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I. The case of coherent illumination
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Abstract. The familiar theory of information transfer in imaging using the
prolate spheroidal functions and their eigenvalue spectrum is extended to allow
the object and image domains to differ. The appropriate theory becomes one of
singular functions and singular values, and in this paper we give a description of
coherent imaging in these terms. Super-resolution in the sense of improving on
previous criteria in the presence of noise can then be achieved, particularly at very
low Shannon numbers, using the physical continued image, and we give
quantitative estimates of such improvements for the linear, square and circular
pupil cases.

The theory is also shown to provide an efficient proof of the theorem that the
number of degrees of freedom of a coherent isoplanatic imaging system is
unaffected by phase aberrations in the pupil.

Applications of these results in microscopy are outlined, and a practical
method of implementation is proposed based on a generalization of numerical
inversion techniques developed recently in the field of laser scattering.

1. Introduction

Reconstruction of an object from a diffraction-limited image has been a central
problem in optics, at least since the fundamental studies by Abbé and, more
particularly, Lord Rayleigh. Rayleigh’s well-known criterion has received continued
application, most recently, for example, as a concept of the Shannon theory of
information [1]. In this theory, which applies also to more general coherent inverse
Fourier problems in communications, astronomy and radar, in which data are
degraded by anoisy, linear, band-limited system, the number of Rayleigh resolution
elements in an image is equated with its number of ‘degrees of freedom’, the
Shannon number, by making use of the striking properties of the set of prolate
spheraidal functions [2]. These oscillatory functions have the property of imaging
themselves exactly, the only consequence of diffraction being to reduce the
amplitude of transmission sharply if the number of oscillations across the object
exceeds the Shannon number. In the case of incoherent ‘illumination’ a similar
orthonormal set of functions exists, but numerical techniques are then necessary to
obtain analogous results. In this paper we shall consider only the case of uniform
coherent illumination. Calculations for the incoherent case are in progress, and we
hope to present these in a later contribution. Here we present results for the cases of
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circular and square pupils in two dimensions, but for the purposes of clarity carry
through the written analysis using one dimension only. The methods are essentially

" identical.

In the one-dimensional case the general formulation of the problem in the
absence of noise and with the magnification set equal to unity (without loss of
generality) has the mathematical expression of inversion of the integral operator A
defined by

X2 sin [Q(x—»)]

(Af)(x)=J fy) dy, |x<X)2. (1.1)
-X/2 n(x—y)

The function (Af)(x) can be continued over the whole image space; then the Fourier
transform of the analytic continuation of (Af)(x) is zero outside [—£, Q].

We introduce the new variables t=2x/X and c¢= XQ/2, under which transform-
ation equation (1.1) becomes

.
t.—
A4pv= J SN iy as, i<t (12
: 1 m(t—s)
The Shannon number is given by
S= 2 = XQ (1.3)
T T
and the Rayleigh resolution distance by
X n X
=—=—=—. 1.4
R S Q 2 (1.4)

The operator 4 maps the solution space L2%(—1,1) into the same data space
(geometric image) and is self-adjoint, non-negative and compact; S 1s its trace. The
equation Af=0 has only the trivial solution f=0 (uniqueness of the solution). The
eigenfunctions of 4 are

w (=4 (e, 1), (1.5)

where Y, (c, t) are the linear prolate spheroidal functions, and the eigenvalues of 4 are
., that is to say

/4uk=:ikuk. (1.6)

The %, from a basis in L2(—1, 1), and may be regarded as elements of ‘information’
which retain their identity under the forward imaging transformation, save for a
scaling in magnitude by the value 4,. The larger 4, the more efficient is the
transmission of the corresponding information element, but if the A,s are ordered in
decreasing magnitude there will come a point at a sufficiently large value of k£ where
the information is transmitted so weakly that it cannot be distinguished from
experimental noise. The eigenvalue ‘spectrum’ 1, has the property of decreasing
extremely quickly from near unity to near zero at k= S. Even very small amounts of
noise preclude the retrieval in practice of resolution in excess of that given by the
Rayleigh criterion (super-resolution). Mathematically speaking, the problem of
inversion is ‘ill posed’; there exist images in the range of A such that their difference
is arbitrarily small, even if they correspond to widely different objects. Such
disparate solutions, therefore, become indistinguishable in the presence of noise. In
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{
addition noise may displace the observed image out of the range of 4, in which case
no solution exists for the inversion problem, and no attempted physical inversion
procedure will lead to unique results.

2. Analytic continuation, regularization and super-resolution

The ill-posedness described above has led in this and other similar problems to a
great deal of mathematical resehrch, dating back to Hadamard [3], on the existence,
uniqueness and continuity of the solution on the data. Methods which have been
proposed for super-resolution [4, 5] must be subject to the limitations of what is now
a rather well-developed understanding of these problems [6]. For example, since the
object is zero outside the interval [ — X/2, X/2], its Fourier transform is an entire
analytic function; mathematically, therefore, analytic continuation in the frequency
domain will allow restoration of unlimited detail [7], at least neglecting quantum-
mechanical limitations on the measurement of the light field. 'The method fails in
practice for the information-theoretic reasons given above. It should be noted that it
does not fail for the reasons given by McCutchen [8] (uncritically quoted in an
interesting tutorial paper by Pask [9]), who seems not to appreciate that analytic
continuation makes use of only a finite range of frequency components.

A more useful approach to super-resolution recognizes that a set of possible
objects can be constructed which are consistent with the data and a known noise
level. A subset of this set is excluded to limit the effects of noise by imposing physical
constraints. The method of regularization [10], for example, constrains the total
radiated energy in the simplest case, or can limit higher derivatives of the object in
more elaborate versions. The former is no more than sensible and could usefully
restrict wild unphysical restoration; the latter could be even more selective in the
presence of corroborating a priori information. Methods constraining intensities to
be positive are also possible [11, 12]. In all cases, in the context of classical
information theory, the achievement of resolution significantly beyond that pre-
scribed by the Rayleigh criterion is, nevertheless, impractical [13, 15].

3. Reformulation of imaging theory as a singular value problem

As the object size reduces, the eigenfunctions and eigenvalues of the operator 4
introduced in equation (1.1) above, which arise when the range of x coincides with
the range of integration, becomes less appropriate for a discussion of information
content. This is because, although for normal objects much larger than the
wavelength of light, the small diffraction spread outside the geometrical image
contributes little to the problem, this is not so when we consider objects with sizes of
only a few times R. The entire image, rather than the geometrically defined one, may
be used for inversion and the two methods will be substantially different in the
presence of noise. This possibility has been mentioned in the course of an eigenvalue
analysis [13], but dismissed as having disadvantages. A complete discussion of this
possibility requires the theory of singular function decomposition [16], and we give
here a theory of imaging based on singular values and singular functions.

Let us call K the linear continuous integral operator from F=L?(—1,1) to
G =L*(— w0, + ), which continues A over the whole image space, i.e.

b sin [e(t—s)]

(Kf)(t)—': J\_l—n(—tj‘f(s)ds, — o0 <it+ 0. (31)
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Then, in the absence of noise, the solution of the inversion problem is equivalent to
the solution of the integral equation '

Kf=¢, (3.2)

where fis the ‘true solution’ in the space F of objects, and g a noiseless image in the
range of K, G. Hereafter the bar denotes the absence of noise. The closure of G is the
space % of band-limited functions, i.e. the functions with Fourier transform (F.T'.)
zero outisde [ —¢, ¢]. Therefore any function in G is band-limited, but the converse is -
not always true: a band-limited function is not necessarily in G, even if it is always a
limit of functions of (.

Using notation introduced by Slepian and Pollak [17], let us denote by B the
projection operator over the subspace # of L“(— o0, + 00), i.e.

*©gin [e(t—s)]

n(t—s)

1 -C
(Bg)(®)= J gls)ds=—_ f &(w) exp (iwt) do; (3.3)

—
let us also denote by D the projection operator which restricts a function g of
L%(— o0, + o) to the interval [—1,1]:

g, <t )
D, = 34
(Dg)Xv) {0, lt|>1' 34
Ifg is anoiseless image, then Bg=g, while Dg is the restriction of g to the geometrical
image region.
Consider the operator K*, the adjoint of the operator K. Since the kernel of K is
real, we have K*=K". It is easily verified that K'=DB, i.e.
o sin[c(t—s
K= | 2T g4, <. (3.5)
— TC(t - S)
Therefore the null space of K' is the subspace of the L? functions whose F.T. is zero
over [ —¢, c] or, in other words, the orthogonal complement of the space of band-
limited functions. From these properties, and equations (1.2) and (3.1), it follows
that K"K=DBK= DK = A. The orthonormal system of the eigenfunctions of KTK
is given by equation (1.5) as

K"Ky = huy. (3.6)
If we introduce the functions
v =Ylc, 1), —oo<t<+ o0, (3.7)

which are an orthonormal system in %, then, from the fundamental properties of the

79

U ginTe(t—
f 3 S‘—ﬁ%j—”wk(a 9 ds=Ahlc, 1), (3.8)
f _wir;[(‘t(—:;ﬂw,xc,s)ds:wk(c, 1, (3.9)
we have
Kuk=\/lkvk, (3.10)

KTy =/ Aty (3.11)
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Using expansions in terms of the singular functions %, and v, and singular values
252 one can easily solve the integral equation (3.2). Indeed, the singular functions u,
form a complete set in F, while the singular functions v, form a complete set in #.
Then any noiseless image g can be expanded as '

+ o
5= Y Bul), (3.12)
k=0
where
+
&= J g(Dv(t) dt. (3.13)
As follows from equation (3.10), the solution of equation (3.2) corresponding to g is
+ o0 F;
F= Y Fu(. (3.14)
k;o \/ A

We may compare this result with the result of the eigenfunction method. In the latter
case, the noiseless data are the restriction of g to the geometrical region, i.e. Dg. From
the eigenfunction expansion

+ o
DR = Y. &), (3.15)
k=0
where
1
&= J g(Ou(1) dt, (3.16)
-1
we find that the solution of the integral equation Af=Dg is
_ + oo gi
F= 3 Tul). (3.17)
K=o M

Now, equation (3.10) implies that the following relation holds:

+

+ 1
B= J 2o (1) dt= ﬁj— Z()(Kuy)(1) dt

1 + o o _
k -1 - o

1 1
= —\/T J 2(s)uy(s) ds
kJ -1

1
\/ e 8
where the property Bg =3 has been used. As a consequence, the solutions (3.14) and
(3.17) coincide.

We see therefore that an inversion of a noiseless image can be performed using
either the singular-value analysis (equations (3.13) and (3.14)) or the eigenfunction
analysis (equations (3.16) and (3.17)). In the former case the complete diffracted
image is used, while in the latter only those points lying within the geometric image

(3.18)
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are required. This equivalence, however does not extend to the real case where out-of
band noise is present. In this case the eigenfunction inversion requires, one might say,
the solution of two ill-posed problems: the first, to extrapolate the image outside
[—1,1] [18] and the second, to solve the singular-value problem. By omitting the
first stage we will be able to improve the optical resolution which can be achieved in
inversion, particularly at low Shannon numbers.

4. The effect of noise on inversion '
Since the u,s form a basis in F=L2(—1,1), any object in that class can be
represented by the expansion

A=Y au(), [f<1. 4.1)
k=0

The coeflicients a, are reconstructed by the unconstrained inversion procedures
X
described above, either as

+

1
o= T f (v (1) dt (4.2)

— ®©

if the singular functions method is chosen, or as
1 [t .
a= J gt (t) dt (4.3)
K -1

when the eigenfunction method is used. The two methods are formally equivalent

when geG and, more generally, for images corrupted by band-limited noise. The

difference between the two methods appears in their response to out-of-band noise.
Let us take as the real image of f

g)=g)+n(t), —oo<t<+ o0, “4.4)

where #(t) is the image noise, presumed additive. Using equations (3.12), (3.13) and
(4.2), we have

+ o
=) \/}-kakvk(t) (4.5)
, k=0
and we may resolve »(#) into in-band and out-of-band components
+ w 1
n(t)= Z b () + ——J- n(w) exp (itw) dw, (4.6)
k=0 2n low|>¢
where
+ @
b,= f n(t)v,(2) dt. “4.7)

Now, the effect of noise on the coefficients of the reconstructed object in the singular-
value method is given by

1 + o b
6):= ——— =a ——li—
a®= 7 f | Eudi=a+ (4.8)

as follows from equations (4.4), (4.5) and (4.6). No contributions arise from the out-
of-band noise since it is orthogonal to the linear prolate spheroidal functions. On the
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other hand, in the eigenfunction method, the effect of noise on the reconstructed
coeflicients is given by

®) 1 1 _ bk Ck
=1 _lg(t)uk(t) dt=a,+ N + W 4.9
where '
1 1
= (W) < J u, (1) exp (iwt) dt) dw
2n lw}>¢ -1
(= R o
= \/(ch) Iw‘nn(w)wk(c,:)da). (4.10)

In deriving equation (4.9), we have again used equations (4.4), (4.5) and (4.6); also, in
equation (4.10) the following property of the linear prolate spheroidal functions has

been used [2]):
1 1/2
f Wile, 1) exp (iw?) dt=(—1)"/2(27?k> wk(c,%’) “.11)

-1

Equations (4.8) and (4.9) coincide in the case of band-limited noise, i.e.
n(w)=0 for ‘wl > ¢, while in the presence of out-of-band noise equation (4.9) contains
an additional term.

In passing we should note that it has been suggested that in the eigenfunction
method a smoothing should be performed on the data to reduce the effect of noise on
inversion, and calculations of the expected effects of such smoothing have been made
[13]. That this is not possible without degrading the reconstructed image is easily
shown by the following argument. Let L. be a linear smoothing operator to be applied
to the data. Then we require that

LID(g+mn)=Dg+ LDn, (4.12)

the smoothed LDn would then be expected to have a less harmful effect on the
inversion procedure. However, D7 is dense in L2(—1, 1) and hence, since

LDg=Dg, (4.13)

we must have

LDg=LDg, (4.14)

where g is an arbitrary L? function. The only operator which satisfies equation (4.14)
is the identity, and hence the operation proposed is impossible. We will, however, be
able to obtain similar beneficial effects without distortion of the object using the
singular-value method.

In order to estimate the various terms in equations (4.8) and (4.9), let us assume
that the object f(¢) is from a white-noise process with power spectrum E?,

RO =E25(t 1), (4.15)
and that the image noise is also white with power spectrum
{n*()n(t)y = e*d(t—t), (4.16)

which implies that
M w)n(@') ) =2me*d(w — o). (4.17)
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Let us further assume that the two processes are uncorrelated,

{From(t)) =0, (4.18)

then from equations (4.7) and (4.16) we obtain
pf*>=¢% (4.19)

and from equations (4.10) and (4.17) we obtain
eu2> =21 = 4. (4.20)

As a consequence, the variances of the reconstructed coefficients in the singular-

value method are givep by

62

(aPPP>=E*+ —, (4.21)
A
while in the eigenfunction method they are given by
2 2 1—21 2
Ja®y=pr4 =4 T g T (4.22)
A A X

Therefore the variance of the second term in equation (4.9) is of the order of A, ! as
k—+ 00, while the variance of the third term is of the order of 4; 2. As % exceeds the
Shannon number and A, tends to zero, the ‘amplification’ of the out-of-band noise is
much greater than the amplification of the in-band noise, and thus the instability of
the eigenfunction method is much more severe than when using the singular
functions. '

5. Resolution limits .

The previous analysis' demonstrates that the suppression of the out-of-band
noise provided by the projection on singular functions must produce an improve-
ment in the inversion procedure. We can estimate this improvement as follows.

Consider first the singular function method. Then from equation (4.17) it follows
that, in the inversion procedure, we can estimate only those components such that
the variance E? ofthe object (signal) is greater than the variance in the reconstruction
of the noise, 24, !, i.e. those components for which

A= (e/E)?. (5.1)

Analogously, as regards the eigenfunction method, from equation (4.22) it is possible .
tn estimate only those components of the object such that

A >¢/E. ‘ (5.2)

Since the eigenvalues are ordered in a decreasing sequence, then condition (5.1) is
satisfied for k< Ny, and condition (5.2) is satisfied for 2< N. Therefore the first
method allows the determination of Mg= Ns+ 1 components of the object, while the
second method allows the determination of M= Nz+ 1 components. When ¢/E <1,
we have always Mg > M, and hence we always obtain an improvement by using the
singular-value method.

Now, when M =N+1 terms are determined in the expansion of the object, a
reasonable measure of the resolution achieved is the average distance between the
zeros of uy(t). Using again the variable x=X#/2 (X is the size of the object) and
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remarking that uy(2x/X) has exactly N zeros in [ — X/2, X/2], the above measure
of resolution is given by

D=X/(N+1)=(S/M)R. (5.3)

The quantity M is an ‘effective number of degrees of freedom’, and is a function of
the ‘signal-to-noise ratio’ E/¢. Therefore, from equation (5.3) one can derive the ratio
R/D, the number of resolution elements restored within the Rayleigh distance, as a
function of the signal-to-noise ratio and of the Shannon number.

The number of components Mg=Ng+1 and the corresponding number of
resolution elements R/Dg achieved by the singular-value method can be easily
computed for various values of the Shannon number and the signal-to-noise ratio
E/e. We use equation (5.1) and values of 4, given in [2]. Some results are given in
table 1, using a linear interpolation between the eigenvalues. A graphical represen-
tation is shown in figure 1.

DS R/DS
12
2L " -~ 4nB
o 10 Eovo
E 4
8l 7310
%,102
6r
Al
10
4t
2._
ol | 1 | 1 i L 1 a L 1
0 1 2 3 4 5 6 7 8 9 10 ¢

Figure1. Super-resolution gain using singular-value method on complete image for various
values of signal-to-noise ratio, E/e. Linear case. The scale on the extreme left shows the
linear resolution possible with R=1/2.

6. The effect of aberrations

It has been already pointed out that, when the entire image is used, the effective
number of degrees of freedom is independent of aberrations and equal to the number
of degrees of freedom in the aberration-free case [19]. We show how the singular-
function expansions provide a very beautiful and simple analysis of this problem.

When the image is isoplanatic but suffers from aberrations, one can take into
account their effect by multiplying the pupil function of the unaberrated optical
system by a pure phase factor [20]. Then equation (3.1) has to be replaced by

1

(K. NHn= J Su(t—s)f(s)ds; —w<t< 400, (6.1)
1
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where
<

S,(0)= 217 f exp [i0(w) + iot] do. (6.2)

K, is a linear compact operator from L2(—1, 1) into L?(— oo, + o0) and its range is
dense in 4, so that BK,=K,. Then the adjoint operator K¥* is given by

+

(Ki“g)(t)=J SHs—ta(s)ds, |f<1, (6.3)

- o0

where S¥*(¢) denotes the complex conjugate of S,(f). From the relation BK,=K,, it
follows that K¥=K¥*B, and therefore the null space of K¥ is the orthogonal
complement of #. It then follows that

1
(K*K, ()= j H(t—s)f(s)ds, [f|<1 (6.4)
-1

where

+
H()= f S (s—1)S¥(s)ds (Parseval equality) 6.5)

-

_1 j " exp [io(e) — iwf] exp [—ia(@)] do= S ED
2n | _, mt

Therefore the singular values of the operator K, are always given by the square roots
of the eigenvalues of the prolate spheroidal functions and the singular functions u,(t)
are always given by equation (1.5).

If we denote by v, () the eigenfunctions of the operator K, K¥, then we have the
analogues of equations (3.10), (3.11), i.e.

- Kaukzx/lk‘vk,ay (6.6)
Ky = han, 6.7)
where
1 + oo
0= | se-omoa= [ se-on@os 69

(in the last equation the band-limiting of S,(¢) has been used). The singular functions
Vg, ,(2) coincide with the functions G, (¢) introduced in [19]. Since, as we have already
remarked, the null space of K* is just the orthogonal complement of 4, it follows that
the v, , form a complete orthonormal basis in .

Using these properties, the analysis developed in §§3-5 can be immediately
extended to the case of aberrated images, at least when the entire image is supposed
to be known. However, it is not easy to make a comparison with the case where the
image is given only in the geometrical region. Indeed, in this case, the appropriate

operator is
1

(Am(t)=f S(t—9)f(s)ds, |i<1, 6.9)
1

which is not self-adjoint. It is only in certain cases of coherent imaging that simple
relations hold between the singular functions and singular values and the prolate
spheroidal functions and their eigenvalues. For equation (6.9), and also for the
incoherent imaging case, such relations, unfortunately, do not exist.
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7. The two-dimensional case

We outline here the extension of the previous results to the case of two-
dimensional objects in coherent illumination. We consider only the singular-
function method and aberration-free images.

If we denote by x={x;,x,} a point in the object plane, and if the complex
amplitude of the object f(x) is different from zero only on the bounded domain £,
then the noise-free image g(x) is given by

(Kf)(x)= JL) S(x—y)A(y) dy, (7.1)

where

S(x)= (2—;)—2 [ L{ exp [#(x, )] dw, (7.2)

&/ being the bounded domain in Fourier space corresponding to the frequencies
which are transmitted by the instrument. The operator K is a compact operator from
L*(2) into L*(R?) and the adjoint operator K* is given by

(K*g)(x) = j[ S*(y —x)g(y) dy = IJ S(x—yg(y)dy, x€2. (7.3)

Using the relation

Jj S(x—y)S(y) dy = S(x), (7.4)
we obtain .
(K*Kf)(x)= ILﬁ S(x—y)f(y)dy, xe%. (7.5)

The operator K*K is a self-adjoint, nuu-negative, compact operator in L%(2); its
eigenfunctions are the generalized prolate spheroidal functions ¥,(x) introduced by
Slepian [21]. If we denote by A, the corresponding eigenvalues, then the 1,(x) are
normalized in such a way that

j L Y OOWF(X) dx =24y, (7.6)

and they have the double orthogonality property

J Y OYH(x) dx =3y. (7.7

Therefore, introducing the functions

1
w(X)=——Y(X),  v(X)=y(x), (7.8)
7
the following relations hold:

Ku, = \/'lklvkr K*y = \/'lkuk' 7.9

Since the set of the i, functions forms an orthonormal basis in L%(2), while the set of
the v, functions forms an orthonormal basis in the <ubspace of band-limited
functions whose F.T. has a support contained in .2/, the analysis carried out in § 3 can
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be immediately extended to this more general case. We consider now two particular
cases.

Square object and square pupil.
Let us assume that the domain of the object is @ =[— X/2, X/2] x [~ X/2, X/2],

and that the ‘pupil’ of the instrument is a=[—Q, Q] x[—~Q, Q]. Then the point-

spread function (6.2) is

_ sin(Qx,) sin (Qx;)

X, Xy

S(x)

(7.10)

Introducing again the variables t=2x/X and c= XQ/2, the singular functions and
singular values of the operator, (6.1) and (6.10), can be expressed in terms of the
singular function and singular values of the operator (3.1):

u; (V) =u(t)u(ty),
v (B =v,(t)v(ty) (7.11)

\/(}'i.k) =\/(/1i/1k)-

In particular, the singular values can be easily computed using the eigenvalues of the
linear prolate spheroidal functions.
We shall denote again by Mg the number of components satisfying the condition

A k= Ak = (6/E); (7.12)

the area of a resolution element contained in 2 is then
XZ

D=
S Ms

(7.13)

and the number of resolution elements contained in the Rayleigh area R? = (n/Q)? is

R* (R? n \?

Results are given in table 2-and presented graphically in figure 2.

Crrcular object and circular pupil

We assume that the domain 2 of the object is a circle of radius X/2 and that the
domain of transmitted frequencies is a circle of radius Q. Then the point-spread
function (6.2) is '
_9 J 1(le|)

Sty = 2n x|

, (7.15)
in which case the Rayleigh distance is

T .
=122—. 7.16
R=1225 (7.16)
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Figure2. Super-resolution gain using singular-value method on complete image for various
values of signal-to-noise ratio, E/e. Two-dimensional case. The lines are for the square
pupil, and the circles give values for the circular pupil for E/e=102, 10 and 10* at c=1
and 10? at ¢=2. The scale on the extreme left shows the linear resolution possible with

R=1/2.

Introducing again the variables t=2x/X and ¢= XQ/2, and using polar coordinates

,t=‘t|, ¢, the singular functions of the operator, (6.1) and (6.15), are given by

thy ml(8) = (20tAy 1) ™ 20y m(c, 1) exp (indh) (7.17)
Unm(t) =(208) ™20, (e, 1) exp (ind) (7.18)

where the ¢, ,(t) are the circular prolate functions, solutions of the eigenvalue
problem

1
J~ \/(ts)K,,(c; b, )P (€, 8) ds= A, @y (e, 1), (7.19)
o
K, (c;t,5)= '[ wJ (wt)J,(ws) dw, (7.20)
0
and satisfying the orthogonality conditions
1
‘[ (Pn.m(ca t)‘Pn,z(C, t) dt= An.mélm’ (721)
o
+
j (pn.m(cy t)(Pn,l(c» t) dt = 51m' (722)
0

The singular values of the operator, (6.1) and (6.15), are given again by \/ An,ms and
one can compute the number M of eigenvalues satisfying the condition 4, ,, = (¢/E)*.
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The area of a resolution element contained in 2 is then given by

Ds \? X\ 1
—j=a|—=)— 7.23
n( 2 ) n( 2 > M’ 729
and therefore the number of resolution elements contained in the area of a Rayleigh
element is
2 R\? 1227 \?
B (B uy= ™ M. (7.24)
Ds X 2¢

Some results are given in table 3; unfortunately in this case not many values of 4, ,,
are at our disposal. These values are shown also in figure 2.

Table 3. Number of components, Ms, and corresponding number of resolution elements
within the area of a Rayleigh element, (R/Ds)?, restored by the singular value method, as
a function of ‘signal-to-noise ratio’, E/g; circular pupil case.

c=1 c=2

E/e
Ms (R/Ds)*> Ms (R/Dy)’

10> 400 147 >6 >551
10> 597 219 - —
10* ~8 ~30 — —

8. Application to microscopy

The results of the above analysis clearly indicate that quite considerable
improvements in the performance of imaging systems can be expected if the theory
can be put into practice. The optical microscope immediately comes to mind, and
one might expect that developments of existing scanning microscopes [22], using
laser illumination to achieve low Shannon numbers and high E/e, values would
provide systems suitable for application of these singular-value techniques.
Unfortunately, however, the ultimate performance of a well-designed microscope of
this type should be limited by photon noise in the image, and this analysis, which
took only additive noise into account, would not then strictly apply. Further work is
required, therefore, along the lines of existing photon-statistics literature [23], to
investigate this case quantitatively, but one might proceed to construct an
instrument in the hope that, qualitatively, similar improvemerts may be obtained.
The incoherent case with additive image noise, which we shall discuss in a later
paper, will likewise have a similar limitation when applied to optical systems. It is
possible, however, that the present analysis has a direct application to scanning
acoustic microscopes and other lower-frequency imaging systems and for these and
for possible optical realization we therefore give an indication of how such a system
could be constructed in practice.

Unfortunately also in the optical case, for an exact application of the theory the
complex amplitudes of the image must be derived from the intensities. If the object
may be assumed to be real this may not be too difficult since the problem, in the
absence of noise, has a unique solution. Otherwise the recently proposed method of
Walker [24] may be considered or, alternatively, a reference beam method may be
necessary. For biological objects fortunately, the zero-order diffraction removes this
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problem automatically since no phase ambiguity will exist for mainly transparent
specimens.

We take as a model recent work [25, 26] in the inversion of light-scattering data,
in which successful inversions of the Laplace and other integral transforms based on
similar information-theoretic considerations have been accomplished by simple
numerical sampling techniques.

We consider the discrete linear problem

Y K fo=gm (8.1)

n

where K® is an M x N matrix, M > N,
K&)' = K(tm $5)t0, (8.2)

where the weights w, depend on the form of quadrature and f and g are vectors {f(s,)}
and {g(¢,)} in N- and M-dimensional euclidean spaces Fy and G, respectively.
When M> N, a solution of equation (8.1) usually does not exist, and then one
considers the solution of the least-squares problem associated with (8.1):

| K®f ~ g s =minimum, 8.3)

ie.
Y AKOTK®), fu=(K®g),. (8.4)
n
It has been found in practice, numerically, in the light-scattering work quoted above
and, explicitly, in work which we have in preparation, that the condition number of
this sampled problem (that is to say the ratio of the largest to the smallest singular
value of K), is well approximated by the ratio of the singular values of the first and
Nth singular functions of the continuous transformation K, provided that the
dispersion of the samples and the weights w, are chosen to correspond to the
positions of the nodes and the integrated amplitudes between nodes, respectively, of
the Nth singular function of the continuous transform. The suppression of out-of-
band noise can also be shown to occur by the following argument.

Let a basis for K'g in Fy be given by a complete set of functions @,(t) so that

(kTg)(t) = mi CmPm(t); (8.5)
then the vector components of K'g are
en=(K'g)m= fi: (Kon)(t)g(t) dt. - (8.6)
But, since (K9,)(¢) is band-limited, |
(K'g)= ji : (Ko)(1)(Bg)(t) dt (8.7

and the integral suppresses the out-of-band noise in g. A quadrature by trapezoidal
rule of equation (8.6) gives the approximation

J

. N
(K'@)m= D, (Kou)(tpa(t), (8.8)
=1
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which is the exact value (apart from end-effects) of the integral of a band-limited
function with the summand values at the sample points. If, therefore, using this
quadrature, we take our samples in G, at the Nyquist rate of the integrand, i.e. the
sumn of that of the spatial noise present in the image and that of (K¢, )(?), we will
obtain an exact elimination by projection of those components of noise above the
transmission band limit. In so far as this sampling rate is not achieved, some out-of-
band noise will be present in the reconstruction, and the full advantage of the
singular-value method will not be obtained.

An approximate numerical sampling technique for the imaging kernel discussed
in this paper would thus be furnished simply by equally spaced (in one or two
dimensions) detectors integrating over each sampling element. The values of
(K@,,)(t;) can be stored for any choice of object basis functions ¢,, to compute the
integral (8.6). If desired, these functions may conveniently be chosen as a set of
equally spaced J-functions, as in the exponential sampling method of Ostrowski et
al. [26], in which case

__sin c(t—t,)
(Kon)(t)= __———n(t—- e (8.9)
The N x N matrix
(K"K)pn= (Ko)(t)(Ke,)(t) dt (8.10)

can be calculated by use of the sampling theorem using only values at the sampling
points ¢; of the image

(K"K = 3. (Ko (t,)(Kp,)(2), (8.11)

and finally equation (8.4) must be inverted using a stable numerical inversion
programme. It should be noted that the dimension of the (square) matrix K™'TK®
to be inverted will normally be much less than the number of sample points in the
image. The computations may, alternatively, be performed using a numerical
procedure based on equation (8.3). The above procedures should be possible using
an on-line computer with memory access to the detector outputs without requiring
excessively long imaging times, but we will postpone until later papers more precise
details of particular implementations.

Super-resolution gains consistent with the results of the analysis of this paper
have recently been achieved by numerical simulation [27], and the method promises
significant improvements for diffraction-limited instrumental systems.
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La théorie familiére du transfert d’information en imagerie en utilisant les fonctions
sphéroidales et leur spectre de valeurs propres est étendue pour permettre que les domaines
objet et image différent. La théorie appropriée devient une des fonctions singuliéres et des
valeurs singuliéres et on donne, dans cet article, une description de I’imagerie cohérente en ces
termes. La super-résolution au sens de I'amélioration sur les critéres antérieurs en présence de
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bruit peut alors étre réalisée, particuliérement aux trés bas nombres de Shannon, en utilisant
I’image physique continue; on donne des évaluations duantitatives de telles améliorations
pour les cas de pupilles rectilignes, carrées et circulaires.

On montre aussi que la théorie fournit une épreuve efficace du théoreme disant que le
nombre de degrés de liberté d’un systéme d’imagerie isoplanétique cohérent n’est pas affecté
par des aberrations de phase dans la pupille.

Des applications de ces résultats en microscopie sont donnés et une méthode pratique de
mise en oeuvre est proposée; elle est basée sur la généralisation des techniques d’inversion
numérique récemment développées dans le domaine de la diffusion laser.

Die bekannte Abbildungstheorie mit Sphiroidfunktionen und deren Eigenwertspektrum
wird auf den Fall ausgedehnt, daB sich Objekt- und Bildbereich unterscheiden. Die hierfiir
geeignete Theorie wird zu einer Theorie singulidrer Funktionen und Werte und wir geben in
der vorliegenden Arbeit eine Beschrelbung der kohirenten Abbildung mit diesen
Ausdriicken. Uberauflésung im Sinne einer Verbesserung beziiglich vorgegebener Kriterien
kann bei Vorliegen von Rauschen insbesondere bei sehr kleinen Shannon-Zahlen erzielt
werden, wenn das physikalisch fortgesetzte Bild benutzt wird und wir geben quantitative
Abschitzungen solcher Verbesserungen flir die lineare, quadratische und kreisférmige
Pupille.

Ferner wird gezeigt, da3 diese Theorie auch eine brauchbare Bestitigung des Theorems
liefert, wonach die Anzahl der Freiheitsgrade eines kohidrenten isoplanatischen
Abbildungssystems von Phasenaberrationen in der Pupille unbeeintrichtigt bleibt.

Anwendungen dieser Ergebnisse in der Mikroskpie werden skizziert und eine praktische
Methode zur Implementierung wird vorgeschlagen, die auf einer Verallgemeinerung
numerischer Integrationstechniken beruht, wie sie kiirzlich in Bereich der Laserlichtstreuung
entwickelt worden sind.
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