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Abstract. We propose a new formulation of Miller’s regularization theory,
which is particularly suitable for object restoration problems. By means of
simple geometrical arguments, we obtain upper and lower bounds for the errors
on regularized solutions. This leads to distinguish between ¢ Holder continuity ’
which is quite good for practical computations and ‘logarithmic continuity’
which is very poor. However, in the latter case, one can reconstruct local
weighted averages of the solution. This procedure allows for precise valuations
of the resolution attainable in a given problem. Numerical computations, made
for object restoration beyond the diffraction limit in Fourier optics, show that,
when logarithmic continuity holds, the resolution is practically independent of
the data noise level.

1. Introduction

Recently, many linear inverse problems have been considered in various
fields. Let us mention a few examples : object reconstruction from radiographs
(transaxial tomography) [1, 2]; epicardial potential calculation from body
surface maps {3]; radar target shape estimation [4-6] ; near-field reconstruction
from the scattered far-field [7, 8] and stepwise analytic continuation in order to
identify an unknown scatterer [7, 9]. Further examples can be found in [10].

The mathematical formulation of the previous problems is the following :
find a function f such that a known lnear operator 4 transforms f into a given
function g. Most often these problems are improperly posed, i.e., in a mathe-
matical language, the inverse operator 4! is not continuous. In practice an
improperly posed problem, when discretized for numerical computation, presents
instability. The remiedy is to make a guess on some of the properties of the
function f which has to be identified. This is the basis of regularization methods
whose relevance for linear inverse problems has been already emphasized by
many authors [11-14, 8]. In particular [11] 1s also a good tutorial paper, and
we will try to derive our results without going beyond the mathematical tools
used in that paper.

Various regularization methods can be found in the literature [15-21].
They are essentially equivalent in practice, since they always lead to a linear
estimate of the unknown function f in terms of the data function g. Besides
it is possible to prove [22] that probabilistic methods [19, 21] (Wiener filters)
and functional analysis methods [15, 18, 20] lead to formally equivalent results.
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An important question is to estimate bounds for error propagation in the
inversion procedure. To this purpose we find particularly convenient to use
the formulation of regularization theory due to Miller [18], and applied later
by Miller and Viano [23] to problems of analytic continuation. Using this
theory we have shown in previous papers [22, 24] the importance of the concept
of logarithmic continuity for many linear inverse problems ; i.e. of the fact that
the error on the restored solution is at best proportional to an inverse power of
[In €| where ¢ is the data error level.

The purpose of the present paper is twofold : firstly we present a simplified
but efficient formulation of Miller regularization theory ; secondly we apply the
theory to object restoration problems in order to discuss the improvement of
resolution attainable by means of regularization methods. As in previous
papers [22, 24], we focus on the problem of the restoration of coherent objects
from their images through a diffraction limited optical system (perfect lowpass
filter). For this problem accurate numerical calculations can be done. Besides,
in this case, the improvement of resolution, due to the use of inversion tech-
niques, has been already widely discussed [25, 26], so that a comparison of our
results with computational practice is rather easy.

For one-dimensional objects, identically zero outside the interval [~1, 1],
the problem reduces to the inversion of the following linear integral operator :

L sin [e(x—y)]

(A= § LI ) dy, o<1 (1)
R =m=/c is the Rayleigh resolution distance. In order to specify the problem more
precisely we must define the sets F' and (G to which the object f and the image g
belong. Besides suitable norms have to be introduced in F and G (a simple and
clear discussion of these points is contained in [11]). If we assume that both
the object and the image have finite energy, then both sets F and G are spaces
of square integrable functions on the interval [—1, 1], i.e. F=G=L* -1, 1).
We denote by (f, #) the usual scalar product of two functions of L2?:

(f, h) = Jl f(x)h*(x) dx (1.2)
and by [|f|| the norm of a function f of L?:
[flz=§ [f(x)[* du. (1.3)

In §§2 and 3 we will reformulate Miller’s regularization theory deriving
the main results by means of simple geometrical arguments. In particular we
focus on the estimation of the restoration errors. In § 4 we discuss the problem
of the inversion of the operator 4, equation (1.1). Roughly speaking, we may
summarize our results as follows: if a reasonable definition of resolution is
introduced, then, by means of regularization methods, it is quite easy to get a
resolution of about R/2. An improvement beyond this limit seems to be
practically impossible, since too high signal-to-noise ratios would be required.
In this fact we see essentially a consequence of the property of logarithmic
continuity intrinsic to the problem.

In the concluding remarks we discuss the extension of our results to other
linear inverse problems.
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2. Formulation of regularization theory

In this section we give a revisited version of Miller’s regularization theory,
having in mind the problem of inverting the operator 4, equation (1.1). Indeed
this operator has rather peculiar properties : it is self-adjoint, its eigenvalues are
positive and decreasing to zero, its eigenfunctions (the linear prolate spheroidal
wave functions) form an orthonormal basis in L% -1, 1) {27].

We can now formulate the problem as follows : given a data function (noisy
image) g, find a function f of F such that Af, equation (1.1), is approximately
equal (in the sense of the norm of G) to g, i.e.

| Af-gll <e, (2.1)

where € is an estimate of the level of errors or noise. Since the eigenvalues of 4
tend to zero (i.e. the inverse operator A~1 is not continuous), it is easy to see
that the set of the functions f satisfying condition (2.1) is not bounded. In
other words, given an arbitrary positive number M, one can find two functions
f1» fo, satisfying (2.1) and such that ||f, —f,|| > M. This fact is the main reason
of the numerical instability arising when the problem is discretized for numerical
calculations {16, 17].

In order to get numerical stability, one must restrict the class of admissible
solutions by means of a priori bounds (as far as possible of physical origin);
i.e. one has to guess some properties of the function f to be identified. According
to Miller [18] we consider bounds of the following type (for a short discussion
and comparison with other regularization methods see also [24]) :

| Bfll <1, (2.2)

where B is a linear operator whose inverse is bounded. Then the set K contain-
ing all the functions satisfying conditions (2.1), (2.2) is bounded. When its
size is not too large, any function of K can be taken as a satisfactory estimate of
the unknown object.

We have now the following problems : (1) how to exhibit at least one func-
tion of K ; (2) how to estimate the accuracy of the solution with respect to some
given definition of the ‘ closeness * of two functions.

To this purpose we introduce two sets K, K;, sandwiching K. Indeed,
if we consider the functional

O(f) = | 4f - g]|*+ <[ Bf* (2.3)

then it is obvious that the set K, of the functions f (if any) satisfying the con-
dition O(f) <e? is contained in K, while the set K, of the functions f such that
O(f) < €? contains K.

The sets K,,, K, have a simpler geometrical structure than the set K. Indeed,
let us consider the operator

C=A4%A+ e B*B (2.4)

where 4*, B* are the adjoints of A, B (for the operator 4 of equation (1.1),
A*=4). The operator C has a bounded inverse, as a consequence of the
assumption that B has a bounded inverse [18]. It follows that, for any given g,
we can introduce the function :

F=C1 4%, | (2.5)
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Then the functional (2.3) can be written in the form
O(f)=(Clf - 11, [f - /1) + | 8]*— (& 4F). (2.6)

The operator C is self-adjoint and positive definite so that its eigenvalues are
positive. If we assume that it has a complete orthonormal set of eigenfunctions
(this assumption is not essential but simplifies the discussion of the problem),
then the condition @(f) < a? can be written in the following form :

3 @il <at+ (g 4D~ gl 27)

where {y;(¢)} is the set of the eigenvalues of C and f,, f; are the Fourier compo-
nents of f, f with respect to the basis {¢,} of the eigenfunctions of C; i.e.
fe=f, éh sz(f, ).

At this point it is clear that the sets K, K, are infinite-dimensional * ellip-
soids > having the same centre f and the same principal axes, these being given
by the eigenvectors of the operator C.

Now, does f belong to the set K ? The answer is rather simple. Clearly a
is the function that minimizes ®, and ®(f)=|g|%®—(g, Af)>0. Then f
sufficient condition for feK is: ®(f) <e% This condition is also a ‘ compati-
bility check ’ for the conditions (2.1), (2.2), i.e. it ensures that there exists at
least one function satisfying both conditions. It is more restrictive (for a factor
of 1/2) than a compatibility check given by Miller [18]. Besides the set K| is
non-void if and only if the condition ®(f) <2 is satisfied. In such a case the
situation is represented in figure 1. It is now clear that we may take f as an
estimate of the unknown solution (for a discussion of the relations between f
and Tikhonov regularized solution, Wiener filter etc., see [22], [24]). More-
over, it is clear that the sets K, K; can be used in order to find upper and lower
bounds for the error on the restored solution. This point will be discussed in the
next section. For simplicity we shall consider only the case where the spectrum
of the self-adjoint operator C is discrete. However the extension to the case of
a continuous spectrum is straightforward from the mathematical point of view.

Figure 1. Schematic representation of the relation between the sets K, K, K;. The
sets K,, K, are represented as two homothetic ellipses with centre f.
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3. Estimation of restoration errors
3.1. Absolute mean square errors

We define the absolute mean square error as the maximum value taken by
[f—7] in K, the norm being defined by equation (1.3). We write :

6x(0)= sup |f—]]. 1)

In figure 1, &x(e) is the maximum distance between any point of K and f;
it is clear that this maximum value is attained at the boundary of K.

Let us now denote by I'y(e) and I'y(¢) the maximum length of the axes of
K, and K] respectively. Then by looking at figure 1, we see immediately that

Pole) <E€x(e) <T(e)- (3.2)

The quantities I'((€), I'y(¢) may be easily related to the data g and to the eigen-
values of C. Indeed, let us denote by y(e) the smallest eigenvalue of C, i.e.
y(e)=inf {y;(e)}. Then, from equation (2.7) we get

k

172
Ti(e)= (L [a+ (g, 4f) - ||g||2]> , 1=0,1 (3.3)
7€)

where a2=¢* and a,2=2¢%. 'Therefore ['|(e) and I'y(¢) can be computed in
practical cases and by means of equation (3.2) we get respectively a lower and
an upper bound on the absolute mean square error & g(¢).

If we recall that the condition ®(f) >0 is equivalent to : (g, 4f)— | g[?<0,
then equations (3.2) and (3.3) show that there exists a bound for §x(¢) inde-
pendent of the data function g. More precisely, we have & ;(¢) < &(¢) where

&(e) = \/ (%) (3.4)

The quantity &(¢) is called by Miller [18] stability estimate. The reason for
choosing this name is clear : if &(e) >0 for € >0, then the error on the solution
of the inverse problem tends also to zero (this corresponds to the collapse of
the ellipses K, K in figure 1 into a point). In other words, if the noisy image g
tends to a noiseless image g, = Af,, then the estimated solution f tends to the true
solution f,. In such a case one also says that ‘ continuous dependence of the
solution on the data has been restored ’.

However, in order to know whether it 1s possible to get accurate results in a
particular inverse linear problem, it is not enough to show that &(¢) tends to zero ;
one must know how fast £(€) tends to zero. As we have already remarked else-
where {22, 24], in various relevant inverse problems we have to distinguish
between two cases : the first when &(e)oce* (0 < <1; Hélder continuity) and
in this case continuity is rather good ; the second when &(e)oc |In€|~* (a >0
logarithmic continuity) and in this case continuity is very poor. As regards the
problem of the inversion of a linear integral operator, one can say that the situa-
tion is roughly the following : if the kernel is not too smooth (for instance, it
has continuous derivatives of order less or equal to a fixed integer z) then the
restored continuity is usually of the Hoélder type ; if the kernel is very smooth
(for instance an entire function of finite order) then the restored continuity is
generally of the logarithmic type [24]. 'The previous remark contains the
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essential points of the question but it is not very precise since, of course, the type
of continuity is rather a property relative to the couple of operators 4, B than a
property relative to the operator 4 alone.

An elementary discussion of the last point can be done if we assume that the
operator A*4 and B*B commute. Then, let {¢,} be the set of the eigenfunc-
tions of 4*4 and B*B (and therefore also of C, equation (2.4)) and let {A,2}
and {B,%} be respectively the sets of their eigenvalues. Then the eigenvalues of
the operator C are given by : y,(e)= A2+ € 8,2 From equation (3.4) we get

8(e)=v/(2)e sup (At +€* £i) 1. (3.5)

Now, if the B, form an increasing sequence (at least for 2> k) and lim 8, = + oo
for k—>co, then a simple argument shows that &(¢) =0 for ¢ >0. Indeed, since
the A, form a decreasing sequence, the denominator of equation (3.5) has a
minimum for a value of the index N = N(¢), which tends to infinity when € ->0.
Then, from the inequality &(e) <+/(2)Bx%, it follows &(e) 0. More precise
results can be obtained if stronger assumptions are done on the §,. For instance,
if we assume that 8, oc A, ~# (u > 0), then we find that the denominator of equation
(3.5), which 1s a function of the squared eigenvalues like f(t) =1+ €2 t 7+ (2= A;2),
has a minimum for #=(ue?)?, a=(u+1)"1. By means of elementary calculations
one finds that §(e)oce®, a=p/(r+1). Therefore we have Holder continuity.
Logarithmic continuity is obtained when the eigenvalues A, decrease expo-
nentially fast, while the 8, grow like a power of k: B, ock* (u>0) [22, 24].

Finally we remark that we cannot restore the continuity by choosing bounded
Bi- Indeed, if we take for instance B,=1 (i.e. B=1) in equation (3.5), then
we have, for any ¢, §(e)=+/2 and therefore &(¢) does not tend to zero.

3.2. Absolute errors on smeared objects

The previous analysis does not say anything about the resolution attainable
by means of regularized inversion methods. Only in the case of logarithmic
continuity it seems to suggest that, if some resolution has been attained for some
reasonable error level, say e=1073, then even a lowering of the noise of many
orders of magnitude does not produce a great improvement of resolution.

We can analyse theoretically this point as follows. Let us try to identify
not the unknown f but a smeared object given by (neglecting edge effects)

Fx)= § w(x=y)f») dy - (3.6)

where the smearing function w has the usual properties : it is positive, even,
peaked upon the point x=10 and its integral is equal to one. We can also define
a resolving length associated to w as

d=( _}1 x? w(x) dx)llz. (3.7)

In other words we are considering the problem of restoring local averages of f
over some resolving length d. We recall that this is just what is usually done in
the reconstruction of objects from radiographs [2] or in some geophysical inverse
problems [28].
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When the problem is approximately space invariant, then, in order to estimate
the error on F(x) it is enough to estimate the error on F(0)=(f, w), the scalar
product being defined by equations (1.2). Since the estimate of F(0), according
to the theory of §2, is F(0)=(f, ), the error is

Exle; w)= sup |(f—f, w)| (3.8)

and therefore it is the maximum value of the component of f— f along the direc-
tion of the vector w. If we look at figure 1, we clearly understand that

Eoe; w)<é(e; w)<é&y(e; w), where &e; w) and &(e; w) are quantities
analogous to (3.8), the supremum being taken respectively over the sets K and
K,. &ye; w)and &4(e; w) can be easily computed.

Indeed, if we use again figure 1 as a schematic representation of our infinite
dimensional problem, we see that the component along w of a vector h=f~—f
of K, is maximal when % coincides with that point 4, of the boundary of K|
such that the tangent to the ellipse at 4, is orthogonal to w. Now, if we write
the equation of the ellipse as (Ch, h) =52, then the equation of the tangent in A,
is given by (Chg, h)=05% and therefore the tangent is orthogonal to the vector
Ch,. If we require this vector to be parallel to @, we get hy=pC-1w. Finally
hy belongs to the boundary of K if u=5(C1w, w)172 so that: &e; w)=
|(hg, w)| =b(C* w, w)'*. Using a similar argument for K; and recalling
equation (2.7), we have

i w)=(a+(g Af)— |gl*)'* (C7 w, w)'?, =0, 1, (3.9)

where a,?=¢? and a,2=2¢%. For infinite dimensional ellipsoids the previous
argument can be made completely rigorous using the Schwarz inequality.

Again we can find an upper bound on the error, which is independent of g,
ie. &xle; w)<&(e; w), where

&(e ;s w)=1/(2)e(C1 w, w)'™2. (3.10)

This quantity coincides with the stability estimate computed by Miller ([18],
Lemma 5). It is possible to prove [22] that &(e; w) tends to zero when e -0,
provided that the constraint operator B should have a bounded inverse. Hence,
in this case, we are allowed to take B=1. This type of stability can be called
weak stability (or weak continuity). ’

3.3. Relative errors on smeared objects

The definition of relative errors is rather natural when stochastic regulariza-
tion (Wiener filters) is considered [19, 21]. Using the formal analogy between
stochastic regularization and Miller’s regularization theory [22], we might intro-
duce a quantity which could be called an estimate of the relative errors. How-
ever, let us justify this by the following argument.

The stability estimate (3.10) is the maximum value of |(f, w)| under the
constraint (Cf, f)<2e%. This a posteriori constraint is compatible with the
a priori constraint (B*Bf, f)<2. The maximum value of |(f, w)| under the
a priori constraint is /2([B*B]~! w, w)'/? (one can use the same argument as
in §3.2). ‘Therefore we can define as an estimate of the relative error the ratio
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between the a posteriori and the a priori maximum value of |(f, )], i.e.
(Crw, w)ii?
([B*B] L w, w)'

Erele; w)=¢€ (3.11)
Definition (3.11) is not contradictory since & (¢ ; w)<1. Indeed, this property
results from the fact that the operator C is ‘ greater ’ than the operator €2[B*B].
In other words, for any function v in the domain of B*B we have: (Cv, v)>
€¥(B*Bv, v).

Let us analyse in more details the case B=1. In this case, if we denote by
w;, the Fourier components of @ with respect to the basis {¢,} of the eigenvectors
of A*4, i.e. w,=(w, ¢;), we have from equation (3.11)

1 + €2 1/2
& P W)=—o _ L 3.12
rel(e ) ”w“ (kgo ’\k2+€2 ’wkl > ( )
We consider now a family of smearing functions w, such that, when -0,
w, tends to the Dirac delta measure. We denote by &,.,(¢, 1) the corresponding
relative error and we write equation (3.12) as follows :

1 + )\k2 1/2
grel(ev 77)=<1 Z 2 qu,kP) ‘ (313)

T R e

Now it is not difficult to see that &,..(¢, ) -1 when n -0 (for fixed €). Indeed,

the series at the right-hand side of equation (3.13) has a finite limit when w, -8

since it is bounded by the convergent series Y. A,2|$,(0)[|%; on the other hand
7

|w,|| =+ 0, as it is easy to verify. We conclude that, when B=1, we have
100 per cent error for a pointwise reconstruction of f, whatever be the noise
level e. This result is related to the remark done in § 3.1, that the constraint
operator B=1 does not ensure continuity in the sense of mean square errors.

4, Numerical results

In this section we apply the previous general method to the problem of
restoring an object when we know its image given by the perfect lowpass filter
(1.1). Our purpose is to illustrate how the estimates of restoration errors
provide a deeper understanding of the features of the inversion procedure.

At first we recall some well-known properties of the integral operator (1.1).
It is a compact, self-adjoint, non-negative operator in L* —1,1). Its eigen-
values A, have a step behaviour : they are approximately equal to one for values
of the index less than 2¢/m and then fall off to zero exponentially like
exp [— 2k In (k/ce)] [29]. The eigenfunctions associated to the eigenvalues A,
are the so-called linear prolate spheroidal wave-functions ;(x). They satisfy
the differential equation

= [(A =) (%)) + ¢ #® (%) = Xetfu(x) (4.1)

where

1
szk(k+1)+%c2+o<k—2>, R+ oo. (4.2)

Usually the i, are normalized in such a way that their norm in L% -1, 1) is
equal to A2 Then the eigenfunctions ¢, = A, 724, form an orthonormal
basis in L% -1, 1) [27, 30].
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4.1. Mean square errors

We consider only the case where the constraint operator B commutes with
the operator A. Then condition (2.2) becomes

IBfle= % Belfilt<1 (+3)

where the B, are the eigenvalues of B and f,=(f, ¢é.)= A, V(f, ¢). As we have
already remarked in § 3.1, if B, >+ o0 when & —+ o0, then the stability estimate
(3.5) tends to zero when ¢ —0.

There are two choices of the B, which are quite naturally related to the
structure of the operator A. The first one is to take §,=A;71. In this case,
as it has been already remarked in a previous paper [24], we have &(e) <+/e
and therefore Hélder continuity holds true. However the constraint (4.3)
with B, = A,~1is very restrictive. Indeed it implies that the object { has signifi-
cant Fourier components only for k < 2¢/m [24].

The second choice is to take B, =y;!/? (see equations (4.1) and (4.2)). In
this case, using equation (4.1) and (4.3), we find through an integration by parts
that

IBflt= § (1= @) dset § o) de<1. (+4)

Therefore we get essentially a bound on the unknown object f and on its first
derivative.

Figure 2 shows 1/&(e) as a function of log;y(1/¢) forc=10and 8,2 =k(k+1)+1
(see equation (4.2)). It clearly appears that 1/6(e) grows more slowly than
(constant) x |log,, €| so that we have logarithmic continuity. More generally
one can show that logarithmic continuity arises whenever bounds are imposed
only on a finite number of derivatives of the unknown object f [22].

Figure 2. Stability estimate for absolute mean square errors plotted as a function of the
noise level € in the case ¢=10.
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4.2. Errors on smeared objects

We apply here the analysis made in §§ 3.2 and 3.3. We focus on the esti-
mate of relative errors as defined in equation (3.11) and we consider only the
case B =1, which is the most popular in many analysis of regularization methods
[8, 11, 13, 17]. For our problem, condition (2.2) with B=1 has the following
physical meaning : we shall restore objects whose energy does not exceed one.

When ¢ is not too large and e not too small, formula (3.13) can be used for
numerical computations. We have considered the case ¢ =10, corresponding to
a Rayleigh resolution distance R=0-314. Now, if the smearing function w is
even, the odd terms are zero in the series of equation (3.13). Besides, if we
choose € in the range 1071-10-3, we have (A,,/€)?<107% Therefore, in order
to get a sufficient accuracy, it is enough to take eight terms in the series (3.13),
corresponding to k=0, 2, .. ., 14.

A computer program was written using single-precision arithmetic (twelve
digits). The linear prolate spheroidal wave-functions for ¢=10 have been
computed by means of their expansion as a series of Legendre polynomials [31],
the series being truncated in order to have eight significant digits. For the
computation of the Fourier coefficients the Gauss-Legendre quadrature method
was used.

First we analyse the dependence of the relative error on the smearing func-
tion w,. We have considered the following cases :

x x x x
WYx)=NDF | = ) sinc { = e(x)=N®@@§ [ Z }sinc? | =
w,V(x)=NDg <D> sinc (D)’ w,®(x)=N®f (D) sinc (D)

w,®(x)=N® exp (—x?/2D?), w,®(x)= NG <%> ( —%)
w,®)(x) = N© (%)

where 60(¢) denotes the function which is 1 for |¢| <1 and 0 for |#] > 1, sinc (t)=
sin (wt)/mt and the N® (i=1, ..., 5) are normalization constants such that the
integral of w,® over the interval [—1,1] is 1. For each function w,®, the
resolution parameter 7 has been defined as n=d/R, where d is the resolving
distance given by equation (3.7).

In figure 3 we give the relative error as a function of v, in the case e=10-2
and for the previously defined smearing functions. We recall that, as follows
from the remark done in § 3.3, the value of &,.(¢,n) for =0 is always 1.
Now, as we see, the curves corresponding to different smearing functions have a
common feature : they are rapidly decreasing up to a value of 7 of about 0-5
and then become rather flat. This typical behaviour seems to suggest that,
for e=10-2 and independently of the smearing function, a resolution of about
R/2 can be obtained. Of course, along these lines, a more precise definition
of resolution would require a specification firstly of the smearing function and
then of the acceptable restoration error. If we compare the effect of two smear-
ing functions like, for instance, w,® and w,®), then it is clear that w,®) is
less smoothing than w,® and therefore it is more discriminating than =,®.
In other words a greater restoration error has to be acceptable in the case of
w,®), and this agrees with the relative position of the curves for w,® and w,®
in figure 3.
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Figure 3. Relative error versus the resolution parameter »=d/R (¢c=10) for e=10-2 and
for various smearing functions. The label of a curve coincides with the label of the
corresponding smearing function, as defined in the text.

We have also analysed the e-dependence of the relative error for a fixed
smearing function. We have chosen a gaussian smearing (i.e. function w,®).
Computations have been done for € ranging in the interval 10-1-10-5, Some
results are reported in figure 4.

If we consider as acceptable an error on the smeared object of about 10 per
cent (this error corresponds to n=0-5 in the case e=10-2), then from figure 4
we see that for e=10-% we obtain a value of the resolution parameter which is
approximately 0-43. Therefore, a lowering of the noise of three orders of
magnitude gives an improvement in resolution of about 14 per cent. This
result is in a qualitative agreement with previous analysis [25, 32, 33]. How-
ever, for greater values of ¢, we can presume that the resolution does depend
still more weakly on the noise. Indeed it has been shown, by means of a very
simple and nice argument [32], that in the case 2¢/m =10* a lowering of the noise
by three orders of magnitude gives an increase of only 0-15 per cent in the
amount of available information.

We have tested this assumption by computing relative errors in the case
¢=20, e=10-2. We found values lying above the curve obtained for ¢=10,
e=10-2 (see figure 5). For this computation we used equation (3.11) (with
B=1) and the simple trapezoidal representation to discretize functions (181
points). This method is not very accurate since the function C-! w is strongly
oscillating. However we have tested the method in the case ¢=10, e=10-%
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Figure 4. Relative error versus the resolution parameter y=d/R for e=10"2 and e=10-5
(c=10 and gaussian smearing function).

10-3, and we found agreement with the previous results within about 2 per cent.
By means of this method we have also computed the relative errors for restora-
tion of incoherent objects, i.e. for the inversion of the integral operator

o[ sin [e(x— )T ) e

i) =2 § | =D iy <1 (+.5)
Since the kernel of equation (4.10) is an entire function of finite order, then the
corresponding eigenvalues have an exponential tail [34] and therefore we expect
a resolution weakly dependent on the noise level e. Computations have been
done for ¢=10, 20, e=10-2 and gaussian smearing functions. Results are
reported in figure 5.

5. Conclusions

The example considered in this paper is quite simple so that the interpreta-
tion of the results is rather easy. They show that regularization methods for
improperly posed problems are powerful but not miraculous. Indeed, these
methods never could remedy to a fundamental lack of information, but should
allow for an optimal use of available a priori knowledge. In particular, when-
ever logarithmic continuity holds true, it should be possible to estimate a resolu-
tion, attainable in the inversion procedure, which is rather weakly dependent on
the data accuracy. This is the case for restoration of coherent and incoherent
objects as well as, for instance, for the problem of near-field reconstruction [8].
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Figure 5. Relative errors versus the resolution parameter 7 for coherent and incoherent
illumination (e=10-2),

This result does not exclude that a significant improvement in resolution
might be obtained when other supplementary constraints, like for instance
positivity, can be imposed on the solution of the problem. In the case of restora-
tion of incoherent objects many methods have been proposed taking into account
positivity [26], however, as far as we know, no rigorous mathematical analysis of
restoration errors has been done.

Finally we want to remark that the previously discussed limitations on resolu-
tion improvement do not apply to those inverse problems for which Hélder
continuity holds true. This happens when the kernel of the integral operator
is not strongly smoothing, like, for instance, in the case of object reconstruction
from projections [1, 2, 6].
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Wir schlagen eine neue Formulierung der Millerschen Regularisierungstheorie vor,
welche sich insbesondere fiir Objektrestaurationsprobleme eignet. Mit Hilfe einfacher
geometrischer Argumente erhalten wir untere und obere Grenzen fiir die Fehler der
regularisierten Lésungen. Dadurch kann zwischen der  Hélder Kontinuitit’, die sich
fiir praktische Rechnungen recht gut eignet und der ‘ logarithmischen Kontinuitit * welche
ziemlich schlecht ist, unterschieden werden. Allerdings kann man im letzteren Fall lokal
gewichtete Mittel der Losungen rekonstruieren. Dieses Verfahren ermdglicht prizise
Abschitzungen der bei einem gegebenen Problem erzielbaren Auflésung.  Numerische
Rechnungen zur Objektrestauration jenseits der Beugungsgrenze der Fourieroptik zeigen,
daf3 im Falle logarithmischer Kontinuitit die Auflésung praktisch unabhingig vom Rausch-
pegel der Daten ist.
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