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Abstract. We survey the history of resolution enhancement techniques
in microscopy and their impact on current research in biomedicine. Of-
ten these techniques are labeled superresolution, or enhanced resolution
microscopy, or light-optical nanoscopy. First, we introduce the develop-
ment of diffraction theory in its relation to enhanced resolution; then we
explore the foundations of resolution as expounded by the astronomers
and the physicists and describe the conditions for which they apply.
Then we elucidate Ernst Abbe’s theory of optical formation in the mi-
croscope, and its experimental verification and dissemination to the
world wide microscope communities. Second, we describe and compare
the early techniques that can enhance the resolution of the microscope.
Third, we present the historical development of various techniques that
substantially enhance the optical resolution of the light microscope.
These enhanced resolution techniques in their modern form constitute
an active area of research with seminal applications in biology and
medicine. Our historical survey of the field of resolution enhancement
uncovers many examples of reinvention, rediscovery, and independent
invention and development of similar proposals, concepts, techniques,
and instruments. Attribution of credit is therefore confounded by the
fact that for understandable reasons authors stress the achievements
from their own research groups and sometimes obfuscate their contri-
butions and the prior art of others. In some cases, attribution of credit
is also made more complex by the fact that long term developments are
difficult to allocate to a specific individual because of the many mutual
connections often existing between sometimes fiercely competing, some-
times strongly collaborating groups. Since applications in biology and
medicine have been a major driving force in the development of reso-
lution enhancing approaches, we focus on the contribution of enhanced
resolution to these fields.
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1 Introduction

Because of the importance of enhanced resolution for science, technology and
medicine, microscopy is widely regarded an important discovery: advances in opti-
cal microscopy correlate well with advances in our understanding of biology, and
medicine [Masters 2008; 2009a; 2009b]. Schellenberg edited a book with reprinted
papers on the history of optical resolution and its applications to a variety of in-
struments. These reprinted papers, some of which are translated into English, show
that resolution enhancement techniques are important not only for biomedicine, but
also for microfabrication and optical lithography [Schellenberg 2004]. One can make
the claim that advances in technology and instrumentation drives the advances in
research. Microscopy requires both resolution and contrast and in the last decades we
have seen substantial advances in the development of both of these areas.

What is fascinating from the historical perspective is that much of the early de-
velopments were prescient and often resurfaced in new and exciting forms. In this
review we revive some of the seminal advances of the past and integrate them with
the exciting modern developments that provide resolution enhancement techniques in
optical microscopy.

Each of these resolution enhancement techniques has inherent advantages and lim-
itations. A desirable goal would be to develop a series of microscopes that have spatial
and temporal resolutions that span a wide range of scales from atoms to organisms,
and down to time scales short enough to allow dynamic analyses. Historically, the
development of microscopy has been intimately connected with the biosciences.

Simple optical elements to enlarge the image of objects for an improved structural
analysis have been around for thousands of years. Large blocks of glass have been
found already in Mediterranean shipwrecks of the 14th century B.C. But for several
millennia the technology of glass making and the necessary mechanics to hold the
lenses were not sufficiently advanced to allow the construction of high-magnification
lens systems, or microscopes. This changed only a few hundred years ago with the
construction of the first strongly magnifying optical systems at the end of the 16th
and in the early 17th century. Probably not coincidentally, this invention was made
in Italy and the Netherlands, where the textile industry flourished. Microscopes for
the first time allowed a detailed analysis of the quality of wool and cloth, a basis
of the then “wealth of nations.” An early application of a compound microscope to
the life sciences is attributed to Galileo Galilei who in the beginning of the 17th cen-
tury described a bee, the coat of arms animal of the reigning pope Urban VIII. The
first widely distributed book on microscopy, however, was published in 1665 by an
English physicist. Robert Hooke, Secretary of the Royal Society in the years 1677–
1682, described in his “Micrographia or some physiological descriptions of minute
bodies, made by magnifying glasses with observations and inquiries thereupon” ob-
servations, including microscopic examination of the tissues of plants. Thanks to the
better resolution of his instrument, he discovered small structural units, “cells”, or
“cellulae”. In medieval Latin, “cellula” denoted an empty little room. The funda-
mental importance of these “little rooms” still remained for another 170 years in the
dark, until the first better corrected compound microscopes revealed the fundamental
importance of cells (typically with a diameter in the 10–20 µm range) for all living
systems.

The early microscopists of the 17th century observed not only wool, cloth, cork,
small organisms in water droplets or sperm at enhanced resolution. The most famous
of them, together with Robert Hooke, the Dutchman Antonie van Leeuwenhoek (1632–
1723) was the first to use his simple single lens microscope with a short focal length
(a few mm) and a resolution down to the µm-range to observe for the first time bac-
teria [Masters 2008]. Microscopes at that time had many technical problems making
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the sharp, clear observations of the micro-world extremely difficult. The systematic
observation of bacteria was suspended until the 19th century when multi-element, ro-
bust and “user friendly” microscope systems with better lighting and good chromatic
and monochromatic corrections could be manufactured. The usable optical resolution
of these microscopes was approximately 1 micron or 1/1000 millimeter. Although this
was not much better than what Leeuwenhoek had achieved 170 years earlier, there
were large differences in the practical usefulness: instead of a single tiny lens that one
had to keep very close to the eye for observation, Matthias Schleiden (1804–1881),
the founder of the cellular theory of life, used a compound microscope of the French
company Oberhäuser (Paris/F), allowing precise focusing of the object. Furthermore,
Schleiden’s microscope had an optimized illumination system. The mechanical stabil-
ity was supported by a lead-filled base; to achieve a precise focus, a spring mechanism
was used [Cremer 2011]. The preparations were at this microscope on glass slides that
were clamped with steel springs on the stage, just as with conventional systems today.
Consequently, these microscopes have a resolution down to the µm range already con-
tained various elements (high quality optical components; appropriate illumination;
high mechanical stability) essential also for the modern development of enhanced res-
olution. Such microscopes were probably the best that in the first half of the 19th
century was available in the field of high resolution optics.

In the year 1846, with the help of Matthias Schleiden, Carl Zeiss (1816–1888)
opened a small optical workshop in Jena and began to manufacture microscopes.
These were then constructed according to empirical rules. Carl Zeiss was the first to
recognize the importance of optical theory for the construction of high-power micro-
scopes. Therefore, in 1866 he committed the Jena physicist Ernst Abbe (1840–1905) to
perform quantitative numerical calculations for the development of further improved
microscope systems [Masters 2007]. By the 1880s, the microscopes built by Zeiss and
Abbe were the best in the world. The new microscopes from Zeiss optics and some
other leading manufacturers enabled the founding of modern cell based medicine and
microbiology. For example, the new microscopes with very much improved mechan-
ical stability, illumination, optical error correction and improved resolution allowed
for the first time a detailed analysis of many bacterial pathogens such as anthrax,
tuberculosis, cholera, and plague. By this, diagnosis, therapy and hygiene were put
on completely new foundations, with decisive consequences for the life conditions of
mankind. In addition, microscopes were used more and more to increase knowledge
also in other fields, such as geology, or even physics. The improved microscope systems
manufactured by Zeiss had a useful optical resolution down to 0.2 microns. As good as
the new high-power microscopes were, they had a serious problem: structural details
of bacteria (size in the µm range) and cells could only be detected if they were larger
than about 0.2 microns. Despite all attempts to improve this, it was not possible to
overcome this limit of the “conventional” light microscopy.

To summarize, so far historical evidence demonstrates the utmost importance of
improved resolution in science, technology, and in particular in biology and medicine.

2 What is resolution?

In common language, the word ‘resolution’ may generally be defined as the “action or
process of separating or reducing something into its constituent parts” (The American
Heritage Dictionary of the English Language). Accordingly, the application of this
general meaning in optics may be understood as the power of a microscope system to
discriminate the constituent parts of an object down to a certain level of distinction.
Historically, the first clearly formulated general resolution criteria have been those of
Ernst Abbe (1873) and Lord Rayleigh (1896). In addition, also some other special
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resolution criteria have been put forward to describe the principal goal of resolution,
“to discriminate the constituent parts of the object.” For example, resolution criteria
based on the Nyquist theorem may be very useful to describe the power of a microscope
approach to analyze the structure of a completely unknown object. In other cases,
it may be of great importance for the proper discrimination of the constituent parts
of the object to give a measure for the smallest detectable size (extension) of such a
constituent part; or to give a value for the smallest detectable observation volume.
Such a criterion based on a three dimensional (3D) measure appears to be particularly
useful to describe the power of an optical instrument to discriminate the constituent
parts in a 3D structure in the biosciences, such as an individual cell. Hence, there are
different criteria of resolution. Some of these criteria (such as two-point resolution,
point-spread-function and Fourier based definitions) are generally accepted to describe
the performance of optical systems. Others may be useful for special applications, in
particular in the life sciences. In this historical report on the techniques of resolution
enhancement, we shall list the various criteria and abstain from a decision what
should be ‘the right criterion’. In addition, we shall also abstain from the concept
of a ‘best resolution:’ the best resolution is the resolution which allows to the answer
the problem posed. According to the problem, this may be a criterion based on two-
point resolution, a PSF, or Fourier based concept; it may be the Nyquist theorem
applied to microscopy, the observation volume, or the size resolution.

2.1 Resolution criteria

Two-point resolution

There are various criteria of two-point resolution for the resolving power of an optical
instrument [Dekker and van den Bos 1997]. Experimentally, the resolving power of an
instrument depends on the shape of the object. We refer to resolution criteria instead
of definitions. The concept of resolving power involves the ability of an imaging device,
for example the eye or an optical instrument, to discriminate two point sources of
light, of equal intensity, as two distinct points. For a microscope this is the ability to
resolve two points separated by a minimal distance. This minimal distance is often
termed the resolution. For example, with a resolution of 100 nm, two luminous point
objects, separated by more than 100 nm, will be imaged as two distinct points; two
luminous objects with a smaller separation will not be imaged as two distinct points.
For a standard optical microscope with visible illumination, diffraction limits the
spatial resolution to about 0.2 µm in lateral direction and about 0.6 µm in the axial
direction.

Resolution based on the point spread function

In the Rayleigh theory, two self-luminous point sources in a sufficiently large dis-
tance are represented by two well separated diffraction patterns (Airy disks) [Rayleigh
1880a, 1880b, 1896, 1899]. The position of their maxima and hence their distance can
be determined as long as the maxima are well separated from each other. It is evident
that the sharper these Airy discs are (i.e. the smaller their diameter) the smaller is
the detectable distance between them and hence the better the two-point resolution.
This idea has been generalized in the resolution criterion based on the full-width-at-
half-maximum (FWHM) of the point-spread-function. Experimentally, the PSF is the
normalized intensity image of a self-luminous point source (e.g. a normalized Airy
disc); its FWHM is the diameter at one-half of the maximum intensity (giving a
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measure of the ‘sharpness’). Depending on the optical system, the FWHM has dif-
ferent values in different directions in the object plane (coordinates x, y) and along
the optical axis (z). Typically, two object points can be discriminated (resolved) from
each other if their distance is larger than the FWHM. This criterion has been amply
used to describe e.g. the resolution power of focused nanoscopy methods.

Fourier based resolution criteria

Ernst Abbe [Abbe 1873] developed his resolution criterion on the assumption that
the resolution limit of an object as the finest detail to be discriminated may be
denoted by the finest grid (in terms of lines/mm) which can be imaged, i.e. by the
smallest grid-to-grid distance which can still be detected by the optical system. The
theoretical justification for this was the possibility discovered by Jean Baptiste Fourier
(1768–1830) to mathematically describe any continuous object as the superposition
of harmonic functions.

McCutchen [McCutchen 1967] used Fourier analysis to analyze the effect of aper-
tures or stops on an imaging system. The Fourier theorem states that any periodic
function f(x) can be expressed as the sum of a series of sinusoidal functions.

f(x) =
1

2
C0 +

∞
∑

n=1

Cn cos (nk0x + αn) .

The ns are called the orders of the terms and are harmonics, and k0 = 2π
λ

.
Each term in the above series has two Fourier coefficients, an amplitude Cn, and

a phase angle αn.
McCutchen noted that the physical principle is similar to the local oscillator in a

super-heterodyne radio receiver; both shift the signal frequencies into the bandpass,
spatial or temporal, of a filter. He then ruled out superresolution microscopy based
on transmitted light; because of the difficulty of placing a stop much nearer than
100 wavelengths from the object. And he then examined the reflected light microscope
in which the point source of light has a diameter much smaller than the wavelength and
is scanned over the object. The physical principle is as follows for a fluorescent object
(incoherent emission): the object is illuminated with the smallest possible diffraction
image of a point source. The image is the convolution of the spatial spectrum of
the object with the autocorrelation function of the illuminating pupil. This increases
by 2/λ, where λ is the wavelength of the incident light, the largest spatial frequency
that forms the image. Such a microscope would be superresolving since there is a gain
of more than a factor of 2.

Convolution, correlation, and autocorrelation are common mathematical opera-
tions in optics. We mathematically define the convolution of two real functions f
and g as:

h(x) =

+∞
∫

−∞

f (x′) g (x − x′) dx′.

This is sometimes written as:

h(x) = f(x) ⊗ g(x).

The correlation function is mathematically defined as:

hcorr(x) =

+∞
∫

−∞

f (x′) g∗ (x′ − x) dx′.

Which is the convolution of f(x) and g∗(−x).
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The auto-correlation function, is similar to the correlation function, but we set
h ≡ f , then:

hauto−corr(x) =

+∞
∫

−∞

f (x′) f∗ (x′ − x) dx′.

Additional criteria of resolution

Nyquist Theorem based Resolution criteria

Originally, the Nyquist–Shannon sampling theorem has been derived from information
theory and is used to evaluate the transmission of signals. In a modified version, it is
applied also to describe basic requirements to obtain an image of a given resolution.
It is a consequence of the assumption that an object (continuous in time or space)
is represented by the superposition of harmonic functions of various frequencies; the
highest transmittable frequency determines the resolution. The frequencies have to be
transmitted by sampling, i.e. the process of converting a signal into discrete numbers.
This means that to transmit the spatial “cut-off” frequency which determines the
resolution, one has to transmit its coordinates at a series of points spaced with the
double frequency. For example, for a microscopic resolution of structural details down
to 0.2 µm, it is required to transmit a spatial frequency of at least 5 lines/µm. For
that, one needs a density of transmitted object points of double this frequency, i.e.
of 10/µm.

Obviously, the applicability of this criterion depends on the structure to be re-
solved. For example, to determine the resolution of a long, highly folded microtubule
fiber in a cell, or of a similar polymer on a surface, the Nyquist criterion is very use-
ful. However, in other cases other criteria, such as two-point resolution may be much
more indicated. For example, to determine to what extent a point object A (e.g. a
short DNA sequence in the nucleus of a cell) is adjacent to a point object B (e.g.
another short DNA sequence, or a specific protein), the information required is to
identify the positions of A and B independently from each other, and to determine
the distance. If there are e.g. only two point objects A, B with a distance of 0.2 µm
in the field of view, it makes no experimental sense to require the existence of at
least 10 distinguishable objects per µm (corresponding to the Nyquist conditions for
the transmittance of a spatial frequency of 5 lines/µm, corresponding to a resolution
of 0.2 µm) to perform the measurement. In such a case, it is completely sufficient if
the diffraction patterns generated by the two objects A and B can be distinguished
from each other.

It may be noted that similar considerations hold also in astronomy: to resolve a
binary-star system, it is completely sufficient to register the two diffraction patterns
separately from each other; the Nyquist theorem is not applicable. The name recently
given by the Carl Zeiss Company to their enhanced resolution ELYRA microscope
system based on single molecule localization may allude to this point of view: Beta
Lyrae is a binary star system approximately 960 light-years away in the constellation
Lyra.

Resolution based on the observation volume

Historically, the resolution of the light microscope referred to its power to discrimi-
nate small structures situated in the object plane; the discrimination of object details
along the optical axis (z) was not considered, due to the impracticability to gener-
ate sufficiently sharp images as a function of (z). This changed when deconvolution
based reconstruction algorithms and confocal laser scanning fluorescence microscopy
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techniques were introduced in the 1980s. To describe the 3D resolution power of a
microscope system, the FWHM of the PSF in the 3 spatial directions (FWHMx,
FWHMy , FWHMz) may be used. In this way, however, it may be difficult to com-
pare the resolution power of different systems; e.g. how to compare the 3D resolution
power (i.e. its usefulness to discriminate structures in 3D, e.g. in a cell) of a system
with FWHMx = FWHMy = 200 nm and FWHMz = 100 nm) with a system with
FWHMx = FWHMy = 80 nm and FWHMz = 600 nm?

To facilitate such comparisons, it has been proposed to use the ‘observation vol-
ume’ (Vobs) as an additional criterion [Hell and Stelzer 1992a]. This may be defined
as the volume enclosed by an isosurface of the 3D-PSF, e.g. as the ellipsoid volume
given by the half values of the FWHMs (Vobs = 4/3π * FWHMx/2 * FWHMy/2 *
FWHMz/2 = π/6 * FWHMx * FWHMy * FWHMz [Lindek et al. 1994].

Resolution based on size

In many applications of microscopy in the biosciences, it is important to determine
the size of small objects, i.e. their extension in space. For example, a large number
of the ‘biomolecular machines’ maintaining the life of a cell have a diameter in the
range of 100 nm and below. The smallest size which can be determined by a micro-
scope system may be called size resolution. Generally, the size resolution is intimately
connected with the FWHM of a system [Baddeley et al. 2010a]; however, in some
specially dedicated microscope systems there may be a large difference between these
two resolution criteria [Failla et al. 2002a,b].

First concepts of superresolution

Toraldo di Francia, is credited with the introduction of the concept of superresolution
of images. In his 1955 paper he defined superresolution as detail finer than the Abbe
resolution limit.

Toraldo di Francia introduced the technique of pupil plane filters as a method
to increase the resolution of an imaging system beyond the diffraction limit. The
principle was to use two concentric amplitude and or phase filters in the pupil of the
imaging system. He also demonstrated the existence of evanescent waves which are
today used in total internal reflection microscopy (TIRFM) where the exponentially
decaying evanescent radiation field of the exciting light excites a very limited region
of the specimen’s fluorescence; typically the surface of cells.

Toraldo di Francia in an article on resolving power and information wrote: “Re-
solving power is not a well-defined physical quantity,” [Toraldo di Francia 1955]. He
showed that enhanced resolution, that is resolution of visible light microscopy beyond
the conventional limits of diffraction (about 200 nm in the object plane and 600 nm
along the optical axis), is possible if there is prior knowledge about the object being
observed. Without prior knowledge about the object there can be no resolution gain.
In his 1952 paper published in Italian, he showed the effects of superresolving pupils.
In general the resolution enhancement was only obtained for the central part of the
field and what was lost was resolution in the peripheral parts of the field.

A decade later Charles W. McCutchen published an article in which he states that
in principle one can construct a superresolving optical system that can resolve details
finer than the diffraction limit. He then asks the question: “can the diffraction limit
for a lens of large numerical aperture be beaten?”

Ernst Abbe coined the term “numerical aperture.” In microscopy, the numerical
aperture, or NA, of a microscope objective is written as: NA = n sin θ, where n is
the refractive index as defined above, and θ is one-half of the angle of the cone of
light that can enter the microscope objective. The angular aperture of the microscope
objective is twice the angle θ.
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McCutchen then asks if detail smaller than half of the wavelength of light (this
limit in resolution follows from the Abbe diffraction theory of microscopic image for-
mation, see section 3.1) be made visible? He answers yes, but only in specialized and
probable limited applications. McCutchen asks the prescient question: can superres-
olution really beat the ultimate Abbe resolution limit for a lens with an acceptance
solid angle of 2π steradians. Perhaps that question stimulated the thinking of the
inventors of “4Pi” optical microscopes that use two opposing microscope objectives
with the specimen between them [Hell 1990b; Hell and Stelzer 1992a,b; Hell et al.
1994a,b; Hänninen et al. 1995].

In another set of interesting but difficult to understand publications W. Lukosz
reviewed optical systems with resolving powers that exceed the classical diffraction
limit [Lukosz 1966, 1967]. Prerequisites for understanding these two papers include
a sound knowledge of Fourier transforms and a good knowledge of optical coherence
theory. Lukosz makes two assumptions in his analysis: linearity and space invariance.
The linearity condition follows from the linearity of Maxwell’s equations. The second
condition of space invariance holds that all points in the object field are equivalent; in
other words the amplitude distribution in the image of a point source (point-source
spread function) “should not change as the source explores the object field.”

First, he redefines the limit of resolution of a coherent optical system due to
diffraction as stated by Abbe [Abbe 1873]. Optical systems transfer a limited band of
spatial frequencies; the bandwidth depends on the angular aperture of the system and
the wavelength of the light. Lukosz then states that for a specific optical system, it is
not the bandwidth of the transferred spatial frequencies, but the number N of degrees
of freedom of the optical message transmitted that is constant. The number N is given
by: the product of object area times optical bandwidth, times 2 which is the number of
independent states of polarization of the light, times the number of temporal degrees
of freedom.

In his invariance theorem, Lukosz showed that the spatial bandwidth of the system
is not constant and it can be increased over the classical limit by reducing the number
of degrees of freedom of the information that the system can transmit. As Lukosz
stated: “A new theorem on the ultimate limit of performance of optical systems is
established: not the bandwidth of the transferred spatial frequencies but only the
number of degrees of freedom of the optical message transmitted by a given optical
system is invariant. It is therefore possible (a) to extend the bandwidth by reducing
the object area, (b) to extend the bandwidth in the x direction while proportionally
reducing it in the y direction, so that the two-dimensional bandwidth is constant, (c) to
double the bandwidth when transmitting information about one state of polarization
only, and (d) to extend the bandwidth of transferred spatial frequencies above the
classical value by reducing the bandwidth of the transferred temporal frequencies. In
all of the described optical systems there are assumed to have linear and approximately
space-invariant imaging properties.

To achieve this, the optical systems are modified by inserting two suitable masks
(generally gratings) into optically conjugate planes of object and image space. The
transfer and spread function of the modified systems are calculated for the case of
coherent illumination [Lukosz 1966]. In this paper the author only considers coherent
illumination, but the “superresolving systems” also work when the object is illumi-
nated with either partially coherent or incoherent light.

The limits of resolution in the Abbe and Rayleigh theories (about 0.2 µm in lateral
direction and about 0.6 µm in the direction of the optical axis for visible light) are
based on specific assumptions: a single objective lens, single photon absorption and
emission in a time independent linear process at the same frequencies, and uniform
illumination across the specimen with a wavelength in the visible range. If these
assumptions are negated then enhanced resolution is feasible.
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This last statement was first put forward by Abbe, and is so important that we
quote from his paper. In his famous contribution on the fundamental limits of optical
resolution achievable in (far field) light microscopy (Abbe 1873), Abbe stated on
page 468 of his 1873 publication: that the resolution limit of about half the wavelength
used for imaging is valid only “. . . so lange nicht Momente geltend gemacht werden,
die ganz ausserhalb der Tragweite der aufgestellten Theorie liegen. . . ” (. . . as long as
no arguments are made which are completely beyond the theory stated here. . . ”). It
is precisely by altering the experimental conditions from those stated by Abbe that
enhanced resolution in the optical microscope is achieved. The contributions of the
various research groups to this achievement are described in Section 5.

2.2 The role of diffraction in image formation

An understanding of diffraction theory is central to any understanding of its crucial
role in image formation in the microscope. Born and Wolf in their classic book provide
a comprehensive discussion of the elements of diffraction theory [Born and Wolf 1980].
The reader may find the book Optical Physics, 4th Edition to be an alternative useful
description of the analysis of diffraction theory of light [Lipson, Lipson, and Lipson
2010]. The authors point out that in the region of focus of a lens the geometrical
model of electromagnetic energy propagation is no longer adequate; in its place a
complete theory of diffraction is required.

Francesco Grimaldi in the 1600s is credited with the origin of the term diffraction
which refers to the deviation of light from rectilinear propagation.

In 1818 Augustin-Jean Fresnel (1788–1827) demonstrated that the use of
Christiaan Huygens’ (1629–1695) construction and the principle of interference (when
two or more wavelets interact) could explain the alternating light and dark bands
observed in diffraction phenomenon. The approach used by Huygens, subsequently
called the Huygens’ construction, was to consider a wavefront as a new virtual
source of a spherical wave. He called the new spherical waves “wavelets.” The new
wavefront was formed from the envelope of the Huygens’ wavelets. Note that in an
anisotropic medium, the spherical Huygen’s wavelets take the form of ellipsoids. While
the Huygens’ construction allowed one to describe the refraction of light, it failed to
account for the phenomenon of diffraction of light.

Fresnel used Huygens’ construction in which the points on the wavefront are a
source of a secondary disturbance and the wavefront at later times is just the enve-
lope of these wavelets. But Fresnel added the critical assumption that the secondary
wavelets can interfere with each other and that accounted for the interference of
light. Fresnel assumed that the secondary spherical wavelets have the same frequency
as their sources on the wavefront. He calculated the amplitude of the optical field
outside the wavefront at an instant of time as the superposition of all the wavelets by
taking into consideration all of their amplitudes and their relative phases. Fresnel was
able to calculate the light distribution of a variety of diffraction patterns. His theory
took into account the phases of the secondary Huygens’ wavelets, and thus accounted
for their interference.

Then in 1882 Gustav Robert Kirchhoff’s (1824–1887) theory of diffraction provided
a new mathematical basis for the Huygens-Fresnel theory of diffraction phenomenon;
this is based on the Huygens-Kirchhoff diffraction integral.

Joseph von Fraunhofer (1787–1826) and Fresnel theories provide some useful ap-
proximations to the Kirchhoff theory; when the quadratic and higher-order terms can
be neglected we have the Fraunhofer diffraction, and when these terms cannot be
neglected the mathematical formulation is termed Fresnel diffraction. Typically in
optics we can use the mathematical approach of Fraunhofer diffraction.
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Many problems in optics can be solved by invoking the scalar-wave theory of
diffraction which assumes that the amplitude and the phase of an electromagnetic
wave can be described by a scalar variable. It specifically neglects the polarization of
the electromagnetic waves.

A complete description of the electromagnetic field requires the specification of the
magnitude of the field vectors and their polarization as functions of position and of
time [Born and Wolf 1980]. The authors show how the vector theory can be replaced
with a scalar theory based on the definition of the measurable quantity intensity (I)
which is the time average of the energy flow across a unit area that contains the electric
and the magnetic vector in unit time. In the scalar wave approximation the effects
of polarization are neglected, and the key approximation is that both the amplitude
and the phase of the electromagnetic wave can be described by a scalar variable. The
authors then develop the scalar theory of diffraction (Fraunhofer diffraction) for the
special cases of apertures: rectangular aperture of a slit, and the case of the circular
aperture. The latter case is important for the understanding of diffraction from a lens.

George Biddell Airy in 1828 became a Professor of Astronomy and Experimental
Philosophy in the University of Cambridge and director of the new Cambridge Ob-
servatory, and subsequently in 1835 he was appointed as the Astronomer Royal and
he held that position until 1881.

In 1835 Airy developed his formula for the diffraction pattern, called the Airy
disk, which is the image of a point source of light in an aberration-free optical sys-
tem. The special case of the Fraunhofer diffraction of a circular aperture is given an
eponymous name: the Airy pattern [Airy 1835]. Airy computed the analytical form of
the diffraction pattern from a point source of light (a distant star) as images by the
circular lens of the objective. He showed that the image of a star is not a point but a
bright circle that is surrounded by a series of bright rings.

With respect to image formation in a microscope the finite aperture of the objec-
tive results in diffraction effects. The image of a point source of light in the object or
specimen plane is not imaged to a point of light in the image plane by the microscope
objective. The diffraction image is formed in the diffraction plane by the microscope
objective. The observed Airy diffraction pattern is the Fraunhofer diffraction pattern
that is formed by the exit pupil of the microscope objective. The central bright disk in
the Airy diffraction pattern is known as the Airy disk. The radius of the Airy disk from
the central maximum intensity peak to the first minimum is given as: r = 0.61 λ

NA
,

where λ is the vacuum wavelength of the light, and NA is the numerical aperture.

2.3 The development of the two-point resolution concept

In this section we describe how two-point resolution was developed in astronomical
telescopes for the case of two luminous point objects and inserted in the context of
the diffraction theory of light. Many astronomical objects can be taken as luminous
point sources due to their distance from the imaging system. Luminous point objects
occur also in microscopy. In both cases the finite diameter of the imaging lens system
results in a point being imaged as the diffraction pattern (point spread function) of
the system’s aperture.

Two-point resolution refers to an optical system’s ability to resolve two nearby
point sources of light of equal brightness. The criteria of Rayleigh, John William
Strutt, 3rd Baron Rayleigh, (1842–1919) and C. M. Sparrow follow. Note that the
Rayleigh criterion of resolution (Figure 1) is based on the assumption that the two-
point sources are incoherent with respect to each other [Rayleigh 1880a, 1880b, 1896,
1899]. The Sparrow criterion can also be used for coherent light sources.
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Fig. 1. Diffraction pattern (Airy disc) produced by the fluorescence emission of a single
self luminous point source, such as a fluorescent molecule (top), and of two overlapping
diffraction patterns (Airy discs) produced by two adjacent point sources (bottom). The
smallest resolvable distance between the two maxima has been defined as the optical (two-
point) resolution (Rayleigh criterion). Reprinted with permission from Physik in unserer Zeit
(Wiley-VCH) [Cremer 2011].

The Rayleigh criterion is based on the assumption that the human visual system
requires a minimal contrast to separate two luminous, incoherent point sources in a
composite intensity distribution. The two points of equal brightness are imaged by
a diffraction limited optical system. Due to the finite size of the optics in an optical
system a point source of light is not imaged as a point, but as the diffraction pattern
of the system’s effective aperture. This diffraction pattern is called the point spread
function. We may sample an extended object as a collection of point sources. If the
light sources are incoherent, their intensities are added. The image is the convolution
of the object intensity and the point spread function (PSF).

In the Rayleigh resolution criterion there are two points of light that are separated
by a small angle. Rayleigh’s definition is the following: the two points are resolved if
the central maximum of the diffraction pattern from the first point coincides with the
first zero of the second point’s diffraction pattern.

If there is no zero in the vicinity of the central maximum, Rayleigh proposed that
the resolution is given by the distance for which the intensity at the central minimum
in the combined image of the two equal point sources is 80% of the maxima of intensity
on each adjacent side. Therefore, if the intensity profile shows a dip in the middle that
is higher than 80% of the maximum intensity, then the two points cannot be resolved.
In summary, Rayleigh stated that for incoherent illumination, two point images, of
equal brightness, are just resolved when they are separated by a distance equal to the
radius of the Airy disk. Rayleigh stated that optical aberrations degrade the optical
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resolution of imaging systems. Mathematically the result from diffraction theory is
the following:

θminimum =
1.22λ

D
(Rayleigh resolution criterion),

where the aperture has diameter D, and λ is the wavelength of the light. An optical
system is denoted diffraction-limited when it can resolve two points that are separated
by this angle, θminimum.

The Rayleigh criterion has important limitations. It fails if the diffraction pattern
does not have well defined zeros, or if they are far from the central maximum.

Sparrow’s criterion is a modification of this concept, but it is not based on any
assumptions about the human visual system. The Sparrow criterion of two-point res-
olution is the smallest distance between two points at which the minimum in the
intensity distribution of the combined two luminous points vanishes. It considers in-
coherent point sources; two point images to be resolved if their combined intensity
function has a minimum on the line between their centers. Another way to state the
Sparrow criterion is that two point sources are just resolved if the second derivative,
of the resulting image illuminance distribution, is zero at the point midway between
the respective Gaussian-image points. A mathematical expression of the Sparrow res-
olution criterion is given below:

θminimum =
0.95λ

D
(Sparrow),

where the terms have the same definition in the Rayleigh resolution criterion.
Both Rayleigh’s and Sparrow’s classical resolution criteria assumed incoherent

light. For the case of two points that emit coherent light we must combine the am-
plitudes of their point spread functions. The Rayleigh resolution criterion is the same
as for the incoherent case. But for the Sparrow case the expression for coherent illu-
mination is:

θminimum =
1.46λ

D
(Sparrow-coherent case).

It was the genius of Abbe who first extended the concepts of two-point resolution to
coherent illumination for the particular case of the microscope. The Sparrow criterion
has been employed with optical systems that use partially coherent light.

2.4 The optical transfer function

The history of the development of the optical transfer function (OTF) is critical to our
understanding of the concepts of resolution. The OTF can be defined by the following
ratio:

OTF = [Fourier Transform of the light distribution in the image] divided by the

[Fourier Transform of the light distribution in the object]

or [numerator (image)] divided by the denominator (object)].

This relation was first written by the French physicist Pierre-Michel Duffieux (1891–
1976) who was an assistant to Maurice Paul Auguste Charles Fabry (1867–1945).
Duffieux published a series of papers starting in 1935 in which he formulated the
theory of the optical transfer function. In 1946 he privately published his seminal
book: L’Integral de Fourier et ses Applications à L’Optique in which he applied Fourier
techniques to optics. This book had a great impact on European physicists who worked
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on optics. In 1983 John Wiley & Sons published the second edition of Duffieux’s book
as an English translation under the title: The Fourier Transform and Its Applications
to Optics.

Probable the most significant contribution of Duffieux was his theory of image
formation that included any shape of aperture and aberration. He invoked the convo-
lution theorem and demonstrated the Fourier transform of the function that expressed
the intensity distribution in the image can be approximated by the product of the
Fourier transform of the distribution in the object and the transform of a point source
image. From an analysis of the fractional reduction of the Fourier components that
are transmitted from the object to the image Duffieux defined the transfer function of
the optical system; it depended on both the lens aperture and on optical aberrations.

The optical transfer function is a criterion for the performance of an optical system
[Williams and Becklund 1989]. The definition of Williams and Becklund is quoted:
“The Optical Transfer Function (OTF) is the frequency response, in terms of spatial
frequency, of an optical system to sinusoidal distributions of light intensity in the
object plane; the OTF is the amplitude and phase in the image plane relative to
the amplitude and phase in the object plane as a function of frequency, when the
system is assumed to respond linearly and to be space invariant. The OTF depends
on and potentially describes the effect of diffraction by the aperture stop and the
effects of the various aberrations.” The latter term, aberrations, are discussed in the
subsequent section of this review. The optical transfer function of the imaging system
is the Fourier transform of the point spread function [Williams and Becklund 1989].

Another parameter to quantify the quality of an image is the contrast or the mod-
ulation which is defined as: Imax−Imin

Imax+Imin

. The ratio of the image modulation to the ob-

ject modulation at all spatial frequencies is the modulation transfer function (MTF).
The MTF is defined as the modulus |OTF | or the magnitude of the optical transfer
function. The MTF is the magnitude response of the optical system to sinusoids of
different spatial frequencies.

Harold H. Hopkins (1918–1994) is credited with the development and use of the
modulation transfer function in 1962. Hopkins was a student of Duffieux at the Uni-
versity of Besançon. Hopkins did most of his work on Fourier optics at The Imperial
College of Science, Technology and Medicine also known as Imperial College London.

2.5 The concept of the diffraction limit

An alternative approach to the classical criteria of resolution is based on linear system
theory in which we assume that the imaging device is both linear and shift invariant
[Gaskill 1978; Sheppard 2007; Van Aert et al. 2007]. We can characterize such an
imaging system by its point spread function. A coherent imaging system is linear in
complex amplitude and an incoherent imaging system is linear in intensity. An image
formed by a linear and shift-invariant optical system will have an amplitude for the
case of coherent imaging or an intensity for the case of incoherent imaging that is
the convolution of the amplitude or intensity distribution of the object and the point
spread function of the imaging system.

In the spatial domain the imaging system acts as a filter for spatial frequencies.
The imaging system transfers each spatial frequency separately. Since the optical sys-
tems aperture is finite the transfer function is band limited. This means that above
some spatial frequency the transfer function is zero. In that case, the frequencies are
not transferred by the optical imaging system. From this analysis the concept of the
diffraction limit emerges; it is the cutoff frequency that is denoted as the diffrac-
tion limit to optical resolution. It follows that with respect to this theory the term
enhanced resolution or bandwidth extrapolation refers to techniques that reconstruct
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or recapture the frequency components that are beyond the cutoff frequency of the
optical system.

The progress of novel microscopy approaches based on the precise localization of
individual point emitters, such as in certain types of electron microscopy, or in Local-
ization (Light) Microscopy (see below section 5) has made it desirable to reconsider
the concept of optical resolution [van Aert et al. 2006]. In such cases, the classical
resolution criteria as outlined above may no longer be appropriate if images are in-
terpreted quantitatively instead of qualitatively. Instead, an alternative criterion may
be used which relates resolution to statistical measurement precision. Van Aert et al.
(2006) proposed a quantitative resolution criterion that can be used to compare the
performance of coherent and incoherent imaging systems: By expressing resolution
in terms of the precision with which the distance between neighboring point objects
can be estimated, the proposed criterion reflects the purpose of quantitative experi-
ments, that is, precise measurement of physical parameters. As such, it may replace
Rayleigh-like classical resolution criteria that express the possibility to visually dis-
tinguish adjacent objects. Both computer simulations and experimental results have
confirmed the validity of this concept (see below, section 5).

2.6 What confounds optical resolution?

In classical light microscopy the term resolution is related to the capability of display-
ing detail in an image. The term resolving power of a microscope refers to the ability
to distinguish in the image two points that are in close proximity in the object. The
concept of resolution is ambiguous because different authors interpret resolution in a
variety of ways. What is critical to understand is that the resolution of an aberration-
free optical system will be modified by the presence of optical aberrations in the
imaging system [Mahajan 2001]. This effect was shown by Karl Strehl (1864–1940)
who demonstrated in his book that small aberrations in the optical system could
modify the Airy disk by reducing the intensity at the maximum of the diffraction
pattern and the removed light is redistributed in the outer regions of the diffraction
pattern [Strehl 1894].

The resolution of an optical system will be degraded in the presence of optical
aberrations. The aberrations include: chromatic aberrations, defocus, spherical, coma,
astigmatism, field curvature, and distortion [Mahajan 2001]. In summary, the point
spread function is equivalent to the Fraunhofer diffraction pattern of the lens aperture
only for the case that the lens is free from all geometrical aberrations.

3 What was Abbe’s contribution to understanding resolution
in the optical microscope?

In the late 1800s mathematical calculations were the basis for the construction of tele-
scopes but not microscopes which were considered too complex for analytical analysis
[Masters 2008]. This situation dramatically changed when Carl Zeiss hired Abbe, a
physicist with doctoral training in precise measurements. The design, testing, cali-
bration, and construction of microscopes improved over the decades due to the math-
ematical foundations that Abbe developed [Masters 2007]. Abbe developed several
instruments for the precision measurement of optical devices including the focime-
ter, the refractometer, the Abbe spectrometer, the spherometer, the thickness and
height meter and the comparator. The design and construction of optical components
and systems changed from “trial and error” to mathematical analysis and precision
measurement. Abbe also contributed the “Abbe sine condition” which if implemented
yielded optical systems without spherical aberration and without coma which resulted
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in the design and construction of aplanatic microscope objectives [Abbe 1889a,b;
Volkmann 1966]. According to Born and Wolf, the sine condition was first derived by
Rudolf Clausius (1822–1888) in 1864, and then by Hermann von Helmholtz in 1874
from thermodynamic considerations. In 1878 Abbe rediscovered the sine condition
and realized its importance in optical design.

Among his many inventions perhaps Abbe’s theory of image formation in the
microscope is most relevant for the subject of this review [Czapski 1910; Masters 2008].
Abbe was puzzled that his new microscope objectives with a small angular aperture
performed poorly as compared to those with a large angular aperture. Abbe’s analysis
of this phenomenon directed him to his theory of image formation that was based on
diffraction which is described in the next section.

3.1 Abbe’s contribution to image formation in the microscope

The motivation for Abbe’s research on image formation and resolution in the optical
microscope was his observation that larger diameter but less well corrected micro-
scope objectives give more fine detail in the images than smaller diameter, but more
corrected microscope objectives.

In 1873 Abbe published in German a 55 page paper with the following title:
“Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung” (“A
contribution to the theory of the microscope, and the nature of microscopic vision”)
[Abbe 1873]. This paper is unique because within this paper there is not a single
diagram and not a single equation. While Abbe proposed that a more complete math-
ematical treatment will follow it was never published, presumably due to his health.
The mathematical analysis of Albert B. Porter was published thirty two years later
[Porter 1906].

Abbe analyzed the diffraction of light by the object and then the effect of the
aperture. The central part of Abbe’s theory is that to image objects whose dimen-
sions are similar to the wavelength of light we cannot use the concepts of geometric
optics; instead, the correct explanation of microscopic image formation requires a
consideration of diffraction and interference effects.

Abbe’s main assumption was that the spatial frequencies in the object to be imaged
are similar to that of a diffraction grating that is illuminated by a coherent light
source. The object diffracts the light into many beams, each of a different order of
diffraction. The resolution is greater, by a factor of 2, when the object is illuminated
with incoherent light, as compared to coherent illumination.

A modern experimental optical set up that illustrates Abbe’s concept of image
formation in the optical microscope is as follows. The object is a diffraction grating
that is illuminated coherently with a collimated beam of quasimonochromatic light.
The object, first lens, diffraction plane, second lens, and image plane are arranged in
an optical system. The first lens forms a Fraunhofer diffraction pattern of the object
(a grating) in the focal plane (diffraction plane) of the first lens. In the back focal
plane of the microscope objective, each Airy disk is a source that forms a spherical
wave; the spherical waves interfere in the back focal plane of the objective, or the
diffraction plane. This diffraction pattern is the Fourier transform of the object. The
second lens is used to form an image of the diffraction pattern in the image plane.
A series of masks can be used to limit the number of diffraction orders that form
the diffracted image and the effect of “spatial filtering” on the resolution in the final
image could be readily observed.

The role of aperture is a key concept: if the microscope objective is to form an im-
age of an object then it must have an aperture that can transmit the entire diffraction
pattern produced by the object. The more diffraction orders from the object that en-
ters the microscope objective, the more detail that could be observed in the image.



296 The European Physical Journal H

Abbe also astutely noted that oblique illumination increased the resolution of the
microscope by a factor of 2. The explanation was that a higher order of diffraction
entered the microscope objective when the central illumination beam was shifted to
one edge of the microscope objective by tilting the illumination with respect to the
microscope’s optical axis.

Abbe set the limit of resolution for both coherent and incoherent illumination
for the optical microscope from his condition that both the central (0th order of
diffraction) and at least one of the diffraction order maxima must enter the objective
to achieve maximum resolution. The nondiffracted 0th order rays and the nth order
rays are separated in the back focal plane and are combined in the image plane.

For the following conditions of an object that consisted of a periodic structure
(lines), for an immersion microscope objective, and a circular aperture (the micro-
scope objective) with direct illumination, Abbe calculated this limit as d = λ

n sin α
for

direct illumination, and d = λ
2n sin α

as for the case of oblique illumination (produced
by a lens of the same numerical aperture as the objective lens), where d is the small-
est separation that can be resolved, λ is the wavelength of the illumination light in
vacuum, α is one-half of the angular aperture of the microscope objective, and n is
the refraction index of the medium between the object and the microscope objective.

Abbe also coined the term, “numerical aperture.” In microscopy, the numerical
aperture, or NA, of a microscope objective is written as: NA = n sin θ, where n is
the refractive index as defined above, and θ is one-half of the angle of the cone of
light that can enter the microscope objective. The angular aperture of the microscope
objective is twice the angle θ.

Abbe showed that it is possible to enhance the resolution of a microscope by the
use of two techniques. First, the use of oblique or off-axis illumination would enhance
the resolution by a factor of 2. Second, the use of immersion microscope objectives and
the use of an immersion fluid with a high refractive index would enhance the resolution
by a factor approximated by the index of refraction of the fluid as compared to air.

Abbe showed that for the standard configuration of the optical microscope, under
the illumination conditions that he stated, light diffraction limits the two-point res-
olution of an optical microscope to approximately one-half of the wavelength of the
illumination light or approximately 200–300 nm. This is known as the Abbe limit of
resolution. From the analysis of Abbe on microscopic resolution it follows that in order
to increase the resolution of an optical instrument it is necessary to either decrease
the wavelength or to increase the numerical aperture.

Hermann Ludwig Ferdinand von Helmholtz (1821–1894) in 1874 published a paper
in which he calculated the maximum resolution for an optical microscope [Helmholtz
1874]. Helmholtz used the ray tracing techniques that were often used in telescope
design and he stated that the smallest separation of two distinct luminous points that
could be resolved was equal to the one-half of the wavelength of illumination light.
Helmholtz read Abbe’s earlier contribution only after he wrote his paper, but he was
able to attach a note to his paper, prior to its publication, that acknowledged the
priority of Abbe. Helmholtz also in his paper acknowledged the 1803 publication by
Joseph Louis Lagrange (1736–1813), Sur une loi général d’Optique in Mémoires de
l’Académie de Berlin. The so called “general law of optics of Lagrange” is explained
in the next paragraph. It is one of a group of invarients in optics that have numerous
names. Helmholtz extended the theorem of Lagrange, which was derived for infinitely
thin lenses, to apply to finite divergence-angles.

The definition of some term follows. The geometrical path length is the geomet-
rical distance measured along a ray between any two points. The differential unit of
length is:

ds =
√

dx2 + dy2 + dz2.
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The optical path length between two points x1 and x2 through which the ray passes is:

Optical path length =

∫ x2

x1

n(x)ds.

Characteristic functions in optics permit a complete description of path lengths be-
tween pairs of points in an optical system. They can be on the same side of a lens or on
different sides. William Rowan Hamilton (1805–1865) was the first to consider them;
they have the name Hamiltonian optics. The solution for optical ray paths involves
the calculus of variations. The method is similar to that used in classical mechanics
where the time integral of the Lagrangian is an extremum.

The concept of étendue and its conservation will now be explained. The étendue is
known by many different names: generalized Lagrange invariant, lumininosity, light-
gathering power, and area-solid-angle-product. A bundle of light rays intersects a con-
stant z plane in a small region of size dx dy and has a small range of angles dα and dβ.
As the light propagates the following quantity is constant:

n2dxdydαdβ = n2dAdαdβ = n2dA cos θdω.

Where dA = dxdy is the differential area, dω is the solid angle, and θ is measured
relative to the normal in the plane. The integral of this last equation is called the
étendue and is conserved.

∫

n2dxdydαdβ =

∫

n2dAdαdβ =

∫

n2dA cos θdω.

In his paper of 1896, on image formation in the microscope in which he first analyzed
the aperture and then the object [Rayleigh 1896], Rayleigh reached similar conclusions
as did Abbe; and he stated explicitly that the maximum resolution achievable was λ/n
(λ vacuum wavelength, n refraction index).

In Abbe’s theory, he first considered the diffraction by the object, and then he con-
sidered the effect of the aperture of the microscope objective. Rayleigh used Lagrange’s
general law of optics [see the previous paragraph], known as the generalized Lagrange
invariant, and Fourier analysis to calculate the diffraction pattern of apertures with
various shapes, as well as the diffraction pattern from gratings. According to Born
and Wolf, both theories are equivalent.

Rayleigh then states that the two-point resolution in an optical microscope can
only be improved by reducing the wavelength of light (he suggests photography, per-
haps with ultraviolet light) or by affecting the numerical aperture by increasing the
refractive index of the medium in which the object is situated.

August Karl Johann Valentin Köhler (1866–1948) has published a modern analysis
of Abbe’s theory of image formation in the microscope that is based on the complex
Fourier transform. The first part of his paper presents a historical review of the
publications from 1873 to 1910 which is highly instructive [Köhler 1981]. Several other
historical sources can be consulted to provide additional material on the contributions
of Abbe to the development of the optical microscope [Abbe 1873, 1889a,b; Lummer
and Reiche 1910; Masters 2007].

In summary, Abbe in his theory of the microscope showed how diffraction con-
tributes to image formation in the optical microscope. In Abbe’s theory the interfer-
ence between the 0th-order and higher-order diffracted rays in the image plane forms
image contrast and determines the spatial resolution. At least two different orders of
diffracted light must enter the lens for interference to occur in the image plane.

Abbe showed the role of the numerical aperture (NA) and the wavelength of the
light in the resolution of the microscope. He proposed that the optical resolution of the
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light microscope could be improved by either decreasing the wavelength of the light
or by increasing the numerical aperture (NA) of the microscope. Finally, he conceived
and demonstrated his theory with a series of simple diffraction experiments that
involved masks and apertures in the focal plane which altered the spatial frequencies
that formed the image. These clever visual experiments helped to convince others of
the correctness of his theory. While he promised to publish a detailed paper on the
mathematical development of his theory he died before this occurred.

3.2 How Porter used physical optics to explain Abbe’s diffraction theory

In 1876, three years after Abbe published his theory of image formation in the micro-
scope, Abbe traveled to London to demonstrate his diffraction theory with a series of
experiments which he demonstrated in front of the Royal Microscopical Society. With
his set of gratings, apertures and a microscope Abbe gave public demonstrations of
his theory.

As stated above, Abbe’s promised mathematical paper of his theory of image for-
mation in the microscope was never published. Porter’s mathematical paper described
Abbe’s theory and Abbe’s experiments in only 12 pages because he used Fourier anal-
ysis to present the mathematical foundation of Abbe’s theory. The basic concepts of
Abbe’s theory of image formation in the microscope were elegantly illustrated in the
experiments of Porter that are based on the early experiments performed by Abbe
and which he used in his London demonstrations [Porter 1906].

Porter noted that if the object is a transmission grating with alternate opaque
and transparent lines, then Fourier’s theorem can be applied to this problem. When
the objective lens forms a real image of the grating the harmonic components of the
diffracted light are combined in the focal plane. As the aperture of the objective lens
is widened, higher and higher orders of the objects diffraction pattern can enter the
lens, the result is a sharper image that more closely resembles the object. Porter
also showed that the resolving power of the microscope could be increased by using
light of a shorter wavelength, i.e. violet or ultraviolet light. In Porter’s microscope
experiments normal working conditions were used: central illumination, and circular
diaphragms centered on the optical axis.

In Porter’s experiments that were modeled after those devised by Abbe three
decades earlier, an object was a fine wire mesh that is illuminated by collimated,
coherent light. In the back focal plane of the imaging lens (the microscope objective)
the Fourier spectrum of the object is located, and in the image plane the various
Fourier components are recombined to form the image for the wire mesh object.
Porter then showed that various masks could be placed in the focal plane (an iris,
a slit or a small stop), and thus it is possible to manipulate the spatial frequency
spectrum of the image.

4 Early optical techniques to enhance microscopic resolution

The history of the microscope is replete with developments which enhance the resolu-
tion and the contrast of the image and decrease the aberrations of the optical system
[Masters 2008; 2009a]. The early microscopes operated in the far-field and Abbe’s and
Rayleigh’s analyses of image formation in the microscope indicated that to increase
the two-point resolution it is necessary to decrease the wavelength of the light or to
increase the numerical aperture. Abbe showed that even with a high refractive index
fluid between the specimen and the objective, the upper magnitude of the numerical
aperture was limited in the standard microscope design to the value of the refractive
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index n (i.e. a practically useful maximum around 1.5); thus, researchers attempted to
reduce the wavelength of the light. Abbe’s demonstration experiments on imaging fine
ruled gratings showed the effect of shorter wavelength light (blue versus red light); the
blue light increased the two-point resolution. That demonstration stimulated the de-
velopment of an ultraviolet microscope. Following the work of de Broglie, who showed
that particles can be characterized by their wavelength, researchers began to explore
the use of electrons and electric and magnetic lenses to focus electron beams as the
light sources for new forms of microscopes: electron microscopes [Masters 2009b]. The
wavelength of electrons (1−2 Å) in beams is much smaller than the wavelength of
ultraviolet light and thus the resolution could be vastly improved as compared to
visible light.

4.1 Techniques to decrease the wavelength of illumination

Ultraviolet microscope

The motivation to develop an ultraviolet microscope followed from Abbe’s theory of
image formation in the microscope. It was predicted [Rayleigh 1896] that the shorter
wavelengths of the ultraviolet light, as compared to visible light, would enhance the
resolution of the microscope.

In 1904, August Köhler, working in the Jena Zeiss factory, invented an ultravio-
let microscope that preceded the fluorescence microscope. A camera was required to
detect the very weak image. The microscope used a quartz monochromatic ultravio-
let microscope objective that was previously developed by Moritz von Rohr. Köhler
noted that the ultraviolet light excitation on a crystal of barium platinum cyanide
resulted in fluorescence in the visible spectrum. Köhler made some early prescient
observations with his ultraviolet microscope: the observation of autofluorescence of
biological specimens that were excited with ultraviolet light, and the observation of
the ultraviolet image of unstained chromatin in the cell nucleus with incident light
of 275 nm [Masters 2008].

Electron-microscopes

The early development of the electron microscope depended on a long series of ad-
vances in electron optics [Masters 2009b]. The practical development of the electron
microscope depended on both an understanding of electron optics and on correcting
the aberrations that were caused by the magnetic lenses. In 1931, Max Knoll (1897–
1969) and Ernst August Friedrich Ruska (1906–1988), working in Berlin constructed
a two-stage transmission electron microscope with magnetic lenses. A wire mesh was
used as the object. In 1931, Ruska improved their transmission electron microscope
and demonstrated its capability to surpass the resolving power of the light microscope
[Ruska 1979; 1986]. The enhanced resolution of the electron microscope has resulted in
seminal advances in cell biology, neuroscience, virology, and material science [Masters
2009b].

X-ray microscopes

Another approach to realize enhanced resolution with wavelengths much shorter than
possible in ultraviolet light microscopy has been to use soft X-ray and synchrotron
sources. For contrast, absorption differences (carbon, oxygen) or phase contrast are
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applied. For focusing the imaging X-rays, various techniques may be used, especially
appropriately manufactured Fresnel plates.

Approaches to construct X-ray microscopes date back already to the 1930s and
since then have undergone substantial improvements [Newberry et al. 1959; Schmahl
et al. 1989, Dierolf et al. 2010]. With soft X-rays, it has become possible to examine
entire cells with a three-dimensional (3D) resolution down to few tens of nm [Chao
et al. 2005; Schneider et al. 2010].

4.2 Slit illumination: the ultra-microscope to detect colloids

A point source of light will be imaged at the resolution of the optical microscope.
A single luminous particle whose lateral dimension is less than the resolution of the
microscope will also be imaged at the resolution of the microscope. For example, the
fluorescent images of the cytoskeleton show filaments whose cross-sectional dimensions
(a few tens of nm) are far below the resolution of the standard wide-field fluorescent
microscope; they form an image at the resolution of the microscope. Alternatively,
it is possible to detect with a conventional microscope a luminous particle whose
lateral dimensions are far below the resolution of the optical microscope. This is
illustrated in the description of the ultramicroscope which played a major role in the
field of colloid chemistry. However, since the resolution power remained the same as
in conventional microscopy, it was not possible to analyze (“image”) structural details
in such particles.

In 1903 Henry Friedrich Wilhelm Siedentopf (1872–1940), who worked at the op-
tical works of Carl Zeiss, collaborated with Richard Adolf Zsigmondy (1865–1929)
and they invented the ultramicroscope to observe (detect but not “image”, see above)
colloids. Their ultramicroscope could detect each single colloid particle as a bright
spot of light and thus localize them, i.e. assign them a position relative to microscope
system coordinates. However, for particles much smaller than the wavelength used,
this spot size (the Airy disk) is practically dependent only on the microscope system
and the wavelength applied, and hence does not confer information on the size of the
object.

In the Siedentopf-Zsigmondy microscope the illumination is perpendicular to the
optical axis of the microscope. They used the dark-field illumination technique in
which each colloid particle is detected by its scattered light that enters the microscope
objective and is seen by the eye of the observer as a point of light. The effect is similar
to how we observe particles of dust in a sunbeam. At the time it was not accepted
that it would be possible to observe (detect) a particle that is much smaller than the
resolution of the optical microscope.

Siedentopf constructed a dark-field condenser that blocked the incident illumi-
nation from entering the microscope objective and that improved the contrast. He
reported that the use of ultraviolet light for the illumination produced specimen
fluorescence, and that fluorescence was a problem since it reduced the contrast in
the microscope. In 1914 Siedentopf and Zsigmondy further developed their original
invention and produced a slit ultramicroscope and an immersion ultramicroscope.
Zsigmondy received the Nobel Prize in Chemistry for the year 1925 for his work on
colloid chemistry (Zsigmondy 1907; Zsigmondy 1909). It is of interest that the mod-
ern microscopic techniques that are based on “illumination with a light sheet” [Keller
et al. 2007, 2008; Greger et al. 2011] follow from the early works of Siedentopf and
Zsigmondy on lateral illumination, in combination with the experience gathered dur-
ing the 1990s with laser excitation and orthogonal detection schemes (Lindek et al.
1994, 1996).
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4.3 Erwin Müller: Field-ion microscope to image atoms

The field emission microscope, invented by Erwin Wilhelm Müller (1911–1977)
in 1936, provided a resolution superior to the standard light microscope [Müller and
Tsong 1969]. Its development began with Müller’s early investigations on field emis-
sion in the 1930’s when he worked in Berlin at Berlin-Siemensstadt [Müller 1937]. He
suggested that this new type of microscope could be used to study the properties of
metal surfaces and adsorbed layers.

The basic design of the field emission microscope is as follows. A specimen in
the form of a needle is maintained under a very high vacuum and the tip is sub-
jected to a very large negative voltage. The electric field at the tip is of the order
of 10 V per nm. This strong electric field causes electrons to be emitted for the tip
by quantum mechanical tunneling. The emitted electrons are accelerated towards the
screen containing phosphors, and they form a magnified image of the atomic arrange-
ment on the surface of the needle. The lateral resolution is of the order of 20 Å.
Individual atoms could not be observed.

Several years later in 1951 Müller, now working at the Fritz Haber Institute in
Berlin, developed the field-ion microscope, in which gas atoms replaced the electrons
of the earlier field emission microscope, and he achieved atomic resolution with the
ability to image individual atoms on the surface of the needle. In his new microscope
he made the specimen of positive polarity and used a gas such as hydrogen, helium
or neon, to enter the apparatus. The atoms of the gas are ionized a few angstroms
above the atomic surface, and the helium or neon ions are accelerated to the phosphor
imaging screen to form the image of the atoms in the lattice of the specimen. The
spatial resolution of the microscope is about 2 Å.

In 1963 Müller could write “Field ion microscopy is the only means known today
for viewing directly the atomic structure on solid surfaces in atomic detail” [Müller and
Tsong 1969]. It was the first microscope to achieve atomic resolution. The prescient
developments of Müller and his colleagues formed the basis of much of the subsequent
work in scanning probe microscopes (SPM) that achieved atomic resolution; these
microscopes will be discussed in a subsequent section (4.6).

4.4 Confocal microscopes: to enhance the 3D resolution

A standard wide-field microscope that images a volume of the specimen does not
have any “optical sectioning” capability, or the capability to discriminate against light
that comes from regions that are not contained in the focal place of the microscope
objective. A plot of intensity of the image versus distance from the focal plane is a
horizontal line.

Since the 1960s, novel optical ideas were conceived and realized to overcome this
severe limitation of light microscopy in the study of three dimensional structures in the
biosciences. To these developments of ‘confocal laser scanning fluorescence microscopy’
(CLSM) and reflected light confocal microscopy, many scientists and engineers have
contributed in a process of several decades of duration, either by theoretical concepts,
or by the experimental realization and the introduction of these novel approaches into
the biosciences [Masters 1996]. CLSM made possible for the first time to create sharp
three-dimensional images of a variety of biological structures, combined with a highly
superior contrast. Presently, the typical resolution of a CLSM (in terms of FWHM)
is 200 nm in the object plane (x, y) and 600 nm along the optical axis, i.e. still within
the limits of conventional theories of resolution. Due to the many and excellent reports
existing on the history of confocal microscopy and due to the focus of this present
report to enhanced resolution techniques beyond these values, we have to restrict
ourselves to a few remarks.
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A confocal microscope is a scanning microscope where the image is formed by
‘point-by-point’ excitation of the object and ‘point-by-point’ registration of the opti-
cal response [Masters 1996]. The spatial filtering may be obtained via a set of con-
jugate apertures or slits (one for illumination, and one for detection) which results
in an “optical sectioning” capability. The out-of-focus light is rejected by a pinhole
located in front of the detector. A plot of intensity versus distance from the focal
plane decreases with distance from the focal plane. In the case of laser illumination
with appropriately shaped Gaussian beams, only the detection pinhole but not the
illumination pinhole was necessary [Davidovits and Egger 1971].

While a confocal microscope as compared to a standard wide-field microscope
has a slight enhancement in the axial and the lateral resolution (the optimal lateral
improvement is 1.4), the main reason for its utility is the enhanced axial resolution
which permits “optical sectioning” of specimens and enhanced contrast in the resulting
images [Masters 2010]. A standard wide-field microscope has the contrast severely
degraded by light from outside the focal plane of the microscope objective which
contributes to the image. In the 1980s, John Sedat and David Agard introduced three-
dimensional deconvolution techniques for biological light microscopy which allowed to
improve the contrast of such biological images considerably [Agard and Sedat 1983].
The removal of out-of-focus information made possible by such methods was based
on the mathematical combination of a series of wide field images taken from the same
object at different focal positions.

Masters has edited a book that includes the key historical papers and the patents
related to confocal imaging systems and demonstrated the linkages between the many
inventions and reinventions [Masters 1996]. This volume, and its selected papers and
patents that are reprinted in full, contains examples of history that are not commonly
known.

For example, the invention of the confocal microscope is often attributed to Marvin
Lee Minsky who filed his patent on November 7, 1957. In fact, Minsky’s invention was
partly predated by the paper that Hiroto Naora published in Science (vol. 114, 279–
280, September 14, 1951). Furthermore, it is often not recognized that a practical use
of the confocal principle in fluorescence and reflected light microscopy became possible
only after the development of laser sources with appropriately short wavelengths in
the 1960s.

Another misconception is the invention of the scanning mirror confocal microscope
that is often attributed to G. J. Brakenhoff [Brakenhoff et al. 1979, 1985]. In fact,
G. M. Svishchev invented a scanning mirror confocal microscope to image the brain
and published it in Optics and Spectroscopy (vol. 26, 171–172) in 1969.

4.5 Near-field microscopes

Near-field and far-field optics are different and that difference is exploited in the near-
field microscopes. Subwavelength resolution and imaging are achieved by coupling
the light from the specimen to an optical element that is located a subwavelength
distance away. When the detector is less than one wavelength away from the specimen,
the resolution is given by the size of the aperture and not the wavelength of the
illumination [Courjon 2003; Paesler and Moyer 1996]. With standard light microscopes
(using a fixed wavelength of constant intensity) far-field diffraction sets a limit to the
spatial resolution (the Abbe limit of resolution).

Near-field microscopy presents another example of a prescient invention that years
later resurfaced and then various aspects of the original invention were rediscov-
ered [Jutamulia 2002]. In 1928 Edward Hutchinson Synge, first in a correspondence
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with Albert Einstein and shortly afterwards in a publication described his inven-
tion of the microscope that today we call the near-field scanning optical microscope
[McMullan 1990; Synge 1928]. Synge’s proposed microscope had a light source behind
an opaque metal film that had a small orifice of about 100 nm. The orifice was sit-
uated within 100 nm of the surface of the specimen, and the image was formed by
point or raster scanning the small orifice over the specimen.

In 1944, the physicist Hans Albrecht Bethe (1906–2005) published a seminal paper
on the diffraction of electromagnetic radiation by a hole whose diameter is small
compared to the wavelength of the illumination [Bethe 1944]. Bethe assumed that
the small hole is in an infinite plane conducting screen that separates two cavities. It
follows that one can assume that the electromagnetic field is almost constant over the
hole. First, Bethe shows that the standard formulation of Kirchhoff’s diffraction theory
is not valid since the Kirchhoff solution does not satisfy the boundary conditions of
the problem. Then he proceeds to provide a correct mathematical solution to the
problem which does satisfy the boundary conditions.

Eric A. Ash and G. Nicholls stimulated by the work of Lukosz who showed how
to enhance the resolution of an optical microscope by a factor of two discarded the
attempt to achieve higher orders of enhancement of resolution by wide-field illumi-
nation since the diffraction-limited stop at the focus of a lens is of the order of one
wavelength. Instead they proposed fabricating an aperture, whose diameter is much
smaller than the wavelength of the illumination radiation, and scanned the aperture
over the surface of the specimen with a distance that was much smaller than the wave-
length of the illumination radiation (Ash and Nicholls 1972). Their proof of principle
experiments were conducted at a frequency of 10 GHz (λ = 3 cm). They clearly im-
aged a grating with a line width of λ/60. They end their prescient paper with the
suggestion to build an enhanced resolution optical microscope that would operate in
the visible region.

It took until 1982 for Winfried Denk who was working in Dieter W. Pohl’s IBM
Research Laboratory in Rüschlikon, Switzerland to demonstrate near-field imaging
in the visible wavelength region. The authors demonstrated subwavelength resolu-
tion optical image recording by moving an extremely narrow aperture along a test
object equipped with fine line structures. Details of 25 nm size can be recognized
using 488 nm radiation [Pohl et al. 1984]. In the same year at Cornell University, A.
Lewis, Isaacson, Harootunian, and Murray published a paper which described their
development of a 500 Å spatial resolution light microscope [Lewis et al. 1984; Betzig
et al. 1986].

4.6 Scanning probe microscopes

Scanning probe microscope (SPM) have been developed in many versions, but the
basis is scanning a small probe over the surface of the specimen, and the image is
generated point-by-point, through the interaction of the probe tip and the local region
of the specimen [Martin 1995].

The invention of the scanning tunneling microscope (STM) is credited to Gerd
Binnig and Heinrich Rohrer who were working at IBM in Research Laboratory in
Rüschlikon, Switzerland in 1982 [Binnig and Rohrer 1982]. For their seminal work
they received the Nobel Prize in 1986. STM requires that the specimen be electrically
conducting. The interaction between the specimen and the probe tip is the tunneling
of electrons between the tip and the specimen. The tunneling current is extremely
sensitive to the specimen height; the tunneling current decreases by an order of mag-
nitude for each 1 Å increase in tip to sample distance. SPM can achieve a 0.1 nm
lateral resolution and 0.01 nm depth resolution which permits the imaging and the
manipulation of single atoms.
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In 1986, Binnig, Quate, and Gerber invented the atomic force microscope (AFM)
which is one of the most popular implementations of SPM. The physical interaction
in the AFM is the force between the tip and specimen; it is mediated by van der
Waals forces, electrostatic forces, magnetic forces and Pauli repulsive forces.

A recent Science paper demonstrated the ability of atomic force microscopy to not
only resolve single atoms within a molecule on a surface, but to identify the chemical
structure of the atom; this study demonstrates the complete structure of a molecule
with atomic resolution [Gross et al. 2009]. These results were obtained at atomic
resolution by probing the short-range chemical forces with the use of noncontact AFM.

4.7 Microscopes based on the optics of metamaterials

Recent developments in the development of metamaterials have demonstrated alterna-
tive techniques to image below the diffraction limit. Metamaterials are engineered ma-
terials that contain microscopic inhomogeneities that are responsible for their macro-
scopic physical properties. In 1968 the Russian physicist Victor Georgievich Veselago
proposed that metamaterials could be engineered to yield a negative refractive index.
He suggested that negative refraction can occur if both the electric permittivity and
the magnetic permeability of a material are negative. Furthermore, a plane metama-
terial could act as a lens (a point object is imaged as a point image) and have a
negative refraction [Veselago 1968]. This was first published in Russian in 1967, and
the English translation was published in 1968.

Recent theory has predicted a superlens that could produce subdiffraction-limited
images in the near-field [Pendry 2000]. The metamaterial would compensate for wave
decay and use both the propagating and the evanescent fields to form the image; both
contribute to the resolution of the image. As John Pendry has shown in his theory
when an object is situated in front of a material with a refractive index, n = −1, the
near field light, which usually decays exponentially with distance from the interface,
is focused within the material, and it is also focused outside of the lens [Pendry 2000].
He suggested the use of silver and in 2005 his earlier suggestion was experimentally
validated [Fang et al. 2005].

Pendry gave the example of a medium in which both the dielectric function, ε,
and the magnetic permeability µ, are both negative. A slab of this medium bends the
light to a negative angle at the normal to the surface, the light from the object point
that was diverging, converges to a point within the medium. As the light exits the
medium, it is refocused for a second time.

The anomalous refraction of light by negative index materials can be explained
as follows. The causality principle and conservation of tangential wave vectors of the
electromagnetic field require that if the light is incident from a positive-index material
to a negative-index one, the refracted light lies on the same side as the incident light
with respect to the surface normal [Liu and Zhang 2011].

In a recent experimental advance that used silver as an optical superlens, the
authors demonstrated sub–diffraction-limited imaging with 60-nanometer half-pitch
resolution, or one-sixth of the illumination wavelength [Fang et al. 2005]. The super-
lens operated in the near-field with a magnification equal to 1. As explained by Fang
et al. “. . . a superlens is predicted to substantially enhance evanescent waves, com-
pensating for the evanescent loss outside the superlens and thus restoring an image
below the diffraction limit” [Fang et al. 2005].

In 2007 a superlens was devised that could be integrated into a far-field microscope
and had a resolution of 70 nm or λ/7, which is below the diffraction limit for visible
light [Smolyaninov et al. 2007]. Their superlens consisted of a multilayer metamaterial
of alternating layers of positive and negative refractive index. Our understanding of
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the fabrication of new metamaterials, their physical properties, and their applications
in optics, in particular enhanced resolution in the visual wavelengths is the subject of
a recent critical review [Liu and Zhang 2011]. To what extent this type of resolution
enhancement can be applied also using long working distances (like in conventional far
field microscopy), still appears to be controversial. However, even so such techniques
should be highly valuable to complement scanning near field optical techniques to
analyze surface structures.

5 Modern techniques to enhance the resolution of far-field
optical microscopy

With the advent of laser technology in combination with novel optical and photo-
physical approaches, highly sensitive and fast detection systems and computer based
evaluation procedures, new developments made it possible to radically overcome the
conventional light-optical diffraction limit of ∼200 nm laterally and 600 nm axially
also in far-field light microscopy (i.e. for distances between emitter and first lens of the
optical system larger than several hundred wavelengths). Since the 1980s, a number of
far-field based “super-resolution” light microscopy (or “nanoscopy”) techniques have
been developed to allow an optical resolution far beyond that threshold. Of particular
interest to the life sciences is the possibility to achieve such a resolution enhancement
also in the physiological temperature range (∼300 K) and in live cells.

Presently, three main “nanoscopy” families for resolution enhancement in far-
field fluorescence microscopy have been established: “nanoscopy” based on highly
focused laser beams, such as 4Pi-, STED (STimulated Emission Depletion), and GSD
(Ground State Depletion; using focused excitation in the original publication) mi-
croscopy; nanoscopy based on Structured Illumination Excitation (SIE), such as
Standing Wave (SW), Spatially Modulated Illumination (SMI), Structured Illumi-
nation (SI) and Patterned Excitation Microscopy (PEM); and nanoscopy allowing
enhanced resolution even in the case of homogeneous excitation made possible by
a variety of approaches which may be summarized under the names of localization
microscopy and Superresolution Optical Fluctuation Imaging (SOFI). In particular,
since the mid-1990s various types of localization microscopy approaches have been
developed. With such techniques, it has become possible to analyze the spatial dis-
tribution of fluorescent molecules with a greatly enhanced resolution down to a few
nanometers. Presently, nanoscale images can be obtained in the far field that were pre-
viously only obtained with X-ray/electron microscopy or with near field techniques.
With regard to some of these novel enhanced resolution techniques, it may be noted
that for one of the authors (CC) this is a participant’s history, which may imply
involuntary biases, for which he offers an apology.

5.1 Focused nanoscopy

Enhancement of resolution by increasing the aperture angle

For point-like illumination and detection as in confocal laser scanning fluorescence
microscopy, the resolution depends on the volume of the illumination PSF; the smaller
this volume, the better the resolution; the larger the aperture angle, the smaller
the PSF volume [Hell and Stelzer 1992a]. For technical reasons, however, the maximum
aperture of an oil immersion lens is limited to an aperture angle of about 140◦. In
the following section, we first describe ideas and quantitative concepts to increase
the aperture angle and thus to realize for the first time a substantially enhanced 3D
resolution.
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The 4π-microscopy concept

First ideas to overcome the conventional resolution limit as defined above (called
the “Abbe-limit”) for optical resolution using a confocal laser scanning fluorescence
microscopy approach with an extension of the sterical aperture angle (2α) beyond 2π
were proposed in the 1970s [Cremer and Cremer 1978].

This early laser scanning “4π”-microscopy concept was based on experimental ex-
perience with diffraction limited focusing of coherent light in the submicrometer range
and fluorescence excitation [Cremer et al. 1974]. The object is illuminated ‘point-by-
point’ by a focused laser beam using a “4π-geometry”; i.e. instead of focusing the
light through a single high NA objective lens (sinαmax = sin 90◦ = 1, 2αmax = 180◦

corresponding to a sterical aperture angle 2π), the coherent light is focused from all
sides (sterical angle 4π) by constructive interference [Cremer and Cremer 1972]. The
fluorescence optical signal emitted from each object point (using point-by-point scan-
ning, in this case high precision stage scanning) is registered via a detection pinhole
in the image plane which excludes contributions outside the central maximum of the
diffraction pattern produced in the image plane by a point source. The individual
signals obtained from object sites (x, y, z) are then used to electronically construct
an image with improved optical resolution by assigning the signals to sites (x, y, z).
It was suggested that with 4π-focusing (“. . . the excitation light is incident from all
sterical directions. . . ”), the focal diameter could be reduced to a minimum below the
Abbe limit of ∼200 nm at least in one direction [Cremer and Cremer 1978]. To re-
alize a full 4π-geometry, it was proposed to generate a “4π point hologram,” either
experimentally from a source with a diameter much below the wavelength of the light
emitted from such a source [Cremer and Cremer 1972], or to produce it synthetically
on the basis of calculations [Cremer and Cremer 1978]. This “4π hologram” should
replace a (single) conventional lens (maximum numerical aperture NA ∼ 1.5) which
allows focusing only down to about the conventional resolution limit of ∼λexc/2,
where λexc the vacuum excitation wavelength used (Rayleigh 1896). In addition to
resolution enhancement to values below λexc/2, it was envisaged that such a hologram
based 4π-microscopy should allow a much larger working distance than achievable by
lens based high resolution systems. The authors stated “Whether it might be possible
to produce point-holograms in which a larger spherical angle than approximately 2π
is used for focusing, and whether such holograms might be really used in a laser-
scanning-microscope, remains to be investigated. Perhaps the use of non-plane point-
holograms might result in a better focusing even if the spherical angle is considerably
smaller than 4π”

In the original “4π” concept [Cremer and Cremer 1978; for first speculative ideas
see Cremer and Cremer 1972], a ‘hologram’ was generally defined as a device to pro-
duce the boundary conditions which together with appropriate illumination and re-
fraction index conditions yields the reconstructed waves, leaving open questions such
as production, material problems, or direction, amplitudes and coherence of the inci-
dent and the reconstructed waves. Furthermore, it was assumed that the amplitudes
and the incident angles of the coherent waves illuminating the 4π-point-hologram can
be varied almost independently of each other; i.e. the concept was not limited to the
classical assumptions [Born and Wolf 1980] used to calculate focal intensities. Fur-
thermore, the use of (appropriately combined) plane point-holograms for focusing the
exciting beam in the laser scanning microscope was suggested to be advantageous at
least with respect to the much larger working distance available.

In the first, speculative considerations on the possibility of enhanced resolution
by 4π-microscopy [Cremer and Cremer 1972], the optical signals derived by the scan-
ning 4π beam were not further specified. However, it was proposed that they might
include signals from one or more types of organic molecules (e.g. a protein) with
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two photoinducible and optically distinguishable conformations A, B. According to
the authors, these conformations might be changed by appropriate laser frequen-
cies/intensities from A to B or B to A, either reversibly or irreversibly. Accordingly,
it was proposed that at appropriate conditions, the optical signals derived from A
or B could be discriminated. However, it was assumed that the spatial positioning
accuracy corresponded to the size of the 4π-focus, i.e. the possibility to achieve a
localization accuracy better than the FWHM of the 4π-PSF was not considered. In
a later publication [Cremer and Cremer 1978], the optical interaction envisaged was
specified to be fluorescent molecules.

In the special case that for fluorescence excitation a hypothetical continuous wave,
monochromatic spherical wavefront of constant intensity is focused in a full 4π ge-
ometry, theoretically in the far field where the distance r from the focusing device
[2π/λ]r ≫ 2 [Chen 2009]), the focal diameter achievable in such a 4π-geometry may
be estimated: assuming a vacuum wavelength λexc = 488 nm and a refraction index
of n = 1.5, and assuming a limited focal diameter of about one-third of the excitation
wavelength [Hell 2007], this would result in a focal diameter:

Øill4π = 0.33 * λexc/n = 0.22 λexc = 107 nm, i.e. considerably smaller than the
typical minimum spot size (Full-Width-at-Half-Maximum, FWHM) for fluorescence
of Øill = 0.5 λexc/NA ∼ 0.5 λexc/1.4 = 0.36 λexc = 175 nm.

Recently, results of electromagnetic numerical calculations have been reported
[Cremer et al. 2010] which were based on the assumption of numerous coherent light
sources evenly distributed on a closed enveloping surface corresponding (with respect
to the sterical angle covered) to a sterical angle of 4π; these calculations confirmed the
possibility to focus in such a “4π geometry” monochromatic coherent light of constant
intensity to an isotropic focus with a halfwidth (FWHM) around 0.2λexc.

Concerning the limits of 4π focusing (and hence of resolution), the authors greatly
overestimated its potential for resolution enhancement. In spite of this erroneous
overestimation of the limits of holographic reconstruction given by optical wave theory,
the idea to obtain substantially enhanced resolution by point-by-point scanning of a
constructively focusing laser beam using a 4π geometry (put forward by the authors
as a ‘hypothesis’ to be discussed) appears to have been the first published example of
considerations to realize a substantial resolution enhancement by some type of “point
spread function engineering” based focused nanoscopy. However, so far the concept to
achieve resolution enhancement by using point holograms in a 4π geometry (e.g. by
a combination of numerous point holograms arranged as a polyhedron) has not been
realized experimentally.

4Pi-Microscopy

At the beginning of the 1990s, the 4Pi-confocal fluorescence microscopy concept was
first described in a patent application by Stefan Hell [Hell 1990]. Stefan Hell had
just obtained his Ph.D. in Physics on a topic of confocal imaging [Hell 1990a] at the
Institute of Applied Physics (presently Kirchhoff-Institute of Physics) at Heidelberg
University, where also the C. Cremer group was located since 1983 when CC was
appointed there as Professor of Applied Optics and Information Processing; in the
following years, Stefan Hell’s 4Pi-microscopy concept was further developed and ex-
perimentally realized [Hell 1990, 1992; Hell and Stelzer 1992a,b; Hell et al. 1994a;
Hänninen et al. 1995]. Initially this early work on 4Pi microscopy was performed
at Heidelberg/Germany, where it had been supported by the laboratories of Ernst
Stelzer (Advanced Light Microscopy, European Molecular Biology Laboratory) and
of C. Cremer (Applied Physics/Kirchhoff Institute, University Heidelberg), result-
ing in a number of joint early publications [Hell and Stelzer 1992; Hell et al.
1994a,b; Lindek et al. 1994]. It may be noted that the 4π-microscopy paper of
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Fig. 2. Scheme of illumination in confocal laser scanning 4Pi-microscopy [Hell et al. 1994a].
Ideally the laser light is focused from all sides; i.e. the a full sterical angle (4π) is used, as
indicated by the thin broken line (- - - - - -). As an approximation to a full 4π angle, in the
4Pi-microscopy approach two opposing high numerical aperture objective lenses are used for
constructive focusing. This limits the sterical angle available for constructive focusing to the
sum of the aperture angle of the objective lens 1 (above), as indicated by the bold continuous
line (——) and of the aperture angle of the objective lens 2 (below), as indicated by the bold
broken line (- - - - -). Reprinted with permission from Hell, S.W. et al. 1994. Appl. Phys. Lett.
64: 1335. Copyright 1994 American Institute of Physics.

[Cremer and Cremer 1978] has been quoted already in one of the very first publi-
cations of Hell and Stelzer (ref. 4 in [Hell and Stelzer 1992b]).

Hell and Stelzer started from the basic idea of confocal laser scanning fluorescence
microscopy [CLSM]. They stated that “the volume of the point-spread function de-
pends on the numerical aperture of the microscope objective and on the wavelengths
of the emission and the excitation light. The smaller this volume the better the reso-
lution of the microscope” [Hell and Stelzer 1992b]. They observed that a substantial
decrease of this volume and hence a substantial enhancement of the 3D resolution of
the CLSM should become possible by a uniformly spherical illumination.

However, in contrast to the holographic 4π microscopy concept [Cremer and
Cremer 1978], “the basic idea of the 4Pi confocal fluorescence microscope is to use
two microscope objectives with a common focus to increase the aperture of the mi-
croscope. An increase of the aperture along the axial direction is achieved either when
the objectives are illuminated with coherent wave fronts that are interfering construc-
tively in the common focus or when the fluorescent light that is collected from both
sides interferes constructively in the common point detector. Since a solid angle of 4π
is not achievable, the term 4Pi was chosen to indicate the basic idea with a simple
and straightforward term.” [Hell and Stelzer 1992a, p. 2160].

Consequently, while the 4π-confocal fluorescence microscopy idea of [Cremer and
Cremer 1978] was based on constructive lens-free focusing from all sides in a full
sterical angle 4π (due to the larger working distances, the lens-free holographic ar-
rangement should have allowed 4π focusing, in contrast to the sterical hindrance in
focusing light through more than two highest NA oil immersion objective lenses), the
4Pi-microscopy approach [Hell 1990b; Hell and Stelzer 1992a,b] was based on increas-
ing the sterical aperture angle beyond 2π by two opposing conventional lenses of high
numerical aperture. In this way, the maximum aperture angle was increased from
2 × 68◦ = 136◦ (oil immersion lens with NA = 1.4) to 2 × 136◦ = 272◦ (Figure 2).
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Furthermore, for the first time rigorous electromagnetic numerical calculations of
the focusing and the confocal 4Pi point spread function using two opposing objective
lenses of high numerical aperture were performed [Hell and Stelzer 1992a]. For this,
a normalized electric field of linearly polarized light was assumed in the focal region
of an aplanatic system. This can be quantified as

E = (exey, ez) ,

with

ex(r) = −i (Io + I2 cos 2Φ) ,

ey(r) = −iI2 sin 2Φ,

ez(r) = −2I1 cosΦ,

where Φ defines the azimuth angle between the initial direction of oscillation of the
incident field and the direction of observation; r is the coordinate originating in the
geometrical focus; and Io, I1, and I2 are integrals over the objective lens aperture,
depending on the aperture angle and the wavelength. From this the time-averaged
illumination-intensity distribution in the focal region (i.e. the illumination point-
spread-function, denoted as hill)) for linearly polarized illumination was calculated
from I = |E|2 = |I0|

2 + 4|I1|
2 cos2 Φ + |I2|

2 + 2 cos 2ΦRe(I0I2*) for a large numerical
aperture (NA = 1.4) and a given wavelength (e.g. λ = 633 nm).

This illuminating intensity distribution is proportional to the probability to excite
a fluorophore at a given site (x, y, z) in the focal region.

The next step was to determine the detection point-spread function which is pro-
portional to the probability to detect at a given site in the image plane a fluorescence
photon emitted at a given site in the focal plane. For this, Hell & Stelzer assumed
that the fluorescent light is randomly polarized and (due to the Stokes shift) has
a somewhat larger wavelength (in this case 725 nm), but else the calculations were
analogous to those to determine the illumination PSF (denoted as hdet).

The normalized confocal point-spread function (denoted as H) was then given by
the probability to detect at a given site a photon emitted there. Hence, the overall
probability to excite and to detect a photon was given by the product of the proba-
bilities for excitation and detection, i.e.

H = hill * hdet..

This approach allowed to calculate the 3D PSF of various types of 4Pi laser scanning
confocal microscopes (and hence the achievable optical resolution in (x, y, z)) under
special conditions. Hell and Stelzer noted that apart from operating as a confocal
fluorescence microscope, the 4Pi confocal fluorescence microscope comprises three
different types of imaging that feature a higher resolution:

Type A: The two illumination wave fronts interfere in the sample (4Pi illumination);
Type B: The two detection wave fronts interfere in the detector (4Pi detection);
Type C: Both the illuminating and the detection wave fronts interfere (4Pi illumina-

tion and 4Pi detection).

All three types of 4Pi microscopy have been experimentally realized [Hell et al.
1994a,b; Hänninen et al. 1995; Gugel et al. 2004]. With few exceptions, however,
so far only type A (4Pi illumination) has been used on a broader scale, due to the
extremely small optical path differences required to realize constructive interference
of fluorescent light.
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The 4Pi-microscopy concept [Hell and Stelzer 1992a,b] described above assumed
single photon excitation of fluorescence. The numerical calculations as well as exper-
imental results [Hell & Stelzer 1992a; Hell et al. 1994a] showed, however, that in this
way the axial FWHM of the central peak of the 4Pi-PSF was indeed narrowed to
about one fourth of the CLSM value; but the side lobes remained in the order of
more than 40% of the central peak maximum, posing a substantial obstacle to correc-
tion by deconvolution. This problem was shown to be overcome in 4Pi-C microscopy
[constructive illumination and constructive detection]. However, the technical realiza-
tion of 4Pi-C microscopy is quite complex. In a second paper of the same year [Hell
and Stelzer 1992b], a solution was described by the design of a 4Pi-confocal fluores-
cence microscope using two-photon excitation. In this arrangement, two photons are
needed simultaneously for excitation, and in this case the illumination point-spread
function hill is given by hill 4pi two phot = [hill4Pi]

2. Hell & Stelzer showed that in this
case, the height of the side lobe peaks of the axial FWHM can be substantially reduced
even in a 4Pi-A arrangement (constructive illumination only).

In the following decade, confocal laser scanning 4Pi fluorescence microscopy ap-
plying either continuous wave visible laser light for single-photon excitation, or
femtosecond pulsed infrared laser wavelengths for two- photon excitation [Hell et al.
1994a,b; Lindek et al. 1994; Hänninen et al. 1995] has become an established “focused
nanoscopy” method and the first example of “Point-Spread-Function Engineering”
which has been made commercially available [Egner et al. 2002; Hell 2003; Bewersdorf
et al. 2006; Baddeley et al. 2006; Lang et al. 2010]. An axial optical resolution down
to the 100 nm regime was experimentally realized, i.e. about five times better than in
conventional confocal laser scanning fluorescence microscopy (CLSM). Although due
to the sterical angle <4π realized by the two opposing objective lenses the optical res-
olution in the lateral direction was improved only slightly, the observation volume Vobs

used as a measure for 3D resolution [Hell and Stelzer 1992b; Lindek 1994, 1996] was
substantially reduced compared with the conventional confocal case [Cremer 2012].

It has been argued that increasing the sterical aperture angle to values be-
yond 2π as conceived in 4π/4Pi microscopy did not really “break” the Abbe limit
(or the Rayleigh limit, repectively), because these concepts followed the basic idea
of Abbe/Rayleigh that by increasing the aperture angle, the resolution can be im-
proved [Stelzer 2002]. However, from the original papers of Abbe and Rayleigh it is
also evident that they firmly believed that an increase of the aperture angle of the
incident light beyond α/2 = 90◦ (and hence sin[α/2] = 1) was physically not possible.
For about a hundred years, this view has become general textbook knowledge. It was
only with the advent of coherent light sources in the 1960s that concepts of 4π/4Pi
microscopy became feasible.

Stimulated emission depletion (STED) microscopy

In experimental 4Pi-microscopy using two opposed objective lenses, so far a 3D optical
resolution of around 200× 200× 100 nm3 has been realized. This means that objects
with spatial features below about 100 nm would still remain unresolved. The first
successful concept to achieve a lateral optical resolution far below 100 nm in a far-field
arrangement using a single objective lens was STimulated Emission Depletion (STED)
Microscopy conceived by Stefan Hell [Hell and Wichmann 1994; for a simultaneous
invention see Baer 1994] and realized by Hell and his laboratory in the following
decade.

This focused nanoscopy method is again based on scanning the object with a
focused laser beam using a single high NA lens [Schrader et al. 1995].
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Fig. 3. Principle of STED microscopy. Shown are the energy levels of a typical organic fluo-
rophore. S0 and S1 are the ground and first excited singlet states, respectively. Svib

0 , and Svib

1

are higher vibronic levels of these states. The excitation of the dye takes place from the
state S0 to the state Svib

1 , and fluorescence by the radiative transition S1 to Svib

0 . The tran-
sition S1 to Svib

0 can also be induced by stimulated emission. For sufficiently high intensities
of a stimulating beam a significant depopulation (Stimulated Emission Depletion/STED)
of the S1 level can occur. Fluorescence has a broad spectrum extending over several tens
of nanometers in wavelength but the stimulated photons have the same wavelength, polar-
ization and direction of propagation as their stimulating counterparts. Thus, photons with
the same characteristics as the STED beam can be eliminated from the fluorescence signal
detected. From [Schrader et al. 1995], with kind permission from IOP Publishing Ltd.

However, in spite of increasing the sterical aperture angle beyond 2π, in this case
the basic idea was to realize enhanced resolution by an optical device which allowed
to register the fluorescence emission from a much smaller object region than given
by the diameter (Øill) of the illuminating focused laser beam. This was achieved by
an appropriately shaped second laser beam of wavelength λSTED (the STED beam)
producing an illumination pattern around the excitation beam (λexc) by which ex-
cited molecules (S1 state) in the vicinity (d ≪ Øill) of the center of the focus of the
excitation beam were induced to stimulated emission of radiation from the lowest S1

state to the Svib
0 ground state (Figure 3). By appropriate excitation/detection ar-

rangements, this emission was separated from the spontaneous fluorescence emission
(at wavelengths λfluor) of the molecules in or very close to the focal center of the ex-
citation beam; these were not subjected to the – typically doughnut shaped – STED
beam ideally producing a zero intensity point just in the center of the focus of the
exciting beam (having a diameter Øill). As a consequence, the stimulated emission of
these molecules was not registered by the detector system set to detect the sponta-
neous fluorescence (λfluor) only. In a next step, either the object or the two coupled
beams are moved to a neighbouring site, and the procedure is repeated. In this case,
the molecules previously positioned in the center of the exciting beam (λexc) are now
stimulated to emission by the STED beam (λSTED) and thus do not contribute to the
spontaneous fluorescence signal λfluor; the molecules previously stimulated to emission
by the STED beam are now in the center of the exciting beam, and their fluorescence
signal λfluor is registered. The molecules excited to fluorescence at λfluor can be de-
noted as being in a ‘bright’ or ‘ON’ state with respect to the detector system while
the molecules induced to stimulated emission can be denoted as being in a ‘dark’
or ‘OFF’ state.



312 The European Physical Journal H

STED microscopy is a first example for a general spatially scanning nanoscopy
concept (see below) involving focused or structured illumination with zero intensity
positions in which the fluorescence emission (λfluor) is registered first only from an
area A with Øfluor ≪ Øill and then the fluorescence emission is registered only from
an area B with Øfluor ≪ Øill with a distance dAB ≪ Øill; and the object positions A, B
are obtained by the mechanics of the scanning procedure.

By appropriate saturation intensities, the fluorophores in a doughnut shaped an-
nulus around the center of the exciting laser focus are induced to emit photons by
stimulated emission of radiation at a red shifted wavelength compared to the flu-
orescence emission maximum. The remaining fluorescence, which can be spectrally
separated from the high intensity STED beam, can thus only originate from the cen-
ter where (in the ideal case) the doughnut shaped STED beam has a zero intensity
point. As a consequence, fluorescence photons of a given energy are detected from a
region with area much smaller than Øill. Since due to the scanning mechanism, the po-
sition of this smaller fluorescent region can be known with an accuracy of few nm (and
even smaller), the fluorescence signal obtained can now be assigned to this smaller
region; hence the optical resolution may be enhanced further. STED microscopy as
reviewed in a recent review article was the first implementation of utilizing nonlinear
response in enhanced resolution fluorescence microscopy [Cremer 2012].

Later implementations of the STED microscopy concept yield enhanced resolution
imaging in the object plane (x, y) and presently has found numerous applications
[Willig et al. 2006, 2007; Nagerl et al. 2008; Westphal et al. 2008]. The best (lat-
eral) optical resolution values obtained by STED microscopy are presently around 15
to 20 nm in biomedical applications [Donnert et al. 2006] and ∼6 nm in solid state
physics [Rittweger et al. 2009]. In a combination with the 4Pi-method, a 3D optical
resolution of few tens of nanometers was achieved [Schmidt et al. 2008].

From a historical point of view it may be noted, that in the same year (1994)
when the basic conceptual idea underlying STED had been put forward by Hell and
Wichmann [Hell and Wichmann 1994] (received by the Editor March 7, 1994), a
similar concept was submitted as a patent application (however, without the de-
tailed calculations reported by [Hell and Wichmann 1994]) to the United States
Patent office by Stephen C. Baer [Baer 1999]. Baer’s patent on “Method and ap-
paratus for improving resolution in scanned optical system” was filed in the United
States on July 15, 1994, and the patent date is February 2, 1999. According to
Baer’s patent, this patent is for a zero-point STED microscope and may be con-
sulted (as well as his other patents on superresolution optical microscopy) on the web
site of the United States Patent and Trademark Office (www.uspto.gov) for Stephen
C. Baer.

As a general problem attribution questions are sometimes difficult to clarify when
the inventor published in a medium (e.g. a highly specialized journal) that is not
readily available or in a language that is unknown to the author of the review article.
Often the patent literature is ignored as a source of attribution of credit. Until the
advent of suitable electronic screening techniques, this neglect was mostly justified
because of the difficulty for a scientist to even know the existence of the publication
in question. For example, the now famous US patent application of Marvin Minsky
(filed November 7, 1957) on the construction of a confocal microscope (based on
transmitted/reflected light with a non-coherent light source) for decades was buried
in the US patent office under the heading “Microscope apparatus.” Hence it was not
cited until its “rediscovery” in the 1980s. Only with the development of the laser
as a light source and the desk top computer as a system controller did the confocal
microscope attract the attention of cell biologists [Masters 1996]. Another problem is
the fact that independent inventors who lack an academic affiliation are sometimes
excluded from important review articles. A remedy for this may be the publication of

www.uspto.gov
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Fig. 4. GSD microscopy using focused illumination. Shown are the energy states of a typical
fluorophore. So is the ground state and S1 the first singlet state; T1 is the first triplet state;
Lo is a low vibrational level of So, L1 the vibrationally relaxed state in S1, L2 a vibrationally
relaxed level of T1 and L′ a vibrationally higher level. For appropriately high laser intensities
(in the order of 10 MW/cm2), most molecules are trapped in the long-lived triplet state, T1,
and the ground state is depleted. S0 remains depleted as long as the focused excitation beam
is switched on. From [Hell and Kroug 1995], with kind permission from Springer Verlag.

books on a given subject that contain selected papers and patents that are reprinted
in full [Masters 1996; 2001; 2003].

Ground-state-depletion (GSD) microscopy [Hell and Kroug 1995]

In 1995, a very elegant alternative was proposed by [Hell and Kroug 1995] to use the
same general principles as in STED microscopy but instead of depleting the excited
state (S1), the ground state (S0) of the fluorescence molecules in the outer region
of the excitation focus (λexc) is depleted (Figure 4). The general basis for such a
ground-state depletion is the control of excitation made possible by focused short
laser pulses.

For example, phase-shifted, low-energy picosecond or subpicosecond pulse trains
make it possible to modulate excitation; or, suppression of excitation is possible by
phase-shifting of two lasers [Warren et al. 1993].

Thanks to these novel approaches to control molecular quantum dynamics, in
the GSD concept the illumination conditions (i.e. the intensity of the depletion beam)
are set up in such a way that the density (n0) of molecules in an S0 state is greatly di-
minished in the outer region of the focus; hence, these molecules cannot be transferred
to an S1 state, and they cannot emit photons by a S1 to S0 transition. For imaging
by this method, it is essential that by moving the scanning laser focus to another
site and by reducing the intensity of the depletion beam the molecules are quickly
relaxed to the S0 state. That means that the depletion process has to be reversible
on a sufficiently fast time scale (µs).

To realize GSD based focused nanoscopy [Hell and Kroug 1995] proposed the use
of two focused laser beams being symmetrically offset by a small value with respect
to the geometrical focus. In the numerical example given, the molecules at the regions
surrounding the point of interest are first exposed to a higher intensity beam depleting
the ground state (in the intensity range of 1 MW/cm2). After about 1 µs the depletion
beam is switched off, and after ∼5 ns nearly all the molecules from the first singlet
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state are relaxed; but for a time interval of about 0.2 µs, the molecules being caught
in the triplet state have still not returned to the ground state and thus cannot be
excited by the second probing beam of lower intensity As a result, the molecules in
the inner region of the focal area subjected only to low illumination intensities can
rapidly cycle between S0 and S1, emitting a photon at every S1 to S0 return (on the
average every few ns, in contrast to the 1000 ns range for the T1 to S0 transitions).
Consequently, the effective area from which photons are registered by the detector
was calculated to be greatly diminished compared to Øill.

Assuming an excitation/depletion wavelength of 400 nm and a numerical aperture
of NA = 1.4, [Hell and Kroug 1995] estimated a lateral optical resolution (FWHM of
the effective PSF) of about 15 nm.

The concept of the single point scanning GSD microscope outlined above was
experimentally realized in 2007 [Bretschneider et al. 2007]. In these proof-of-principle
experiments using a confocal stage scanning microscope, relatively modest depletion
intensities (λexc = 532 nm; Idepl ∼ 102 kW/cm2) in a focal distribution featuring a
local intensity zero were sufficient to confine the fluorescence emission of rhodamine-
like fluorophore (Atto532) molecules to a very small region around the local intensity
zero; a lateral optical resolution (FWHM of the effective FWHM) down to ca. 50 nm
was achieved. As a first application example for this type of scanning GSD microscopy,
Atto532-stained microtubules and membrane bound protein clusters were imaged,
featuring a clear improvement compared to confocal images of the same structure
[Bretschneider et al. 2007].

Reversible saturable optical fluorescence transitions (RESOLFT) microscopy

During the last decade (2000–2010), the concepts outlined above for STED-microscopy
and GSD microscopy have been generalized by Stefan Hell to be valid for an en-
tire class of scanning nanoscopy approaches, called RESOLFT microscopy (RE-
versible Saturable OpticaL Fluorescence depletion Transitions) [Hell 2007, 2009]. The
RESOLFT principle [Hell 2007] stated that enhanced resolution by any kind of scan-
ning device can be obtained if illumination conditions can be realized with focal spots
(or other intensity distributions) featuring central intensity zeros which allow to in-
hibit transiently the reversible fluorescence emission of molecules outside this zero
region, e.g. by stimulated emission, or by ground state depletion.

To achieve enhanced resolution in the RESOLFT scheme, the fluorophore
molecules used generally have to allow light induced reversible transitions between
two states A and B at any point in space. In the simplest case, A and B are con-
ceived as energy states of this entity, such as a ground and an excited state. Other A
to B transitions considered were molecular conformational states, photochromic and
isomerization states, binding and protonation states, etc. The transition A → B is as-
sumed to be photoinducible while no additional restrictions are needed about B → A.
In the most general case, the transition B → A was assumed to provide a spontaneous
component together with a component which is triggered externally through light,
heat, by a chemical reaction. To be practical, the reversible dark–bright transition cy-
cle A → B, B → A are conceived to be fast enough to allow efficient ‘point-by-point’
or ‘line-by-line’ scanning, i.e. the transitions have to be in the order of µs to ms.

An essential requisite of the RESOLFT concept is that scanning is used, i.e. either
the object is moved in a specific way, or the position of the illumination pattern relative
to the object is changed to move the focal spots with central zeros to different sites
of the object.

As a general formula for the resolution [Schwentker et al. 2007] the relation

∆x ≈ λ
/(

2n sinα
√

1 + ξ
)
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is stated, where ∆x is the smallest distance detectable (optical resolution) with a
point scanning system with central zeros, λ is the excitation wavelength, nsinα is
the numerical aperture (NA) and α is the half aperture angle of the objective lens
used. The saturation factor, ξ = P/Psat is the applied power P driving the reversible,
light-driven transition between a fluorescent and a nonfluorescent state of the dye
label with a focal intensity distribution with a local zero divided by the saturation
power PSAT that classifies the magnitude of the power necessary to attain 50% of the
transition.

In the description given by [Hell 2007], it was noted that for ξ = 0 (high saturation
intensity compared to the applied intensity), i.e. for linear excitation conditions, the
Abbe equation for two-point resolution is obtained. The higher the saturation factor
becomes, the more the optical resolution is improved.

A further generalization of the RESOLFT concept of far-field resolution enhance-
ment was proposed. This approach can be applied not only to single point scanning
systems (one focal spot featuring a central zero as in the basic concepts of STED
[Hell and Wichmann 1994] and GSD microscopy, [Hell and Kroug 1995] but to
other scanning schemes based on illumination conditions creating intensity distri-
butions that feature zero intensity sites. For example, scanning schemes with multi-
ple “spots” or zero intensity lines as realized in Saturated Patterned Excitation Mi-
croscopy [Heintzmann et al. 2002; Schwentker et al. 2007] can also be used to enhance
resolution.

5.2 Structured illumination excitation (SIE) microscopy

In contrast to resolution enhancement by focused nanoscopy approaches, the use of
appropriately modified illumination patterns for fluorescence excitation has the major
advantage of avoiding point-by-point scanning and detection of the object. This allows
a substantial increase of the imaging speed. While the optical resolution (in the sense
of cutoff frequency of the OTF) using linear excitation modes can only been doubled
[for first theoretical concepts see Lukosz 1966, 1967], under special conditions the size
of optically isolated objects can be determined down to a small fraction of the exciting
wavelength applied (see below, SMI microscopy).

Standing-wave fluorescence microscopy (SWFM)

In the beginning of the 1990s, the first description of a standing wave microscope was
reported [Bailey et al. 1993] where two coherent collimated laser beams interfered in
the object space in such a way that a standing-wave excitation of fluorescence was
produced. A technique to generate the desired illumination pattern was to bring two
counter-propagating laser beams to interference, establishing a standing-wave field.
The standing waves formed by this interference created an excitation field with closely
spaced nodes and antinodes, which provides imaging of the specimen with a very high
discrimination along the optical axis (down to ∼50 nm). The technique was used to
obtain images of actin fibres and filaments in fixed cells, actin single filaments in vitro
and myosin II in a living cell [Bailey et al.1993].

In an accompanying paper [Lanni et al. 1993], the authors compared the axial
resolution attainable by SWFM to conventional methods of fluorescence optical sec-
tioning microscopy (FOSM). They concluded that “a field shift as small as one-quarter
of the node spacing was found to cause readily-interpretable changes in the image,
suggesting that the axial resolution can be better than λ/8n, or 0.04–0.05 µm, an
order-of-magnitude improvement over focused scanning optical microscopy FOSM.”
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Spatially modulated illumination microscopy (SMI)

Spatially Modulated Illumination (SMI) microscopy introduced in the mid-1990s
[Hausmann et al. 1997] is a method of wide-field fluorescence microscopy using axially
structured illumination for fluorescence excitation. The optical method to create struc-
tured illumination along the optical axis was practically the same as in the SWFM
approach of Bailey et al. (1993). In contrast to Bailey et al., quantitative high res-
olution information about sizes and relative positions of fluorescently marked target
regions was obtained by moving the object in precise small steps (e.g. 20 nm) along
the optical axis to register the fluorescence emission at each step by a highly sensitive
wide field camera, and to extract information from the quantitative combination of
the multiple image frames thus obtained.

In contrast to focused laser light techniques [Hell et al. 1994, Egner et al. 2002; Hell
2003; 2007] or to other types of structured illumination with excitation intensity mod-
ulation along the object plane [Gustafsson 1999, 2000, 2005; Gustafsson et al. 2008;
Frohn et al. 2000; Heintzmann and Cremer 1999, Heintzmann et al. 2002], the SMI
method as originally described [Hausmann et al. 1997; Schneider et al. 2000] was not
suited for the generation of optical resolution enhanced images (in the meaning of
an improved two-point resolution or of a narrower FWHM of a PSF with sufficiently
low side lobes to allow deconvolution, like in [Hänninen et al. 1995]) of photostable
fluorescence emitters. This was due to a range of missing spatial frequencies in the
standing wave field generated by the two counterpropagating collimated light laser
beams.

However, in combination with high-precision axial positioning this technique of far-
field light microscopy allowed the nondestructive high precision localization analysis
of complex spatial arrangements [Albrecht et al. 2001, 2002] inside relatively thick
transparent specimens such as the cell nucleus and enabled size measurements at
molecular dimensions of a few tens of nanometers [Failla et al. 2002b, 2003; Martin
et al. 2004; Baddeley et al. 2010] and 3D position measurements down to the 1 nm
range [Albrecht et al. 2001, 2002; Failla et al. 2001; Baddeley et al. 2007]. It may
be noted that the SMI precision localization measurements were explicitly seen by
the authors as a step towards resolution enhancement by localization microscopy [e.g.
Albrecht et al. 2001, 2002] (see below).

SMI microscopy has been developed to an established method for the size analysis
of small protein clusters and chromatin domains [Martin et al. 2004; Mathée et al.
2006; Hildenbrand et al. 2005; Birk et al. 2007; Baddeley et al. 2009]. In addition, it
has been shown to allow nano-scale measurements in the living cell nucleus [Reymann
et al. 2008].

Patterned/structured illumination microscopy (PEM/SIM)

The first experiments to overcome the conventional optical resolution limit in the
lateral direction (object plane) by a single objective lens approach and wide-field
based fluorescence detection (e.g. using CCD cameras, in contrast to point detec-
tors like photomultipliers or avalanche diodes) were performed by the end of the
1990s [Heintzmann & Cremer 1999; Gustafsson et al. 1999; 2000]; these methods have
presently found a variety of biomedical applications [Schermelleh et al. 2008; Brunner
et al. 2011; Best et al. 2011; Markaki et al. 2010].

The basic principle of these approaches was to create a spatially modulated illu-
mination pattern not only in the axial direction (z) as in Standing Wave Microscopy
[Bailey et al. 1993] or in SMI microscopy [Hausmann et al. 1997; Schneider et al.
2000], but also in the object plane (x, y). This can be done e.g. by inserting a diffrac-
tion grating in the illumination beam at the conjugate object plane and projecting it
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through the objective lens into the object. Instead of a diffraction grating one may
create the desired illumination pattern also by the interference of two or more laser
beams [Frohn et al. 2000; Gustafsson 2005; Schermelleh et al. 2008; Best et al. 2011].
The object and the illumination pattern are then moved relative to each other in
precise steps. At each step, a wide-field detection image is taken by a CCD camera.
The images obtained are used to calculate an image with enhanced resolution using
an algorithm based on the structure of the Fourier space. Principally, the effective
optical resolution can be improved up to a factor of two compared with conventional
wide-field microscopy.

Saturated patterned excitation microscopy (SPEM)

In the wide-field based enhanced resolution schemes so far presented, a linear relation
between excitation intensity and fluorescence emission is assumed. This is the typically
desired condition in conventional fluorescence microscopy, where non-linear effects like
saturation and photobleaching usually are avoided. Nonlinear effects, however, can be
used to increase the optical resolution in Point Spread Function engineered focused
scanning methods as in STED- or GSD microscopy, and can give highly interesting
possibilities in structured illumination excitation approaches. A comprehensive review
of nonlinear optics in microscopy is useful to gain a deep insight to this topic [Masters
and So 2008].

In 2002, it was proposed to use nonlinear patterned excitation schemes to achieve
a substantial further improvement in optical resolution by deliberate saturation of
the fluorophore excited state [Saturated Patterned Excitation Microscopy/SPEM;
Heintzmann et al. 2002]. The nonlinearity induced in this way leads to the generation
of higher spatial harmonics in the pattern of emission, i.e. components in Fourier
space beyond the frequency limit defined by the Abbe condition are created. The
post acquisition manipulation of the acquired data is computationally more complex
than in STED or GSD, but the experimental optical requirements are considerably
more simple.

Computer simulations [Heintzmann 2003] showed that by appropriate extension
of the algorithms developed for the case of linear structured illumination excitation
a further improvement of optical resolution should be possible in SPEM. It is inter-
esting to note that the sharp “emittability” zeros created by non-linear excitation
patterns might be used as “virtual pinholes.” This opened an avenue to apply the
RESOLFT concept (see above) to nonlinear pattern based scanning devices; instead
of realizing illumination conditions with focal spots featuring central zeros to inhibit
transiently the reversible fluorescence emission of molecules outside this zero region,
e.g. by stimulated emission, or by ground state depletion, in SPEM based RESOLFT
scanning microscopy lines with central emission zeros are created [Schwentker et al.
2007]. In this way, in principle an ‘unlimited’ optical resolution should be possible not
only in focused nanoscopy techniques with point-by-point fluorescence registration
(e.g. by a photomultiplier, or an avalanche diode) but also in nonlinear structured
illumination excitation (SIE) scanning approaches using wide-field registration (e.g.
a sensitive CCD camera).

5.3 Micro-axial tomography: a wide-field approach to enhance
three-dimensional resolution

In spite of the great progress obtained in optical resolution enhancement using focused
nanoscopy and patterned excitation approaches, it remained highly desirable to con-
sider in addition widefield solutions with improved 3D resolution using homogeneous
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illumination. The first approach towards this goal has been to apply the tomography
method well known from electron microscopy to a fluorescence based wide field mi-
croscope. In this way, it seemed to be possible to numerically combine images taken
from different angles in such a way that it becomes possible to obtain a 3D image with
an isotropic optical resolution corresponding to the lateral resolution, i.e. ∼200 nm.
This would result in approximately three times enhancement of the 3D observation
volume [Heintzmann and Cremer 2002].

To achieve this, micro-axial tomography was suggested which allows object tilting
on the microscopic stage. Micro-axial tomography makes use of special glass capillar-
ies [Bradl et al. 1992, 1994] or glass fibers [Bradl et al. 1996] as specimen carriers. This
yielded an automated multi-view 3D image acquisition and precise 3D image align-
ment of different perspectives of the same objects. So far, micro-axial tomography has
been applied to 3D studies of fluorescence labeled cellular structures [Heintzmann and
Cremer 2002] using a setup with an external stepping motor and a flexible shaft, and
also to perform highly precise measurements of focal depth dependent chromatic shifts
[Edelmann et al. 1999]. Recently, a miniaturized device has been presented which can
be implemented in a motor driven microscope stage [Staier et al. 2011].

5.4 Superresolution optical fluctuation imaging (SOFI)

The development of switchable fluorescent probes (see section 5.5, below) also trig-
gered the emergence of an enhanced resolution method based on the analysis of tem-
poral fluorescence fluctuations of emitters (e.g., fluorescence intermittency), called
superresolution optical fluctuation imaging (SOFI). Enhanced resolution by SOFI
[Dertinger et al. 2009, 2010a,b; has been demonstrated by using a conventional wide-
field microscope with homogeneous illumination equipped with a CCD camera, but
the principle can be applied to any kind of fluorescence imaging method (spinning
disk, scanning confocal, total internal reflection, etc.). SOFI relies on the registration
of independent stochastic fluctuations of the fluorescence emitters.

To achieve enhanced resolution (up to two times improvement compared to the
Abbe-limit), three main conditions must be met:

1. The fluorescent label has to exhibit at least two different emission states. For
example, these states can be a fluorescent and a nonfluorescent one, but in principle
any two or more states that are optically distinguishable will do.

2. Different emitters have to switch between states repeatedly and independently
from each other in a stochastic way.

3. For this approach, the image should be acquired with pixels smaller than the
diffraction limit.

5.5 Localization microscopy approaches

As outlined above, the absolute limits of light-optical resolution were theoretically well
established. To substantially overcome the conventional limits, focused nanoscopy ap-
proaches and (up to a factor of two) structured illumination techniques appeared to be
the only way out. Using homogeneous illumination, however, an enhanced resolution
appeared to be strictly impossible, due to very fundamental principles of electromag-
netic wave theory. A careful examination of these principles reveals however, that they
consider always the case that the point sources to be resolved have the same time in-
dependent emission spectrum; i.e. the photons emitted by them cannot be ‘sorted’
according to their source. It is evident that as soon as such a ‘sorting’ is possible,
new possibilities of enhanced resolution can be created. Nonetheless, effective meth-
ods of enhanced resolution in epifluorescence light microscopy based on this principle
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have been developed only in the last few decades. This late development of local-
ization microscopy may be due to many reasons, such as the deeply rooted general
conviction that an enhanced resolution even in the case of homogeneous illumination
is physically impossible; the lack of suitable light sources, sufficiently sensitive de-
tectors, mechanically ultrastable microscope stages, as well as appropriate and fast
evaluation algorithms; the lack of appropriately labeled objects; more generally, the
lack of knowledge about the photophysics of molecules; as well as the many technical
obstacles to the experimental realization of the apparently evident and simple basic
idea of optical isolation and localization of fluorescent point sources.

Localization microscopy approaches presently achieve a two-point resolution of
adjacent single molecules down to the 1 nm range, corresponding to ca. one five hun-
dredth of the exciting wavelength [Pertsinidis et al. 2010], and a structural resolution
(multiple molecules localized within a single Airy disc area) in the range of few tens
of nm.

Principles of localization microscopy

Generally, localization microscopy (for reviews see [Zhuang 2009; Cremer et al. 2011;
Cremer 2012]) is based on the optical isolation of point emitters, their subsequent high
precision localization, and assignment of these coordinates to a joint position map;
the optical isolation is achieved by using a suitable set of optically detectable physical
characteristics, such as differences in absorption/emission spectra [Betzig 1995; Ha
et al. 1996; Cremer et al. 1996, 1999; Bornfleth et al. 1998; van Ojen 1998; Esa et al.
2000, 2001], fluorescence life times [Cremer et al. 1996, 1999, Heilemann 2002], and
time dependent differences in luminescence [Cremer et al. 2002]; or various methods of
photoswitching of single molecules between two optically distinguishable states, e.g. a
‘dark’ and a ‘bright’ state [Hell and Kroug 1995; Lidke et al. 2005; Betzig et al. 2006;
Hess et al. 2006; Rust et al. 2006; Andresen et al. 2008]. Recently, the application
range of such localization microscopy methods has been greatly extended by the use
of standard single fluorophores, e.g. [Bock et al. 2007; Reymann et al. 2008; Lemmer
et al. 2008; Heilemann et al. 2008; Fölling et al. 2008; Baddeley et al. 2009a,b, 2011;
Zhuang et al. 2009; Markaki et al. 2010; Kaufmann et al. 2012a,b]. From today’s
perspective, the basic principles of localization microscopy as outlined above appear
to be almost self evident, and their realization seems obvious. This, however, has not
always been the case:

1) A first fundamental problem for the development of localization microscopy was
the century long tradition of Fourier analysis to conceive an object to be optically
represented by a large number of harmonic functions of different spatial frequen-
cies; the main task of microscopy was then to transfer spatial frequencies as high as
possible; the resolution achievable was represented by the Optical Transfer Func-
tion/the Contrast Modulation Function and its spatial cut-off-frequency, i.e. by
the highest number of lines/µm still discernible in the image. This, for example,
was the basis for the analysis of resolution by Ernst Abbe (1873). The impact of
this tradition is well documented by a large number of textbooks on optics dealing
with the problem of resolution.

2) A second fundamental obstacle for the development of localization microscopy was
the firm belief that the Abbe and the Rayleigh theory of resolution were essen-
tially equivalent. This meant that the fundamental difference resulting from the
interaction of light with molecules in the excitation of fluorescence/luminescence
was not recognized. Even in modern textbooks of optics, such interactions often
are mentioned only very briefly; the photophysics of molecules was regarded to be
a branch of physical chemistry, not of optics.
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3) A third fundamental obstacle to the development of localization microscopy was
that the large variety of interaction modes of light with matter and the resulting
large spectrum (in the general sense as a distribution of physical characteristics)
of possible responses was overlooked.

4) A fourth fundamental obstacle has been the lack of specific molecular labeling
techniques. For example, a method permitting the imaging of all molecules in a cell
with a nanometer optical resolution would not be very interesting for biologists:
what they want to know is the spatial distribution of specific molecules, e.g. of
certain types of proteins, or of specific DNA sequences. This is possible only if
such molecules can specifically be labeled with a fluorescent marker. Such labeling
methods became generally available only within the last decades (for a review see
[Cremer and Cremer 2001]).

5) In addition, a variety of basic technical problems had to be overcome to make lo-
calization microscopy a meaningful alternative to other types of microscopy with
enhanced resolution [Cremer et al. 1999]. For example, localization microscopy of
single molecules using homogeneous illumination schemes required highly sensitive
and fast detectors, such as CCD-cameras or CMOS arrays, to effectively register
the relatively small number of photons (also as a function of time) emitted by a
single molecule. It required the insight (nowadays evident but until a decade ago
not well appreciated) that a localization of a molecule can be performed with an
accuracy values orders of magnitude smaller than the pixel size of the detector. It
required methods to discriminate the few photons emitted by a molecule from the
photons emitted by the underlying background and it required a high mechanical
stability of the optical system not realized in most conventional microscopes. In
addition it required very precise calibration methods to overcome the chromatic
and monochromatic aberrations inherent to all optical systems composed of glass
lenses; last but not least, localization microscopy also required the development of
sufficiently fast evaluation algorithms implemented on suitable desktop computers
to allow the fast and precise determination of molecule positions from the analysis
of typically many thousands of relatively “noisy” signals, major problems being the
background and the low number of photons detected. For example, for the devel-
opment of localization microscopy algorithms reported by [Bornfleth et al. 1998],
a state-of-the-art 200 MHZ Silicon Graphics workstation with 96 MB RAM had to
be used, with correspondingly slow performance. In contrast to this, presently used
PCs and algorithms allow the assignment of several thousand molecule positions
per second [Grüll et al. 2011].

For all these reasons, the development of localization microscopy has been much slower
than one would expect from today’s perspective. Furthermore, it is interesting to note
that the development of localization microscopy has taken place in a relatively small
number of experimentally working and often interconnected pioneer groups with a
strong tradition in interdisciplinary research (Physics/Physical Chemistry/Biology)
to overcome the various severe mental and technical obstacles mentioned.

Here, we attempt to briefly summarize these developments from a historical per-
spective. This appears to be justified not only from the historical point of view but
also by the fact that in addition to published accounts, the exchange of ideas between
most of the pioneer groups in this field has been well established for decades also
in the context of countless congress presentations and numerous joint collaborations,
including large funded projects. Therefore, attribution of credit to a very few individ-
uals will be difficult; nonetheless, attribution to a few pioneer groups (without trying
to rank their importance in the development of localization microcopy) appears to be
possible.
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On the European side, a number of well interrelated pioneer groups (with PIs
C. Cremer, S. Hell, M. Sauer, E. Stelzer) has been initially located at Heidelberg
(EMBL, Heidelberg University), in close connection with the Max-Planck Institute
of Biophysical Chemistry in Göttingen (since the 1990s). In this frame, joint collab-
orative funded projects on the German Research Agency and Federal Government
level were performed. Some PIs of the Heidelberg area were also connected with the
Sam Hess group at the University of Maine (joint appointments of S. Hess and C.
Cremer at the Institute of Molecular Biophysics at University of Maine/The Jackson
Laboratory since 2004).

The basic principle of ‘localization microscopy’ is applicable in a wide range of mi-
croscopy methods, even in the case of homogeneous wide-field illumination: the desired
information about the position of point emitters (e.g. single fluorescent molecules) is
derived directly from the diffraction pattern produced by such point emitters in the
image plane which may be registered by any means, in particular including wide-field
detectors without scanning. In contrast to the localization microscopy approach, in
“focused nanoscopy” methods such as 4Pi, STED, GSD, SPEM, and generally in
RESOLFT microscopy, a focal maximum or zero featuring intensity distributions are
necessary to obtain an enhanced resolution. A highly nonhomogeneous intensity dis-
tribution of the excitation illumination in the object is required also in SIE microscopy
modes based on patterned illumination.

Since the mid-1990s, a large variety of localization microscopy concepts has been
developed and realized. They have been denoted as e.g.: BLINKING, FPALM, GSDM,
PALM, RPM, SPDM, STORM, dSTORM, d4STORM etc.

Very general ideas on related strategies for attaining enhanced resolution using
spectroscopic data as constraints date back to the 1980s. For example, [Burns et al.
1985] considered the problem of precision localization of two point objects within
the Rayleigh distance of each other, possessing different spectral emission character-
istics. Assuming linear superposition of the spectral characteristics, they showed by
computer simulations that by appropriate, rather complex algebraic methods and as-
suming a signal-to-noise-ratio (SNR) of 15 dB, two point objects within a distance
of 1/30 to 1/50 of the Rayleigh distance were still spatially resolvable. It was not clear,
however, to what extent these arguments were practical to achieve enhanced resolu-
tion in far field fluorescence light microscopy, and especially if the number of point
objects located in an area smaller than the diameter of the Airy disc was increased
to significantly higher values.

This problem was treated by [Betzig 1995] who discussed possibilities to realize
localization microscopy of multiple point sources localized within the Airy disc (i.e.
with distances below the Rayleigh distance) in a near field optical scanning microscope
at helium temperatures. Under these low temperature conditions, absorption cross
sections would be sharp enough to achieve by appropriate laser based absorption line
tuning the necessary optical isolation of adjacent molecules, i.e. the clear separation of
their diffraction patterns. In contrast to the deconvolution procedure of [Burns et al.
1985], the evaluation of the independently registered (“optically isolated”) diffraction
patterns would allow to localize any number of point sources with mutual distances
smaller than the conventional resolution. Experiments performed some years later by
[van Ojen et al. 1998] showed that this concept indeed yielded enhanced resolution of
multiple single molecules in low temperature far-field microscopy. Due to the technical
restrictions of cooling the specimen down to a few Kelvin, only numerical apertures
NA < 1.0 were used.

[Hell and Kroug 1995] discussed optical isolation and localization of molecules in
the vicinity of a focused laser beam in a far-field scanning microscope at approximately
300 K operating temperature by intensity induced reversible transitions between the
ground state (S0), the first excited state (S1), and the triplet state T1; this concept
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was later integrated into the RESOLFT concept, indicating a possible mechanism for
light induced reversible transitions between dark and bright states.

In December 1996, the Shimon Weiss group from University of California Berkeley
[Ha et al. 1996] published a paper on “Dual-Molecule Spectroscopy: Molecular Rulers
for the Study of Biological Macromolecules” in which they reviewed recent techniques
and experiments based on the detection and spectroscopy of two near-by molecules in-
cluding room-temperature, in connection with near field scanning optical microscopy
(NSOM). In this paper, they discussed the possibility that if two closely adjacent
molecules are distinguishable by one or more optical properties (emission color, ra-
diative lifetime, dipole orientation), their location and the distance between them can
be determined with high precision, down to the order of one hundredth of the FWHM
of the PSF. They stated that “the main challenge in doing so is to separate the signal
from the two molecules while maintaining perfect registry between them. Dual-color
excitation with NSOM permits exactly that.” The object “is scanned and two im-
ages are simultaneously acquired. Since both excitation colors share the same near-
field aperture, the two registered images are in perfect alignment. The centers of the
two PSF’s of the two labelling molecules is then determined and the distance between
them is extracted.”

At the same time (December 1996), [Cremer et al. 1996] proposed to implement a
localization based mode of enhanced resolution microscopy applicable to any far-field
microscopy method, including for the first time also fluorescence excitation of multiple
point sources by homogeneous illumination, allowing the use of high NA (larger 1.0)
objective lenses and operating at room temperature. This concept of far field localiza-
tion microscopy has been denoted as Spectral Precision Distance Microscopy (SPDM)
by the authors [Cremer et al. 1999; Esa et al. 2000, 2001]. Compared with [Betzig
1995] and [Ha et al. 1996] the localization microscopy concept was extended to any
far field microscopy method; compared with [Burns et al. 1983], the SPDM approach
was explicitly based on the independent registration of the diffraction patterns of
individual point sources; compared with the GSD concept [Hell and Kroug 1995] it
considered the optical isolation of individual point sources by a variety of ‘spectral
signatures’ as well as the extension to homogeneous illumination modes. In partic-
ular, [Cremer et al. 1996, 1999; Bornfleth et al. 1998; Edelmann 1999] described in
detail the use of differences in the fluorescence emission spectrum and methods to
perform the precise multispectral calibration measurements required to account for
the correction of chromatic aberrations, as well as algorithms for subvoxel precision
positioning in 2D (object plane) and in 3D (also along the optical axis), including the
influence of the photon statistics. Even in optimally corrected far field microscopes,
chromatic aberrations were found to be in the order of several tens of nm in the
lateral direction and up to 200 nm in axial direction, depending on the conditions
used [Esa et al. 2000; Rauch et al. 2000]; hence, without such calibrations a reso-
lution enhancement in the sense of object position and distance measurements far
beyond the Abbe-limit would not give reliable spatial information. Since the calibra-
tion errors are substantially lower in the lateral direction (object plane), [Cremer et al.
1996] previously discussed approaches to combine epifluorescence microscopy based
localization microscopy with micro-axial tomography (section 5.3); in addition, they
discussed a combination with a specific mode of structured illumination microscopy
to realize a localization precision down to the 1 nm range [Albrecht et al. 2001, 2002]
(section 5.2). To make possible the detection of multiple point sources within an Airy
disk, in addition to differences in the fluorescence emission spectrum they proposed
the use of differences in fluorescence lifetime, in luminescence, or in any other optical
characteristics (“spectral signature”) that are useful for optical isolation (i.e. the inde-
pendent registration of the diffraction patterns of the individual point sources). This
included the explicit introduction of the time domain: in these cases the enhanced
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resolution was not obtained by scanning in space (as in the previous nanoscopy ap-
proaches) but by ‘scanning in time.’ It may be noted that the word “spectral” by the
authors in the “spectral signature” concept was not restricted to differences in the
absorption/emission spectrum but was used according to its general meaning (see e.g.
Webster’s Dictionary) to denote any distribution of physical characteristics, including
the time domain. However, in these papers the authors did not explicitly mention the
possibility to use photoswitching (“blinking”) of single molecules/point emitters for
their localization microscopy approach.

In the following years, the SPDM approach of localization microscopy as well as
related approaches by other groups were worked out further [Bornfleth 1998; Cremer
et al. 1999, 2002; Lacoste et al. 2000; Schmidt et al. 2000; Heilemann et al. 2002], and
first ‘proof-of-principle’ experiments were performed to indicate its feasibility. These
experiments were based on precision position /distance measurements of objects opti-
cally isolated from each other by appropriate spectral signatures, such as fluorescence
emission differences, or differences in the fluorescence life times of single, closely ad-
jacent molecules. Distances in 2D/3D down to about 30 to 50 nm were measured,
depending on the details of the method used [Cremer et al. 1996; 1999; Esa et al.
2000; 2001; Heilemann et al. 2002].

In the case of localization microscopy, the definition of the optical resolution (the
smallest resolvable distance between two fluorescent point emitters) has been proposed
to relate to the localization accuracy of the individual point sources [van Aert et al.
2006]; the estimate of the attainable structural resolution has to take into account
also the density of optically isolated point emitters, depending on the peculiarities
of the structures to be resolved [Lemmer et al. 2008; Kaufmann et al. 2009; Cremer
et al. 2010]. With this method, cellular and other biological nanostructures labelled
with fluorescent markers have been analysed down to the molecular optical resolution
range (using the criterion of localization accuracy).

Since in an object to be studied, all point emitters of a given spectral signature
can be resolved which have a mutual distance larger than the conventional resolution,
already two or three spectral signatures allow highly relevant applications to biological
nanostructure analysis [Cremer et al. 1999; Esa et al. 2000; 2001; Rauch et al. 2008;
Hüve et al. 2008; Tykocinski et al. 2010]. It was evident, however, that the higher
the number of spectral signatures, the better small structures can be analyzed. The
use of fluorescence life times provided the possibility to increase the number of useful
spectral signatures. Assuming 5 to 7 spectral signatures based on differences in the flu-
orescence absorption and on the emission spectrum (at ∼300 K) and a few additional
spectral signatures based on fluorescence life times of the S1 state, approximately 10
spectral signatures would already have been useful for the SPDM/localization mi-
croscopy techniques described so far to obtain valuable nanostructural information
[Cremer et al. 1999]. In other types of fluorescence based optical analysis, ten and more
absorption/emission based spectral signatures have become routine [e.g. Herzenberg
et al. 2002]; in a localization microscopy approach based on such signatures, this
would translate to a limit of up to several hundred distinguishable targets per µm2

(corresponding to a severalfold enhancement of resolution according to the Nyquist
theorem).

Localization microscopy techniques based on ‘blinking’

Although the early ‘proof-of-principle’ experiments mentioned were performed by us-
ing either scanning devices (confocal/near field optical scanning), and/or low temper-
ature conditions, the application of the localization microscopy concept to enhanced
resolution using farfield light microscopy in a homogeneous illumination mode and
in the 300 K temperature range was explicitly recognized [Cremer et al. 1996, 1999].
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In addition, ideas to use localization microscopy to obtain high resolution images
by stochastic optical reconstruction schemes using random labeling procedures were
also acknowledged [Cremer et al. 2002]. However, the special conditions considered in
these early concepts were restricted to the use of a mixture of differentially labeled
molecules, greatly limiting the number of molecules of the same type to be localized
within a given Airy disk.

In the following years, various groups developed improved methods of localization
microscopy to allow enhanced resolution by stochastic optical reconstruction (see
below). These methods work even in the case that the molecules to be resolved are of
the same type and labeled with the same fluorophore.

To our knowledge, the first experiments to use a point source induced to emit
short fluorescent flashes distributed stochastically in time to realize high resolution
localization microscopy using the same type of point emitters have been described
by the Rainer Heintzmann group at King’s College London [Lidke et al. 2005]. The
intermittent fluorescence or ’blinking’ of quantum dots was registered and analysed
using independent component analysis so as to identify the light emitted by each
individual nanoparticle, and to localize it precisely, and thereby resolve groups of
closely spaced (d < λ/30) quantum dots. It became difficult, however, to reliably
separate in the way described more than five emitters within a region of 200 nm
diameter. Another setback for a wide spread application of this ‘blinking’ approach
was the use of nanoparticles as fluorescent emitters. The authors stated, however,
that this should be taken as a limitation of the present approach and not of the
blinking-based separation procedure in general.

Within recent years, localization microscopy approaches using one or another sche-
me of “optical isolation” have been developed to allow a broad spectrum of applica-
tions (for reviews see [Zhuang 2009; Cremer et al. 2010, 2011; Cremer 2012]). Pre-
sently, they allow the localization of several to many thousand individual molecular
signals/µm2, corresponding to about 60 molecules in an area as small as an individual
Airy disc.

Since 2006, various homogeneous, spatially non-scanning illumination schemes for
photoactivation and/or photoswitching induced reversible or irreversible transitions
of organic fluorochromes between optically distinguishable molecular states A and B
have been used to achieve enhanced resolution. In one type of approaches, one wave-
length is for photoactivation and/or photoswitching and another wavelength is for
fluorescence excitation of the molecules to register the molecule positions; in a second
type of approaches, one wavelength only is used for a given type of molecules, in
combination with appropriate physico-chemical conditions; it is even possible to use
one laser frequency only for two given molecule types simultaneously. The required
optically distinguishable molecular states A and B (also called ‘dark’ and ‘bright’)
[Hell 2009] do not necessarily mean emission and or nonemission of photons, but they
may refer to the registration status of the detector for a particular spectral signature,
including the time domain. Various methods using this principle for single molecule
enhanced resolution have been realized during the last few years and successfully
applied to a variety of biological nanostructures, from bacteria to tissue sections.

These techniques presently include the following: PALM (PhotoActivated Locali-
zation Microscopy) [Betzig et al. 2006, Biteen et al. 2008; Matsuda et al. 2010;
Sengupta et al. 2011]; FPALM (Fluorescence Photoactivable Localization Microscopy)
[Hess et al. 2006, 2007; Gould et al. 2008]; STochastic Optical Reconstruction
Microscopy (STORM) [Rust et al. 2006; Bates et al. 2007; Huang et al. 2008];
PALM with Running Acquisition (PALMIRA) [Bock et al. 2007; Egner et al. 2007;
Geisler et al. 2007]; Spectral Precision Distance Microscopy (SPDM) using re-
versibly photobleached single molecule states (also denominated as SPDMPhymod

[Reymann et al. 2008; Lemmer et al. 2008, 2009; Kaufmann et al. 2009, 2011a, 2012;
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Fig. 5. Principle of Localization Microscopy based on photo-activable Green Fluorescence
Proteins (PA-GFP). An area containing photoactivatable molecules (here, PA-GFP) is illu-
minated simultaneously with two frequencies of light, one for readout (here, an Ar ion laser
with principal wavelengths 476.5 nm and 496.5 nm, its spatial illumination profile shown
in A), and a second one for activation (here, a 405-nm diode laser, its profile superimposed
in B). Within the region illuminated by the activation beam, inactive PA-GFPs (small dark
blue circles) are activated (C) by low intensity illumination at 405 nm (small green cir-
cles) and then localized (D) by using excitation with the 488 nm readout laser. After some
time, the active PA-GFPs (E) photobleach (red Xs) and (F) become irreversibly dark (black
circles). Additional molecules are then activated, localized, and bleached until a sufficient
number of molecules have been analyzed to construct an image. From [Hess et al. 2006], with
kind permission from the Biophysical Society.

Cremer et al. 2010, 2011; Kaufmann et al. 2012; Cremer 2012]; direct STORM
(dSTORM) [Heilemann et al. 2008; Steinhauer et al. 2008]; Ground State Deple-
tion Imaging Microscopy (GSDIM) [Fölling et al. 2008]; Dual Color Localization Mi-
croscopy (2CLM) [Gunkel et al. 2009]; Reversible Photobleaching Microscopy (RPM)
[Baddeley et al. 2009a]; or 4D STORM (d4STORM) [Baddeley et al. 2011].

For example, in the (F)PALM approach a UV laser beam is used at very low
illumination intensities to induce sparsely distributed conformational changes in pho-
toactivatable Green Fluorescent Proteins (PA-GFP), leading to a change in the flu-
orescence emission spectrum (‘activation’) and producing a ‘bright’ state. Here the
basic idea has been to activate only a very few of the fluorophores, to have not more
than one of these per diffraction volume. The fluorescence emission of the individual,
optically isolated molecules is registered until they are bleached (converted into an
irreversibly ‘dark’ state). After this first cycle all fluorophores are again in the ‘dark’
state. Now a new subset of the PA-GFP molecules is activated, detected and bleached.
This procedure is repeated many times to detect a large number of single molecules
(Figure 5).

A great advantage of this method has been its use in live cell time lapse microscopy
[Hess et al. 2007]; however, it requires specially designed variants of fluorescent pro-
teins. STORM can also be used for live cell imaging [Jones et al. 2011].
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For many applications, it remained desirable to develop analogous photoswitching
methods for use with conventional fluorochromes. Such a method has first been de-
scribed as STORM [Rust et al. 2006]. STORM, a localization microscopy approach
using photoswitchable probes, such as cyanine dyes, was first described as a method
that uses pairs of standard organic fluorochromes and two frequency switching to
enhance the resolution using one type of standard fluorochrome. It may be noted,
however, that the inventors of STORM stated that this method should be appli-
cable to any other type of suitably photoswitching molecule, and they noted that
“the STORM concept is also applicable to other photoswitchable fluorophores and
fluorescent proteins. . . ”.

Another way to experimentally realize the appropriate conversion between states
A (‘dark’) and states B (‘bright’) under homogeneous illumination conditions (with
respect to the region of interest) without needing specially designed molecules or
pairs of molecules which have to be photoactivated or photoswitched by two different
wavelengths has been described by [Bock et al. 2007; Reymann et al. 2008; Lemmer
et al. 2008, 2009; Heilemann 2008; Steinhauer et al. 2008; Zhuang et al. 2009]. This
approach takes advantage of the fact that under certain illumination conditions com-
bined with specific physicochemical conditions, a rapid switching may occur between
bright and dark states [Bock et al. 2007; see below]; or in many types of fluores-
cent molecules two types of ‘dark’ states may be induced using one wavelength alone
[Reymann et al. 2008; Lemmer et al. 2008, 2009]: one irreversibly bleached state Mirr

and one reversibly bleached state Mrb [Sinnecker et al. 2005]. After excitation with
a suitable single wavelength and illumination intensity, they can either pass to the
irreversibly bleached ‘dark’ state Mirr or they can pass to the reversibly bleached
‘dark’ state Mrb. From this ‘dark’ state they can stochastically re-enter the fluores-
cent state Mfl in which they emit in a few tens of milliseconds a flash of thousands
of photons before they pass into either the irreversibly bleached ‘dark’ state Mirr,
or are again transferred to the reversibly bleached state Mrb. At appropriately long
time constants for the transitions (seconds to minutes) of the fluorophores from the
reversibly bleached state Mrb to the fluorescent state Mfl the distances between the
diffraction images of the molecules are large enough to allow the desired optical iso-
lation even with relatively slow CCD cameras. Thus the positions of the individual
detected fluorophores can be determined according to the basic principles of localiza-
tion microscopy outlined above. In this case, the spectral signature (according to the
general definition of this term given e.g. in [Cremer et al. 1996, 1999, 2002] is the tran-
sition time of the individual molecule from the reversibly bleached state Mrb to the
fluorescent state Mfl. Interestingly, this transition was observed to be induced by using
only a single laser frequency at constant illumination intensity (in space and time)
for both the induction of long (up to the hundred second range) reversible bleaching
transitions and fluorescence registration [Reymann et al. 2008; Lemmer et al. 2008,
2009]. Since this enhanced resolution technique is based on the general principles of
SPDM using molecular states modified by appropriate illumination intensities and
environmental conditions, it was denominated as SPDM with physically modifiable
fluorophores (SPDMPhymod) [Kaufmann et al. 2009; Lemmer et al. 2009]. Typically,
a few thousand frames registered at a frame rate of 20 fps or more are sufficient to
render an image with a presently achieved resolution down to the 10 nm range (as es-
timated from the localization accuracy). Instead of using relatively high illumination
intensities, Bock et al. 2007 have shown that standard fluorophores (Cy5) can be ap-
plied for localization microscopy at relatively low illumination intensities (10 kW/cm2

633 nm excitation) using the same laser frequency for photoswitching and readout.

In this case, however, switched-off Cy5 molecules thermally recovered within
100 ms to their bright on-state, and registration times in the 2 millisecond range
were used; in the SPDMPhymod mode mentioned above, switched-off molecules
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(e.g. standard synthetic dyes like Alexa 488, 568, or conventional fluorescent pro-
teins like eGFP, YFP, or mRFP) on the average recovered after minutes only, and
typical registration times around 50 Milliseconds were applied. Another difference
was the use of a standard embedding medium or even phosphate based saline (PBS)
in SPDMPhymod, allowing the use of this mode of localization microscopy even under
live cell conditions.

An especially intriguing consequence of the SPDMPhymod approach and other lo-
calization microscopy methods like 2CLM, RPM, dSTORM, d4STORM, or GSDIM
has been the possibility to use standard fluorescent dyes as well as conventional fluo-
rescent proteins in a microscope setup even at homogeneous illumination conditions
(with respect to the field of view chosen). Since such “standard” fluorophors had al-
ready been introduced into a vast spectrum of conventional fluorescence microscopy
applications, this technique has become particularly useful for a broad spectrum of
applications in the biosciences. Theoretical considerations [Cremer et al. 2010] indi-
cated that at the registration speeds presently realized, the average dark (reversibly
bleached) to bright (fluorescent state) transition times have to be in the order of many
seconds to allow the desired optical isolation at relatively slow registration rates (e.g.
20 frames/s): i.e. two adjacent molecules have to emit their photon flashes at suf-
ficiently different times so that the diffraction patterns produced by these photon
emissions can be distinguished from each other and thus used for the localization of
the individual molecules.

Relationships between various localization microscopy techniques

Comparing the various single-molecule high-resolution imaging approaches using stan-
dard fluorophores (i.e. fluorochromes commonly used in conventional fluorescence
imaging) outlined above, various similarities but also major differences may be noted.
For example, in the technique of Single-molecule High-Resolution Imaging with Pho-
tobleaching (SHRImP), [Gordon et al. 2004] localized pairs of single Cy3 molecules
with nm precision and determined their separation with 5 nm precision, using their
quantal photobleaching behaviour. However, according to the authors this method
did not allow true imaging because it could only be used to measure distances with
well separated pairs of molecules, not multiple molecule positions within the conven-
tional resolution limit like in the other localization microscopy techniques mentioned,
like PALM, FPALM, STORM, dSTORM, GSDIM, SPDMPhymod etc.

This restriction probably is due to the fundamental difference how the photo-
bleaching behaviour of single molecules was used. While in SHRImP, the basic photo-
physical effect used was the stepwise, bleaching induced decrease in the total fluores-
cence intensity measured from a pair of adjacent dye molecules, the above mentioned
single molecule localization microscopy approaches allow the localization of an arbi-
trary high number of molecule signals within the conventional resolution limit; this
is possible as long as the basic conditions of all localization microscopy methods is
maintained, the optical isolation due to an appropriate (in this case time dependent)
spectral signature.

Although the technical requirements (high mechanical stability, sensitive CCD
cameras (or related devices) to detect single standard molecule fluorescence emission)
for these highly simplified and robust modes of localization microscopy on the basis
of homogeneous illumination schemes have existed at least for a decade, accounts
of their realization for a variety of conditions, targets and applications have been
published only recently, within a few months and independently from each other by
a variety of groups. For example, [Bock et al. 2007] (manuscript received June 20
and published online 6 July 2007) used the organic fluorphore Cy5 in combination
with 633 nm excitation to perform PALMIRA based localization microscopy of the
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images of the microtubular network in a PtK2 cell; [Reymann et al. 2008] (revised
manuscript received February 21 and published 8 May 2008) described enhanced
resolution of nuclear pore complexes using the standard dye Alexa488 (homogeneous
illumination at λexc = 488 nm) in combination with a standard embedding medium,
to be followed shortly afterwards by [Heilemann et al. 2008] (received 21 May 2008 and
published 22 July 2008) and [Steinhauer et al. 2008] (received 19 August and published
24 November 2008) describing the use of Cy5/Alexa 647 in combination with certain
specially made ‘switching buffers’ to perform enhanced resolution of DNA and cellular
Actin filaments; [Lemmer et al. 2008] (received 8 June and published 1 September
2008; US patent application Lemmer et al. filed March 2008, granted March 2012)
described the extension of SPDMPhymod to standard Fluorescent Proteins (YFP),
achieving a lateral optical resolution down to the 10 to 20 nm regime; in combination
with SMI-microscopy, three dimensional images were obtained corresponding to a
3D-resolution of thin cellular structures (axial thickness < 150 nm) of 40 to 50 nm
(∼1/10 of λexc). [Lemmer et al. 2008; Kaufmann et al. 2011a].

Another early report of localization microscopy using homogeneous illumination
in combination with standard fluorochromes called Ground State Depletion Imag-
ing Microscopy (GSDIM) was published by [Fölling et al. 2008] (received 24 July
and published 15 September 2008), featuring an enhanced lateral resolution of micro-
tubules and peroxisomes immunostained with standard fluorophores Atto 532/565 in
the <30 nm range. In this latter case, the term scheme (S0 to S1 to T1 to S0) pre-
sented previously for relatively fast reversible transitions between dark and bright
states (µs to ms) in GSD microscopy was extended by Fölling et al. to include
very long lived dark state D (transition times D to S0 in the required order of sec-
onds, i.e. several orders of magnitudes higher that the T1 to S0 transitions of GSD
microscopy). This state D was conceived to be accessible via a S0 to S1 to T1

transition.
From the formal point of view this general scheme appears to be compatible with

mechanisms proposed previously for reversible photobleaching [Sinnecker et al. 2005;
Lemmer et al. 2008]. Compared to the dSTORM concept as published originally
[Heilemann et al. 2008], major differences between SPDMPhymod and dSTORM are
the molecule types and biostructures studied, the chemical environment used, as well
as the two laser excitation schemes used originally by [Heilemann et al. 2008].

The various denominations given to the novel localization microscopy approaches
which made it possible to include even standard fluorochomes in a straightforward way
are justified by the many differences in the optical setup, the molecule types, physic-
ochemical environments used. In addition, the different abbreviations stress various
elements of the entire localization microscopy concept. For example, in the acronyms
“PALM” and “FPALM” the importance of using photoswitchable molecules is put for-
ward. In “STORM”, “dSTORM” and “d4STORM” the optical isolation by stochasti-
cally distributed spectral signatures is highlighted. In the acronym GSDIM the focus
is put on the quantum physical necessity to realize very long lived excited states for S0

depletion. In “RPM” the effect of reversible photobleaching is denoted. In 2CLM the
possibility to extend localization microscopy to the simultaneous enhanced resolution
of multiple molecule types is envisaged. And in SPDMPhymod, the aspect to perform
highly precise position and distance measurements of single molecules under specific
physicochemical conditions (e.g. illumination intensity, chemical environment) is re-
garded [Cremer et al., 2010, 2011; Cremer 2012]. It may be noted that many details
of the underlying physicochemical and photophysical mechanisms are still poorly un-
derstood. Recent experimental evidence indicates that spatial configuration changes
are involved not only in the photoswitching of photoactivable fluorescent proteins
[Dickson et al. 1997] but also in the photoswitching of standard fluorescent proteins
[Matsuda et al. 2010].
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Combination of localization and structured excitation illumination microscopy

First attempts have been reported to combine localization microscopy with confocal
microscopy and or structured illumination schemes; this may be highly advantageous
to obtain such an enhanced resolution not only in the object plane but even in three
dimensions.

For example, already a decade ago the combination of a localization microscopy
approach (SPDM) with confocal laser scanning fluorescence microscopy allowed 3D
distance measurements down to 50 nm range [Esa et al. 2000]. Although this attempt
was restricted to the optical isolation of a few closely adjacent fluorescent point emit-
ters only, it was sufficient to obtain spatial information about chromatin nanostruc-
ture in cell nuclei of cancer patients not available by conventional resolution. Recently,
the combination with 4Pi microscopy [Hüve et al. 2008] permitted 3D distance mea-
surements of intracellular targets with a localization accuracy around 10 nm, corre-
sponding to an enhanced resolution around 20 nm. The combination of SPDMPhymod

and Spatially Modulated Illumination (SMI) microscopy allowed to generate images
of (thin) biological structures corresponding to the results achievable with a 3D ef-
fective optical resolution in the 30 to 50 nm range [Lemmer et al. 2008; Kaufmann
et al. 2011a]. Numerical simulations [Failla and Cremer 2001; Albrecht et al. 2001]
suggested that in the case of detected photon counts in the 103 to 104 range, even
a 3D optical resolution in the 1 nm range eventually might become feasible for single
molecule based localization microscopy.

6 Concluding remarks

6.1 The enhancement of resolution in time and space and its potential
applications

In this historical survey an attempt was made to delineate basic milestones in the
development of resolution enhancement techniques. A particular goal was to summa-
rize the many lines of developments to overcome the hundred year old limitations in
far-field light microscopy. The possibilities to ‘break’, or more correctly, to ‘circum-
vent’ the limits imposed by Abbe’s and Rayleigh’s theories have become so many that
it might be helpful to find a joint name. Presently, terms like ‘enhanced resolution
light microscopy,’ ‘light-optical nanoscopy’, ‘superresolution optical microscopy,’ or
(in the Anglo-American tradition to give well memorisable names) even ‘LOBSTER’
(Light-Optical BioStructure analysis at Enhanced Resolution) have been proposed
[Cremer et al. 2011; Cremer 2012]. To avoid the ambiguous term ‘LM’ (which stands
for Light Microscopy in general) as an abbreviation for the now well accepted general
term ‘localization microscopy’, acronyms such as SMLM (Single Molecule Localiza-
tion Microscopy) [McEvoy et al. 2010] or SALM (Spectrally Assigned Localization
Microscopy) [Markaki et al. 2010; Cremer 2012] have been proposed.

While in ‘main stream’ physics, the resolution limits of far-field light microscopy
were thought to be once for all settled and thus not interesting any more, the pioneer
groups in this field mostly consisted of physicists connected to a biological scientific
environment where the gain of microscopic resolution was a constant challenge. As
previously noted many advances in enhanced resolution microscopy were also made
in the fields of lithography and nanofabrication in addition to those made in the
biological fields.

In the aftermath, at least some of the optical principles leading to ‘enhanced
resolution’ might have been formulated already many decades before this was actu-
ally done. For example, at the time that Lord Rayleigh formulated his theory it was
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known that the maximum of the Airy disc corresponded to the position of a point
object. Perhaps it was regarded to be too trivial to explicitly draw the conclusion
that by changing the fluorescent wavelength or some other discriminating spectral
characteristics, objects with a distance much smaller than half the wavelength could
be independently localized from each other, and hence even subresolution distances
determined. However, once that the psychological barrier had been broken by the
demonstration that indeed an enhanced resolution below the “Abbe limit” was pos-
sible, the further development to the present state of far-field enhanced resolution
microscopy (lateral two point resolution in the 1 nm range achieved for two adja-
cent molecules of the same type, corresponding to one five hundredth of the exciting
wavelength [Pertsinidis et al. 2010]) took less than two decades.

Perhaps the first experimental proof that a substantial enhancement of optical res-
olution was possible in farfield microscopy at least in the axial direction was obtained
in the first half of the 1990s by Stefan Hell and his colleagues [Hell and Stelzer 1992a,b;
Hell et al. 1994a,b; Lindek et al. 1994; Hänninen et al. 1995] using 4Pi confocal mi-
croscopy with two opposing high NA lenses. This first breakthrough was soon followed
by the development of the concepts of STED microscopy [Hell and Wichmann 1994;
Baer 1994] and of Ground State Depletion based focused nanoscopy [Hell and Kroug
1995]. About the same time, the first concepts of multitarget localization microscopy
have been put forward [Betzig et al. 1995; Cremer et al. 1996, 1999; van Ojen et al.
1998; Bornfleth et al. 1998].

6.2 Impact of enhanced resolution light microscopy in the biosciences

Presently, enhanced resolution light microscopy techniques have already found a large
field of applications. For example, 4Pi-microscopy and STED-microscopy have been
used to study nanostructures on the cell membrane [Bahlmann et al. 2001; Glaschick
et al. 2007; Perinetti et al. 2009], of the cytoplasm [Egner et al. 1998; Hell and Nagorni
1998; Nagorni and Hell 1998; Schrader et al. 1998; Gugel et al. 2004; Egner et al. 2005]
as well of the nucleus [Bewersdorf et al. 2006; Lang et al. 2010] and of the nuclear
envelope [Hüve et al. 2008; Baddeley et al. 2006]. In addition, STED microscopy has
been shown to be useful for neurobiology in the study of synaptic connections between
nerve cells [Willig et al. 2006; Nagerl et al. 2008]. Structured illumination microscopy
approaches are presently used for a similar range of applications [Martin et al. 2004;
Hildenbrand et al. 2005; Birk et al. 2007; Schermelleh et al. 2008; Reymann et al. 2008;
Baddeley et al. 2010b; Markakis et al. 2010]; in addition, they have been shown to al-
low an improved imaging quality of retina tissue, e.g. to analyze age dependent macula
degeneration [Best et al. 2011; Ach et al. 2012]. Localization microscopy applications
are fast extending their application potential; presently, they range from the molec-
ular resolution of membrane structures in normal and cancer cells, the quantitative
single molecule arrangement in connections between nerve cells and cytoplasmic mul-
tiprotein fibers to various nanostructures in the cell nucleus, including the machines
for DNA transcription, repair, and gene regulation, to the detection of individual HIV
viruses and even the shape of small viruses (so far reserved to electron microscopy)
[Esa et al. 2000, 2001; Rauch et al. 2000, 2008; Betzig et al. 2006; Hess et al. 2006,
2007; Bock et al. 2007; Biteen et al. 2008; Reymann et al. 2008; Lemmer et al. 2008,
2009; Shroff et al. 2008; Gunkel et al. 2009; Markakis et al. 2010; Tykocinski et al.
2010; Baddeley et al. 2009a,b, 2011; Kaufmann et al. 2009, 2011a,b, 2012a,b; Huber
et al. 2012; Wombacher et al. 2010; Klein et al. 2011; Huber et al. 2012; Löschberger
et al. 2012; Pereira et al. 2012; Ries et al. 2012; for reviews see Zhuang 2009; Cremer
et al. 2010, 2011; van de Linde 2011].
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While all these applications demonstrate the usefulness of enhanced light mi-
croscopy methods, its potential to trigger a similar revolution of biology and medicine
as the improvement of microscopy in the nineteenth century still appears not to be
evident.

The historical evidence accumulated for thousands of years in astronomy and since
the 1600s in physics and other sciences demonstrates that progress in methods of quan-
titative measurement is intimately connected with the progress in scientific insight.
The experience of microscopy indicates an analogous connection: the enhancement
in usable resolution and contrast made possible since the invention of the first mi-
croscopes in the 1600s and the progress in the biosciences clearly correlate. Modern
biology and medicine is enhanced by being able to visualize the cellular structure of
organisms, to detect bacteria, and to analyze individual cells in a tissue. From this
historical experience, one would expect that the enhancement of light-optical resolu-
tion and contrast achieved within the last decades should have a similar impact on
the future of biosciences.

In the 1600s and 1700s, the use of the microscope in the biosciences was hampered
by technical difficulties (such as strong chromatic and monochromatic aberrations,
low illumination intensities, lack of appropriate specimen preparation). An additional
reason might have been the leading medical paradigm of the importance of bodily
humors (blood, phlegm, choler, black bile) regarded to determine the general health
of a person. This attitude to disregard the importance of the spatial microstructure
was radically overcome with the microscopy based development of modern cellular
theory, cellular pathology, and microbiology.

Today, the introduction of enhanced light microscopy methods into the biosciences
appears to be slowed down by other reasons: the advent of electron microscopy in
the 1930s and of X-ray crystallography of biostructures in the 1950s have opened a
broad avenue to study cellular nanostructures down to the atomic resolution level of
many of their constituents; in addition, the progress of biochemistry and of molecular
biology has opened an avenue to know all the molecular components of a cell and their
average interactions. In many molecular biology research groups, the only microscope
is a small phase contrast system for cell culture; nonetheless, these groups are capa-
ble of deciphering the average cellular interactions down to the molecular scale. The
combination of molecular biology with high resolution electron microscopy and X-ray
crystallography allows them to obtain quite precise ideas of nanostructural interac-
tions on a scale which does appear to make obsolete even be most recent progress in
enhanced resolution light microscopy.

On the other side, methods of biochemistry and molecular biology typically work
with results obtained not from a single cell but of many cells; they produce average
values. However, the single cell may matter; in developmental biology, a single stem
cell may be the ancestor of a line of specialized cells (e.g. of a tissue) or even an
entire organism; in medicine, a single metastatically competent cell may result in the
death of the individual; or a single pluripotent stem cell may reconstitute a cell line
allowing to live; a few single viruses interacting successfully with the cell membrane
may lead to a HIV infection; the distribution of single drug molecules in a tissue or
at the blood-brain barrier may have severe physiological consequences.

These examples indicate that enhanced light microscopy methods are likely to have
a major impact in the biosciences. This will be especially true if they can be further
developed in a way to allow fast ‘high-throughput’ analyses (e.g. obtain multicolor
localization microcopy images of 1000 cells with 1× 1012 molecule positions assigned
in one day). To what extent these promising application perspectives will lead not
only to major impacts in medicine but also produce completely new insights in biology
remains to be seen.
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In all the pioneer groups involved there was a strong conviction that the limits
stated by Abbe and Rayleigh were not directly “breakable” (in the sense that Abbe
and Rayleigh were wrong) but might be circumvented by approaches not considered
by these pioneers of optics more than 100 years ago (To highlight this very unexpected
achievement, the term ‘to break the Abbe limit’ in the sense “to escape from, to sur-
pass” often used in the literature may also be justified.) Furthermore, between many
of these groups personal connections have existed for decades partially supported by
joint grants.

To summarize, the development of resolution enhancing “nanoscopy” technolo-
gies is still in full development. It is to be expected that eventually each branch
of the superresolution family (focused/structured/homogeneous illumination based
nanoscopy) will produce highly vigorous descendants, adapted to their special niches,
i.e. biomedical and material sciences application fields.

It should be stressed that optical aberrations will reduce the resolution as com-
pared to an aberration free optical system. The effects of high power laser radia-
tion on live cells, tissues and organisms, as well as photobleaching and photodam-
age are compelling. The use of fluorescent probes, as well as the overexpression of
genetically encoded fluorescent proteins can affect the biological function of cells
and tissues. The use of these techniques with thick, highly scattering specimens is
very challenging, especially with techniques that depend on structured illumination,
and STED techniques, where the desired, theoretical structure of the light distribu-
tion may differ considerably from the actual structure within the specimen. Finally,
the cost of pulsed laser sources and problems of alignment may hinder the wide
spread use of some of these resolution enhancing techniques. The experience gained
from the history of science suggests, however, that many of these problems shall be
overcome, due to the importance of microscopy for almost all fields of biology and
medicine.

Websites

Instead of giving many examples of the use of enhanced resolution microscopy in cell
biology and medicine we chose to present several websites with various applications.
The authors have selected a few of the interesting websites on the basis of their
tutorial value. We apologize to the many other research groups for the fact that we
are unable to cite all of the relevant websites.
Betzig, E. http://www.janelia.org/lab/betzig-lab
Cremer, C. http://www.kip.uni-heidelberg.de/AG Cremer; http://www.imb-mainz.
de/research-at-imb/Cremer
Hell, S. http://www.4pi.de/
Hess, S. http://www.physics.umaine.edu/FPALM SFS NOV09/fpalm principle.html
Sauer, M. http://www.super-resolution.biozentrum.uni-wuerzburg.de/en/home/
dstorm/
Sedat, J. http://msg.ucsf.edu/sedat/
Zhuang, X. http://zhuang.harvard.edu/index.html
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Hüve, J., R. Wesselmann, M. Kahms and R. Peters. 2008. 4Pi microscopy of the nuclear
pore complex. Biophysical J. 95: 877-885

Jones, S., S.-H. Shim, J. He, X. Zhuang. 2011. Fast three-dimensional super-resolution imag-
ing of live cells. Nature Methods 8: 499-505

Jutamulia, S. 2002. Selected Papers on Near-Field Optics, SPIE Milestone Series, SPIE
Optical Engineering Press, Bellingham, Vol. MS 172

Kaufmann, R., P. Lemmer, M. Gunkel, Y. Weiland, P. Müller, M. Hausmann, D. Baddeley,
R. Amberger and C. Cremer. 2009. SPDM–Single Molecule Superresolution of Cellular
Nanostructures. Proc. SPIE 7 185: 71850J-1-71850-19

Kaufmann, R., P. Müller, M. Hausmann and C. Cremer. 2011a. Analysis of Her2/neu mem-
brane protein clusters in different types of breast cancer cells using localization mi-
croscopy. J. of Microscopy 242: 46-54

Kaufmann, R., P. Müller, M. Hausmann and C. Cremer. 2011b. Nanoimaging cellular struc-
tures in label-free human cells by spectrally assigned localization microscopy. Micron 42:
348-352
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