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Abstract. Electrical impedance tomography is a procedure by which one �nds the conductivity
distribution inside a domain from measurements of voltages and currents at the boundary. This
work addresses the issue of stability and resolution limit of such an imaging device. We consider the
realistic case where only a �nite number of measurements are available. An important feature of
our approach, which is based on linearization, is that we do not discretize the unknown conductivity
distribution. Instead, we de�ne a pseudo-solution based on least-squares. A goal of this investigation
is to compare the stability and resolution power of a system that uses dipole sources, with another
that uses trigonometric sources. Our �ndings are illustrated in numerical calculations.
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1. Introduction. In electrical impedance tomography, the problem is to �nd a
conductivity distribution in a domain from electrostatic measurements collected at
the boundary. The conductivity distribution, when displayed on a gray-level plot is
often called an \image", and can be used for diagnostic purposes in certain medical
applications. See for instance [4].

Let us consider a two dimensional model problem. For simplicity, we assume that
our domain 
 is the unit disk. The problem is to �nd the conductivity distribution
in the disk from measurements collected on the circle. In order to make the required
measurements, n electrodes are attached to the boundary of the domain. The data
consist of voltage potentials at the electrodes; the voltage potentials are generated by
applying input currents at the electrodes.

Let us denote the input current passing through the electrode i by fi. The
collection of input currents at the n electrodes is refered to as the \current pattern",
and is denoted by the n-vector f ,

f = (f1; f2; � � � ; fn)
T :

A current pattern must satisfy
Pn

i=1 fi = 0.
Since the voltage potential is unique up to a constant, we take our data to be

voltage drops across adjacent electrodes. That is, let ui be the voltage potential at
electrode i, then the data, corresponding to a current pattern f , is the IRn vector

g = (g1; g2; � � � ; gn)
T ;

where gi = ui+1 � ui (and electrode n+ 1 is identi�ed with electrode 1).
A single experiment consists of generating a current pattern f and collecting the

corresponding voltage drops g. In a typical problem, the measurements consist of m
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experiments involving current patterns

f (1); f (2); � � � ; f (m);

and m corresponding voltage di�erence vectors

g(1); g(2); � � � ; g(m):

The inverse problem of electrical impedance tomography is to determine the conduc-
tivity distribution inside the disk, given the currents f (j) and the measurements g(j),
j = 1; � � � ;m. The total number of data points is thus n�m.

A mathematical model for this problem is as follows. We use polar coordinates
(r; �); hence our domain
 is fr < 1g. Let u denote the voltage potential corresponding
to the current pattern f . The function u satis�es

r � (�ru) = 0 for r < 1;(1a)

where �(r; �) is the conductivity of the medium. The electrodes are of width h and
their centers are at coordinates (1; �i), �i = 2�(i�1)=n. We model the input currents
at the electrodes with the Neumann boundary condition�

�
@u

@r

�
(1; �) =

nX
i=1

fi�(�; �i);(1b)

where � is the characteristic function

�(�; �i) =

�
1=h for j� � �ij � h=2
0 otherwise

:(2)

The data for this experiment consist of voltage drops

u(1; �i+1)� u(1; �i) = gi; for i = 1; � � � ; n:

Since
Pn

i=1 fi�(x; xi) 2 L2(@
), problem (1) with the normalization
R 2�
0

u(1; �)d� = 0
and the boundary condition (1b) is a well-posed boundary value problem for u. For
other electrode models, see [7].

In order to state the inverse problem, let us denote by F (�; f) the map that takes
a given conductivity distribution, for a given prescribed current pattern f , to the
voltage drops across the adjacent electrodes. Thus F (�; f) takes values in IRn; the
i-th component of this map is

(F (�; f))i := u(1; �i+1)� u(1; �i);

where it is understood that u solves (1a), (1b).
In our problem, we choose m current patterns f (j), and measure the corresponding

voltage drops, g(j), j = 1; � � � ;m. Then, the inverse problem is to determine, to the
extent possible, the function � such that

F (�; f (j)) = g(j); j = 1; � � � ;m:

Clearly, � is not completely determined by the data. A quick parameter count indi-
cates that we have n � m pieces of real data from which we are to �nd a function,
which, in principle, has an in�nite number of unknowns. Moreover, as we shall see
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later, whatever is determinable from the measurement set may be unstable in the
sense that small errors in the data could lead to large errors in the \solution".

In this work, we will study two measurement systems; one uses so-called \dipole"
current patterns [2], [3], and the other, \trigonometric" current patterns. Isaacson
et al [9], [11] have shown that adaptive current patterns (adapted to the unknown
conductivity) are desirable. Trigonometric current patterns are optimal in the sense
of Isaacson when the unknown conductivities are radially symmetric. We remark that
all existing electrical impedance tomography systems we know of presently use either
dipole or trigonometric current patterns for imaging.

Our work attempts to address the following issues:
� Characterize the part of the conductivity (image) that is determinable from
a data set for a given noise level,

� Identify the part of the image that is lost due to the presence of noise in the
data,

� Assess the stability of the image reconstruction.
One goal of this work is to quantify the information content of the data for a given
measurement system.

Our previous work [1] [8] addressed some of the same issues for the theoretical case
where there are an in�nite number of electrodes. Cheney and Isaacson [6] investigated
the e�ects of measurement errors, �nite number of electrodes, and modeling errors
on the reconstruction of the image. Their work lead to estimates of the errors in the
Fourier transform of the image.

The method outlined in this paper is quite general, and with a little computation,
leads to a quantitative characterization of the properties of the inverse problem. In
order to facilitate our investigation, we shall consider the linearized inverse problem.
The linearization is justi�ed if the conductivity � is a small perturbation from a
constant. The properties of the linearized problem provide a useful picture of the
behavior of the fully nonlinear problem. Understanding the properties of the linearized
problem is also valuable in designing Newton-type algorithms, where at each iteration,
one must solve a linearized problem.

2. The linearized inverse problem. To linearize the problem, we assume that
the conductivity �(r; �) is of the form

�(r; �) = 1 + ��(r; �);(3)

where �� is small (say in L1(
)-norm). In addition, we make the assumption that the
support of �� is contained in 
0 where 
0 �� 
 (for convenience, let 
0 = f(r; �) j r <
r0 < 1g). We now assume that a voltage potential u(r; �) satisfying (1) can be written
in the form

u(r; �) = U (r; �) + �u(r; �);(4)

where �u is small in comparison to U in some norm. Considering �� and �u as
perturbations, we insert (3) and (4) in (1a) and (1b). After dropping terms involving
products of perturbations and collecting terms of equal orders of magnitude, we �nd
that the background �eld U (r; �) satis�es

4U = 0 for for r < 1;(5a)

@U

@r
(1; �) =

nX
i=1

fi�(�; �i)(5b)
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where �(�; �i) is the characteristic function de�ned in (2). We also require U to sat-

isfy the normalization condition
R 2�

0
U (1; �)d� = 0. The perturbational �eld �u(r; �)

satis�es

4�u = �r � ��rU for r < 1;(6a)

@�u

@r
(1; �) = 0;(6b)

where we again enforce the normalization
R 2�
0

�u(1; �)d� = 0. We emphasize that U
depends on the current pattern f . Note also that because of this dependence, �u is
also dependent on f .

The linearized forward map will be denoted byDF . The linearized mapDF takes
a conductivity perturbation ��, for a given a current pattern f , to perturbational
voltage drops on the boundary, r = 1. The i-th component of this map is

(DF (f)��)i := �u(1; �i+1)� �u(1; �i):(7)

We view the map as

DF (f) : L2(
0)! IRn:(8)

In this notation, we have explicitly stated parametric dependence of the map on the
current pattern f . The dependence is through the background �eld U (x), and is
therefore linear.

Notice that by elliptic regularity, the background �eld U is smooth and bounded
in 
0, so that the right-hand side of (6a) is a distribution inH�1(
). It follows that the
solution �u to problem (6a){(6b) is in H1(
). We then have that �uj@
0 2 H1=2(@
0)
and since �u is harmonic in the region 
�
0, it must be smooth and hence continuous
on the outer boundary @
. Thus �u is well-de�ned pointwise on @
 and (7) makes
sense. So the map DF is well-de�ned over L2(
0).

In the linearized inverse problem, the goal is to �nd �� from knowledge of the
di�erences between the measured voltage drops and the background voltage drops
U (1; �i+1) � U (1; �i) for a set of current patterns f (j), j = 1; � � � ;m. Let us denote
the background voltage due to current pattern f (j) by U (j)(x). The linearized inverse
problem is to determine �� in the equation

DF (f (j))�� = g(j) � TU (j) =: �g(j); for j = 1; � � � ;m;(9)

where TU (j) is the IR
n-vector whose components are (U (j)(1; �i+1) � U (j)(1; �i)).

Again, �� is clearly not determined because of lack of data. Note that it is also
apparent that whatever part of �� we can determine from the �nite data set will be
dependent on the choice of current patterns f (j).

We can state the linearized problem more succinctly as a \moment problem" by
explicitly obtaining a formula for the linearized forward map. This is facilitated by
the Calderon identity [5]

�

Z 2�

0

�u
@v

@r
(1; �)d� =

Z 2�

0

Z 1

0

��(r; �)rU � rv rdrd�;(10)

which is valid for a harmonic v. To obtain the i-th component of the map (DF (f)��)i,
we choose v(i)(r; �) be the generalized solution to

4v(i) = 0 in 
;(11a)
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@v(i)

@r
(1; �) = �(� � �i)� �(� � �i+1):(11b)

Inserting this in (10), we get

�u(1; �i+1)� �u(1; �i) =

Z 2�

0

Z 1

0

��(r; �)rU � rv(i)rdrd�:

Using our assumption that �� is supported in 
0, the linearized forward map is

(DF (f) � ��)i =

Z 2�

0

Z r0

0

��(r; �)rU � rv(i)rdrd�:

Thus, the linearized inverse problem is to �nd ��(r; �) such that

Z 2�

0

Z r0

0

��rU (j)
� rv(i)rdrd� = �g

(j)
i for i = 1; � � � ; n; j = 1; � � � ;m:(12)

This problem takes the form of a moment problem | we are given integrals of the
desired function ��(r; �) against weights of the form rU (j)

� rv(i).

3. Pseudo-inverse and information content of the data. At this point,
one could discretize the unknown �� with p parameters, and view the linearized for-
ward map as a map from IRp to IRn. The linearized inverse problem with m current
patterns amounts to �nding the solution of a linear system with n � m equations
and p unknowns. We could apply a standard technique, such as singular value de-
composition (SVD), to study the stability and resolvability of the problem. Such a
study would certainly lead to useful information about the problem. Unfortunately,
the information will be dependent on the discretization of the unknown conductivity
��. To avoid this undesirable property, we will analyze the problem without relying
on discretization.

To this end, we must replace the SVD with a counterpart which makes sense for
linear maps from L2(
0) to IRmn. For clarity, consider the linearized inverse problem
with one current pattern f : Find �� such that

(DF (f) � ��)i =

Z 2�

0

Z r0

0

��(r; �)rU � rv(i)rdrd� = �gi for i = 1; � � � ; n:(13)

Assume that the data �g is in the range of linearized map. Then we call ��+ a
pseudo-solution of the linearized problem if ��+ is the minimizer of the constrained
problem

min
subj DF (f)��=�g

jj��jj2L2(
0):(14)

This de�nition of the pseudo-inverse is similar to the conditions for the generalized
inverse or the Moore-Penrose inverse in matrix calculations [10]. The only notable
di�erence being that we assume a priori that �g is in the range of DF (f). We argue
that this solution is a \reasonable" choice by noting that given the �nite amount of
data, we expect to have many �� which would satisfy equation (13). In the absence
of additional information on ��, we choose, among all ��'s that �t the data, one
which has the least L2-norm. We remark that an alternative approach for solving the
moment problem (13) and estimating the information content of the data is given by
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the Backus-Gilbert method. See [12] for a discussion of the Backus-Gilbert method
and its (close) relation to the pseudo-inverse solution.

We can solve (14) by using the Lagrange multiplier method. That is, we consider
the minimization of the functional

J(��; �) =

Z r0

0

Z 2�

0

j��(r; �)j2rdrd�+

nX
i=1

�i

 Z r0

0

Z 2�

0

��(r; �)rU � rv(i)rdrd� � �gi

!
:

A necessary condition for the minimum is that

��+ =

� Pn

i=1 �irU � rv(i) for r � r0

0 otherwise
(15)

for some � 2 IRn.
The representation (15) can be intepreted as a statement about the information

content of one experiment with the current pattern f . It states that based on the
pseudo-inverse criterion we used, the part of �� that can be determined from the data
�g must be of the form given by (15). The representation is explicit since both U and
v(i) are known; recall that U (r; �) is the background voltage potential (dependent on
f), and v(i)(r; �) solves (11a-11b). The resolvable conductivity ��+(r; �) is at most n
dimensional; the number n corresponds to the n voltage drops at the electrodes.

Given the form that ��+ must take, we can determine it from the data �g by
inserting the representation (15) in equation (13) and solving for �. Before we address
this issue further, let us derive the representation for the case wherem current patterns
have been used.

Following the previous notation, let the data for current pattern f (j) be �g(j). We
performm experiments so that j = 1; � � � ;m. The linearized inverse problem is to �nd
��(x) which satis�es (12). Again, we assume that the data set �g(j) for j = 1; � � � ;m
is in the range of DF (f (j)). From the representation for the case of one experiment,
it is apparent that the pseudo-inverse for the case of m experiments must take the
form of

��+ =

( Pm

j=1

Pn

i=1 �
(j)
i rU (j)

� rv(i) for r � r0

0 otherwise
;(16)

for some vectors �(j). The number of degrees of freedom is m � n, and corresponds
to the fact that for each current pattern, we collect n real data; a total of m current
patterns have been used.

The representation (16) can be interpreted as the conductivity image that is
resolvable from the data for a particular experimental setup. Given a conductivity
distribution ��(r; �), and m current patterns, f (j), j = 1; � � � ;m, we can �nd out just
how much of the original ��(r; �) is \visible" from this set of measurements. To do
this, we project the true image ��(r; �) onto the subspace whose elements are of the
form ��+. Let

V = span
n
rU (j)

� rv(i); i = 1; � � � ; n; j = 1; � � � ;m
o
:

The decomposition above helps us to describe the visible part of the conductivity
image. Let �� be a conductivity perturbation which we want to determine. The

part of �� that is visible by the experiment is the projection of �� onto V . Such a
calculation can be used to quantify the limitations of an experimental setup. We note

6



that the elements rU (j)
� rv(i) may be linearly dependent, and hence the dimension

of V may be less than the number of elements, mn.
While the analysis above describes the information content of a data set, that

is, it characterizes what part of an image �� can be reconstructed from the data, it
does not provide any information about how well we can �nd the determinable part of
��(r; �) when the data are contaminated by measurement and modelling error. This
is the issue of stability, which we address next.

4. Stability. Given that we can at best, for a �xed experimental setup, recover
a conductivity distribution that is of the form (16), we still need to determine it. This
is easily done by inserting (16) back into the functional equation for the linearized
inverse problem (12). We �nd that �(j) must solveZ r0

0

Z 2�

0

mX
l=1

nX
k=1

�
(l)
k

�
rU (j)

� rv(i)
� �

rU (l)
� rv(k)

�
rdrd� = �g

(j)
i

for i = 1; � � � ; n; j = 1; � � � ;m:(17)

Let us write this equation in matrix form. De�ne K(j;l) to be the n�n matrix whose
elements are

K
(j;l)
ik =

Z r0

0

Z 2�

0

�
rU (j)

� rv(i)
��

rU (l)
� rv(k)

�
rdrd�:(18)

Each term �(l) is an IRn-vector. Hence, we can rewrite (17) in the form2
66664

K(1;1) K(1;2)
� � � K(1;m)

K(2;1) K(2;2)
� � � K(2;m)

� � � � � � � � �

� � � � � � � � �

K(m;1) K(m;2)
� � � K(m;m)

3
77775

2
66664

�(1)

�(2)

�

�

�(m)

3
77775 =

2
66664

�g(1)

�g(2)

�

�

�g(m)

3
77775 :(19)

The linearized inverse problem, in the context of the pseudo-solution that we de�ned,
has now been reduced to the problem of solving the linear system (19) for m vectors
�(l) 2 IRn.

Denote the matrix on the left-hand side of (19) by K; K is an mn �mn square
matrix. Each subblock of this matrix is

K(jl) = DF (f (j))DF (f (l))T :

The elements of K possess the symmetry

K
(jl)
ik = K

(lj)
ki ;(20)

as can be seen in (18). The �rst row of the submatrix K(jl) is

(K
(jl)
11 ;K

(jl)
12 ; � � � ;K

(jl)
1n ):

Compare this with the �rst column of the submatrix K(lj), which is

(K
(lj)
11 ;K

(lj)
21 ; � � � ;K

(lj)
n1 )T :

The symmetry of the elements (20) lead us to conclude that �rst row of K(jl) is the
same as the �rst column of K(lj). The same conclusion holds for the other rows of
K(jl) and the other columns of K(lj). Therefore, the matrix K is symmetric.
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At this point, note that we do not expect the matrixK to be invertible in general
because there is no guarantee that the columns of K are independent. We argue that
an acceptable solution is the pseudo-inverse solution of the linear system.

Since K is symmetric, we can diagonalize (SVD) K into

K = Q�QT ;

where Q is an orthonormal matrix, and � is a diagonal matrix of eigenvalues of K.
Let � and 	 be two columns of Q whose eigenvalues are � and �, respectively. We
rewrite � in the form

� = [�(1)
T
; �(2)

T
; � � � ; �(m)T ]T ;

where each �(j) is an IRn vector. The conductivity image associated with � is

��� =

nX
i=1

mX
j=1

�
(j)
i rU (j)

� rv(i):

Similarly, the image associated with the vector 	 is

��	 =

nX
i=1

mX
j=1

 
(j)
i rU (j)

� rv(i);

where we have used the same decomposition on 	 as on �. Next, we compute the
inner product of ��� with ��	,Z 2�

0

Z r0

0

��� ��	rdrd�

=

nX
i=1

mX
j=1

mX
k=1

mX
l=1

�
(j)
i  

(l)
k

Z 2�

0

Z r0

0

�
rU (j)

� rv(i)
��

rU (k)
� rv(k)

�
rdrd�

= �TK	

= ��T	

= 0:

Therefore, associated with the columns of Q is an orthogonal set of conductivity

perturbations.
The pseudo-inverse solution to the linear system (19) is a linear combination of

the columns of Q. This means that the conductivity distribution de�ned by the
pseudo-inverse is a linear combination of the orthogonal conductivities associated
with the columns of Q. Since the columns of Q are orthogonal, the pseudo-inverse
solution of (19) for �(j) corresponds to the pseudo-inverse solution in the conductivity
perturbation ��. In other words, by �nding the pseudo-inverse of (19) and inserting it
in (16), we get a conductivity image that is consistent with the data and has minimal
L2(
0)-norm.

The stability of the solution of (19) is determined by the singular values (eigenval-
ues) of the matrix K. Suppose the largest singular value of K is �1 and the smallest
nonzero singular value is �p for some p � mn. The condition number of the matrix,
in the context of the pseudo-inverse, is

� =
�1

�p
:
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This number tells us how stably we can reconstruct the resolvable image from the
data. The number � can be viewed as the error magni�cation factor. As we shall see,
the problem can be very ill-conditioned.

A better way to use the singular value decomposition in solving ill-conditioned
problem as follows. Suppose that we will only tolerate error magni�cation of some
�xed value M . Then we construct the pseudo-inverse by including singular vectors
whose singular values are larger or equal to �1=M . See Golub and van Loan [10].
Such a construction guarantees that the condition number of the pseudo-inverse will
be approximately equal to, but no greater than, M .

In the presence of uncertainty in data, we see that stability itself further restricts
the level of resolution of a conductivity image. To properly assess the resolution limit
of a measurement device, we must �nd out what part of an image �� is recoverable
from a data set containing errors.

An experiment is characterized by
� Current patterns f (j), j = 1; � � � ;m,
� Condition number M of the pseudo-inverse (error magni�cation tolerance),
based on a priori estimate of measurement errors.

To assess what part of a given image ��(r; �) can be \seen" by such a system, consider
the linear system (19) using

[(DF (f (1)) � ��)T ; (DF (f (2)) � ��)T ; � � � ; (DF (f (m)) � ��)T ]T

as the right-hand side, and �nd the pseudo-inverse which includes singular vectors
whose singular values are greater than or equal to �1=M . Denote the solution by
�(j)+. The resulting image, given by

��+ =

� Pm
j=1

Pn
i=1 �

(j)+(rU (j)
� rv(i)) for r � r0

0 otherwise
;

is what is resolvable by the system for the given condition number M .

5. Relationship among current patterns. For the dipole current pattern, in
the j-th experiment, we have current owing into electrode j and out of electrode
j + 1. We use d(j) to denote this pattern, which is given by

d(j) = [0; 0; � � �; 0; 1;�1; 0; � � �]T ;

where the entry 1 appears as the j-th entry. The dipole pattern d(1) is

d(1) = [1;�1; 0; � � � ; 0]T ;

the other dipole patterns are simply rotations of this vector.
Recall that current patterns f must satisfy

Pn
i=1 fi = 0. Any current pattern

is thus a linear combination of the dipole patterns, and hence the linearized forward
map corresponding to any current pattern can be extracted from the linearized forward
maps corresponding to the full set of dipole patterns.

Let f be an IRn vector corresponding to some current pattern. To �nd a repre-
sentation for f in terms of a linear combination of the dipole patterns, we solve2

6666664

1 0 � � � �1
�1 1 � � � 0
0 �1 � � � 0
� 0 � � � 0
� � � � � �

0 0 � � � 1

3
7777775

2
6666664

x1
x2
x3
�

�

xn

3
7777775
=

2
6666664

f1
f2
f3
�

�

fn

3
7777775
:(21)
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The columns of the matrix above are the dipole patterns; the location of the 1 entry
reveals the location of the input dipole source. The coe�cients xj, j = 1; � � � ; n is the
weight in the linear combination

f =

nX
j=1

xjd
(j):

The background potential corresponding to the current pattern f is then

U (r; �) =

nX
j=1

xjV
(j)(r; �)

where V (j) is the background �eld due to dipole d(j). Therefore, the linearized forward
map corresponding to the current pattern f is related to those of the dipole current
patterns by

DF (f)�� =

nX
j=1

xjDF (d(j))��:

When m experiments are carried out with current patterns f (j) for j = 1; � � � ;m, the
resolvable image is (16),

��+ =

( Pm
j=1

Pn
i=1 �

(j)
i

Pn
j0=1 x

(j)
j0 rV

(j0)
� rv(i) for r � r0

0 otherwise
:(22)

In the preceeding equation, x(j) satis�es

f (j) =

nX
j0=1

x
(j)
j0 d

(j0):

From the de�nition of the matrix elementK
(j;l)
ik in equation (17), it is apparent that if

K
(j;l)
ik is the element corresponding to the dipole patterns, the element corresponding

to the set of patterns f (j), j = 1; � � � ;m, is

~K
(j;l)
ik =

nX
j0=1

nX
l0=1

x
(j)
j0 K

(j0;l0)
ik x

(l)
l0 :

In matrix form, we can write

~K = XKXT ;(23a)

where

X =

2
666664

x
(1)
1 I x

(1)
2 I � � � x

(1)
n I

x
(2)
1 I x

(2)
2 I � � � x

(2)
n I

� � � � � � � � �

� � � � � � � � �

x
(m)
1 I x

(m)
2 I � � � x

(m)
n I

3
777775 :(23b)
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Here, I is an n-by-n identity matrix. The system using dipole current patterns can
thus be used as a basis for studying a system using current patterns f (j), j = 1; � � � ;m.
We solve for x(j) from f (j) and insert them in (23) to obtain ~K fromK. The resolvable
image is found by �nding a pseudo-solution of the system (19) with matrix K, and
inserting it in (22).

The linear system (21) can be solved in closed form using Discrete Fourier Trans-
forms. Note that the matrix-vector product is merely the discrete convolution of d(1)

with the vector x. In the Fourier Transform domain, convolutions are products. The
Discrete Fourier Transform of a vector x 2 IR

n is

Xk =

nX
j=1

xj exp

�
�
2�i(j � 1)(k � 1)

n

�
; for k = 1; 2; � � � ; n:

The inversion formula is given by

xj =
1

n

nX
k=1

Xk exp

�
2�i(j � 1)(k � 1)

n

�
:

Let D and F stand for the Discrete Fourier Transforms of d(1) and f , respectively.
Note that D1 = 0. Using the properties of Fourier Transforms on convolutions, we
�nd that

Xk =

�
0 if k = 1
Fk=Dk otherwise

:

Once Xk is found, it is inserted in the inversion formula to produce xj .
We can thus explicitly calculate the matrix X which transforms the matrix K

corresponding to dipole current patterns into the matrix ~K corresponding to trigono-
metric patterns. The full set of trigonometric current patterns are vectors f with
elements

fj =

8<
:

cos
�
2� (j�1)(k�1)

n

�
k = 2; � � � ; n=2 + 1

sin
�
2� (j�1)(k�1)

n

�
k = 2; � � � ; n=2

(24)

(for convenience, we assumed that n is even). There are a total of n� 1 current pat-
terns. By direct calculation, we found that the coe�cients in the linear combination
to produce the cosines are

xj =
cos
�
2� (j�1)(k�1)

n

�
� cos

�
2� j(k�1)

n

�
2� 2 cos

�
2� (k�1)

n

� ; for j = 1; � � � ; n; k = 2; � � � ; n=2 + 1;

and for the sines,

xj =
� sin

�
2�

(j�1)(k�1)
n

�
+ sin

�
2� j(k�1)

n

�
2� 2 cos

�
2� (k�1)

n

� ; for j = 1; � � � ; n; k = 2; � � � ; n=2:

This calculation gives an explicit formula for the ingredients needed to compute ~K
from K.
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6. Point electrodes. We consider here the special case where the electrodes
are \point" electrodes. This leads to further simpli�cations which are a�orded by the
simplicity of the solution for U (j). In the case of point electrodes, we have, instead of
(5b), the Neumann condition

@U

@r
(1; �) =

nX
i=1

fi�(� � �i):

As mentioned in the last section, we can use the solutions for the dipoles as a foun-
dation for studying all other current patterns. Therefore, we will study the potential
due to a dipole.

In the dipole current pattern, when current is owing from electrode j to electrode
j + 1, and we have point electrodes, the appropriate boundary condition is

@U

@r
(1; �) = �(� � �j)� �(� � �j+1):

This is exactly the same boundary condition as for the harmonic functions v(i), see
(11b). Therefore, the background potential U (j) for this dipole pattern (current from
j to j + 1) is equal to v(j).

We can compute v(j) using conformal mapping. In complex variable z = x + iy,
the active electrodes are located at

zj = exp i�j and zj+1 = exp i�j+1:

We �nd a conformalmap �(z) which takes z1, z2 and the point z� = exp(i(�j+�j+1)=2)
to (complex Cartesian coordinates)

1; � 1; i:

This map is the fractional linear transformation given by

�(z) =
a� cz

dz � b
;

where

a = �(1 + i)zj+1 + (1 � i)zj�

b = (1 + i)zj+1 + (1� i)zj�

c = �(1 + i) + (1� i)�

d = (1 + i) + (1� i)�

� = (zj+1 � z
�
)=(zj � z

�
)

We compose this map with the complex potential �eld when the current is owing
from coordinates (1; 0) to (�1; 0), which is

g(z) =
1

�
log

1 + z

1� z
:

The desired potential �eld is then

v(j) = Re g(�(z)):
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The gradient of v(j) is

rv(j) =
1

�

�
Re

d

dz
g(�(z));�Im

d

dz
g(�(z))

�
:

The matrix K for the dipole patterns then is calculated using [cf. (18)]

K
(j;l)
ik =

Z r0

0

Z 2�

0

�
rv(j) � rv(i)

��
rv(l) � rv(k)

�
rdrd�:(25)

The representation for the determinable part of the image is (16)

��+ =

( Pm
j=1

Pn
i=1 �

(j)
i rv(j) � rv(i) for r � r0;

0 otherwise.
(26)

Notice that due to symmetry, the space of resolvable images using all n dipole patterns

V = span
n
rv(j) � rv(i); i = 1; : : : ; n; j = 1; : : : ; n

o
can have dimension no more than n(n+1)=2. In fact, since the space of dipole current
patterns is spanned by n � 1 linearly independent dipole patterns, the dimension of
V can be no more than n(n� 1)=2.

Once K is computed, we can use the results of the last section to �nd the matrix
~K, which is the matrix associated with the trigonometric current patterns. We can
also �nd the determinable part of the conductivity by making use of (26).

7. Dipole patterns vs. trigonometric patterns. In this section, we describe
a numerical study of the relative stability of the linearized problem for two speci�c
sets of input current patterns: dipole patterns and trigonometric patterns. There
has been some controversy over which of the two patterns actually \work best" in
practical imaging systems. The results of this section suggest that in most cases, the
trigonometric patterns lead to a slightly more stable problem and can provide more
accurate reconstructions given a �xed condition number for the pseudo-inverse.

These experiments are based on the point-electrode model. We used the explicit
representation for the gradients of the background �elds rv(j) derived in Section 6

to calculate the matrix K corresponding to dipole current patterns, as given by (25).
FromK we then calculated the matrix ~K = XKXT corresponding to the trigonomet-
ric current patterns, where X is the trigonometric transformation matrix described in
Section 5. To make our comparisons between current patterns \fair", we normalized
the trigonometric patterns to have the same l2 norm as the dipole patterns.

The relative stability of the two matrices K and ~K can be studied by calculating
the SVDs

K = Q�QT ; and ~K = ~Q ~� ~QT

as described in Section 4. Using the SVD, we can also calculate the pseudo-inverse and
hence compare optimally reconstructed images for the two sets of current patterns.

Figure 1 shows the logarithms of the normalized singular values �p=�1 (sorted

in decreasing order) for the matrices K and ~K describing a 16-electrode system. As
we mentioned in Section 6, the dimension of the space V of visible images with an
n-electrode system (with point electrodes) can be no greater than n(n�1)=2. Figure 1

13



Fig. 1. Logarithm of �p=�1 versus p for the matrices K and ~K.

illustrates the rapid decay toward zero of the singular values as the index approaches
n(n� 1)=2 = 120. From Figure 1 we also see that most of the relative singular values
are slightly larger for the \trigonometric" matrix ~K than for the \dipole" K. We
made the same comparison of singular values for n-electrode systems with n ranging
from 8 to 24|in all cases the behavior was qualitatively similar to that shown in
Figure 1, with ~K exhibiting slightly larger relative singular values over most of the
index range, and a rapid drop-o� as the index p approaches n(n � 1)=2, suggesting
that higher resolution reconstruction are necessarily unstable.

Perhaps a more realistic way to compare the stability of the two problems is to
apply the criterion discussed in Section 4, where we �x the condition number of the
pseudo-inverse (error magni�cation tolerance) M , and construct the pseudo-inverse
accordingly, i.e., include in our reconstruction only the singular vectors corresponding
to singular values �p such that �1=�p � M . In Figure 2, we have plotted the index
p (the number of singular vectors allowed in the reconstruction) versus the condition
number of the pseudo-inverse M , for a 20-electrode system. Roughly speaking, this
�gure represents the plots of resolution versus stability for the two systems. Notice
that for \moderate" values M (moderately stable inversion), the number of allowed
singular vectors for the trigonometric current patterns can be on the order of 20
percent more than the number of allowed vectors for dipole current patterns. This
would suggest that for moderate values of M , a system using trigonometric current
patterns will produce higher resolution images than one using dipole patterns.

Thus, the increased stability a�orded by the trigonometric current patterns allows
one to safely include a larger number of singular vectors in the reconstruction. The
e�ect on the reconstruction can be very noticeable, particularly for low values ofM|
presumably the typical case in real measurement systems. Figure 3 shows the image

14



Fig. 2. Number of allowable singular vectors versus condition number M

of a small inclusion in the conductivity, located approximately midway between the
center and the boundary of the region. Using the SVD, we calculated the \stabilized"
pseudo-inverse as described in Section 4, including in the reconstruction only those
singular vectors associated with singular values �p such that �1=�p � M . In the
reconstruction, we have assumed that the image �� is zero for r > 0:85. Figure 4
shows the reconstructed images of the inclusion in Figure 3, performed with a 20-
electrode system and using a condition number M = 600. In this case, the number
of singular vectors allowed for the dipole system was 45; the trigonometric system
allowed 57 (about 26 percent more). Figure 4a shows the reconstruction using dipole
current patterns; Figure 4b shows the reconstruction with trigonometric patterns.

We note that the gray-scales are di�erent between all three images. In fact, the
absolute magnitude of the trigonometric reconstruction is almost twice that of the
dipole reconstruction. Perhaps the most remarkable di�erence between the two
reconstructions is that the dipole reconstruction was unable to resolve the location
of the inclusion in the radial direction, whereas the trigonometric reconstruction,
although \blurry", locates the inclusion reasonably well.

Of course, by increasing the condition number of the pseudo-inverse M and hence
sacri�cing some stability, more accurate reconstructions can be obtained for both cur-
rent patterns. In Figure 5 and Figure 6, we compare the dipole and trigonometric
reconstructions with condition numbers M = 6� 103 and M = 6� 104, respectively.
We observe that, as expected, both reconstructions improve as M increases. In ad-
dition, the di�erence between the dipole and trigonometric reconstructions appears
to diminish for larger M . For M = 6 � 103, the dipole system allowed 61 singular
vectors, compared to 71 for the trigonometric system (about 16 percent more). For
M = 6 � 104, the dipole system allowed 79 singular vectors, with the trigonometric
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Fig. 3. Conductivity inclusion.

Fig. 4. Reconstructions with condition number M = 600. (a.) Reconstructed image using
dipole current patterns. (b.) Reconstructed image using trigonometric current patterns.
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Fig. 5. Reconstructions with condition number M = 6000. (a.) Reconstructed image using
dipole current patterns. (b.) Reconstructed image using trigonometric current patterns.

Fig. 6. Reconstructions with condition number M = 6� 104. (a.) Reconstructed image using
dipole current patterns. (b.) Reconstructed image using trigonometric current patterns.
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Fig. 7. Proportion of the total number of singular vectors allowed at M = 1000, versus number

of electrodes.

system allowing 85 (about 7.6 percent more). Thus, the resolution advantage a�orded
by the trigonometric current patterns appears to decrease asM increases. This is also
reected in Figure 1.

Given condition number in the reconstruction M , it is interesting to examine the
number of singular vectors allowed as a percentage of the total number of singular
vectors (associated with non-zero singular values), as the number of electrodes in the
system is increased. This gives an indication of the amount of additional information
which can be obtained by adding more electrodes to the system in the presence of
�xed uncertainty in the data. Figure 7 shows graphs of the percentage of singular
vectors versus number of electrodes for condition numberM = 1000. Clearly there is
a downward trend. The data indicate (roughly) that the absolute number of allowable
singular vectors for both dipole and trigonometric current patterns increases in direct

proportion to the number of electrodes in the system. We examined the data with
M set at several values ranging from 500 to 105, with results qualitatively similar
to those shown in Figure 7. Again we found that the trigonometric current patterns
generally allowed a higher percentage of singular vectors.

8. Discussion. In this paper we have studied the problem of characterizing the
information content of the data for the linearized electrical impedance tomography
problem, for imaging systems with a �nite number of electrodes. We have described
how to construct a pseudo-inverse operator, which gives the minimum-norm least-
squares solution to the linearized problem. We discussed how to modify the pseudo-
solution to take into account the inevitable uncertainty in the data. We then showed
how electrical impedance imaging systems using any set of current patterns as in-
puts can be analyzed by studying the case where dipole current patterns are used.
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Models using di�erent current patterns can be translated back and forth via a simple
transformation matrix.

Finally, we carried out a numerical study comparing the stability and resolving
power of imaging systems using dipole current patterns versus systems using trigono-
metric current patterns. Our numerical results suggest that trigonometric patterns
usually lead to a slightly more stable system and can provide more accurate recon-
structions than dipole patterns for moderate error magni�cation tolerances.

In our numerical investigation, we used point electrodes. Observe that the func-
tions rv(j) � rv(i) [see equation (26)], which make up the image ��, are singular at
the boundary r = 1 for angles �j , �j+1, �i, and �i+1. In a system with �nite width
electrodes, we would replace v(j) with V (j), which is a harmonic function satisfying
(5b) for dipole f 's. The functions rV (j)

� rv(i) are less singular at the boundary
than the functions rv(j) � rv(i). Therefore we conjecture that images constructed by
a system with wider electrodes will be better in quality than those constructed with
narrow electrodes.

Many more interesting questions remain to be addressed. Two questions in par-
ticular follow from the present work. First, our numerical study suggests that trigono-
metric current patterns usually lead to a more stable linearized problem. Is it possible
to prove that this is the case? More generally, are there other current patterns which
lead to a linearized problem which is more stable than that given by trigonometric
patterns? Second, we have shown how to compute the SVD for the linearized prob-
lem. We noticed in our computations that the singular vectors are highly structured
and possess remarkable symmetry properties. The question is whether it is possible to
�nd some explicit representation for the singular vectors|at least for simple current
patterns such as dipoles.
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