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Abstract. Active Appearance Models (AAM) are compact represen-
tations of the shape and appearance of objects. Fitting AAMs to im-
ages is a difficult, non-linear optimization task. Traditional approaches
minimize the L2 norm error between the model instance and the input
image warped onto the model coordinate frame. While this works well
for high resolution data, the fitting accuracy degrades quickly at lower
resolutions. In this paper, we show that a careful design of the fitting
criterion can overcome many of the low resolution challenges. In our
resolution-aware formulation (RAF), we explicitly account for the finite
size sensing elements of digital cameras, and simultaneously model the
processes of object appearance variation, geometric deformation, and im-
age formation. As such, our Gauss-Newton gradient descent algorithm
not only synthesizes model instances as a function of estimated parame-
ters, but also simulates the formation of low resolution images in a dig-
ital camera. We compare the RAF algorithm against a state-of-the-art
tracker across a variety of resolution and model complexity levels. Ex-
perimental results show that RAF considerably improves the estimation
accuracy of both shape and appearance parameters when fitting to low
resolution data.

1 Introduction

Image analysis at low resolution has its challenges. Due to camera blur, objects
appear fuzzy, lose their boundaries, and start looking alike. This degradation
makes detection, localization, and classification tasks increasingly more difficult,
if not impractical.

In this paper, we focus on the tracking performance of Active Appearance
Models (AAM) [5, 7] in low resolution regimes. Fitting AAMs is a non-trivial
optimization task [10]. Traditional approaches minimize the L2 norm error be-
tween the model instance and the input image warped onto the model coordinate
frame [5, 7, 10]. While this formulation works well for high resolution data, its
accuracy degrades quickly at lower resolutions.

Any representation, model, and/or algorithm will perform poorly under con-
ditions they are not built for, and the fitting of AAMs is no exception. In this
paper, we diagnose why the traditional model fitting degrades, and propose a
remedy. We show that a careful redesign of the AAM fitting criterion can indeed
overcome accuracy degradation at low resolution.
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2 Background

2.1 Active Appearance Models

An AAM [5, 7] consists of two models, namely the shape and appearance of
an object. Each of these is a linear, Principal Components model learned from
training data. The shape of an AAM is defined by a set of landmark locations

s = (x1, y1, x2, y2, . . . , xv, yv)
T. (1)

The shape model, parametrized with p = (p1, p2, . . . , pn), expresses any shape
as a linear combination of basis shapes added onto a base shape:

s(p) = s0 +

n
∑

i=1

pisi. (2)

An AAM is defined in the coordinate system of the object being modeled. To
express object instances in arbitrary poses, a global transform is needed. Follow-
ing [10], we define four special shape bases to account for similarity transforms
(scale, rotation, and two translations), and compose them with the shape model.
We denote the combined geometric deformation by W(x;p), where x is a model
point coordinate being mapped onto an image coordinate.

The appearance model consists of the mean and basis images. These images
are shape-normalized, i.e., they are defined within the base shape s0. The ap-
pearance model is linear, and parametrized with λ = (λ1, λ2, . . . , λm) as

A(x; λ) = A0(x) +
m

∑

i=1

λiAi(x) ∀ x ∈ s0, (3)

where x is a pixel coordinate in s0. The appearance basis images are usually
defined at the same resolution as the training images.

In this paper, we consider the simpler case of independent AAMs [10], where
the statistical dependence between the shape and appearance is ignored. While
such couplings have been exploited in prior work, their advantages remain or-
thogonal to our discussion.

2.2 Traditional Fitting Formulation

Given a set of AAM parameters, the linear generative equations (2) and (3) can
uniquely synthesize an object instance. Image analysis deals with the inverse
of this process. It aims to recover those AAM parameters which best explain a
given image. For this end, one needs to define a similarity metric to quantify what
constitutes a good match, and a fitting algorithm for computing the parameter
values which optimize the similarity metric. The choice of this fitting criterion
is the main subject of this paper.

In the original AAM work by Cootes et al. [5,6,7], as well as its computation-
ally efficient reformulation by Matthews and Baker [10], the fitting criterion was
the sum of squared intensity differences between the synthesized model template
and the warped input image I:
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∑

x∈s0

[

I
(

W(x;p)
)

− A(x; λ)
]2

. (4)

Note that the summation above is defined over x, pixel coordinates in the shape-
normalized template image. Since this objective function is highly nonlinear in
its parameters, iterative gradient-descent methods were used to find its mini-
mum: At each iteration, updates ∆p and ∆λ were computed and added to (or
composed with) current estimates of p and λ, respectively. Cootes et al. [5,6,7]
assumed a constant, linear relationship between the error image and the additive
updates. They learned this mapping through regression on perturbation-based
training data. Matthews and Baker [10] explored linearizing the objective func-
tion just as in the Lucas-Kanade [2] registration algorithm, and achieved com-
putational savings by switching the roles of the template and input images [9]
in computing the warp update ∆p.

2.3 The Unsuspected Culprit in Low Resolution Problems

Any search method for optimizing the criterion (4) would suffer from a large
number of local minima. In some cases, the solution might even be ambiguous.
To make matters worse, these difficulties are only exacerbated when the available
data is noisy and low in resolution, such as in surveillance imagery.

Let u denote the pixel coordinates of a low resolution observation I. As visu-
alized in Fig. 1, the fitting criterion (4) prescribes first warping and interpolating

the image I, and then comparing it against the synthesized template. Recall that
the summation in (4) is defined over the pixels of the template. The latter is

I(u) I
�
W(u;p)

�
I
�
W(x;p)

�
A(x;λ)

Fig. 1. Graphical representation of the traditional fitting criterion of (4). From left
to right, observed images get warped, interpolated, and finally compared against the
synthesized model instance. When the input image is low in resolution, significant
interpolation is needed to warp it onto the model coordinate frame.
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normalized to shape s0 at the AAM’s native resolution, and remains fixed in
size. Consequently, when objects appear small in comparison to the AAM, they
need to be enlarged through interpolation.

This reliance on interpolation used in the traditional formulation turns out
to be its Achilles’ heel in low resolution regimes. The fitting criterion itself
becomes increasingly suboptimal (in accuracy) with higher scaling factors. This
is an artifact of formulation. Using the same gradient-descent algorithm and low
resolution data, but minimizing a more carefully designed fitting criterion, we
will show that we can overcome low resolution challenges.

3 Resolution-Aware Fitting (RAF)

3.1 Formulation

We propose an alternative to the fitting criterion (4). In order to better account
for low resolution data, our formulation takes a generative point of view and
incorporates the image formation model of a typical CCD camera [1]. We feed the
AAM and its current parameters into a camera model, and compare the outcome
against the observed low resolution image. Mathematically, the proposed fitting
criterion is

∑

u∈I

[

I(u) − B
(

u; A(W(p); λ)
)]2

, (5)

where the summation is now over pixel coordinates u of the observed image
I. The operator B simulates a low resolution image of the object, believed to
be what the camera would have captured under current AAM parameters. This

I(u) B
�
u; A(W(p); λ)

�
A
�
W(x;p); λ

�
A(x;λ)

Fig. 2. The Resolution-Aware Fitting (RAF) algorithm simulates the formation of low
resolution images in a digital camera. In contrast to the traditional formulation (Fig. 1),
the fitting criterion is defined between observed and simulated image pixels.
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formulation can accommodate arbitrary camera models and point spread func-
tions. In this paper, we use the rectangular PSF

B
(

u; A(W(p); λ)
)

=
1

area(u)

∫

u′ ∈bin(u)

A
(

W
−1

(u′;p); λ
)

du′,

where the continuous integral is defined over bin(u), the sensing area of the dis-
crete pixel u. As illustrated in Fig. 2, the blur operator itself is independent of
AAM parameters. It simply averages out those template pixel intensities which
map into a low resolution pixel’s sensing area under the current warp p. To ex-
press the integral above in the shape-normalized coordinate frame s0, we observe
that u′ = W(x;p), and consequently, du′ =

∣

∣J
(

W(p)
)∣

∣dx,

B
(

u; A(W(p); λ)
)

=
1

area(u)

∫

x∈s0 s.t.

W(x;p) ∈ bin(u)

A(x; λ)
∣

∣J
(

W(p)
)∣

∣dx.

In practice, we implement this integration as a discrete, Jacobian-weigthed sum
over template pixels,

B
(

u; A(W(p); λ)
)

=
1

area(u)

∑

x∈s0 s.t.

u−
�
.5

.5

�
<W(x;p)<u+

�
.5

.5

�

A(x; λ)
∣

∣J
(

W(p)
)∣

∣. (6)

Observe that our formulation avoids interpolating low resolution data, and mod-
els the object appearance, geometric deformation, and the image formation pro-
cesses simultaneously.

3.2 RAF Algorithm

We now present a Gauss-Newton gradient-descent scheme for the minimization
of the fitting criterion (5) with respect to p and λ. Until convergence, updates
∆p and ∆λ will be iteratively computed and added to the current estimates.
The derivation below closely follows that of the simultaneous algorithm in [8].
Expressing A as a sum of the mean and linearly weighted basis images, the fitting
criterion is

∑

u∈I

[

I(u)−B
(

u; A0

(

W(p)
)

+
m

∑

i=1

λiAi

(

W(p)
)

)

]2

.

Consider the Taylor expansion

∑

u∈I

[

I(u)−B
(

u; A0

(

W(p+∆p)
)

+

m
∑

i=1

(λi+∆λi)Ai

(

W(p+∆p)
)

)

]2

.
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Ignoring its second-order terms, the fitting criterion is approximately

∑

u∈I

[

I(u)−B

(

u;A0

(

W(p)
)

+∇A0

∂W

∂p
∆p+

m
∑

i=1

(λi+∆λi)
(

Ai

(

W(p)
)

+∇Ai

∂W

∂p
∆p

)

)

]2

.

For notational conciseness, denote n + m steepest-descent images as

SDsim=

[

(

∇A0+

m
∑

i=1

λi∇Ai

)∂W

∂p1
, ...,

(

∇A0+

m
∑

i=1

λi∇Ai

)∂W

∂pn

,A1

(

W(p)
)

, ...,Am

(

W(p)
)

]

.

We can now compactly rewrite the fitting criterion as

∑

u∈I

[

I(u)−B

(

u; A0(W(p))+

m
∑

i=1

λiAi(W(p))−SDsim

(

∆p

∆λ

)

)]2

.

Observing that B is a linear operator, the objective function to be minimized is

∑

u∈I

[

I(u)−B
(

u; A0

(

W(p)
)

)

+

m
∑

i=1

λiB
(

u; Ai

(

W(p)
)

)

−B
(

u;SDsim

)

(

∆p

∆λ

)

]2

,

whose minimum is given by
(

∆p

∆λ

)

=−H
−1

sim

∑

u∈I

B
(

u;SD
T

sim

)

[

I(u)−B
(

u; A0

(

W(p)
)

)

+

m
∑

i=1

λiB
(

u; Ai

(

W(p)
)

)

]

,

where Hsim is the Hessian with appearance variation:

Hsim =
∑

u∈I

B
(

u;SDT
sim

)

B
(

u;SDsim

)

.

4 Quantifying the Benefits of RAF

We compared the RAF formulation (5) to the traditional formulation in (4). In
particular, we compared the algorithm detailed in Section 3.2 with the simul-
taneous, inverse-compositional algorithm described in [11], which we refer to as
AAMR-SIM. This represents a fair ground for comparison, since Matthews &
Baker [10] “project out” the appearance variation. We artificially downscaled a
variety of input test sequences by a range of scaling factors, and measured each
algorithm’s accuracy at lower input resolutions.

Independently of the resolution of a given test sequence, we initialized all
algorithms with fitting results at the highest resolution. This allowed us to dis-
card initialization quality as a confounding factor when comparing performances
across resolution levels. While manual initialization is reasonable at higher res-
olutions, it becomes increasingly sub-optimal in lower resolutions, jeopardizing
the fairness of comparisons across scales. Once in tracking mode, the fitting of
each frame was initialized with the parameters of the preceding frame.
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Fig. 3. We define two metrics to compare the fitting accuracy of algorithms. The
average landmark tracking error combines the estimation accuracy of the similarity and
non-rigid shape parameters. The reconstruction error quantifies how well the underlying
high-resolution face could be inferred based only on low resolution data.

4.1 Metrics of Fit Quality

The most appropriate metric of an AAM’s fit quality depends on the applica-
tion at hand. For example, in an object tracking scenario, only the global pose
(i.e., the similarity transform parameters) may be of interest. For lip-reading,
non-rigid deformations of a speaker’s lips, encoded by a facial AAM’s shape
coefficients, may carry all the information. If the application requires synthesiz-
ing realistic face images, accurate appearance parameter estimates may be of
importance.

In the lack of a specific application, we defined two metrics, illustrated in
Fig. 3, to compare the fitting accuracy of the RAF and AAMR-SIM algorithms.
The tracking error is the position error of landmarks (such as the corner of
nostrils), averaged over the face: this is a combined effect of both similarity
transform (scale, rotation, and translation) and non-rigid deformation parame-
ters, as encoded by the estimate p̂. The reconstruction error, on the other hand,
is computed by comparing the synthesized model instance, parametrized by λ̂,
against the ground truth image. In addition, we report estimation errors for the
coefficients of the top four principal shape and appearance modes.

For all test sequences included in this paper, only the landmark coordinates
were available as hand-labeled, ground truth data. To infer the ground truth
values for the similarity, non-rigid shape and appearance variables, we ran the
AAMR-SIM tracker at the original resolution of the videos, and verified its con-
vergence (each landmark’s tracking error smaller than 1 high-resolution pixel).
The resulting parameter estimates were then regarded as “ground truth” values.

4.2 Examples

Before presenting extensive quantitative results, some examples of our error
metrics and their temporal behavior would be in order. In reporting Euclidian
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Fig. 4. The landmark tracking (upper left) and reconstruction (upper right) error
metrics are plotted as a function of time for a 10-fold resolution degraded tracking
experiment. Included images (bottom, captured at frame no. 102) display the mesh fits
as well as synthesized model images (lower right). We overlay the latter onto pixel-
replicated low resolution inputs (lower left) to demonstrate how well the underlying
high-resolution image could be inferred.

distance metrics (as in translation parameters or landmark tracking error), we
scale-normalize the estimates so that their numerical values are in high-resolution
pixel units. Similarly, we normalize each shape and appearance coefficient accord-
ing to its mode’s variance, and report them in units of their standard deviation.

Fig. 4 plots error trajectories of a low resolution tracking experiment, where
the subject’s speaking and eye blinking were the major sources of motion. The
input sequence was 10 times lower in resolution than the AAM. The error metrics
indicate that RAF tracked the face consistently better than AAMR-SIM. To
provide further evidence, Fig. 5 shows temporal trajectories of selected variables.
Those estimated by AAMR-SIM do not follow the ground truth values, and
remain mostly constant. In contrast, RAF can track the non-rigid deformations
and appearance changes, amounting to a more accurate recovery of the facial
expressions. We included this experiment and others in the supplemental video1.

4.3 Test Set Statistics

It would be impractical to include time trajectories for all our experiments. In the
following, we simply include the temporal mean and standard deviation of the
Root Mean Squared (RMS) errors of selected variables. Note that lost trackers
can easily corrupt these statistics with outliers. To prevent this, we required
both trackers to produce valid results (i.e., not have lost track of the face) for a
fitting instance to be included in the comparison. This was achieved by visually
inspecting all experiments and verifying that faces were tracked reasonably well.

1 Demonstrations available at http://www.cs.cmu.edu/∼dedeoglu/eccv06

http://www.cs.cmu.edu/~dedeoglu/eccv06
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Fig. 5. Selected temporal trajectories are shown for a 10-fold resolution degraded face
tracking experiment. As the supplemental video material shows, the main source of
motion were the subject’s speaking and eye blinking. See Fig. 4 for one example frame of
this sequence. The estimates of AAMR-SIM do not follow the ground truth, and remain
mostly constant. In contrast, RAF remains close to ground truth in all trajectories,
indicating that it is able to extract the underlying facial expressions correctly.

Recall that each tracking experiment was initialized with the highest resolu-
tion fitting results. At lower input resolutions, such an optimistic initialization
would cause the fitting performance to be overestimated at the beginning. To
avoid this effect, we discarded the results of the first 20 frames of each sequence.

Fig. 6 compares the AAMR-SIM and RAF algorithms for fitting a single-
person AAM. In the upper-left corner, we first provide a brief summary of ex-
perimental conditions. This AAM was built using 31 training images, and was
tested on a set of 180. These were 8-bit grayscale images, and the AAM’s native
resolution was 100x104 pixels. We retained 95% of the total variation, yielding
11 shape and 23 appearance principal components.

The plots in Fig. 6 present extensive quantitative comparisons between the
fitting algorithms. They are organized to show RMS error metrics as a func-
tion of downscaling factor. Observe how AAMR-SIM and RAF perform equally
well at downsampling factor 2. This case corresponds to a minor degradation
in resolution, but the fact that both algorithms perform similarly confirms the
correctness of our derivations as well as implementations. Starting from down-
sampling factor 4, RAF brings substantial accuracy improvements across all
metrics and variables of interest.

The performance of a model-based method ultimately depends on the quality
of the available model. In order to investigate how the AAM fitting accuracy
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Fig. 6. Quantitative comparison between the AAMR-SIM and RAF algorithms for
fitting the single-person AAM to a 180 frame-long sequence. Both algorithms perform
well at half-resolution, validating the derivation and implementation of RAF. The latter
brings substantial improvements across all metrics for downscaling factors 4 and higher.
The principal modes are displayed in order of % energy (i.e., variation) they capture.
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Fig. 7. Quantitative comparison between the AAMR-SIM and RAF algorithms for fit-
ting the multi-person (5 subjects) AAM. Each reported mean and standard deviation is
calculated over 900 frames, comprising 180 frames for each of 5 subjects. RAF improves
the tracking, reconstruction, non-rigid shape, and appearance estimates considerably.
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varies with model complexity, we also ran our experiments on a multi-person
AAM, which we built using data from 5 subjects. Details of this AAM are
provided in the upper-left corner of Fig. 7, organized in the same fashion as Fig. 6.
The multi-person appearance model has almost twice the number of principal
modes compared to the single-person case, indicating a richer sub-space being
modeled. Again, RAF is observed to be consistently superior to AAMR-SIM in
accuracy with regard to both tracking and reconstruction.

5 Qualitative Results

As a complementary method of comparison between the AAMR-SIM and RAF
algorithms, we include a selection of synthesized model instances. For this end,
we first pixel-replicated the original low resolution inputs, and then overlaid
high-resolution reconstructions where the trackers thought the faces were. Many
such reconstructions are included in the supplemental video.

Fig. 8 shows every second frame of a subsequence of the single-person AAM
tracking experiment. Observe that RAF correctly extracts the eye blink and
mouth opening, whereas AAMR-SIM does not. Fig. 9 offers a visual alternative
for assessing how the trackers degrade with increased downscaling: it displays
the single-person AAM results for frame no. 102 across various scales. While
RAF can consistently recover the open eyes and mouth, AAMR-SIM’s estimates
degrade quickly: starting from downsampling factor 6, the eyes and mouth are
first estimated to be half-open, and then totally closed. Similarly, Fig. 10 displays

Fig. 8. Exemplar subsequence of high-resolution reconstructions, obtained by fit-
ting the single-person AAM. Observe how RAF correctly extracts the eye blink
and mouth opening, whereas AAMR-SIM does not. See complete videos at http://
www.cs.cmu.edu/∼dedeoglu/eccv06

http://www.cs.cmu.edu/~dedeoglu/eccv06
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Fig. 9. We compared the AAMR-SIM and RAF algorithms over a range of scales.
Increasingly lower resolution versions of input frame no. 102 are shown in the top row.
While AAMR-SIM degrades quickly, RAF maintains a reasonable estimate of the face.

snapshots of different test subjects, all tracked using the multi-person AAM. For
both AAMs, we find the visual reconstruction quality of RAF to be consistently
superior to that of AAMR-SIM.

6 Discussion and Conclusions

In low resolution scenarios, there is significant scaling between the AAM and
input images. In such cases, traditional fitting algorithms [5, 10] interpolate the
observations when computing the fitting criterion. The essential novelty of our
formulation is that it employs a camera model which mimics the image formation
in digital cameras, and thereby avoids interpolation.

Throughout this paper, we focused on accuracy measures. Other factors such
as robustness and computational efficiency may be as important. Indeed, in
extremely low resolutions, we found the AAMR-SIM algorithm to be more ro-
bust than RAF. Given the smoothing effect of (bilinear) interpolation, this does
not seem surprising. While RAF struggles among the many parameter settings
which yield almost the same low resolution images, AAMR-SIM commits to an
interpolated high-resolution observation, and pursues the fit.

We only fit nominal-resolution AAMs, independently of how much lower
in resolution the observations were. This allowed us to reconstruct faces in
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Fig. 10. Selected test frames are shown to visually compare the algorithms for fitting
the multi-person AAM. The quantitative improvement in appearance estimates (Fig. 7)
has visible effects. Mesh displays are omitted due to a lack of significant difference.
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high-resolution. A related idea is to construct a scale-space pyramid of AAMs,
and to model multiple resolutions in parallel. Due to blur, higher-level (i.e.,
lower-resolution) AAMs would have more compact appearance models, and
would therefore be easier to fit. Though this may seem to be an alternative
to our approach, comparison across models is outside the scope of this paper.
In comparing between fitting formulations across a range of resolution degrada-
tions, we used exactly the same AAMs. Our goal was to make a given fitting
problem more accurate, rather than finding an easier fitting problem.

The fact that the summation in RAF’s criterion is defined over observed image
pixels has important consequences. Recall that the traditional fitting formula-
tion had conveniently defined the summation over the model template pixels.
Since the latter do not change as a function of the input, computational savings
become possible: For instance, Matthews and Baker’s [10] tracker considers the
Taylor expansion for the warp parameters over the template, and pre-compute
all associated Jacobians and Hessians. One area for future work is to incorporate
such savings into the RAF formulation.

Our discussion remains orthogonal to practical search heuristics such as multi-
resolution, hierarchical and progressive [3, 4] methods. We can still exploit the
advantages of these: for instance, a pyramid style algorithm would increase the
robustness of RAF, complementing its accuracy at the bottom level.

In a more compherensive report [12], we argue that image-based warp esti-
mation is an asymmetric problem: in the presence of relative scaling, the warp
direction ought to be chosen such that the higher resolution image gets pre-
blurred and warped onto the lower resolution one. As such, the AAM-based face
tracking presented in this paper is an application of this general principle.
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