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  

Abstract—The spatial spectral estimation problem has applica-
tions in a variety of fields, including radar, telecommunications, 
and biomedical engineering. Among the different approaches for 
estimating the spatial spectral pattern, there are several para-
metric methods, as the well-known multiple signal classification 
(MUSIC). Parametric methods like MUSIC are reduced to the 
problem of selecting an integer-valued parameter [so-called mod-
el order (MO)], which describes the number of signals impinging 
on the sensors array. Commonly, the best MO corresponds to the 
actual number of targets, nonetheless, relatively large model 
orders also retrieve good-fitted responses when the data generat-
ing mechanism is more complex than the models used to fit it. 
Most commonly employed MO selection (MOS) tools are based 
on information theoretic criteria [e.g., Akaike information crite-
rion (AIC), minimum description length (MDL) and efficient 
detection criterion (EDC)]. Normally, the implementation of 
these tools involves the eigenvalues decomposition of the data 
covariance matrix. A major drawback of such parametric meth-
ods (together with certain MOS tool) is the drastic accuracy 
decrease in adverse scenarios, particularly, with low signal-to-
noise ratio, since the separation of the signal and noise sub-spaces 
becomes more difficult to achieve. Consequently, with the aim of 
refining the responses attained by parametric techniques like 
MUSIC, this article suggests utilizing regularization as a post-
processing step. Furthermore, as an alternative, this work also 
explores the possibility of selecting a single relatively large MO 
(rather than using MOS tools) and enhancing via regularization, 
the solutions retrieved by the treated parametric methods. In 
order to demonstrate the capabilities of this novel strategy, syn-
thetic aperture radar (SAR) tomography (TomoSAR) is consid-
ered as application.       

 
Index Terms—Information criteria, maximum likelihood 

(ML), model order selection (MOS), synthetic aperture radar 
(SAR) tomography (TomoSAR), regularization.  

NOMENCLATURE 

A. List of Acronyms 
AIC Akaike information criterion 
BMR Bayes minimum risk 
DCRCB Doubly constrained robust Capon beamforming 
DOA Direction of arrival 
DR Detection rate 
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EDC Efficient detection criterion 
EO Equation of observation 
MAP Maximum a posteriori probability 
MARIA ML-inspired adaptive robust iterative approach 
MDL Minimum description length 
ML Maximum likelihood 
MO Model order 
MOS MO selection 
MSF Matched spatial filtering 
MUSIC Multiple signal classification   
PLOS Perpendicular to the line-of-sight 
PSP Power spectrum pattern 
RMSE Root mean square error 
ROI Region of interest 
SAR Synthetic aperture radar 
SNR  Signal-to-noise ratio 
TomoSAR SAR tomography 

B. Glossary of Notation 〈∙〉 Averaging operator 𝐃(𝐮) Diagonal matrix with vector 𝐮 at the principal  
 diagonal. ‖∙‖ Euclidean ℓଶ-norm E( ) Expectation operator  ା Hermitian conjugate (adjoin) 𝐈 Identity matrix {𝐔}ୢ୧ୟ୥ Main diagonal of matrix 𝐔 ⊥ Orthogonal ln{∙} Natural logarithm  ୘ Transpose  tr{𝐔} Trace of matrix 𝐔 
 

I. INTRODUCTION 
ith the aim of locating the radiating (backscattering) 
sources by means of an array of sensors, the spatial 

spectral estimation problem consists on determining how the 
energy is distributed over space [1, Chapter 6]. This kind of 
problem has applications in a variety of fields, including radar 
[2], sonar [3], telecommunications [4], biomedical engineering 
[5] and seismology [6]. Among the different approaches for 
estimating the spatial spectral pattern, there are parametric and 
non-parametric methods, implemented within the DOA esti-
mation framework. 

Parametric methods as MUSIC assume that the spatial spec-
tral pattern is composed of point-type like radiating (backscat-
tering) sources (targets), whose amount is smaller than the 
length of the acquired data [1, Chapter 5]. In this way, the 
spatial spectral estimation problem is reduced to the problem 
of selecting an integer-valued parameter (so-called MO), 
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which describes the number of source signals impinging on 
the sensors array [1, Appendix C]. Additionally, these tech-
niques assume a spatially white noise model [1, Chapter 6], 
required to guaranty the separation of the signal and noise sub-
spaces.  

A correct selection of the MO assures retrieving best possi-
ble (good-fitted) solutions. Generally, the best choice corre-
sponds to the actual number of targets; conversely, MOs 
smaller than the actual number of targets produce under-
fitting, meaning that some of the actual targets are suppressed, 
as they are taken by noise. Models with relatively higher or-
ders tend to retrieve good-fitted responses when the data gen-
erating mechanism is more complex than the models used to 
fit it [1, Appendix C]. Nonetheless, they may cause over-
fitting, meaning that the residual variation (i.e., noise) is con-
sidered as part of the recovered signal. Targets may appear 
where in reality there are none, causing false detections. 

 Most commonly employed MOS tools [7] – [9] are based 
on information theoretic criteria, e.g., AIC, MDL and EDC. 
Normally, the implementation of these tools involves the ei-
genvalues decomposition of the data covariance matrix, be-
sides of a priori information about the number of looks, which 
is not always known and needs to be estimated.  

A major drawback of such parametric methods (together 
with certain MOS tool) is the drastic accuracy decrease in 
adverse scenarios, particularly, with low SNR, since the sepa-
ration of the signal and noise sub-spaces becomes more diffi-
cult to achieve. Following this order of ideas, this work sug-
gests utilizing regularization as a post-processing step, with 
the aim of refining the response attained by the treated para-
metric methods, especially, with low SNR. Furthermore, as an 
alternative, this work also explores the possibility of selecting 
manually a single relatively large MO (rather than using MOS 
tools) and enhancing via regularization, the solutions retrieved 
by the addressed parametric methods. 

The proposed novel strategy is summarized in Fig.1. First, a 
parametric focusing technique is defined (e.g. MUSIC); next, 
the corresponding MO is selected (e.g., via AIC, MDL, EDC 
or manually); finally, regularization is applied (e.g., MARIA) 
in order to refine the previously recovered solutions. MARIA 
[10], [11], is a statistical regularization method based on ML, 
which improves resolution significantly, performing suppres-
sion of artifacts and reduction of ambiguity levels. 

One of the main advantages of regularization approaches as 
MARIA is their flexibility; in the sense that they can have as 
input, in principle, the retrievals of any parametric or non-

parametric focusing technique. Previous related studies [10] – 
[13], utilize non-parametric methods as input (e.g., MSF, 
Capon beamforming, DCRCB, etc.). Yet, the usage of para-
metric techniques like MUSIC for such a purpose had not 
been studied yet. This article can therefore be understood as a 
complement of previously published studies. 

In order to demonstrate the capabilities of the strategy de-
picted in Fig.1, TomoSAR is considered as application. Its 
main goal is estimating the locations of the vertical structures 
that scatter the field back towards the (active) sensor. The 
TomoSAR inverse problem is typically defined via the linear 
EO [10] – [13] 

 

൥0𝐲0൩௅×ଵ = ൥0 0 𝐀 0 00 0 𝐀 0 00 0 𝐀 0 0൩௅×ெ ⎣⎢⎢⎢
⎡00𝐬00⎦⎥⎥⎥

⎤
ெ×ଵ

+ ൥0𝐧0൩௅×ଵ. (1) 

 
As depicted in Fig. 2, the TomoSAR acquisition constella-

tion consists of L tracks (passes), each one with a different 
line-of-sight. One co-registered SAR image is collected from 
each pass; afterwards, the imagery is coherently combined 
using SAR interferometric techniques. Assuming co-
registration independent on height, these L passes are treated 
as a linear sensors array. Accordingly, for a given azimuth-
range position, vector 𝐲 represents the set of 𝐿 processed sig-
nals; vector 𝐬 gathers 𝑀 samples of the complex random re-
flectivity, taken at the PLOS elevation positions {𝑧௠}௠ୀଵெ ; and 
vector 𝐧 accounts for the additive noise. The 𝐿 × 𝑀 steering 
matrix 𝐀 is the signal formation operator that maps 𝑆 → 𝑌, the 
source Hilbert signal space 𝑆 onto the observation Hilbert 
signal space 𝑌.  

The TomoSAR problem consists on estimating the PSP (in 
the PLOS height direction) for each azimuth-range location 
within the illuminated region. The PSP is depicted in a dis-
crete form through vector 𝐛 = {𝑏௠}௠ୀଵெ = {〈|𝑠௠|ଶ〉}௠ୀଵெ , i.e., 
the second-order statistics of the complex reflectivity vector 𝐬. 

 
Fig. 1. Proposed novel strategy. 

 

 
Fig. 2.  TomoSAR acquisition geometry using parallel passes (not to scale). 
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The remaining of the paper is organized as follows: the 
TomoSAR signal model is presented in Section II; Section III 
describes MUSIC; Section IV reviews the different treated 
MOS tools; Section V addresses MARIA; Section VI analyses 
the proposed novel strategy through numerical examples; 
Section VII presents experimental results using real data, 
acquired from an urban test site; finally, Section VIII con-
cludes this work.    

II. TOMOSAR SIGNAL MODEL 
Refer to EO in (1), matrix 𝐀 is composed of 𝑀 steering vec-

tors, each one of dimension 𝐿. The steering vectors {𝐚௠}௠ୀଵெ  
contain the interferometric phase information associated to the 
sources located along the PLOS elevation positions {𝑧௠}௠ୀଵெ , 
above the reference focusing plane. For a specified PLOS 
elevation position 𝑧, the related steering vector is given by 
[10], [14], [15], 

 𝐚(𝑧) = ൣ1 exp൛j𝑘௭ଶ𝑧ൟ ⋯ exp൛j𝑘௭௅𝑧ൟ൧୘, (2) 
 
in which 
 ൜𝑘௭௟ = ൬4𝜋𝜆 ൰ ൬ 𝑑௟𝑟ଵ sin 𝜃൰ൠ௟ୀଶ

௅
 (3) 

 
is the two-way vertical wavenumber between the master track 
and the 𝑙th acquisition position. The slant-range distance to a 
particular target is defined by 𝑟ଵ, whereas {𝑑௟}௟ୀଶ௅  is the cross-
range oriented baseline between the master position and the 𝑙th acquisition position (see Fig. 2); with 𝜆 standing for the 
carrier wavelength and 𝜃 representing the incidence angle. 

The complex random Gaussian zero-mean vectors 𝐧, 𝐬 and 𝐲 are characterized by their corresponding correlation matrices 
 𝐑𝐧 = E(𝐧𝐧ା) = 𝑁଴𝐈, (4) 
 𝐑𝐬 = E(𝐬𝐬ା) = 𝐃(𝐛) (5) 
 
and 
 𝐑𝐲 = E(𝐲𝐲ା) = 𝐀𝐑𝐬𝐀ା + 𝐑𝐧, (6) 
 
where 𝑁଴ is the power spectral density of the white noise 
power [15] and vector 𝐛 defines the backscattering power for 
a specified azimuth-range position, the so-called PSP. Entries 
of vector 𝐬 are assumed uncorrelated, which simplifies the 
mathematical developments that led to MUSIC [1, Eq. 4.2.7] 
and MARIA [10], [11]. 

The (measured) data covariance matrix is defined by 
 𝐘 = 1𝐽 ෍ 𝐲(௝)𝐲(௝)ା௃

௝ୀଵ , (7) 

 

where 𝐽 indicates the amount of looks (independent realizations) 
of the signal acquisitions. The usage of the data covariance ma-
trix for focusing is aimed to handle multiple non-deterministic 
sources, besides of increasing accuracy in presence of signal-
dependent (multiplicative) noise [16, Chapter 18]. 

For each azimuth-range position within the illuminated ar-
ea, given the data recordings 𝐲 = {𝑦௟}௟ୀଵ௅ , the steering matrix 
A and some prior knowledge on the problem (e.g., about the 
statistics of the signal and noise), the nonlinear TomoSAR 
inverse problem consists in estimating the actual PSP vector 𝐛 = {〈|𝑠௠|ଶ〉}௠ୀଵெ . The TomoSAR problem is ill-conditioned, 
since it does not accomplish the uniqueness Hadamard condi-
tion [16, Chapter 15]. The number of samples 𝑀 is (much) 
larger than the number of data recordings 𝐿, therefore, there 
are an infinite number of possible solutions. Hence, by making 
some appropriate assumptions and/or by imposing some form 
of constraints, the different focusing techniques must guaran-
tee retrieving well-conditioned solutions to the nonlinear 
TomoSAR inverse problem. 

III. MULTIPLE SIGNAL CLASSIFICATION 
Estimating the continuous PSP from a finite number of ob-

servations is an ill-posed problem in the Hadamard sense, 
unless proper assumptions are made. In order to overcome this 
problem, parametric methods as MUSIC parameterize the PSP 
by means of a finite dimensional model [1, Chapter 5]. 

   Assume 𝑛 point-type like targets placed at the PLOS ele-
vation positions {𝑧̇௡}௡ୀଵே . The number of targets 𝑛 is smaller 
than the number of data acquisitions 𝐿. The noise 𝐧 in EO is 
assumed spatially white with components having identical 
variance 𝑁଴. The signal correlation matrix 𝐑𝐬 is assumed 
nonsingular. Finally, the signals and noise are assumed uncor-
related with one another [1, Chapter 6].  

Let [𝜚ଵ ≥ 𝜚ଶ ≥ ⋯ ≥ 𝜚௅] denote the eigenvalues of the 
modelled data covariance matrix 𝐑𝐲, arranged in decreasing 
order. All 𝐿 corresponding eigenvectors are orthogonal to each 
other, since 𝐑𝐲 is Hermitian. The subset of eigenvectors 𝐐 =[𝐪ଵ 𝐪ଶ … 𝐪௡], related to the first 𝑛 largest eigenvalues, 
spans the signal subspace; whereas 𝐆 = [𝐠ଵ 𝐠ଶ … 𝐠௅ି௡], 
related to the remaining 𝐿 − 𝑛 eigenvalues, spans the noise 
subspace.  

The signal subspace is orthogonal to the noise subspace, 𝐐 ⊥ 𝐆, meaning that any steering vector 𝐚 residing in 𝐐 is 
orthogonal to 𝐆. Therefore, if 𝐚 ∈ 𝐐 then ‖𝐆ା𝐚‖ଶ =𝐚 ା𝐆𝐆ା𝐚 = 0. The noise subspace 𝐆 contains then complete 
information about the DOAs. Consequently, the locations of 
the addressed point-type like targets are determined as the 𝑛 
highest peaks of the expression [1, Eq. 4.5.15] 

  ൜𝑏෠௠ = 1𝐚௠ା 𝐆𝐆ା𝐚௠ൠ௠ୀଵ
ெ , (8) 

 
with 𝐆𝐆ା as the so-called noise subspace covariance matrix. 

In practice, 𝐑𝐲 is estimated through the data covariance ma-
trix 𝐘 in (7), whereas 𝑛 refers to the MO to be selected, e.g., 
via AIC, MDL, EDC or manually. 
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IV. MODEL ORDER SELECTION 
The ML method of parameter estimation is the basis of 

MOS rules as AIC, MDL and EDC. Aimed at estimating the 
MO, it refers to the optimization problem defined by [1, Eq. 
C.2.1]  
 𝛗ෝ = argmax𝛗 ൛ln{𝑝(𝐲|𝛗(𝑛))}ൟ. (9) 
 
For the case of MUSIC, vector 𝛗(𝑛) = {𝜚௞}௞ୀଵ௡  gathers the 
eigenvalues of 𝐑𝐲, arranged in decreasing order, with 𝑛 ∈{1,2, . . , 𝐿} . 

 Being vector 𝐲 in EO a 𝐿-dimensional complex random 
Gaussian zero-mean vector, it is explicitly characterized 
through its probability density function (pdf) via [10], [17],   

  𝑝(𝐲) = 𝜋ି௅detିଵ൛𝐑𝐲ൟ ∙ exp൛−൫𝐲ା𝐑 𝐲ିଵ𝐲൯ൟ. (10) 
 
The MAP approach [17, Chapter 8] for solving the TomoSAR 
problem is given by  
 𝐛መ = argmax𝐛 ൛ln{𝑝(𝐛|𝐲)}ൟ, (11) 
with 
 ln{𝑝(𝐛|𝐲)} = ln{𝑝(𝐲|𝐛)} + ln{𝑝(𝐛)} − ln{𝑝(𝐲)}, (12) 
 
according to the Bayes formula and since ln{∙} is a monoton-
ically increasing function. Setting 𝑝(𝐛) ≈ 𝑐𝑜𝑛𝑠𝑡, since it is 
unknown, and ignoring those terms that do not comprise 𝐛 in 
(12), the log-likelihood function is defined as  

  ln{𝑝(𝐲|𝐛)} = −ln ቄdet൛𝐑𝐲ൟቅ − 𝐲ା𝐑 𝐲ି ଵ𝐲. (13) 
 
 In order to express (13) as required by (9), the modelled 
data covariance matrix 𝐑𝐲 in (6) must be represented as func-
tion of 𝛗(𝑛) instead of 𝐛, as described by [8, Eq. 9] 
 𝐑𝐲 = ෍(𝜚௞ − 𝑁଴)𝐪௞𝐪௞ା +௡

௞ୀଵ 𝐑𝐧, (14) 

 
where 𝑛 is the MO. Using the following property 
 𝐲ା𝐑 𝐲ିଵ𝐲 = tr൛𝐑 𝐲ି ଵ𝐲𝐲ାൟ, (15) 
 
the log-likelihood function in (13) is then expressed as   
 ln{𝑝(𝐲|𝛗(𝑛))} = −𝐽 ∙ ln ቄdet൛𝐑𝐲ൟቅ − tr൛𝐑 𝐲ିଵ𝐘ൟ, (16) 
 
with 𝐘 as defined in (7). Recall that 𝐽 is the number of inde-
pendent observations. 
    The ML estimate 𝛗ෝ  in (9) is the value of 𝛗(𝑛) that max-
imizes (16). Following [8, Eq. 14], after some manipulations, 
the log-likelihood function is approximated through 

ln{𝑝(𝐲|𝛗(𝑛))} = ln ቐ ∏ 𝜚௞ ଵ௅ି௡௅௞ୀ௡ାଵ1𝐿 − 𝑛 ∑ 𝜚௞௅௞ୀ௡ାଵ ቑ(௅ି௡)௃, (17) 

 
this time with 𝛗(𝑛) = {𝜚௞}௞ୀ௡ାଵ௅  and 𝑛 ∈ {1,2, . . , 𝐿 − 1} . 

A. Akaike information criterion  
The AIC MOS rule maximizes the Kullback-Leibler infor-

mation criterion [7] 
 න 𝑝(𝐲) ln ቊ 𝑝(𝐲)𝑝(𝐲|𝛗(𝑛))ቋ 𝑑𝐲, (18) 

 
given the several hypotheses 𝛗(𝑛). For the addressed prob-
lem, AIC consists in minimizing the next function [8], [9],  
 AIC൫𝛗(𝑛)൯ = −ln{𝑝(𝐲|𝛗(𝑛))} + 𝑛(2𝐿 − 𝑛);  𝑛 ∈ {1,2, . . , 𝐿 − 1}. (19) 

B. Minimum description length  
Proposed by Schwartz [18], MDL selects the MO that 

yields the MAP. Based on Bayesian arguments, a prior proba-
bility is assigned to each competing MO. As with AIC, MDL 
consists in minimizing the function 

 MDL൫𝛗(𝑛)൯ = −ln{𝑝(𝐲|𝛗(𝑛))} + 12 𝑛(2𝐿 − 𝑛) ∙ ln{𝐽};  𝑛 ∈ {1,2, . . , 𝐿 − 1}. (20) 

C. Efficient detection criterion  
Developed at the University of Pittsburg [9], EDC minimiz-

es the expression 
 EDC൫𝛗(𝑛)൯ = −ln{𝑝(𝐲|𝛗(𝑛))} +𝑛(2𝐿 − 𝑛) ∙ 𝐶(𝐽);  𝑛 ∈ {1,2, . . , 𝐿 − 1}; (21) 

 
where 𝐶(𝐽) is any function of 𝐽 such that 
 lim௃→ஶ 𝐶(𝐽)𝐽 = 0; lim௃→ஶ 𝐶(𝐽)ln൛ln{𝐽}ൟ = ∞. (22) 

 
In this work, we consider 𝐶(𝐽) = ඥ𝐽 ∙ ln{𝐽}. 

For all addressed MOS tools (i.e., AIC, MDL and EDC), 
the second term at right hand, so-called penalty term, is in-
tended to prevent selecting the largest MOs, with the aim of 
avoiding overfitting. As you can observe, the penalty term 
distinguishes one MOS rule from another. 

V.   ML-INSPIRED ADAPTIVE ROBUST  
ITERATIVE APPROACH 

Regularization approaches are widely used to solve linear 
problems as the one given in EO, see [20], [21], and the refer-
ences therein. The retrieval of well-conditioned solutions (in 
the Hadamard sense [16, Chapter 15]) is accomplished by 
providing smoothing into the solution and by incorporating 
known properties of the solution into the solver. In this way, 
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the ill-conditioned problem is replaced with a well-posed 
optimization problem.  

In previous related studies [10] – [13], [22], [23], different 
statistical regularization techniques are extended to cope with 
nonlinear ill-posed inverse problems, which is the case of 
TomoSAR. Among them, we find MARIA, an iterative statis-
tical regularization method that performs resolution enhance-
ment, suppression of artifacts and reduction of ambiguity 
levels [11].  

MARIA provides an approximate solution to the ML opti-
mization problem in (13) via 

 𝐛መ ୑୅ୖ୍୅[௜ାଵ] =  𝐓[௜]ቂ𝐛መ ୆୑ୖ[௜] − 𝐰[௜]ቃ;   𝑖 = 0,1, … , 𝐼;  (23) 
 
where vector 𝐛መ ୆୑ୖ[௜] = ቄ𝐅୆୑ୖ[௜] 𝐘𝐅୆୑ୖ[௜]ା ቅୢ୧ୟ୥ is recognized as the 

BMR estimate of the PSP. The subtraction of the bias vector 𝐰[௜] = ቄ𝐅୆୑ୖ[௜] 𝐑𝐧𝐅୆୑ୖ[௜]ା ቅୢ୧ୟ୥ from 𝐛መ ୆୑ୖ[௜]  corrects the shift due to 

the noise in the observed data, whereas the diagonal matrix 𝐓[௜] = 𝐃({𝐀ା𝐅୆୑ୖ[௜]ା 𝐅୆୑ୖ[௜] 𝐀}ୢ୧ୟ୥) is an adaptive window opera-
tor that provides smoothing to the already rectified BMR esti-
mate. The solution operator is defined as 

 𝐅୆୑ୖ[௜] = 𝐃൫𝐛መ [௜]൯𝐀ା𝐑 𝐲ି𝟏. (24) 
 

In order to construct the matrices 𝐃൫𝐛መ [଴]൯ and 𝐑𝐲 =𝐀𝐃൫𝐛መ [଴]൯𝐀ା + 𝑁଴𝐈, a first estimate of the PSP 𝐛መ [଴] is required. 
The dependence on a first estimate 𝐛መ [଴] implies that no unique 
regularization method to recover 𝐛መ ୑୅ୖ୍୅ exists. Different 
solutions are retrieved for different initial estimates 𝐛መ [଴], espe-
cially when the discrepancies between them are highly signifi-
cant. Yet, the adaptive iterative implementation of MARIA 
alleviates the issue in certain extent. 

In this work, the first estimate 𝐛መ [଴] is computed using 
MUSIC in (8), selecting the MO via AIC, MDL, EDC or 
manually. Afterwards, MARIA refines the estimates 𝐛መ [௜] of 
each iteration, until achieving convergence 𝐛መ ୑୅ୖ୍୅[௜ୀூ] . In prac-
tice, the iterative procedure is finished either by reaching a 
maximum number of iterations or a user tolerance control 
level.    

Factor 𝑁଴ in 𝐑𝐲 in (6) acts as a diagonal-loading regulariza-
tion parameter, which assures matrix 𝐑𝐲 to be invertible. The 
proper choice of this regularization parameter guarantees re-
trieving good-fitted (well-regularized) reconstructions. In 
order to select the regularization parameter 𝜉 = 𝑁଴, the L-
Curve method is employed. Detailed in [12], the L-Curve 
method seeks a balance between the norm of a penalty term 
and the norm of the residual. Basically, it consists in forming a 
smooth curve by plotting the points 
 𝐿஼(𝜉௡) = [ln{‖𝐀𝐬ො(𝜉௡) − 𝐲‖}, ln{‖𝐬ො(𝜉௡)‖}], (25) 
 
for a collection of candidates {𝜉௡}௡ୀଵே  with {𝐬ො(𝜉௡) =𝐅୆୑ୖ(𝜉௡)𝐲}௡ୀଵே . The resultant curve has the shape of a letter 

L, with a smooth corner; the proper value for 𝜉 = 𝑁଴ is found 
as near as possible to this corner. 

VI. SIMULATION RESULTS  
This section analyses the capabilities of the proposed novel 

strategy depicted in Fig. 1. As explained previously, paramet-
ric techniques as MUSIC assume a PSP composed of a finite 
number of point-type like backscattering sources. Therefore, 
due to the characteristics of MUSIC, we refer to an urban like 
scenario with three point-type like targets.  

We consider a L-band SAR sensor (0.23 m wavelength) at a 
nominal altitude of 3000 m. The acquisition geometry consists 
of 7 evenly distributed passes (flight tracks) spanning a PLOS 
synthetic aperture (see Fig. 2) of 60 m. For a slant-range dis-
tance from the targets to the master track of about 4000 m, the 
attained Fourier resolution [12] is approximately 7.5 m. 

Data covariance matrices 𝐘 in (7) serve as input to the 
MUSIC and MARIA focusing techniques. Constructed with 𝐽 = 300 independent looks, these matrices gather the echoes 
of the scatterers displaced along the PLOS height direction. 
The simulated scene comprises three point-type like targets, 
each composed of 100 scatterers with equal reflectivity, fol-
lowing narrow Gaussian distributions. The phase-centers 
(mean heights) are placed at 𝑧̇ଵ = −2 m, 𝑧̇ଶ = 0 m and 𝑧̇ଷ = 3 
m, respectively, with spreads (standard deviation) of 0.01 m. 
The usage of Gaussian distributions is due to its practicality 
for incorporating statistical uncertainty to the measurements 
via random fluctuations of each independent look. In this way, 
we do not only rely on additive noise to introduce decorrela-
tion. Furthermore, the location of the phase-centers matches 
the mean values.  

For a SNR of 15 dB, observe in Fig. 3 that only one phase-
center is detected through MSF, i.e., 𝐛መ = {𝐀ା𝐘𝐀}ୢ୧ୟ୥ [1, Eq. 
6.3.18], whereas MUSIC (utilizing EDC as MOS tool) and the 
proposed approach [MUSIC (using EDC) + MARIA] are able 
to discriminate all three phase-centers. The number and loca-
tions of the point-type like targets (along the PLOS height 
direction) is chosen with the aim of demonstrating the super-
resolution capabilities of MUSIC and MARIA, in contrast to 
the conventional MSF. The targets are placed close to each 
other and unevenly spaced, with the objective of stressing 
these methods out.   

 
Fig. 3. Retrieved PSP after applying MSF (red), MUSIC (blue), MUSIC + 
MARIA (green). A SNR of 15 dB is set. 
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In order to quantify the quality of attained results, the next 
metrics are used: 

1) RMSE: When all three phase-centers are discrimi-
nated, the RMSE between the true locations 𝐳̇ and 
the ones found 𝐳̇෠ is calculated via 

 𝑅𝑀𝑆𝐸൫𝐳̇, 𝐳̇෠൯ =  ඨ෍ ൫𝑧̇௜ − 𝑧̇መ௜൯ଶ𝐼ூ௜ୀଵ . (26) 

  
2) DR: It accounts for the number of times that all 

three phase-centers are distinguished. For the sake 
of avoiding false detections, we look for local 
maxima above a threshold value of 0.05 within the 
retrieved normalized (0 to 1) pseudo-power. With 
the same aim, those trials with RMSE larger than 
1.5 m are ignored, since they are considered fail-
ure. With these considerations, Fig. 3 represents, 
by instance, a successful trial of MUSIC and 
MARIA.  

A.   Results obtained by MUSIC 
Employing MUSIC as focusing technique, we make use of 

three different MOS tools (i.e., AIC, MDL and EDC) for 
comparisons. Since these tools require the amount of looks 𝐽 
in (7) as a priori information, we refer to three different ap-
proximations (i.e., 200, 300 and 400 looks) in order to study 
the influence of such a parameter. Recall that the actual num-
ber of looks for the reported simulations equals 300. Addition-
ally, MUSIC is tested for all possible MOs (1 to 6) with the 
goal of showing the different responses. Fig. 4 summarizes the 
simulations made using MUSIC. 

For each combination exhibited in Fig. 4, 800 Monte-Carlo 
simulations are performed for each succeeding representative 
SNR: -30 dB, -24 dB, -18 dB, -9 dB, -6 dB, -3 dB, 0 dB, 3 dB, 
6 dB, 9 dB, 12 dB, 15 dB, 20 dB and 40 dB. Hence, MUSIC 
contributes with 168 000 simulations, since (3 MOS rules × 3 
different number of looks × 14 SNRs × 800 Monte-Carlo 
trials) + (6 MOs × 14 SNRs × 800 Monte-Carlo trials) = 168 
000. 

Fig. 5 depicts the results obtained by MUSIC for all differ-
ent possible MOs. Note that for some SNRs, the average 
RMSE in Fig. 5(a) does not appear, since all three targets are 
not detected, making the computation of the RMSE, as defined 

in (26), unfeasible. Whilst Fig. 5(b), at right hand, discards 
those trials where the RMSE is above 1.5 m.  

In compliance with the theory, the best MO corresponds to 
three, i.e., the actual number of targets. Conversely, those 
MOs below three retrieve worst results due to under-fitting, 
with a DR of 0%. On the other hand, the fourth and fifth MOs 
present similar performance as the third MO. Observe Fig. 
5(b), the third, fourth and fifth MOs ensue in similar monoton-
ically increasing curves with two main zones, one from -30 dB 
to ca. 0 dB, with a DR of about 0%, and another one from ca. 
15 dB to 40 dB, with a DR near to 100 %. Contrasting this 
behavior, the sixth MO does not approach 100% of DR but ca. 
85%, while the first zone with 0% of DR is smaller, followed 
by a slower (wider) transition zone in the middle of the curve. 
In general, the transition zones of the curves aforementioned, 
from ca. 0 dB to ca.15 dB, present a RMSE below 1.5 m. 

Based on Fig. 5, we conclude the following: (i) the perfor-
mance of MUSIC is highly susceptible to the SNR; (ii) besides 
the third MO, models with relatively larger orders (i.e., 4 and 
5) also retrieve good-fitted responses for higher SNRs. 

Fig. 6, 7 and 8 show the results retrieved by MUSIC for the 
treated MOS rules: AIC, MDL and EDC, respectively. Ob-
serve that utilizing different approximations to the actual 
number of looks 𝐽 in (7), for all addressed MOS rules, does 
not have significant influence in the results, especially for 
higher SNRs. Also, all MOS tools have better performance for 
SNRs above 15 dB, being EDC the only one approaching 
100% of DR. In contrast, AIC and MDL attain a DR of ca. 
85%. AIC and MDL tend to choose the largest MO, whereas 
EDC normally avoids it and rather selects the third, fourth and 
fifth MOs. Note in Fig. 6(a) and 7(a) that AIC and MDL still 
detect three targets below 9 dB, however, most of the time, 
these detections are ignored, since they are considered as false 
detections due to a RMSE above 1.5 m. 

 
Fig. 4. Simulations made using MUSIC. 

 

  
(a)  (b)  

 

Fig. 5. Results achieved by MUSIC for all possible MOs: (a) average RMSE against SNR; (b) DR against SNR. 
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B.   Results obtained by MARIA 
Next, we make use of MARIA as post-processing step in 

order to enhance the responses of MUSIC for the experiments 
depicted in Fig. 4. Recall that the first and second MOs result-
ed in 0% DR, reason why, we do not consider them in the 
following simulations when picking the MO manually (see 
Fig. 9). Hence, MARIA contributes with 145 600 simulations, 
since (3 MOS rules × 3 different number of looks × 14 SNRs 

× 800 Monte-Carlo trials) + (4 MOs × 14 SNRs × 800 Mon-
te-Carlo trials) = 145 600. 

With the aim of reducing computing time, the regularization 
parameter 𝜉 = 𝑁଴ in (25) is calculated only once for each case 
described in Fig. 4 (ignoring the first and second MOs when 
chosen manually) and for each considered SNR. In principle, 
the results shown in the following could be improved by com-
puting 𝜉 = 𝑁଴ every time, i.e., for each trial. Also, MARIA’s 
iterative procedure is finished by reaching ten iterations.    

 

  
(a)  (b)  

 

Fig. 6. Results achieved by MUSIC using AIC as MOS rule: (a) average RMSE against SNR; (b) DR against SNR. Three different approximations to the actual 
number of looks 𝐽 in (7) are considered: 200, 300 and 400. 

 
 

  
(a)  (b)  

 

Fig. 7. Results achieved by MUSIC using MDL as MOS tool: (a) average RMSE against SNR; (b) DR against SNR. Three different approximations to the actual 
number of looks 𝐽 in (7) are considered: 200, 300 and 400. 

 
 

  
(a)  (b)  

 

Fig. 8. Results achieved by MUSIC using EDC as MOS rule: (a) average RMSE against SNR; (b) DR against SNR. Three different approximations to the actual 
number of looks 𝐽 in (7) are considered: 200, 300 and 400. 
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Fig. 9 depicts the results obtained by MUSIC + MARIA for 
the considered MOs. In general, we can observe that the usage 
of MARIA as post-processing step improves significantly the 
results achieved by MUSIC. The latter is especially notorious 
for SNRs below 9dB. Observe in Fig. 9(b), how the curves 
attained by MUSIC in Fig. 5(b) have been moved to the left by 
ca. 25 dB. The variations in the middle of the curves, between 
-10 dB and 10 dB, are due to non-optimal regularization pa-
rameters 𝜉 = 𝑁଴; this region in particular, resulted more sus-
ceptible to the (correct) choice of the regularization parameter. 

The third, fourth and fifth MOs recover similar results, 
whereas, the sixth MO presents worst performance. This be-
havior is consistent with Fig. 5, which depicts the inputs em-
ployed by MARIA. Yet, note in Fig. 9(b) that by incorporating 
MARIA to MUSIC, the sixth MO approaches now 100% of 
DR for SNRs above 15 dB.  

Fig. 10, 11 and 12 show the results retrieved by MUSIC + 
MARIA for the addressed MOS rules: AIC, MDL and EDC, 
correspondingly. As before, the utilization of different approx-
imations to the number of looks 𝐽 in (7), for the addressed 
MOS tools, does not have significant influence on the results. 
EDC in Fig. 12 seems more stable in comparison to AIC and 
MDL, attaining lower average RMSE and reaching a DR of 
ca. 100% for most SNRs. Yet, the metrics of EDC worsen 
abruptly for SNRs below -18 dB. Conversely, AIC and MDL 
retrieve similar results to each other, reaching ca. 100% of DR 
for SNRs above 15 dB. For SNRs below -18 dB, AIC and 

MDL retrieve better DR than EDC, having a slower transition 
to the zone of 0% DR.  

MARIA enhances the performance of MUSIC when the 
regularization parameter 𝜉 = 𝑁଴ is properly set; nevertheless, 
it has the trade-off of requiring more processing time. In aver-
age, the computation of a single trial takes MUSIC about 0.23 
seconds, whereas MUSIC + MARIA entails about 0.72 sec-
onds, i.e., approximately three times more. The measurements 
are performed in an Intel© Xeon© Gold 6154 CPU at 
3.70GHz, using a single thread.  

The addressed MOS rules perform well, partly due to its 
propensity to choose relatively large MOs. In addition, they 
contain a term that penalizes the highest MO, which attain 
poorer responses. Yet, AIC and MDL still tend to select the 
highest MO, retrieving, sometimes, misleading solutions. As 
an alternative to MOS tools, this work suggests choosing 
(manually) a large MO to perform focusing via parametric 
techniques like MUSIC. The highest MO, however, must be 
avoided. Afterward, regularization via MARIA is applied, 
seeking to attain good-fitted solutions.  

Fig. 9 shows that the fourth and fifth MOs achieve similar 
performance as the best eligible MO (i.e., the actual number of 
targets). Therefore, as a rule of thumb, we recommend select-
ing the MO immediately below the highest MO; in this case, 
the fifth MO.  

An illuminated region is normally composed of zones with 
different number of targets, thus, in the simulations presented 

 

  
(a)  (b)  

 

Fig. 9. Results achieved by MUSIC + MARIA for selected MOs: (a) average RMSE against SNR; (b) DR against SNR. 
 

 

  
(a)  (b)  

 

Fig. 10. Results achieved by MUSIC + MARIA using AIC as MOS rule: (a) average RMSE against SNR; (b) DR against SNR. Three different approximations 
to the actual number of looks 𝐽 in (7) are considered: 200, 300 and 400. 
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next, we include additional cases of study. First, the SNR is 
set to 0 dB, since the capabilities of MARIA for improving 
performance with low SNRs are already demonstrated. Next, 
different number of point-type like targets are considered. The 
simulations are performed as explained at the beginning of this 
section, with phase-centers placed at 𝑧̇ଵ = −2 m, 𝑧̇ଶ = 0 m, 𝑧̇ଷ = 3 m, 𝑧̇ସ = 6 m, 𝑧̇ହ = 8 m and 𝑧̇଺ = 11 m. The first case 
of study considers the first two phase-centers, the second case 
of study considers the first three phase-centers, and so on. For 

comparison purposes, we also present the results achieved 
using EDC (with 𝐽 = 300), the MOS rule with best perfor-
mance in the previous reported simulations. With this, 6400 
simulations are added to this work. 

Fig. 13 addresses the results attained for different number of 
targets. Observe that selecting the MO manually performs 
relatively well for the first three cases of study, with RMSE 
below 1 m and DR above 80 %. The RMSE increases with the 
number of targets, whereas, the DR decreases. Note that when 

 

 

  
(a)  (b)  

 

Fig. 11. Results achieved by MUSIC + MARIA using MDL as MOS tool: (a) average RMSE against SNR; (b) DR against SNR. Three different approximations 
to the actual number of looks 𝐽 in (7) are considered: 200, 300 and 400. 
 

  
(a)  (b)  

 

Fig. 12. Results achieved by MUSIC + MARIA using EDC as MOS rule: (a) average RMSE against SNR; (b) DR against SNR. Three different approximations 
to the actual number of looks 𝐽 in (7) are considered: 200, 300 and 400. 
 

 

  
(a)  (b)  

 

Fig. 13. Results achieved by MUSIC + MARIA using EDC as MOS rule and selecting the fifth MO manually. A SNR of 0 dB is set. (a) Average RMSE against 
number of targets; (b) DR against number of targets. 
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five targets are considered, there is an improvement of DR. 
This is expected, since the MO equals the actual number of 
targets. In general, the performance of EDC is significantly 
better, having more stable results for all different number of 
targets; the DR, by instance, stays above 90%. 

Based on these results, we recommend using EDC as MOS 
rule instead of choosing the MO manually. Selecting the fifth 
MO by hand might attain good performance in some scenari-
os, nonetheless, choosing the same MO does not seem to be 
appropriate all the time. Conversely, the MO selected by MOS 
tools like EDC varies with the characteristics of the scene. 

VII. EXPERIMENTAL RESULTS 
This section makes use of real data provided by the Jet Pro-

pulsion Laboratory (JPL) and the National Aeronautics and 
Space Administration (NASA). The dataset gathers L-band 
fully-polarimetric TomoSAR data collections from Munich 
(the third largest city in Germany), acquired by the UAVSAR 
system in 2015 [10], [13], [24]. The aircraft (Gulfstream G-
III) flew at a nominal altitude of 12.5 km with a swath of 22 
km and length of 60 km. The incidence angles range from 25° 
to 65°. The noise equivalent sigma-zero ranges from -35 dB to 
-53 dB across the swath [25]. For the specified microwave 
frequency band, with 0.24 m wavelength and 80 MHz chirp 
bandwidth, the resultant SLC imagery has a resolution of 1.66 
m in range and 0.8 m in azimuth. Fig. 14 shows one SLC 
image out of the stack; the presence of radio frequency inter-
ference is due to the several external sources, by instance, 
those coming from Munich’s airport. The TomoSAR acquisi-
tion geometry consists of seven passes at different altitudes, as 
specified in Table I. These were completed on a heading of 
193°. The expected vertical Fourier resolution is of about 2.8 
m in near range and of about 6 m in far range.  

For demonstration purposes, we define two ROI: the area 
where the building of the Bavarian state chancellery is located 
and the area where the Maximilianeum is placed. HH polariza-
tion is chosen due to the high intensity levels on these struc-
tures, as seen in Fig. 15, which depicts the corresponding 
intensity images with respect to the master track.  The azimuth 
and range indices act as a guide to identify the bounds of each 
ROI, specified through the red rectangles. Note that the build-
ings are oriented practically parallel to the flight direction.   

The tomograms presented afterward refer to the red lines 
crossing each ROI. Multi-looking is performed on the set of 

data covariance matrices through Boxcar filtering, using a 5 × 
10 (range/azimuth) pixel window. As a reference, we first 
apply MSF to focus the multi-looked TomoSAR data. Next, 
MUSIC is computed via two approaches: choosing the MO 
manually (MO = 5) and with EDC as MOS tool. Finally, 
MARIA is applied with 10 iterations, employing as input, 
respectively, both results achieved previously by MUSIC.  

With the aim of better appreciating the feature enhancing 
capabilities (suppression of artifacts, ambiguity levels reduc-
tion and increased resolution) of MUSIC and MARIA, all 
their tomograms are normalized with respect to the (pseudo) 
power recovered using MSF, which is known to be more accu-
rate in this aspect. The tomographic slices are presented in a 
dB scale, where 0 dB refers to the peak attained by MSF.    

Fig. 16(a) shows the Google Earth© image of the first test 
region, whereas Fig. 16(b) shows the respective polarimetric 
SLC SAR image [the colors correspond to the channels HH 
(red), VV (blue) and HV (green)]. Fig. 16(c) specifies the 
height of the different structures constituting the building of 
the Bavarian state chancellery. The corresponding tomograms 
are presented in Fig. 17 for HH polarization. For an easy as-
sessment, Figure 18 presents the superimposed vertical pro-
files for each azimuth position within the displayed tomo-
grams; the (pseudo) power is presented in a linear scale. 

As done before, Fig. 19(a) shows the Google Earth© image 
of the second test region, Fig. 19(b) shows the respective po-
larimetric SLC SAR image and Fig. 19(c) specifies the height 
of the different structures constituting the Maximilianeum. 
The corresponding tomograms are depicted in Fig. 20 for HH 
polarization, whereas Figure 21 presents the superimposed 
vertical profiles for each azimuth position within the respec-
tive tomograms. 

TABLE I 
TOMOSAR ACQUISITION GEOMETRY  

Track Flight altitude [m] 
1 12500 
2 12500 + 30 
3 12500 + 90 
4 12500 + 160 
5 12500 + 240 
6 12500 + 400 
7 12500 + 600 

 

 

 

Fig. 14. SLC SAR image of the test site in Munich, Germany, 2015 (near range on top). The colors correspond to the channels HH (red), VV (blue) and HV 
(green). 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2021.3120281, IEEE

Journal of Selected Topics in Applied Earth Observations and Remote Sensing

 11 

 

      

  
(a) (b) 

Fig. 15. Quick look intensity images of the two ROI for HH polarization: (a) area where the building of the Bavarian state chancellery is located; (b) area where 
the Maximilianeum is placed. 
 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 16. (a) Google Earth© image of the test region, where the building of the Bavarian state chancellery is located. (b) Polarimetric SLC SAR image of the test 
area [the colors correspond to the channels HH (red), VV (blue) and HV (green)]. (c) Front view of the edifice (Google Earth©), specifying the height of the 
structures that constitute it.      
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

Fig. 17.  HH tomograms retrieved from the area depicted by the red line crossing the ROI specified in Figure 15(a). We perform focusing using (a) MSF, (b) 
MUSIC, selecting the MO manually (MO = 5), (c) MARIA with (b) as input, (d) MUSIC, using EDC as MOS tool, and (e) MARIA, with (d) as input.  
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Observe the tomograms attained by MSF in Fig. 17(a) and 
Fig. 20(a), the presence of high ambiguity levels (above and 
below the buildings), along with the lower resolution, hampers 
the interpretation of the results. Conversely, the tomographic 
slices attained by MUSIC and MARIA confirm their afore-
mentioned feature enhancing capabilities.  

In the case of MUSIC, choosing the MO manually [see Fig. 
17(b) and 20(b)] performs relatively well. However, there is 
risk of over-fitting; targets may appear where in reality there 
are none. Recall that a relatively large MO is selected. Em-
ploying EDC as MOS tool [see Fig. 17(d) and 20(d)], on the 
other hand, prevents over-fitting through a penalty term, as 
defined in (21). EDC selects the most proper MO for each 
azimuth position along the tomogram, according to the criteria 
explained previously in Section IV.  

For different inputs, MARIA aims to attain a unique solu-
tion to the TomoSAR problem [see Fig. 17(c) and 17(e); and 
Fig. 20(c) and Fig. 20(e)]. However, this goal can be achieved 
until certain extent, as it depends on how different the inputs 
are. Nevertheless, it is recommended utilizing MARIA as 
post-processing step, seeking to correct the imprecisions that 
the tomograms recovered by MUSIC may have.  

Most of the structures constituting both edifices (i.e., the 
Bavarian state chancellery and the Maximilianeum) are distin-
guished more easily in the tomographic slices retrieved by 
MARIA. By instance, observe in the first case, the two wings 
(one at each side), the central building and part of the dome. 
For the second edifice, observe the two towers at the extremes, 
both wings (one at each side) and the central building. Alt-
hough MUSIC is considered as a super-resolution technique, 
their results can be still improved through MARIA, at the 
expense of more processing time (about three times more). 
The presented experimental results verify then the successful 
implementation of the strategy proposed in Fig. 1.  

VIII. CONCLUDING REMARKS 
As done with non-parametric techniques in previous related 

studies [10] – [13], this work shows that MARIA also refines 
the solutions attained by parametric methods like MUSIC. In 
contrast to non-parametric methods, an intermediate step is 
needed: the selection of the MO, which can be done manually 
or via MOS tools (e.g., AIC, MDL or EDC), most of them 
based on theoretic information criteria. 

 

 

 
(a) 

  
(b) 

   
(c) 

 
(d) 

 
(e) 

 

Fig. 18.  Superimposed vertical profiles of the tomograms displayed in Fig. 17: (a) MSF, (b) MUSIC, selecting the MO manually (MO = 5), (c) MARIA with (b) 
as input, (d) MUSIC, using EDC as MOS tool, and (e) MARIA, with (d) as input. The (pseudo) power is presented in a linear scale.  
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According to the reported simulations, MUSIC performs 
well for higher SNRs (in this case, above 15 dB), necessitating 
a regularization post-processing step just for scenarios with 
low SNR. Consequently, since using MARIA requires of 
(about three times) more processing time, it should be em-
ployed only in adverse scenarios with low SNR and when the 
degree of detail is particularly important. Focusing of illumi-
nated areas could be then done with MUSIC in some zones, 
whereas in another MARIA could be incorporated. 

Simulation results show that having different approxima-
tions to the actual number of looks 𝐽 in (7), seems not to affect 
the performance of the addressed MOS rules. EDC appears as 
the more accurate MOS tool, having AIC and MDL similar 
performance to each other.  

Selecting manually a relatively large MO and, afterward, 
combining MUSIC with MARIA, is also a plausible option 
seeking to retrieve good-fitted results and achieving feature 
enhancement. Yet, the performance with EDC is significantly 
better. 

The experimental results in Section VII, verify the success-
ful implementation of the strategy proposed in Fig. 1 for a real 
case (urban) scenario. Using MARIA as a post-processing 
step, aids correcting the inaccuracies that the tomograms 

rertieved by MUSIC may have, since MARIA aims to attain a 
unique solution to the TomoSAR problem. Also, MARIA 
provides further enhancement (i.e., suppression of artifacts, 
ambiguity levels reduction and increased resolution) to the 
solutions achieved by MUSIC, easing the interpretation of the 
results. 

Tackling the spatial spectral estimation problem within the 
context of DOA, allows using novel strategies as the one de-
scribed in Fig. 1. For demonstration purposes, TomoSAR has 
acted as an application. Nonetheless, keep in mind that the 
proposed approach can be adapted to different applications, 
which also deal with the problem of determining how the 
energy is distributed over space. This includes a variety of 
fields, e.g., sonar, telecommunications, biomedical engineer-
ing and seismology. 
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Fig. 19. (a) Google Earth© image of the test region, where the Maximilianeum building is located. (b) Polarimetric SLC SAR image of the test area [the colors 
correspond to the channels HH (red), VV (blue) and HV (green)]. (c) Front view of the Maximilianeum edifice (Google Earth©), specifying the height of the 
structures that constitute it.           
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Fig. 20.  HH tomograms retrieved from the area depicted by the red line crossing the ROI specified in Figure 15(b). We perform focusing using (a) MSF, (b) 
MUSIC, selecting the MO manually (MO = 5), (c) MARIA with (b) as input, (d) MUSIC, using EDC as MOS tool, and (e) MARIA, with (d) as input.  
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as input, (d) MUSIC, using EDC as MOS tool, and (e) MARIA, with (d) as input. The (pseudo) power is presented in a linear scale.  
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