the object-to-sample distance z2 should be smaller than

36 µm ideally. However, for imaging phase objects, z2 should

not be too small to guarantee sufficient responses of the phase

transfer function, which is crucial to the recovery accuracy of

low-frequency phase information. As mentioned earlier, due

to the manufacturing technology of commercial sensors, the

defocusing distance z2 is difficult to go below 300 µm. When

the distance z2 cannot be small enough, we should use a light

source with higher temporal coherence (narrower spectral width

∆λ) to guarantee the diffraction-limited imaging resolution.

3) Influence of Spatial Coherence on Imaging Resolution: In

this subsection, we will analyze the influence of spatial coher-

ence on imaging resolution, which can be attributed to the spatial

coherence transfer function (SCTF ). In addition to the temporal

coherence, the spatial coherence also affects the reconstructed

resolution. Same as before, we assume that the reconstructed

resolution is only affected by the spatial coherence of the light

source, and the sample is illuminated by the light emitting from

a spatially incoherent delta-correlated light source (any two

different points in the source plane are uncorrelated). Thus,

the captured image influenced by the finite spatial coherence

Icap(x) can be modeled as a convolution of the ideal in-line

hologram I(x) (arising from the central point source) with a

properly resized source intensity distribution Ss [50], [51].

Icap(x) = I (x) ∗
[(

z1
z2

)2

× Ss

(
z1
z2

x

)]

= I (x) ∗ PSF (x),

(11)

where x represents the coordinates in the imaging sensor plane.

Without loss of generality, the scaled factor (z1/z2)
2 can be

neglected. According to Eq. (11), assuming that the illumination

source is circular with a diameter of∆s,SCTF can be expressed

as (see details in Appendix B when the shape of the source is a

rectangle):

SCTF (u) = F (PSF ) =
J1

(

2π z2∆s
2z1

|u|
)

|u| , (12)
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Fig. 6. The spatial coherence transfer functionSCTF (u). (a)SCTF (u) for
different ∆s. (z1 = 5 mm, z2 = 200 µm) (b) SCTF (u) for various defocus
distances with the diameter of the light-emitting zone ∆s = 33 µm. (z2 =
200 µm)

where J1 represents the Bessel function of the first kind. The

simulation results of the transfer function SCTF (u) for dif-

ferent source sizes and defocus distances are shown in Fig. 6.

In Fig. 6(a), ∆λ → 0, λ = 660 nm, z1 = 5 mm, z2 = 200 µm,

∆s = 3.3, 33, 165 µm are given to analyze the resolution limit

resulting from the spatial coherence. From the simulation results

of Fig. 6(a), the effect of the spatial coherence on the recon-

struction resolution will reduce as ∆s getting smaller. From

the curves of SCTF (u) in Fig. 6(a), while ∆s gets larger, the

response of the transfer function decreases earlier and reaches

the first cut-off frequency more rapidly.

In actual experiments, when the illumination source is deter-

mined, the diameter of the luminous area (∆s) is unalterable.

Under such condition, in order to improve the spatial coher-

ence, we can increase the shrink ratio of z1/z2 to reduce the

effective illumination area, alternatively. In our simulations, the

system parameters are ∆λ → 0, λ = 660 nm, z1 = 3, 5, 7 mm,

z2 = 200 µm, ∆s = 33 µm, and the frequency response curves

are shown in Fig. 6(b). From these curves, we can observe that

larger z1/z2 will increase the first cut-off frequency, and thus,

improve the reconstruction resolution.

Based on Eq. (12), we can derive that the first cut-off fre-

quency is |u|= 3.8
π · z1

z2∆s , where the constant 3.8 is determined

by the zeros of the Bessel function, and the corresponding

reconstructed half-pitch resolution is

q =
1

2 |u| =
π

7.6
· z2∆s

z1
. (13)

This reconstruction resolution involves many parameters and

factors according to Eq. (13). In Fig. 7, z1 = 30 mm, z2 =
500 µm are given to verify the resolution limit. In Fig. 7, when

∆s gradually increases, the reconstruction resolution will get

worse correspondingly. For example, when ∆s = 68 µm, the

theoretical resolution is 0.46 µm, and the corresponding sim-

ulation result is 0.66 µm which is lower than that of the ideal

illumination ∆s → 0. If ∆s further increases to 153 µm, the

resolution reduces to 1.32 µm, which agrees with the theoretical

value 1.05 µm.

From the above analysis, we know that the spatial coherence

may affect the ultimate imaging resolution of the LFOCDHM

system, which is associated with the ratio z2/z1 and ∆s. Thus,

in the lens-free experimental setups, when the LED is used as

a light source, there are several ways to improve the spatial

coherence and reduce its effect on imaging resolution. On the

one hand, we can insert a small pin-hole in front of the source to

reduce the source size. On the other hand, we can reduce to ratio

z2/z1 to reduce the effective size of the source. As we mentioned

Fig. 7. The quantitative reconstruction results varying in the diameters of
illumination source∆s. The simulation condition: z1 = 30 mm, z2 = 500 µm,
λ = 660 nm, ∆s = 0, 68, 153 µm. The first row: the raw images; The second
row: the directly reconstructed images with the angular spectrum method; The
third row: the line profiles corresponding to the marks on the image in the second
row; The fourth row: the standard resolution target for the simulation.

earlier, the object-to-sample distance z2 cannot be too small, so

we can increase the source-to-sample distance z1 instead. All

these experimental manipulations are utilized to avoid the effect

of the poor spatial coherence on the reconstruction resolution,

and guarantee that the diffraction-limited imaging resolution q
(Eq. (13) or Eq. (24)) is smaller than λ/2. For example, when

the diameter ∆s of illumination source is about 200 µm and the

ideal half-pitch resolution limit is 0.3 µm, ratio z2/z1 must be

smaller than 0.0036 theoretically. However, for actual imaging

objects, z2 is usually larger than 300 µm, and thus, to guarantee

sufficient responses of the transfer function, z1 must be larger

than 83.33 mm. Consequently, for an established lens-free mi-

croscopic imaging system, the effect of spatial coherence can be

avoided as far as possible by increasing z1, and the minimum

value of z1 can also be obtained by Eq. (13).

4) Influence of Sensor Pixel Size on Imaging Resolution: In

lens-free imaging system, the pixel size is a key factor influenc-

ing the achievable spatial resolution. We assume that the finest

feature to be captured corresponds to the half-pitch resolution

∆p/w, where w � 1 and the number of pixels of this image is

M ×N . Then suppose the actual pixel size of the camera is ∆p
with m× n pixels. The ideal pixel aliasing can be interpreted

as a procedure that the ideal image is first pixel binned and

then sub-sampled. Specifically, the pixel binning effect can be

modeled as convolution process with the convolution kernel Sa:

Ibin (x) = I (x) ∗ Sa, (14)
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Fig. 8. The simulation results with the down-sampling factors w = 1, 2, 3, 4.
The first row: the raw captured images; The second row: the corresponding
pixel aliasing transfer functions; The third row: the Fourier spectrum of images
with aliasing; The forth row: Left: the line profiles of the pixel aliasing transfer
functions, Right: the sampling process with w = 4.

where I(x) is the ideal image, x = (x, y) is two-dimensional

coordinates on camera plane. Sa is a two-dimensional rectangu-

lar function which is defined to be 0 when |x|, |y| is greater than

1/2 w, otherwise is defined to be 1/w2. Thus, in the frequency

domain, this process can be represented as:

Obin (u) = F (Ibin (x)) = O (u)PSTF (u) , (15)

where Obin(u) and O(u) is the Fourier transform of Ibin(x)
and I(x), respectively. PSTF (u) is the transfer function corre-

sponding to the pixel binning, which takes the following form:

PSTF (u) = PSTF (ux, uy) = sinc (wux) · sinc (wuy) .
(16)

When ux = ± rx
w or uy = ± ry

w (rx, ry is a positive integer

not greater than w/2 and the frequency has been normalized to

−1/2 ∼ 1/2.), PSTF will be zero, suggesting that the corre-

sponding spectral information is lost. Thus, the normalized first

cut-off frequency will be 1/w. Due to the previous assumptions

that the ideal theoretical half-pitch resolution is ∆p/w, the

resolution limit after aliasing can be noted as:

q = ∆p. (17)

For the second step, the sampling process is that the ideal

images are sampled at uniform intervals (w pixels). (see details

in Appendix C when w is an integer.). The process shows

that the high-frequency information will be mixed into the

low-frequency region.

To show the information aliasing and spectrum loss resulting

from the finite pixel size, the simulation results with the down-

sampling factors w = 1, 2, 3, 4 are illustrated in Fig. 8. On the

other hand,w can also be regarded as the resolution up-sampling

factor for the pixel SR reconstruction algorithm from LR in-

tensity measurements. The line curves of PSTF (u) show that

when w gradually increases, the more criss-crossed frequency

gaps will appear, suggesting that the information around these

frequencies will be exceptionally difficult to be recovered. When

w = 2, PSTF (u) tends to zero only at the highest frequency

(the periphery of the Fourier spectrum). When w > 2, more

spectral information at interlaced regions inPSTF (u) becomes

zero. The lower right of Fig. 8 shows the Fourier spectrum

Obin(u) after pixel binning with w = 4, and the red rectangular

area (Mw × N
w ) has the same dimensional size with the captured

image. The whole process shows that the high-frequency infor-

mation will be mixed into the low-frequency region within the

red rectangle, and the aliasing problem will be more serious

when w getting larger. For normal pixel size of the current

image sensor (typically 0.8 − 5µm), the pixel aliasing is a key

limiting factor directly affecting the imaging resolution of the

LFOCDHM system. When the resolution of the object to be

reconstructed (by pixel SR algorithms [18], [26], [45], [52]) is

w times higher than that limited by the original pixel size, the

number of the captured raw LR images (theoretical amount of

information) will linearly increase with a factor of w2 [53].

5) Influence of the Finite Extent of Reconstructed Sub-FOV

on Imaging Resolution: As we mentioned in the introduction,

one of the most important advantages of the LFOCDHM is

the large effective numerical aperture over a very large FOV.

However, in practice, due to the limited processing capability

and memory of the computer, usually each raw image is divided

into several subregions for the holographic reconstruction, and

the reconstructed sub-images are then stitched together to obtain

the whole-FOV image. Owing to the limited extent of the se-

lected reconstructed area (assuming that the shortest side length

of the sub-FOV is ∆L), some high-angle diffraction patterns

corresponding to the high-frequency of the object will not be

included in the reconstructed area, leading to the reduction of

imaging resolution. We attribute the effect of finite extent of

reconstructed sub-FOV on the Fourier spectrum to the transfer

function RRTF , where the lateral resolution limit in different

directions are considered comprehensively, and finally∆L is the

key factor of the reconstructed resolution. The cut-off frequency

of RRTF is |u| = ∆L/2

λ

√
z22+(∆L/2)2

, which can also be deduced

by the effective NA of the LFOCDHM system (as shown in

Fig. 1), and the restricted half-pitch resolution is

q =
1

2 |u| =
λ

√

4z22 +∆L2

2∆L
. (18)

According to Eq. (18), in order to achieve the half-pitch reso-

lution q, the side length of reconstructed sub-FOV should meet

the following requirement:

∆L �
2z2λ

√

4q2 − λ2
. (19)

In the simulation, we use λ = 600 nm, z2 = 200 µm, ∆p =
1 µm, and the theoretical half-pitch resolution q = 1, 2, 4 µm

can be calculated to verify the influence of the reconstructed area

on the resolution. In Fig. 9, we can find that when the side length

is ∆L1 = 126 µm, the maximum half-pitch resolution is about

1 µm. However, when ∆L is getting smaller, the maximum

half-pitch resolution will gradually decrease, e.g., when the side
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Fig. 9. From the first to fifth row: The simulation results with different re-
constructed area sizes (∆L1 = 126 µm, ∆L2 = 61µm, ∆L3 = 30 µm). The
last row: Left: The half-pitch-resolution-dependent curve of the reconstructed
area size; Right: The relative size of the reconstructed region corresponding to
different half-pitch resolution.

length is ∆L2 = 61 µm, the half-pitch resolution will reduce

to 2µm. As shown in Fig. 9, the reconstructed area size almost

increases exponentially with the improvement of the half-pitch

resolution. Thus, for example, when the sample-to-sensor dis-

tance is 400 µm, in order to achieve the high imaging resolution

close to the diffraction limit (e.g. NA ∼ 0.8), the slide length of

the reconstructed sub-FOV should be at least 2845 µm, which

again brings a big challenge to the computational efficiency and

memory requirement (especially when the pixel SR algorithm

is used).

Furthermore, for each reconstruction of sub-FOV, only very

limited central region can achieve the expected resolution. For

the rest part, the region closer to the border will have lower

imaging resolution. Thus, to decrease the influence of the finite

extent of reconstructed sub-FOV on imaging resolution, in actual

experiments, the selection of the reconstructed area faces a

fundamental tradeoff between the loss of the high-frequency

diffraction and the practicability of the implementation of the

reconstruction algorithm. Moreover, in numerical calculation,

the high-frequency scattered light diffracted from a point outside

the selected region will have an impact on the background of re-

constructions, e.g., additional twin image resulting from Fourier

expansion at image boundary. Fortunately, the reconstructed

resolution on the focus plane usually is rarely affected. It should

be also noted that when pixel SR algorithm is used to achieve an

expected sub-pixel resolution, the reconstructed area should be

larger than theoretical one calculated by Eq. (19) to guarantee

that such a resolution is theoretically achievable.

6) Comprehensive Influence of Multiple Factors on Imaging

Resolution: Based on the above-mentioned analysis, the com-

prehensive absorption and phase transfer functions of all above-

mentioned factors can be denoted as ATF (u) = ATFP ·
TCTF · SCTF · PSTF ·RRTF and PTF (u) = PTFP ·

TCTF · SCTF · PSTF ·RRTF . Although the frequency re-

sponse of each transfer function may slightly overshoot for the

frequencies exceeds each first cut-off frequency, their contribu-

tion to imaging resolution can be neglected because the final

imaging resolution is codetermined by multiple parameters, and

the overall response value for these high frequencies inATF (u)
and PTF (u) after multiplication of each transfer functions will

be quite small. Therefore, the final imaging resolution limit is

determined by the minimum first cut-off frequencies of these

sub-transfer functions. For a given LFOCDHM system where

all system parameters are determined, we can calculate the

resolution limit governed by each transfer function, Eqs. ((10),

(13), (17), (18)), and then compare them with ideal coherent

diffraction limit λ/2 to choose the maximal one as the ultimate

theoretical imaging resolution. Note that the pixel SR meth-

ods are not considered in the above analysis. When the SR

methods are considered, the theoretical limit resolution will be

determined by the maximal value among Eqs. ((10), (13), (18)),

the effective pixel size ∆p/w, and λ/2. In this work, we only

consider the cases when no pixel SR methods are employed.

The results can be easily extended to the cases when pixel SR

methods are involved.

For example, considering the situation in the experiments, the

sample-to-senor distance is usually 450 µm, and the source-to-

sample distance is about 10 cm. In addition, the illumination

source has central wavelength 600 nm with the spectral width

10 nm and the luminous area of 1002π µm2, and the sensor has

the pixel size of 1.67 µm and imaging area of 6466 × 4615 µm2.

According to Eqs. ((10), (13), (17),(18)), we can find that when

no pixel SR methods are employed, the final resolution will

be limited by the pixel size. The reconstructed results will be

constrained principally by the spectral width ∆λ when the pixel

SR methods are adopted. Thus, in a conventional experimental

system, the pixel size is the key limiting factor for the high-

resolution object reconstruction, but the developed pixel SR

methods can effectively solve this spatial resolution reduction

problem. In addition, the spectral width of the source is usually

another main limiting factor for the resolution improvement,

which is difficult to be solved or alleviated only with the numer-

ical methods.

7) Optimization of the Imaging Resolution for a LFOCDHM

System: Our theoretical models can be utilized to optimize

the optical design for improving the imaging resolution when

designing a LFOCDHM system. It is recommended that the

following procedure should be adopted. (The minimum require-

ments of these parameters can be deduced by Eqs. ((10), (13),

(18)) based on the resolution to be reconstructed.)

During the system construction stage:

1) Choose the light source with the best possible temporal and

spatial coherence;

2) For low temporal coherent source such as LED, a narrow

band-pass filter can be used to increase the temporal coherence

of the source;

3) For low spatial coherent source with a large light-emitting

area, a small pin-hole can be inserted in front of the source to

increase the spatial coherence of the source;

4) Use an imaging sensor with the smallest possible pixel size

to reduce aliasing.
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Fig. 10. (a) The photography of the LFOCDHM system. (b) Three central
wavelengths of a light-emitting diode (LED). (c) Two narrow bandpass filters
with spectral width ∆λ = 20 nm and ∆λ = 30 nm. (d) Two pin-holes with
aperture size ∆s = 1.198 mm and ∆s = 1.465 mm.

During the data acquisition stage:

1) Minimize the sample-to-sensor distance z2 to reduce the

influence of temporal coherence of the source;

2) Maximum the ratio between source-to-sample distance

z1 and sample-to-sensor distance z2 to reduce the influence of

spatial coherence of the source;

3) Minimize the sample-to-sensor distance z2 to reduce the

influence of the finite extent of reconstructed sub-FOV;

4) For imaging phase object, use the multi-height phase

retrieval algorithm with large sample-to-sensor distances z2 to

guarantee reliably phase recovery, especially for low-frequency

components.

It should be emphasized that z1 can only affect the spatial

coherence, while z2 can affect the selection of the size of the

reconstructed region, the temporal and spatial coherence.

During the data processing stage:

1) Choose the largest possible reconstructed sub-FOV to re-

duce the influence of the finite extent of reconstructed sub-FOV.

2) Choose the proper position of the reconstructed sub-FOV

to locate the targeted object in the center.

III. EXPERIMENTS

A. Experimental Setup

Fig. 10(a) shows the fundamental experimental system struc-

ture. A broadband source (K851261, Keyes, China) provid-

ing the different central wavelengths [Fig. 10(b)], illuminates

a sample that is mounted on a slide holder, and a CMOS

image sensor chip (DMM 27UJ003-ML, the imaging source,

Germany) is placed below the sample. To quantify the effect

of the above-mentioned factors on the reconstruction results,

we will respectively change the temporal [Fig. 10(c)], spatial

[Fig. 10(d)] coherence of the light source, the pixel size of the

imaging sensor, and the reconstructed region.

B. Influence of Temporal Coherence on Imaging Resolution

To quantify the spatial resolution alternation due to the above-

mentioned factors respectively, we firstly change the temporal

coherence of the light source by introducing different optical

Fig. 11. The effect of temporal coherence on the spatial resolution. (a) the
directly captured image, (b) the region to be reconstructed, the directly recon-
structed results with the spectral width ∆λ = 30 nm (c)-(e) and ∆λ = 20 nm
(f-h). The experimental condition: λ = 520 nm, z1 = 10 cm, z2 = 1499 µm.

band-pass filters (spectral bandwidths∆λ = 20, 30 nm) into the

experimental system. The partially coherent illumination is pro-

vided through a light-emitting diode (LED) which is placed far

away (z1 ≫ 20 cm) from the sample plane to eliminate the effect

of the spatial coherence. Fig. 11(a) shows the raw image directly

captured by the camera, and Fig. 11(b) is the reconstructed

region which is large enough to avoid its effect on the spatial

resolution. The central wavelength of the illumination source is

∼520 nm, and the resolution target is∼1499 µm (z2) away from

the sensor. When the spectral width is 30 nm, the reconstruction

resolution is about 2.461 µm (5th element in group 7), and the

theoretical reconstructed resolution is around 2.371 µm which

lies between the 5th element and 6th element in group 7. When

we reduce the spectral width to 20 nm, the theoretical half-pitch

resolution calculated according to Eq. (10) is 1.936 µm, and

the actual reconstruction resolution is ∼1.953 µm, as shown in

Figs. 11(f)-(h) which corresponds to the 1st element in group 8

of the resolution target. Thus, the reconstructed results match

well with the theoretical value calculated by Eq. (10). Note

that in our experiment, we directly back propagate the image

from the sensor plane to the object plane with the angular

spectrum method [48], and no phase retrieval procedure is used

to eliminate the twin-image artifacts in the background of the

reconstructed images.

C. Influence of Spatial Coherence on Imaging Resolution

Next, we change the spatial coherence of the source by in-

serting different pin-holes (the diameter of the pin-holes ∆s =
1.198, 1.465 mm) to verify the correctness of Eq. (13). The

luminous area of a LED is usually in the ten thousands of square

microns order of magnitude, thus, in order to show the influence

of spatial coherence on resolution more intuitively, a diffuser is

placed between the source and pin-hole to ensure that the lumi-

nous area equals the size of the pin hole. The center wavelength
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Fig. 12. The effect of spatial coherence on the spatial resolution. ‘TR’
is the abbreviation of theoretical resolution. (a1-b3) The reconstructed re-
sults with ∆s = 1.198 mm. (c1)-(d3) The reconstructed results with ∆s =
1.465 mm. (e1)-(f3) The line profiles of the corresponding marks in (b1)-(b3),
(d1–d3).

λ is ∼620 nm (∆λ = 15 nm) and the sample-to-sensor dis-

tance is z2 = 465 µm. Fig. 12 shows the reconstruction results

which are recovered by back-propagating the captured image

to the object plane with angular spectrum method [48]. When

∆s = 1.198 mm, the reconstructed results with the different

source-to-sample distances z1 are shown in Figs. 12(b1-b3).

When z1 is 4 cm, the theoretical half-pitch resolution is 5.75 µm,

and the actual reconstructed result is ∼6.20 µm, corresponding

to the 3rd element of group 6. Since the 4th element in group

6 corresponds to the half-pitch resolution of 5.52 µm, it can

hardly be distinguished, as shown in Fig. 12(b1). In addition,

when ∆s = 1.465 mm, the experimental results also agree well

with the theoretical values, as shown in Figs. 12(d1)-(d3). The

line profiles along different resolution elements are respectively

illustrated in Figs. 12(f1)-(f3). On the other hand, when z1
is fixed, smaller ∆s provides higher resolution. Thus, in the

actual experiments, we can simply increase the source-to-sample

distance z1 to reduce the influence of spatial coherence, which

is equivalent to reducing ∆s.

D. Influence of Pixel Size on Imaging Resolution

In actual experiments, the pixel size of the image sensor is

a key factor directly limiting the achievable spatial resolution.

Although increasing the pixel resolution and reducing the pixel

size has already become the major trend in consumer elec-

tronics, the minimum pixel size of the commercially available

imaging sensor is around 0.8 µm, which is much larger than

the coherent diffraction resolution limit. In order to give an

intuitive comparison of the influence of pixel size on imag-

ing resolution, we use the cameras with different pixel sizes

(1.67 µm, 2.2 µm, 3.75 µm, 4.4 µm) to record the diffraction

patterns. Figs. 13(a1)-(d1) show the reconstructed regions, and

the reconstructed results are illustrated in Figs. 13(a2)-(d2).

The wavelength of the source used in the system is 620 nm

(∆λ = 15 nm) while the source-to-sample distance z1 is large

enough (z1 ≫ 20 cm) to exclude the influence of spatial co-

herence, and the sample-to-sensor distance z2 is 465 µm. The

line profiles corresponding to the smallest resolvable elements

are shown in Figs. 13(a3)-(d3), suggesting that the experimental

Fig. 13. The effect of pixel size on the spatial resolution. The directly recon-
structed results with different pixel sizes 1.67 µm (a1)-(a3), 2.2 µm (b1)-(b3),
3.75 µm (c1)-(c3), 4.4 µm (d1)-(d3).

Fig. 14. The effect of the reconstructed region on spatial resolution. (a) is the
raw image and the reconstructed region size of (b)-(c) corresponds to the pink
square area in (a). (d)-(e) is the directly reconstructed results with the different
selected areas separately corresponding to the yellow square area in (b)-(c). (f1)-
(f2), (g1)-(g2) are the line profiles separately corresponding to (b)-(c), (d)-(e).

results are in agreement with the theoretical values limited by

pixel sizes.

E. Influence of the Reconstructed Region on

Imaging Resolution

In this experiment, the center wavelength of the light source

λ is 620 nm (∆λ = 15 nm), and the sample-to-sensor distance

z2 is 547µm. According to Eq. (18), the size of the selected

area for the reconstruction will affect the final imaging res-

olution. Fig. 14(a) gives the whole captured image, and the

pink square area (198 µm wide) was extracted for the holo-

graphic reconstruction. The result is shown in Fig. 14(b), and

corresponding line profiles are shown in Fig. 14(f1), suggesting

that the resolution is at least 1.74 µm. When we select another

region nearby with the same size, we can obtain the recon-

struction result shown Fig. 14(c). If we reduce the size of the

reconstructed region to the yellow boxed area (110 µm wide)

in Figs. 14(b)-(c), the results shown in Figs. 14(d)-(e) indicate

that the reconstructed resolution will decrease significantly. The

line profiles in Figs. 14(g1)-(g2) manifest that the resolution is
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Fig. 15. The process of system optimization. (a-k) are the results of recon-
struction under different conditions (on the top of each subgraphs) with pixel
size 1.67 µm and the length of the reconstructed region 1080 µm. (l-m) The
comparison between the results with different reconstructed regions.‘TR’ is the
abbreviation of theoretical resolution.

reduced to only 3.10 µm (3 rd element in group 7), which is

again in accordance with the theoretical prediction.

In addition to the size of reconstructed sub-FOV, the location

of the object to be measured in the selected reconstructed sub-

FOV will also affect the reconstructed resolution. As shown in

Figs. 14(b)-(c), we can find that the 2nd element in group 8 can be

distinguishable in Fig. 14(b) but not in Fig. 14(c). Thus, in order

to ensure the expected high reconstruction resolution, the recon-

structed sub-FOV should not be too small and the objects to be

reconstructed are supposed to be located in the limited central re-

gion for each reconstructed sub-FOV. Meanwhile, the object-to-

sensor distance z2 should not be too large according to Eq. (18).

Otherwise, the reconstructed region needs to be expanded ac-

cordingly to ensure the reconstruction resolution, which may

significantly prolong the processing time and create difficulties

in practical implementation of the reconstruction algorithm.

F. Example of the Multiple Optimized Design for the System

In the actual experiments, multiple factors will result in the

resolution reduction of the imaging system. According to the

conclusion of the resolution analysis, the system parameters are

adjusted under limited conditions and optimized to improve the

reconstructed resolution. For a preliminary LFOCDHM system,

the center wavelength λ and the spectral bandwidth ∆λ of the

LED are 522 nm and 30 nm respectively, and the diameter of the

luminous area of the source is 1.465 mm. In addition, samples

are placed randomly over the sensor at approximately a distance

of 2450 µm. The pixel size of the camera is 1.67 mm and the

results in Figs. 15(a)-(j) are reconstructed with a square region

(1080 µm wide). According to Eqs. ((10), (13), (17), (18)),

the theoretical resolution will be mainly limited by the spatial

coherence which is 29.67 µm corresponding to 1st element in

group 4 as shown in Figs. 15(a), (b). Thus, firstly reducing the

luminous area (here the shape of the source is a square with the

side length of 212 µm) to improve the spatial coherence, the

theoretical resolution will be improved to 5.19 µm as shown in

Figs. 15(c), (d) according to Eq. (24). In practical experiments,

when ∆s is difficult to be further reduced, based on Eq. (13), we

can increase the z1 to improve the spatial coherence. In theory,

the resolution should be increased to 1.56 µm, but Figs. 15(e), (f)

show that the reconstructed resolution is about 3.10 µm. From

the comprehensive analysis, we can find that the resolution is

limited by temporal coherence which should be 3.03 µm under

the given conditions. Therefore, to improve the resolution, it

is necessary to improve the temporal coherence of the whole

system. A band-pass filter (20 nm) should be inserted into the

system, and the slight increase in resolution can be seen in

Figs. 15(g), (h). Sometimes, the temporal coherence of the light

source is difficult to be improved, and so we can consider reduc-

ing z2 which can improve temporal and spatial coherence of the

LFOCDHM system at the same time based on Eqs. ((10), (13))

as shown in Figs. 15(i), (j). Fig. 15(j) shows that the resolution

is limited by the pixel size, which means a camera with smaller

pixel size or a SR algorithm with multi-frame acquisition is

needed for further enhancing the imaging resolution. Fig. 15(l)

shows that when the length of the reconstructed region (∆L)

is 65 µm, all elements in group 8 are indistinct, yet the 2nd

elements in group 8 should be distinguished in theory with the

same system parameters in Fig. 15(i), (j). When ∆L is increased

to 176 µm, the 2nd elements in group 8 can be differentiated as

shown in Fig. 15(m), and so ∆L must be larger than 176 µm for

achieving the expected highest resolution.

Consequently, in practical experiments, we can roughly esti-

mate the reconstructed resolution and the corresponding limiting

factor based on the resolution analysis. Then the parameters are

adjusted reasonably to obtain the optimal resolution under the

given hardware conditions.

IV. CONCLUSION

In this work, we have conducted a systematical research

on the effect of five major factors on imaging resolution of a

LFOCDHM system, i.e., the sample-to-sensor distance, spatial

and temporal coherence of the illumination, finite size of the

equally spaced sensor pixels, and finite extent of the image

sub-FOV used for the reconstruction. From the above analysis

and experiments, it can be deduced that the most limiting factor

restricting the imaging resolution of LFOCDHM is the sensor

pixel size because the side-effect arising from other experimen-

tal factors is relatively easy to handle. For example, using a

laser as an ideal temporally coherent light source, increasing

source-to-sample distance to obtain the spatially quasi-coherent

source. To reduce the effective size of the imaging sensor,

pixel SR algorithms should be used. But even so, using an

imaging sensor with smaller pixel size can still improve the

quality of the SR reconstructions. Specifically, assuming that

the expected resolution to be reconstructed is around 1 µm, and

the up-sampling factorw will be different for various pixel sizes.

When the pixel size is much closer to the desired resolution, the

w will be smaller, so less information for the reconstruction is
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required. When a higher up-sampling factor w is required (for

large pixel size), more criss-crossed frequency gaps will appear,

which can never be recovered even pixel SR reconstruction

algorithms are used. Thus, for LFOCDHM techniques, a smaller

pixel size is very helpfully to achieve higher resolution and need

less information to reach the expected super-resolved resolution.

On the other hand, using LED as the light source can make the

system more compact, portable, low-cost. But the coherence

length of the LED will also affect the reconstructed resolution.

According to Eqs. ((10), (13)), increasing z1 and decreasing z2
can effectively improve the coherence of the LFOCDHM and

improve the imaging resolution. Furthermore, decreasing z2 can

reduce the reconstructed area according to Eq. (19) when the

desired resolution is determined.

The analysis of these parameters based on transfer functions

has given the quantitative resolution limit determined by the

minimum first cut-off frequency of these transfer functions.

According to the quantitative relationship, the preliminary esti-

mates of the ultimate resolution are available after employing the

SR methods. Thus, the derived theoretical models can provide

useful guidance for choosing the appropriate system parameters

to obtain higher imaging resolution. To verify the validity of

each theoretical model, we have used the variable-controlling

method and only changed only one or two parameters during

each experiment. The resolution target has been used to quantify

the imaging resolution. The experimental results have confirmed

the validity of our theoretical models.

Finally, it should be mentioned that, although in this work we

have demonstrated how our theoretical models can be utilized

to improve the imaging resolution by optimizing the optical

design of a LFOCDHM system, it is possible to counteract the

effects of these imperfect system parameters through certain

computational approaches. For example, for the poor spatial

coherence, the low-resolution effects can be eliminated by

measuring the point spread function of the source and then

performing deconvolution. When the pixel size is unsatisfactory,

sub-pixel lateral shifts combining with calculating the cross cor-

relation between the adjacent images by means of a fast Fourier

transform (FFT) and then locating its peak, can generate the SR

reconstructions. Based on the transfer functions we have derived,

we can easily establish the forward image formation model

(from object to image) for a given LFOCDHM system. Then

certain mathematical algorithm should be adopted to recover

the ideal object information from the actual measurement, i.e., to

solve the corresponding inverse problem. In future work, we will

make efforts to address the resolution reduction associated with

these factors and compensate for their adverse impact through

post-processing algorithms.

APPENDIX

A. The Weak Phase Object Approximation

The complex transmittance of a weak object can be repre-

sented as

t (x) = a (x) eiφ(x) ≈ a (x) [1 + iφ (x)]
a(x)=a0+∆a(x)

≈ a0 +∆a (x) + ia0φ (x) ,
(20)

wherea(x) is the absorption distribution with a mean value ofa0,

φ(x) is the phase distribution, x represents the two-dimensional

coordinate (x,y) in spatial domain. Taking Fourier transform

of both sides of Eq. (20), the Fourier spectrum of t(x) can be

obtained as

T (u) = a0δ (u) +A (u) + ia0Φ(u) , (21)

whereu is the two-dimensional coordinate in frequency domain,

δ(u) is the Dirac Delta function, A(u) and Φ(u) respectively

represent the Fourier spectrum of the absorption and phase

distribution. Thus, the spectrum of the complex wave-front on

the camera plane can be denoted as:

Wcam (u) = T (u)P (u) = a0δ (u)P (u)

+A (u)P (u) + ia0Φ(u)P (u) , (22)

where P (u) = eikz2
√

1−λ2|u|2 represents the defocus pupil

function.

B. The Resolution Derivation When the Shape of the Source is

a Rectangle

Although most of the time the lighting source is circular,

sometimes it also can be rectangular, especially for the LED

source. According to Eq. (11) , assuming that the illumination

source is a square with a width of ∆s, the spatial coherence

transfer function (SCTF ) can be expressed as:

SCTF (u) = F (PSF ) =
sin

(

π z2∆s
z1

|u|
)

π z2∆s
z1

|u|

= sinc

(
z2∆s

z1
|u|

)

. (23)

Based on Eq. (23), we can derive that the first cut-off frequency

is |u| = z1
z2∆s , and the corresponding reconstructed half-pitch

resolution is

q =
1

2 |u| =
z2∆s

2z1
. (24)

C. The Sampling Process

One way to model sampling is to multiply I(x) by a sampling

function Sw(x) equal to a train of impulses w units apart [54].

That is

ISam (x) = Iali (x) · Sw (x) , (25)

where ISam(x) is the image after sampling, Sw(x) is the

two-dimensional comb function. Here Sw(x) = Sw(x, y) =
∑M/2−1

α=−M/2

∑N/2
β=−N/2 δ(x− αw, y − βw). In the Fourier space,

Eq. (25) can be written as:

OSam (u) = Oali (u) ∗ S̃w (u) , (26)

where S̃w(u) =
∑w−1

α=0

∑w−1
β=0 δ(ux − αM

w , uy − βN
w ). In dis-

crete numerical calculation, the dimension of the captured image

is different from that of the original image, so the sampling pro-

cess (including the selection of the central low-frequency part in

the frequency domain) also can be written in the form of matrix:
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Ocap = MleftOaliMright, whereMleft is am×M matrix, and

Mright is a n×N matrix. Concretely, Mleft = [

w
︷︸︸︷
A···A], A =

[A1 A2

A2 A1

]. When IA is the M
2w × M

2w unit matrix, thenA1 andA2

can be denoted by A1 = IA−(−1)wIA

2 , A2 =
IA + (−1)wIA

2 . Anal-

ogously, Mright = [w{
B
...
B

], B = [B1 B2

B2 B1

], B1 = IB−(−1)wIB

2 ,

B2 = IB+(−1)wIB

2 , where IB is a N
2w × N

2w unit matrix.

ACKNOWLEDGMENT

The authors gratefully acknowledge financial support from

China Scholarship Council.

REFERENCES

[1] H. R. Maricq and E. C. LeRoy, “Patterns of finger capillary abnormal-
ities in connective tissue disease by “wide-field” microscopy,” Arthritis

Rheumatism, vol. 16, no. 5, pp. 619–628, 1973.
[2] A. Huisman, A. Looijen, S. M. V. D. Brink, and P. J. V. Diest, “Creation of a

fully digital pathology slide archive by high-volume tissue slide scanning,”
Human Pathol., vol. 41, no. 5, pp. 751–757, 2010.

[3] B. Ma et al., “Use of autostitch for automatic stitching of microscope
images,” Micron, vol. 38, no. 5, pp. 492–499, 2007.

[4] V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Synthetic aper-
ture superresolution with multiple off-axis holograms,” J. Opt. Soc. Amer.

A, vol. 23, no. 12, pp. 3162–3170, 2006.
[5] C. Yuan, H. Zhai, and H. Liu, “Angular multiplexing in pulsed digital

holography for aperture synthesis,” Opt. Lett., vol. 33, no. 20, pp. 2356–
2358, 2008.

[6] T. R. Hillman, G. Thomas, S. A. Alexandrov, and D. D. Sampson, “High-
resolution, wide-field object reconstruction with synthetic aperture fourier
holographic optical microscopy,” Opt. Express, vol. 17, no. 10, pp. 7873–
7892, 2009.

[7] Y. Kim et al., “Common-path diffraction optical tomography for investi-
gation of three-dimensional structures and dynamics of biological cells,”
Opt. Express, vol. 22, no. 9, pp. 10 398–10 407, 2014.

[8] Y. Kim, H. Shim, K. Kim, H. Park, S. Jang, and Y. Park, “Profiling
individual human red blood cells using common-path diffraction optical
tomography,” Sci. Rep., vol. 4, 2014, Art. no. 6659.

[9] J. Lim et al., “Comparative study of iterative reconstruction algorithms for
missing cone problems in optical diffraction tomography,” Opt. Express,
vol. 23, no. 13, pp. 16 933–16 948, 2015.

[10] G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution
fourier ptychographic microscopy,” Nature Photon., vol. 7, no. 9, pp. 739–
745, 2013.

[11] X. Ou, R. Horstmeyer, C. Yang, and G. Zheng, “Quantitative phase
imaging via fourier ptychographic microscopy,” Opt. Lett., vol. 38, no. 22,
pp. 4845–4848, 2013.

[12] L. Tian, X. Li, K. Ramchandran, and L. Waller, “Multiplexed coded
illumination for fourier ptychography with an led array microscope,”
Biomed. Opt. Express, vol. 5, no. 7, pp. 2376–2389, 2014.

[13] X. Ou, R. Horstmeyer, G. Zheng, and C. Yang, “High numerical aperture
fourier ptychography: principle, implementation and characterization,”
Opt. Express, vol. 23, no. 3, pp. 3472–3491, 2015.

[14] C. Zuo, J. Sun, and Q. Chen, “Adaptive step-size strategy for noise-
robust fourier ptychographic microscopy,” Opt. Express, vol. 24, no. 18,
pp. 20 724–20 744, 2016.

[15] J. Sun, Q. Chen, Y. Zhang, and C. Zuo, “Efficient positional misalignment
correction method for fourier ptychographic microscopy,” Biomed. Opt.

Express, vol. 7, no. 4, pp. 1336–1350, 2016.
[16] J. Sun, Q. Chen, Y. Zhang, and C. Zuo, “Sampling criteria for fourier

ptychographic microscopy in object space and frequency space,” Opt.

Express, vol. 24, no. 14, pp. 15 765–15 781, 2016.
[17] G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. Yang, “The epetri

dish, an on-chip cell imaging platform based on subpixel perspective
sweeping microscopy (spsm),” Proc. Nat. Acad. Sci., vol. 108, no. 41,
pp. 16 889–16 894, 2011.

[18] W. Luo, Y. Zhang, Z. Göröcs, A. Feizi, and A. Ozcan, “Propagation phasor
approach for holographic image reconstruction,” Sci. Rep., vol. 6, 2016,
Art. no. 22738.

[19] Y. Rivenson et al., “Deep learning enhanced mobile-phone microscopy,”
ACS Photon., vol. 5, no. 6, pp. 2354–2364, 2018.

[20] J. Zhang, Q. Chen, J. Li, J. Sun, and C. Zuo, “Lensfree dynamic super-
resolved phase imaging based on active micro-scanning,” Opt. Lett.,
vol. 43, no. 15, pp. 3714–3717, 2018.

[21] J. Garcia-Sucerquia, W. Xu, M. Jericho, and H. J. Kreuzer, “Immersion
digital in-line holographic microscopy,” Opt. Lett., vol. 31, no. 9, pp. 1211–
1213, 2006.

[22] A. Ozcan and E. McLeod, “Lensless imaging and sensing,” Annu. Rev.

Biomed. Eng., vol. 18, pp. 77–102, 2016.
[23] O. Mudanyali et al., “Compact, light-weight and cost-effective microscope

based on lensless incoherent holography for telemedicine applications,”
Lab a Chip, vol. 10, no. 11, pp. 1417–1428, 2010.

[24] T.-W. Su, A. Erlinger, D. Tseng, and A. Ozcan, “Compact and light-
weight automated semen analysis platform using lensfree on-chip mi-
croscopy,” Analytical Chemistry, vol. 82, no. 19, pp. 8307–8312,
2010.

[25] X. Cui et al., “Lensless high-resolution on-chip optofluidic microscopes
for caenorhabditis elegans and cell imaging,” Proc. Nat. Acad. Sci.,
vol. 105, no. 31, pp. 10 670–10 675, 2008.

[26] W. Bishara et al., “Holographic pixel super-resolution in portable lensless
on-chip microscopy using a fiber-optic array,” Lab a Chip, vol. 11, no. 7,
pp. 1276–1279, 2011.

[27] A. Greenbaum et al., “Imaging without lenses: achievements and remain-
ing challenges of wide-field on-chip microscopy,” Nature Methods, vol. 9,
no. 9, pp. 889–895, 2012.

[28] J. Barton, “Removing multiple scattering and twin images from holo-
graphic images,” Phys. Rev. Lett., vol. 67, no. 22, p. 3106, 1991.

[29] T. Latychevskaia and H.-W. Fink, “Solution to the twin image problem in
holography,” Phys. Rev. Lett., vol. 98, no. 23, 2007, Art. no. 233901.

[30] S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image recon-
struction: a technical overview,” IEEE Signal Process. Mag., vol. 20, no. 3,
pp. 21–36, May 2003.

[31] J. Zhang, J. Sun, Q. Chen, J. Li, and C. Zuo, “Adaptive pixel-super-resolved
lensfree in-line digital holography for wide-field on-chip microscopy,” Sci.

Rep., vol. 7, no. 1, 2017, Art. no. 11777.
[32] Y. Hao and A. Asundi, “Resolution analysis of a digital holography

system,” Appl. Opt., vol. 50, no. 2, pp. 183–193, 2011.
[33] G. B. Parrent and G. O. Reynolds, “Resolution limitations of lensless

photography,” Opt. Eng., vol. 3, no. 6, 1965, Art. no. 306219.
[34] T. E. Agbana, H. Gong, A. S. Amoah, V. Bezzubik, M. Verhaegen, and

G. Vdovin, “Aliasing, coherence, and resolution in a lensless holographic
microscope,” Opt. Lett., vol. 42, no. 12, pp. 2271–2274, 2017.

[35] L. Xu, X. Peng, Z. Guo, J. Miao, and A. Asundi, “Imaging analysis
of digital holography,” Opt. Express, vol. 13, no. 7, pp. 2444–2452,
2005.

[36] D. P. Kelly, B. M. Hennelly, N. Pandey, T. J. Naughton, and W. T. Rhodes,
“Resolution limits in practical digital holographic systems,” Opt. Eng.,
vol. 48, no. 9, 2009, Art. no. 095801.

[37] A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, and J. Garcia-
Sucerquia, “Study of spatial lateral resolution in off-axis digital holo-
graphic microscopy,” Opt. Commun., vol. 352, pp. 63–69, 2015.

[38] D. P. Kelly and D. Claus, “Filtering role of the sensor pixel in fourier and
fresnel digital holography,” Appl. Opt., vol. 52, no. 1, pp. A336–A345,
2013.

[39] A. Ozcan and U. Demirci, “Ultra wide-field lens-free monitoring of cells
on-chip,” Lab a Chip, vol. 8, no. 1, pp. 98–106, 2008.

[40] W. Luo, Y. Zhang, A. Feizi, Z. Göröcs, and A. Ozcan, “Pixel super-
resolution using wavelength scanning,” Light: Sci. Appl., vol. 5, no. 4,
2016, Art. no. e16060.

[41] D. Tseng et al., “Lensfree microscopy on a cellphone,” Lab a Chip, vol. 10,
no. 14, pp. 1787–1792, 2010.

[42] S. V. Kesavan et al., “High-throughput monitoring of major cell functions
by means of lensfree video microscopy,” Sci. Rep., vol. 4, 2014, Art.
no. 5942.

[43] S. K. Ludwig et al., “Calling biomarkers in milk using a protein mi-
croarray on your smartphone,” PLoS One, vol. 10, no. 8, 2015, Art. no.
e0134360.

[44] Z. Xiong, J. E. Melzer, J. Garan, and E. McLeod, “Optimized sensing
of sparse and small targets using lens-free holographic microscopy,” Opt.

Express, vol. 26, no. 20, pp. 25 676–25 692, 2018.



710 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 6, 2020

[45] W. Bishara, T.-W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip
microscopy over a wide field-of-view using pixel super-resolution,” Opt.

Express, vol. 18, no. 11, pp. 11181–11191, 2010.
[46] E. J. Kirkland, Advanced Computing in Electron Microscopy. Berlin,

Germany: Springer Science & Business Media, 2010.
[47] C. Zuo, J. Sun, J. Li, J. Zhang, A. Asundi, and Q. Chen, “High-

resolution transport-of-intensity quantitative phase microscopy with an-
nular illumination,” Scientific Rep., vol. 7, no. 1, 2017, Art. no.
7654.

[48] J. W. Goodman, Introduction to Fourier Optics. Greenwood, CO, US:
Roberts and Company Publishers, 2005.

[49] D. Hamilton, C. Sheppard, and T. Wilson, “Improved imaging of phase
gradients in scanning optical microscopy,” J. Microsc., vol. 135, no. 3,
pp. 275–286, 1984.

[50] S. Feng and J. Wu, “Resolution enhancement method for lensless in-
line holographic microscope with spatially-extended light source,” Opt.

Express, vol. 25, no. 20, 2017, Art. no. 24735.
[51] Z. Jingshan, L. Tian, J. Dauwels, and L. Waller, “Partially coherent phase

imaging with simultaneous source recovery,” Biomed. Opt. Express, vol. 6,
no. 1, pp. 257–265, 2015.

[52] G. Zheng, S. A. Lee, S. Yang, and C. Yang, “Sub-pixel resolving optoflu-
idic microscope for on-chip cell imaging,” Lab a Chip, vol. 10, no. 22,
pp. 3125–3129, 2010.

[53] J. Miao, D. Sayre, and H. Chapman, “Phase retrieval from the magnitude
of the fourier transforms of nonperiodic objects,” J. Opt. Soc. Amer. A,
vol. 15, no. 6, pp. 1662–1669, 1998.

[54] R. C. Gonzalez and P. Wintz, Digital Image Processing, Berlin, Germany:
Springer, 1977, no. 13.


