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Abstract
Resolution measures in molecular electron microscopy provide means to evaluate quality of
macromolecular structures computed from sets of their two-dimensional line projections. When
the amount of detail in the computed density map is low there are no external standards by which
the resolution of the result can be judged. Instead, resolution measures in molecular electron
microscopy evaluate consistency of the results in reciprocal space and present it as a one-
dimensional function of the modulus of spatial frequency. Here we provide description of standard
resolution measures commonly used in electron microscopy. We point out that the organizing
principle is the relationship between these measures and the Spectral Signal-to-Noise Ratio of the
computed density map. Within this framework it becomes straightforward to describe the
connection between the outcome of resolution evaluations and the quality of electron microscopy
maps, in particular, the optimum filtration, in the Wiener sense, of the computed map. We also
provide a discussion of practical difficulties of evaluation of resolution in electron microscopy,
particularly in terms of its sensitivity to data processing operations used during structure
determination process in single particle analysis and in electron tomography.

Introduction
Resolution assessment in molecular electron microscopy is of paramount importance both in
computational methodology of structure determination and in interpretation of final
structural results. In rare cases, when a structure reaches near-atomic resolution, appearance
of secondary structure elements, particularly helices, can serve as an independent validation
of the correctness of the structure and at least approximate resolution assessment can be
made. In most cases however, both in single particle analysis (SPR) and especially in
electron tomography (ET), the amount of detail in the structure is insufficient for such
independent evaluation and one has to resort to statistical measures for determining the
quality of the results. For historical reasons, they are referred to as resolution measures,
although they do not correspond directly to traditional notions of resolution in optics.

The importance of resolution assessment in SPR was recognized early on in the
development of the field. The measures were initially introduced for two-dimensional (2D)
work, and subsequently to extended for three-dimensional (3D) applications. There were a
number of competing approaches introduced, such as Q-factor, Fourier Ring Correlation
(FRC), and Differential Phase Residual (DPR). Ultimately, it was the relation of these
measures to the Spectral Signal-to-Noise Ratio (SSNR) distribution in the resulting structure
that provided a unifying framework for the understanding of the resolution issues in EM and
their relationship to the optimum filtration of the results.

Resolution assessment of ET reconstruction remains one of the central issues that has
resisted a satisfactory solution. The methodologies that have been proposed so far were
usually inspired by SPR resolution measures. However, it is not immediately apparent that
this is the correct approach since in standard ET there is no averaging of multiple pieces of
data, the structure imaged is unique and no secondary structure elements are resolved.
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Hence, ideas of self-consistency and reproducibility of the results that are central to
validation of SPR results do not seem to be directly transferable to the evaluation of ET
results.

In this brief review, we will introduce the concept of resolution estimation in EM and what
differentiates it from the concept of resolution traditionally used to characterize imaging
systems in optics. We will point out that it is the self-consistency of the results that is
understood as resolution in EM and we will show how this assessment is rooted in the
availability of multiple data samples, i.e., 2D EM projection images of 3D macromolecules.
By relating the commonly used Fourier Shell Correlation (FSC) measure to the SSNR we
will show that, if certain statistical assumptions about the data are fulfilled, the concept of
resolution is well-defined and interpretation of the results straightforward. In the closing
section we will discuss current approaches to resolution estimation in ET and point the
fundamental limitations that limit their usefulness.

Optical resolution versus resolution in electron microscopy
The resolution of a microscope is defined as the smallest distance between two points on a
specimen that can still be distinguished as two separate entities. If we assume that the
microscope introduces blurring that is expressed by a Gaussian function, then each of the
point sources will be imaged as a bell-shaped object and the closer the two sources are, the
worse the separation will be between the two maxima of the combined bells (Fig. 1). It is
common to accept the resolution as the distance that is twice the standard deviation of the
Gaussian blur. This concept of resolution is somewhat subjective, as one can presume
different value at the minimum as acceptable and thus obtain different value for the
resolution of the system. In the traditional definition there is no accounting for noise in the
measurements. Finally, there is a logical inconsistency: if we know that the blurring function
is Gaussian, we can simply fit it to the measured data and obtain accuracy of peak separation
by far exceeding what the definition would suggest (den Dekker, 1997).

The theoretical resolution of an optical lens is ultimately limited by diffraction and therefore
depends on the wavelength of the radiation used to image the object (light for light
microscopy, electrons for electron microscopy, X-rays for X-ray crystallography and so on).
In 2D, the Abbe criterion gives the resolution d of a microscope as:

(1)

where λ is the wavelength, n is the refractive index of the imaging medium (air, oil,
vacuum), and α is half of the cone angle of light from the specimen plane accepted by the
objective (half aperture angle in radians), in which case nsinα is the numerical aperture. This
criterion stems from the requirement for the numerical aperture of the objective lens to be
large enough to capture the first-order diffraction pattern produced by the source at the
wavelength used. Numerical aperture is ~1 for light microscope, and ~0.01 for electron
microscope. As the wavelength of light is 400–700 nm, the resolution of a light microscopes
is ~250–420 nm. For electron microscopes, the electron wavelength λ depends on the h2

accelerating voltage V. Within the classical approximation, , where h is Planck’s
constant, m is the mass and e the charge of the electron. For an accelerating voltage 100keV,
λ = 0.0037 nm. The theoretical resolution of electron microscopes is 0.23 nm for an
accelerating voltage 100keV ( λ = 0.003701nm) and 0.12 nm for 300keV ( λ = 0.001969
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nm), and is mainly limited by the quality of electron optics. For example, spherical
aberration correctors can significantly improve the resolution limit of electron microscopes.

While the resolution of electron microscopes is more than sufficient to achieve atomic
resolution in macromolecular structural studies resolution of reconstructed 3D maps of
biological specimens is typically worse by an order of magnitude. The resolution-limiting
factors in EM include:

1. Wavelength of the electrons.

2. Quality of the electron optics (astigmatism, envelope functions).

3. Underfocus settings. Resolution of the TEM is often defined as the first zero of the
contrast transfer function (CTF) at Scherzer (or optimum) defocus.

4. Low contrast of the data. This is due to both the electron microscope being mainly
a phase contrast instrument with an amplitude contrast of less than 10% and the
similar densities of ice surrounding the molecules and of protein (~0.97:1.36 g/
cm3).

5. Radiation damage of imaged macromolecular complexes. Even if the electron dose
is kept very low (~25e−/Å2), some degree of damage on the atomic level is
unavoidable and regretfully virtually impossible to assess. In addition, exposure to
the electron beam is likely to adversely affect structural integrity of both the
medium and the specimen on the microscopic level (shrinkage, local shifts). These
artifacts can be reduced in some cases by pre-irradiation of the sample.

6. Quality of recording devices. The current shift towards collecting EM data on CCD
cameras means that there is additional strong suppression of high frequency signal
due to the Modulation Transfer Function of the CCD. The advent of direct
detection devices (DDD) should improve the situation (Milazzo et al., 2010).

7. Low Signal-to-Noise Ratio (SNR) level in the data. This stems from the necessity
of keeping the electron dose at a minimum to prevent excessive radiation damage.
It is generally accepted that the SNR of cryo data is less than one. The only
practical way to increase the SNR of the result is by increasing the number of
averaged individual projection images of complexes.

8. Presence of artifactual images in the data set. Due to the very low SNR and despite
careful screening of windowed particles there is always a certain percentage of
frames that contain objects that appear to be valid projection images, but in reality
are artifacts. At present, there are no reliable methods that would allow detection of
these artifactual objects or even to assess what might be their share in the sample.

9. Variability of the imaged molecule. This can be caused by natural conformational
heterogeneity of the macromolecular assemblies due to fluctuations of the structure
around the ground state or due to the presence of different functional states in the
sample.

10. Accuracy of the estimation of the image formation model parameters, such as
defocus, amplitude contrast, and also SSNR of the data, magnification mismatch
and such.

11. Accuracy of alignment of projection images is limited by the very low SNR of the
EM data, inhomogeneity of the sample, and limitations of computational
methodologies.

Standard definitions of resolution are based on the assumption that it is possible to perform
an experiment in which an object with known spacing is imaged in the microscope and the
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analysis of the result yields a point spread function of the instrument, and thus the
resolution. This approach is not applicable to analysis of EM results since the main
resolution-limiting factors include instability of the imaged object, high noise in the data,
and computational procedures that separate the source data from the result. Thus, even if
useful information about resolution of cryo-specimens can be deduced from the analysis of
crystalline specimen that do not require orientation adjustment in a computer, practical
assessment of resolution in SPR and ET requires more elaborate methodology that has to
take into account statistical properties of the aligned and averaged data.

Principles of resolution assessment in EM
Assessment of resolution in EM concerns itself not so much with the information content of
individual images or with the resolving power of the microscope as with the consistency of
the result, which in 2D is the average of aligned images and in 3D the object reconstructed
from its projection images. Moreover, following the example of the R-factor in X-ray
crystallography, the analysis is cast in Fourier space and the result is presented as a function
of the modulus of spatial frequency. The resolution in EM, if reported as a single number, is
defined as a maximum spatial frequency at which the information content can be considered
reliable. Again, the definition is subjective, as it is rather arbitrary what one considers
reliable and much of the controversies still present in the EM field revolve around this
problem although, as we will put forward later, the number by itself is inconsequential.

The resolution measures in EM evaluate the self-consistency of the result. The premise is to
take advantage of the information redundancy: each Fourier component of the average/
reconstruction is obtained by summing multiple Fourier components of input data at the
same spatial frequency. These Fourier components are complex numbers, i.e., each
comprises a real and an imaginary part and their possible representation is by vectors in a x–
y system of coordinates, where the x-axis is associated with the real part and the y-axis with
the imaginary part. The length of each vector is called its amplitude, and the angle between
the vector and x-axis its phase. Thus, formation of an average, i.e., the summation of the
Fourier transforms of images, can be thought of as a summation of such vectors for each
spatial frequency. In this representation, assessment of the self-consistency of the result
becomes a matter of testing whether vectors that were summed had similar phases, i.e., that
the length of the sum of all vectors is not much shorter than the sum of lengths of individual
vectors.

Indeed, if we consider a perfect case in which all images were identical the vectors would all
have the same length and phase. Their sum then would be simply a vector whose length is
the same as the sum of the lengths of each vector. The same result is obtained if the vectors
have different lengths (amplitudes) but the same direction (phase). Thus, if both sums are
the same, we would consider the EM data consistent. Conversely, if there is little
consistency, the vectors would point in different directions, in which case the length of their
sum would fall short of the sum of their lengths. In EM, the degree to which both sums
agree is equated with the consistency of the results (phase agreement), and ultimately with
the resolution. Again, this is not the resolution in the optical sense, as it says relatively little
about resolving power of the instrument or even about our ability to distinguish between
details in real space representation of the result. It is merely a measure that informs us on the
consistency of the result for a particular spatial frequency, without even providing any
information as to the cause of the inconsistency. For example, it is easy to see that both
noise or structural inhomogeneity of the data will reduce consistency of the result as
evaluated using the above recipe.

In what follows, we will assume a quite general Fourier space image formation model:
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(1)

where F is the signal (i.e., the projection image of a macromolecular complex), Mn is noise,
and Gn is the n’th observed image. For simplicity, we will omit the argument and assume
that unless stated otherwise, all entities are functions of spatial frequency and the equation is
written for a particular frequency.

There are four major resolution measures which have been introduced into the EM field. The
Q-factor is defined as (van Heel and Hollenberg, 1980):

(2)

It is easy to see that Q is zero for pure uncorrelated noise and one for a noise-free, aligned
signal. We note that Eq.2 is a direct realization of the intuitive notion of consistency
expressed as the length of a sum of complex numbers. However, as we shall see later, the
ratio of squared sum to the sum of squares of Gn’s yields itself better to analysis (Baldwin
and Penczek, 2005).

While the Q-factor is a particularly simple and straightforward measure, it did not gain much
popularity for a number of reasons. First, to compute it for 2D data one has to compute the
Fourier Transforms (FTs) of all the individual images, which at least at the time the measure
was introduced might have been considered an impediment. Second, while Q-factor
provides a measure of resolution for each pixel in the image, it needs to be modified to yield
resolution per modulus of spatial frequency. Third, since Eq.2 includes moduli of Fourier
components, it cannot be easily related to SSNR, which is defined as ratio of powers
(squares) of the respective entities. Finally, it is not clear how to extend Eq.2 to 3D
reconstruction from projections, which, as will be described later, would require accounting
for the reconstruction process, uneven distribution of data points, and interpolation between
polar and Cartesian systems of coordinates.

The Differential Phase Residual (DPR) (Frank et al., 1981) was introduced to address some
of the shortcoming of the Q-factor. With DPR, it is possible to compare Fourier transforms
of two images, which can be either 2D averages or 3D reconstructions. The weighted
squared phase difference between the same frequency Fourier components is summed within
a ring (in 2D) or a shell (in 3D) of approximately same spatial frequencies:

(3)

where ΔϕUV (sk) is the phase difference between Fourier components of U and V, 2ε is a pre-
selected ring/shell thickness, s =|sk| is the magnitude of the spatial frequency, and ks is the
number of Fourier pixels/voxels in the ring/shell corresponding to frequency s. The DPR
yields a 1D curve of weighted phase discrepancies as a function of s. Regrettably, the DPR
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is sensitive to relative normalization of u and v, so traditionally a minimum value with
respect to the multiplicative normalization of v is reported (q in Eq.3). In order to assess the
resolution of a set of images, the data set is randomly split into halves, two averages/
reconstructions are computed and the DPR is evaluated using their FTs. A DPR equal to
zero indicates perfect agreement while for two objects containing uncorrelated noise the
expectation value of DPR is 103.9° (van Heel, 1987). The accepted cut-off value for
resolution limit is 45°. Regrettably, there is no easy way to relate DPR to SSNR or any other
resolution measure.

The regrettably Ring Correlation (FRC) (Saxton and Baumeister, 1982) was introduced to
provide a measure that would be insensitive to linear transformations of the objects’
densities. For historical reasons, in 2D applications the measure is referred to as Fourier
Ring Correlation while in 3D applications as Fourier Shell Correlation (FSC), even though
the defintion remains the same:

(4)

where the notation is the same as in Eq.3. FSC is a 1D function of the modulus of spatial
frequency whose values are correlation coefficients computed between the Fourier
transforms of two images/volumes over rings/shells of approximately equal spatial
frequency. An FSC curve everywhere that is close to one everywhere reflects a strong
similarity between u and v and an FSC curve with values close to zero indicates the lack of
similarity between u and v. Predominantly negative values of FSC indicate that contrast of
one of the images was inverted. Typically, FSC decreases with spatial frequency (although
not necessarily monotonically) and various cut-off thresholds have been proposed for
serving as indicators of the resolution limit. We postpone their discussion to the next
section. Finally, we clarify that because u and v are real, their FTs are Friedel symmetric
(i.e., U (s) = conjg(U (−s))), so the result of the summation in the numerator is real. Given
that, we can write Eq.4 as:

(5)

It follows from Eq.5 that FSC is indeed a consistency measure, as it is an amplitude
weighted sum of cosines of phase discrepancies between the Fourier components of two
images. By comparing Eqs.3 and 5 we can also see that the normalization in FSC makes the
measure better behaved.

Both DPR and FSC are computed using two maps. These can be either individual images or,
more importantly, averages/3D reconstructions obtained from sets of images. The obvious
application of these two measures is in the evaluation of resolution in structure
determination by SPR. There are two possible approaches that reflect the overall
methodology of the SPR. In the first approach, the entire data set is aligned and for the
purpose of resolution estimation it is randomly split into halves. Next, the two averages/
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reconstructions are computed and compared using DPR or FSC. In the second approach, the
data set is first split into halves, each subset is aligned independently, and the two resulting
averages/reconstructions are compared using DPR or FSC. The second approach has a
distinct advantage in that the problem of ‘noise alignment’ (Grigorieff, 2000; Stewart and
Grigorieff, 2004) is avoided. As the orientation parameters of individual images are
iteratively refined using the processed data set as a reference, the first approach has the
tendency to induce self-consistency of the data set beyond what the level of signal in the
data should permit. As a result, all the measures discussed in this chapter tend to report
exaggerated resolution as they evaluate the degree of self-consistency of the data set. The
problem is avoided by carrying out alignment independently.; however, this approach is not
without its peril. Firstly, it is all but impossible to achieve ‘true’ independence in SPR; for
example, the initial reference is often shared or at least obtained using similar principles.
Secondly, one can argue that alignment of half of the available particles cannot yield results
with quality comparable to that obtained by aligning the entire data set, abd this is of special
concern when the data set is small. Thirdly, two independent alignments may diverge, in
which case the reported resolution will be appropriately low, but the problem is clearly with
the alignment procedure and not with the resolution as such. Therefore, as long as one is
aware that the resolution estimated using the first approach is to some extent exaggerated,
there is no significant disadvantgage to using it. Finally, we note that Q-factor and SSNR (to
be introduced below) evaluate consistency of the entire data set, so they are not applicable to
comparisons of independetly aligned sets of images.

The Spectral Signal-to-Noise Ratio (SSNR) can provide, like Q-factor, a per-pixel measure
of the consistency of the data set, which also distinguishes it from both DPR and FRC that
yield measures that are ‘rotationally averaged’ in Fourier space. SSNR was introduced for
analyzing sets of 2D images and is defined as (Unser et al., 1987):

(6)

where the spectral variance ratio S is:

(7)

with

(8)

Eqs.6–8 define a per-pixel SSNR. In the original contribution, Unser et al. introduced SSNR
as a 1D function of the modulus of spatial frequency to maintain its correspondence to FRC:

(9)
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with the rotationally averaged spectral variance ratio defined as:

(10)

As we will demonstrate in the next section, the SSNR given by Eqs.9–10 yields results
equivalent to FRC in application to 2D data.

Extension of the SSNR to resolution evaluation of a 3D object reconstructed from the set of
its 2D projection was only partially successful. The main difficulty lies in accounting for the
uneven distribution of projections and the proper inclusion of the interpolation step into Eq.
9. To avoid a reliance on a particular reconstruction algorithm, Unser et al. (Unser et al.,
2005) proposed first to estimate the SSNR in 2D by first comparing reprojections of the
reconstructed structure with the original input projection data, and then averaging the
contributions in 3D Fourier space to obtain the 1D dependence of the SSNR on spatial
frequency. In addition, the authors proposed to estimate the otherwise difficult to assess
degree of averaging of data by the reconstruction process by repeating the calculation of the
3D SSNR for simulated data containing white Gaussian noise. The ratio of the two curves,
i.e., the one obtained from projection data and the other obtained from simulated noise,
yields the desired true SSNR of the reconstructed object. Although the method is appealing
in that it can be applied to any (linear) 3D reconstruction algorithm, a serious disadvantage
is that the method actually yields a 2D SSNR of the input data, not the 3D SSNR of the
reconstruction. This can be seen from the fact that in averaging the 2D contributions to the
3D SSNR, there is no accounting for uneven distributions of projections in Fourier space
(insert reference to Penczek chapter on Fundamentals of 3D Reconstruction here).

It is straightforward, however, to extend Eqs.5–9 to a direct Fourier inversion reconstruction
algorithm that is based on nearest-neighbor interpolation; additionally, the method can also
explicitly take into account the Contrast Transfer Function correction necessary for cryo-EM
data (Penczek, 2002; Zhang et al., 2008). It is also possible to introduce SSNR calculation to
more sophisticated direct Fourier inversion algorithms that employ the gridding
interpolation method, but this is accomplished only at the expense of further approximations
and loss of accuracy (Penczek, 2002). As the equations are elaborate and the respective
methods rarely used, we refer the reader to the cited literature for details.

The main advantage of evaluating 3D SSNR for 3D reconstruction applications is that the
method can yield per-voxel SSNR distributions, and thus provide a measure of anisotropy in
the reconstructed object. Given such a measure, it is possible to construct anisotropic Fourier
filters that can account for the directionality of Fourier information, and thus potentially
improve the performance of 3D structure refinement procedures in cryo-EM single particle
reconstruction technique (Penczek, 2002). Outside of that, the equivalence between FSC and
SSNR discussed in the next section limits the motivation for the development of a more
robust SSNR measures for the reconstruction problem.

Fourier Shell Correlation and its relation to Spectral Signal-to-Noise Ratio
Currently, there is only one resolution measure in widespread use, which is namely the
Fourier Shell Correlation. Besides the ease of calculation and versatility, the main reason for
its popularity is its relation to the SSNR. This relation greatly simplifies the selection of a
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proper cutoff level for reported resolution, provides bases for the understanding of its
relationship to optical resolution, and links resolution estimation to optimum filtration of the
resulting average/structure. The SSNR is defined as a ratio of the power of the signal to the
power of the noise. If we assume zero mean uncorrelated Gaussian noise, i.e., Mn ε N(0,
σ2I), then the SSNR for our image formation model Eq.1 is:

(11)

The SSNR of an average of N images (Eq.8) is:

(12)

Thus, the summation of N images that have identical signal and independent Gaussian noise
increases the SSNR of the average N times. For 3D reconstruction, the relationship is much
more complicated and difficult to compute because of the uneven coverage of 3D Fourier
space by projections, and the necessity of the interpolation step between polar and Cartesian
coordinates (see insert reference to Penczek chapter on Fundamentals of 3D Reconstruction
here), the 3D SSNR in a reconstructed object is difficult to compute.

Given definitions of the FSC(s) Eq.4 and SSNR(s) Eqs.9–10, relationships between the two
resolution measures are (for derivation see (Bershad and Rockmore, 1974; Frank and Al-Ali,
1975; Penczek, 2002; Saxton, 1978)):

(13)

For cases where the FSC was calculated by splitting the data set into halves, we have that
(Unser et al., 1987):

(14)

Eq.14 serves as a basis for establishing a cut-off for reporting resolution as a single number.
Since in EM one would typically evaluate the data using FSC methodology, one needs a cut-
off level that serves as an indicator of the quality of obtained results. Using the relationship
between the FSC and SSNR, the decision can be informed, even though it remains arbitrary.
Commonly accepted cut-off levels are: (1) the 3σ criterion that selects for a cut-off level the
point where there is no signal in the resulta, i.e., SSNR falls to zero, in which case FSC=0
(van Heel, 1987); (2) the point at which noise begins to dominate the signal, i.e., SSNR=1 or
FSC=1/3 (Eq.14); (3) the midpoint of the FSC curve, i.e., SSNR=2 or FSC=0.5, which is
also often used for constructing a low-pass filter.

The usage of a particular cut-off threshold requires the construction of a statistical test that
would tell us whether the obtained value is significant. Regrettably, the distribution of the
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correlation coefficient (in our case FSC) is not normal and rather complicated, so the test is
constructed using Fisher’s z-transformation (Bartlett, 1993):

(15)

z has a normal distribution:

(16)

where ks is the number of independent sample pairs from which FSC was computed (see
Eqs.4 and 5). In the statistical approach outlined here it is important to use the number of
truly independent Fourier components, that is to account for Friedel symmetry and for point
group symmetry of the complex, if present. Confidence intervals of z at 100(1−α )%, where
α is the significance level, are:

(17)

For example, for α = 0.05, , the confidence limits are . Once the
endpoints for a given value of z are established, they are transformed back to obtain
confidence limits for the correlation coefficient (FSC):

(18)

Finally, we note it is much simpler to test the hypothesis that FSC equals zero. Indeed, we

first note that for small FSC, z ≃ FSC (Eq.16) and second for ρ = 0, .
Assuming a significance level α = 0.026 corresponding to three standard deviations of a
normal distribution, it follows that we can reject the hypothesis FSC = 0 when

. The aforementioned is the basis of the 3σ criterion (van Heel, 1987) (Fig.
2). We add that the statistical analysis given above is based on the assumption that Fourier
components in the map are independent and their number is ks.

The practical meaning of characterizing ‘resolution’ of a resultby a single number is unclear.
Much has been written on the presumed superiority of one cut-off value over another, but
little has been said on the practical difference between reporting resolution of the same
result as say 12Å according to the 3σ criterion as opposed to 15Å based on the 0.5 cut-off. It
has sometimes been claimed that some criteria are more ‘conservative’ than other and
supposedly they can lead to Fourier filtration that would suppress interpretable details in the
map, and yet no method of filtration is named (for example see exposition in (van Heel et
al., 2000)). The debate is resolved quite simply if we recall the the FSC methodology yields
a 1D function of the modulus of spatial frequency, which implies that it is the shape of the
entire FSC curve that codes the ‘resolution’ and the quality of the results. Finally, the
relations between FSC, SSNR, and optimum filtration should put the controversy to rest.
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Wiener filtration methodology provides a means for constructing a Fourier linear filter that
prevents excessive enhancement of noise and which uses SSNR distribution in the data. The
method yields an optimum filter in the sense that the mean-square error between the
estimate and the original signal is minimized (see insert reference to Penczek chapter on
Image Restoration here):

(19)

which, using the relation between SSNR and FSC Eq.13, is simply:

(20)

or, if FSC was computed using a data set split into halves (Eq.14), is:

(21)

We conclude that (1) the FSC function gives an optimum low-pass filter; (2) wherever the
SSNR is high, the original structure is not modified, and the midpoint, i.e., FSC=0.5,
corresponds to decrease of the amplitudes two times, while FSC=0 sets respective regions of
Fourier space in filtered structure to zero; (3) in practice, FSC oscillates wildly around zero
level and generally might be quite irregular, in which case it is preferable to approximate it
by an analytical form of a selected digital filter (Gonzalez and Woods, 2002); (4) FSC is not
necessarily a monotonically decreasing function of the modulus of spatial frequency, in
particular, it may contain imprints of the dominating CTF, in which case an appropriate
smooth filter has to be appropriately constructed. Finally, if the SSNR of a 3D map
reconstructed from projections can be reliably estimated and if there is an indication of
anisotropic resolution, a Wiener filter given by Eq.19 is applicable (with spatial frequency
replacing its modulus as an argument) either directly or using an appropriate smooth
approximation of the SSNR (Penczek, 2002).

The FSC measure has one more very useful application in that it can be used to compare two
maps obtained using different experimental techniques. Most often it is used to compare EM
maps with X-ray structures of the same complex. In this case, the resulting function is called
Fourier Cross-Resolution (FCR) and its meaning is deduced from the relationship between
FRC and SSNR. Usually, one assumes that a target the X-ray structure is error- and noise-
free, in which case FRC yields the SSNR of the EM map:

(22)

The selected cut-off thresholds are as follows for the FCR: SSNR=1 corresponds to
FCR=0.71 and SSNR=2 to FCR=0.82. Thus, it is important to remember that for a reported
resolution of an EM map based on FCR to mean the same as a reported resolution based on
FSC, the cut-off thresholds have to be different and higher. Otherwise, the FCR function can
be used directly in Eq.20 to obtain an optimum Wiener filtration of the result. Finally, it is
important to stress that if there are reasons to believe that the target X-ray models and EM
maps represent the same structure, at least within the considered frequency range, then the
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FCR methodology yields results that are much less marred by the problems prevalent in FSC
resolution estimation. In particular, the difficult to avoid problem of alignment of noise has
no influence on FCR results. Therefore, higher credence should be given to the FCR
estimate of SSNR in the result, and hence also the FCR-based resolution.

Relation between optical resolution, self-consistency measures, and
optimum filtration of the map

There is no apparent relationship between optical resolution which is understood as the
ability of an imaging instrument to distinguish between closely spaced objects and
resolution measures used in EM that are geared towards the evaluation of self-consistency of
an aligned data set. Ultimately, the resolution of an EM map will be restricted by the final
low-pass filtration based on the resolution curve (Eqs.19–21). First we consider two extreme
examples: (1) the FSC curve, and thus the filter is Gaussian, (2) the resolution curve is
rectangular, i.e., it is equal to one up to a certain stop-band frequency and zero in higher
frequencies.

For the Gaussian shaped FSC curve, the traditional definition of resolution applies: using as
a cut-off threshold 0.61, which is the value of a not-normalized Gaussian function at one
standard deviation, one obtains that frequency corresponding to the Fourier standard
deviation σS specifies the resolution. Application of the corresponding Fourier Gaussian
filter corresponds to a convolution with a real space Gaussian function with a standard

deviation  that effectively limits the resolution to , as per the traditional

definition. For example, if , the resolution of the filtered map would be 4.8Å. The
reason it is so high is that the Gaussian filter decreases relatively slowly, which implies the
filtered map contains significant amount of frequencies higher than the cut-off of one sigma.
On the other hand, a Gaussian filter will also start suppressing amplitudes beginning from
very low frequencies, which is the reason it should not be used for filtration of EM maps.

For a rectangular shaped FSC curve, one would apply a top-hat low-pass filter that would
simply truncate the Fourier transform at the stop-band frequency sc Å−1 and thus obtain a
map whose resolution is . This is a trivial consequence of the fact that the filtered map
would not contain any higher frequencies. It would also appear that this is why it is often
incorrectly assumed that a reported ‘resolution’ based on more or less arbitrarily selected
cut-off level is equivalent to the actual resolution of the map. In either case, top-hat filters
should be avoided as truncation of Fourier series results in real-space artifacts known as
‘Gibbs oscillations’, i.e., any step in real-space map will be surrounded by ringing artifacts
in the filtered map whose amplitude is ~9% of the step’s amplitude (Jerri, 1998). If the
original map was non-negative, Gibbs oscillations will also introduce negative artifacts into
the filtered map. Gibbs phenomenon is particularly unwelcome in intermediate resolution
EM maps, as ringing artifacts will appear as fine features on the surface of the complex and
thus invite spurious interpretations. One has to be aware that all Fourier filters share, to a
degree, this problem, particularly if they are steep in the transition regions. Therefore,
filtration of the EM map has to be done carefully using dedicated digital filters and one must
be aware of the trade-off between desired steepness of the filter in Fourier space with
amplitudes of Gibbs oscillations.

A properly designed filter has to approximate well the shape of a given FSC curve and at the
same time be sufficiently smooth to minimize ringing artifacts. One possibility is to apply
low pass filtration in real space using convolution with a kernel. For example, if the kernel
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approximates a Gaussian function, it will only have positive coefficients, in which case both
the ringing and negative artifacts are avoided. Regrettably, as discussed above, the practical
applicability of Gaussian filtration in EM is limited. Another tempting approach is to use a
procedure variously known as ‘binning’ or a ‘box convolution’ in which one replaces a
given pixel by an average of neighboring pixels. This procedure is commonly, and
incorrectly, often used for decimation of oversampled images (for example reduction of
large micrographs). The procedure is simply a convolution of the input map with a
rectangular function used as kernel. Since all coefficients of the kernel are the same, the
resulting algorithm is particularly efficient. In addition, both ringing and negative artifacts
are avoided and given that the method is fast, one can apply it repeatedly to approximate
convolution with a Gaussian kernel (if repeated three times, it will approximate the Gaussian
kernel to within 3%). However, the simple box convolution is deceptive, as the result is not
what one would desire. This can be seen from the fact that the Fourier transform of a
rectangular function is a sinc function, which is not band-limited and decreases rather
slowly. Thus, paradoxically, simple box convolution does not suppress high-frequencies
well and does not have a well-defined stop-band frequency. Finally, if if the method is used
to decimate image, then it will result in aliasing, i.e., frequencies higher than the presumed
stop-band frequency will appear in the decimated image as spurious lower frequencies, and
resulting in real-space artifacts.

An advisable approach to filtration of an EM map is to select a candidate Fourier filter from
a family of well-characterized prototypes and fit it to the experimental FSC curve. We note
that under the assumption that the SSNR in EM image data is approximately Gaussian, the
shape of the FSC curve can be modeled. Indeed, 1D rotationally averaged power spectra of
macromolecular complexes in frequencies above 0.05 – 0.1Å−1 are approximately constant
at a level dependent on the number of atoms in the protein (Guinier and Fournet, 1955). This
leaves SSNR as a ratio of the product of a squared envelope function of the data and the
envelope function of misalignment to the power spectrum of the noise in the data. Both
envelopes can be approximated, in the interesting frequency region, by Gaussian functions
(Baldwin and Penczek, 2005; Saad et al., 2001) and the noise power spectrum by exponent
of a low order polynomial (Saad et al., 2001), so an overall Gaussian function is a good
approximation of the SSNR fall-off. Thus, for N averaged images we have:

(23)

Using Eq.19, we obtain the shape of an optimum Wiener filter as (Fig. 3):

(24)

where γ accounts for the unknown normalization in Eq.23. While the filter approximates
remarkably well the shape of a typical FSC curve, it remains non-zero in high frequencies,
and so is not very well suited for practical applications. Incidentally, Eq.23 yields a simple
relationship between resolution and the number of required images. More specifically, by

using SSNR(s) = 1 as a resolution cut-off, we obtain that .

A commonly used filter is the Butterworth filter:
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(25)

where c is the cut-off frequency and q determines the filter falloff. These two parameters are
determined using two parameters, namely, a pass-band and stop-band frequencies denoted
spass and sstop, respectively:

(26)

(27)

where ε= 0.882 and a = 10.624. Since the value of the Butterworth filter at spass is 0.8 and at
sstop is 0.09, it is straightforward to locate these two points given an FSC curve and then
compute the values c and q that parametrize the filter.

The Butterworth filter has a number of desirable properties, but it approaches zero in high
frequencies relatively slowly. In addition, it is not characterized by a cut-off point at 0.5
value, so it is not immediately apparent what the resolution of the filtered map is. Therefore,
a preference might be given to the hyperbolic tangent filter (tanh) (Basokur, 1998), which is
parameterized by the stop-band frequency at 0.5 value, denoted s0.5, and width of the fall-off
u:

(28)

The shape of the tanh filter is controlled only by one parameter, amely its width. When the
width approaches zero, the filter reduces to a top-hat filter (truncation in Fourier space) with
the disadvantage of pronounced Gibbs artifacts. Increasing the width reduces the artifacts
and results in a better approximation of the shape of the FSC curve. In comparison with the
two previous filters, the values of the tanh filter approach zero more rapidly, which makes it
better suited for use in refinement procedures in single particle analysis (Fig. 3).

Resolution assessment in electron tomography
The methodologies of data collection and calculation of the 3D reconstruction in electron
tomography are dramatically different from those used in SPR and is more similar to those
in computed axial tomography. There is only one object – a thin section of a biological
specimen – and a tilt projection series is collected in the microscope by tilting the stage
holding the specimen. As a consequence, three physical restrictions limit what can be
accomplished with the technique: (1) total dose has to be limited to not far above that used
in SPR to collect one image, so individual projection images in ET are rather noisy, (2)
maximum tilt is limited to +/−60°–70°, so the missing Fourier information consitutes an
inherent problem in ET, and (3) the specimen should be sufficiently thin to prevent multiple
scattering, so the specimen thickness cannot exceed the free mean path of electrons in the
substrate for a given energy and is in the range 100–300nm, and thus the imaged object is a
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slab. The projection images have to be aligned, but in ET the problem is simpler, since the
data collection geometry in electron tomography can be controlled (within the limits
imposed by the mechanics of the specimen holder and by the specimen dimensions), the
initial orientation parameters are quite accurate.

The possible data collection geometries for ET are (1) single-axis tilting, which results in a
missing wedge in coverage of Fourier space, (2) double-axes tilting, i.e., two single-axis
series, with the second collected after rotating the specimen by 90° around the axis
coinciding with the direction of the electron beam (Penczek et al., 1995), and (3) conical
tilting, where the specimen tilt angle (60°) remains constant while the stage is being rotated
in equal increments around the axis perpendicular to the specimen plane (Lanzavecchia et
al., 2005). Regrettably, in all three data collection geometries, the Fourier information along
the z-axis is missing, which all but eliminates from the 3D reconstruction features that are
planar in x–y planes, thus making it difficult to study objects that are dominated by such
features, such as membranes.

In ET there is only one projection per projection direction, so the evaluation of resolution
based on the availability of multiple projections per angular direction, as practiced in SPR, is
not applicable. The assessment of resolution in tomography has to include a combination of
two key aspects of resolution evaluation in reconstructions of objects from their projections:
(1) the distribution of projections should be such that the Fourier space is, as much as
possible, evenly covered to the desired maximum spatial frequency; (2) the SSNR in the
data should be such that the signal is sufficiently high at the resolution claimed. However,
the quality of tomographic reconstructions depends on the maximum tilt angle used and on
the data collection geometry, and yet neither of these factors is properly accounted for by
resolution measures. While for slab geometry the loss of information expressed as a
percentage of the Fourier space is very small, the easily noticeable, severe real space
artifacts in tomography are mainly caused by the fact that the loss is entirely along one of
the axes of the coordinate system, which results in anisotropic, object-dependent artifacts. In
general, it is safe ot say that flat objects extending in a plane perpendicular to the missing
wedge or cone axis will be severely deteriorated or that it might be entirely missing in the
reconstruction.

There is no consensus on what should be a general concept of resolution in ET
reconstructions, and the resolution measures currently in use in ET are either simply
borrowed from SPR (mainly FSC) or slight adjustments of SPR methodologies. In three
recently published papers devoted to resolution measures, the authors proposed solutions
based on extensions of resolution measures routinely used in SPR. In (Penczek, 2002), the
author proposed application to ET of a 3D SSNR measure developed for a class of 3D
reconstruction algorithms that are based on interpolation in Fourier space and described in
the earlier section. The 3D SSNR works well for isolated objects and within limited range of
spatial frequencies. However, the measure requires calculation of the Fourier space variance,
so it will yield correct results only to the maximum frequency limit within which there is
sufficient overlap between Fourier transforms of projections. Consequently, its appeal for
evaluation of ET reconstructions is limited. Similarly, it was suggesteed that the 3D SSNR
measure proposed by Unser et al. (Unser et al., 2005) and discussed earlier can be made
applicable to ET. Regrettably, its application to tomography is doubtful since, as as the case
with the previous method, it requires sufficient oversampling in Fourier space to yield the
correct result.

An interesting approach to resolution estimation was introduced by Cardone et al. (Cardone
et al., 2005), who proposed to calculate, for each available projection, two 2D Fourier Ring
Correlation (FRC) curves: (1) between selected projections and reprojections of the volume
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reconstructed using the whole set of projections and (2) between selected projections and
reprojections of the volume reconstructed with the selected projection omitted. The authors
showed that the ratio of these two FRC curves is related to the SSNR in the volume in the
Fourier plane perpendicular to the projection direction, as per central section theorem. The
authors propose to calculate the SSNR of the whole tomogram by summing the
contributions from individual ratios. It is straightforward to note that the method suffers
from the same disadvantages as the method by Unser et al.: (1) it does not account for the
SSNR in the data lying in non-overlapping regions and (2) it does not yield the proper 3D
SSNR because of the omission of reconstruction weights.

In order to adress the shortcomings of the method described in (Penczek and Frank, 2006)
the authors propose to take advantage of inherent, even if only directional, oversampling of
3D Fourier space while using standard ET data collection geometries. By exploring these
redundancies and by using the standard FSC approach the authors show that it is possible to:
(1) calculate the SSNR in certain regions of Fourier space, (2) calculate the SSNR in
individual projections in the entire range of spatial frequencies, and (3) infer/deduce the
resolution in non-redundant regions of Fourier space by assuming isotropy of the data.
Given the SSNR in projections and known angular step of projections, it becomes possible
to calculate the distribution of the SSNR in the reconstructed 3D object. While the approach
appears to be sound, results of experimental tests are lacking.

The main challenge of resolution estimation in ET is that imaged objects are not
reproducible and they have inherent variability. Thus, unlike the case in crystallography or
in single-particle studies, repeated reconstructions of the object from the same category will
yield structures that have similar overall features, but are also significantly different. Hence,
it is impossible to study resolution of tomographic reconstructions in terms of statistical
reproducibility. Moreover, because of the dose limitations there is only one projection for
each angular direction, so the standard approach to SSNR estimation based on dividing the
data set into halves is not applicable. In order to develop a working approach, one has to
consider two aspects of resolution estimation in ET: (1) angular distribution of projections
and (2) estimation of the SSNR in the data. So far, a successul and generally accepted
approach has not emerged.

Resolution assessment in practice
The theoretical foundations of the most commonly used EM resolution measure, the FSC,
are very well developed and understood. This includes statistical properties of the FSC
(Table 1), relation of the FSC to the SSNR, and the relation of FSC to optimum (Wiener)
filtration of the results. Based on the these, it is straightforward to construct a statistical test
that would indicate the significance of the results on the preselected significance level and
through the relation of FSC to the SSNR, apply a proper filter to supress excessive noise.
Nevertheless, practical use of resolution measures differs significantly among software
packages and it is advisable to be aware of various factors that influence the results and to
also know the details of implementation.

The basic protocol of resolution assessment using FSC is straightforward:

1. Two averages/3D reconstructions are computed using either two ‘independently’
aligned data sets or by splitting the aligned data set randomly into halves,

2. The averages are preprocessed as follows:

a. A mask is applied to suppress noise surounding the object.
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b. The averages may be padded with zeroes to kx the size (as a result, the
FSC curve will have kx more sampling points) to obtain a finely sampled
resolution curve.

c. Other occasionally applied operations, particularly non-linear (for
example, thresholding) will unduly increase the resolution.

3. The FSC curve is computed using Eq.4.

4. Optionally, confidence intervals are computed using Eqs.17–18 with proper
accounting for the reduction of the number of degrees of freedom due to possible
point-group symmetry of the complex.

5. An arbitrary cut-off threshold is selected in the range (0,1) with lower values given
preference by more advantegous The decision is supported by appropriately chosen
reference, ‘resolution’ is read from the FSC curve and solemnly reported.

6. A Wiener low-pass filter is constructed using the FSC curve either directly (Eq.19–
21) or approximated using one of the candidate analytical filters (Eqs.24–28) and
applied to the map.

7. Optionally, the power spectrum of the average/reconstruction is adjusted (see insert
reference to Penczek chapter on Fundamentals of 3D Reconstruction here) based on
the FSC curve and reference power spectrum (obtained from X-ray or SAXS
experiments, or simply modeled). This power spectrum-adjusted structure is a
proper model for interpretation.

Despite its popularity, the FSC has a number of well-known shortcomings that stem from
the violation of underlying assumptions. The FSC is a proper measure of the SSNR in the
average under the assumption that the noise in the data is additive and statistically
independent from the signal. As in SPR the data has to be aligned in order to bring the signal
in images into register, and it is all but impossible to align images without inducing some
correlations into the noise component. Even if the data set is split into halves prior to the
alignment to eliminate the noise bias, the two resulting maps have to be aligned to calculate
the resolution, and this step introduces some correlations and undermines the assumption
about noise independence. Second, if the data set contains projection images of different
complexes or of different states of the same complex, the signal is no longer identical.
Finally, even if the data is actually homogeneous, the alignment procedure may fail and may
converge to a local minimum, so the solution will be incorrect but self-consistent and the
resolution will appear to be significant.

In step 2 of the basic protocol outlined above, a mask is applied to the averages in real space
to remove excessive background noise. However, because this step is equivalent to
convolution in Fourier space with the Fourier transform of the mask, it results in additional
correlations that will falsely ‘improve’ FSC results. In fact, application of the mask can be a
source of grave mistakes in resolution assessment by FSC (or any other Fourier space-based
similarity measure.) First, one has to consider the shape of the mask. It is tempting to use a
mask whose shape closely follows the shape of the molecule. However, the design of such a
mask is an entirely heuristic endeavour, as presence of noise, influences of envelope
function, and filtration of the object make the notion of an ideal shape poorly defined. Many
design procedures have been considered (Frank, 2006), but the problem remains without a
general solution. As a result, for any particular shape, the mask has to be custom-designed
by taking into account the resolution and noise level of the object. Worse yet, some software
packages have “automasking” facilities that merely reflect the designer’s concept of what a
“good” mask is and which contain key parameters not readily accessible to the user. The
outcome of such “automasking” is generally unpredictable. The design of an appropriate
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mask is an important issue because the FSC resolution strongly depends on how close the
mask follows the molecule shape and on how elaborate the shape is. More specifically, more
elaborate shapes introduce stronger correlations in Fourier space, and thus “improve” the
resolution.

Second, the Fourier transform of a purely binary mask, i.e., a mask whose values are one in
the region of interest and zero elsewhere, has high amplitude ripples extending to the
Nyquist frequencies, and will introduce strong correlations in Fourier space. Ideally, one
would want to apply as a real-space mask a broad Gaussian function with a standard
deviation equal to say half the radius of the structure; however, although such a mask
minimizes the artifacts, it does not supress surronding noise very well. The best compromise
is a mask that has a neutral shape, i.e., it does not follow the shape of the object closely such
as a sphere or an elipsoid, which is equal to one in the region of interest zero outside, and
where the two regions joined by a smooth transition region with a fall-off given by
Gaussian, cosine, or tangent functions.

Third, if a mask is applied, which is almost always the case, one has to make sure that the
tested objects are normalized properly. It is known that if we add a constant to pixel values
prior to masking, the resolution will improve. In fact, by adding a sufficiently large number,
one can obtain an arbitrarily high resolution using the FSC test. The appropriate approach is
to compute the average of the pixel values within a transition region as discussed above
(which for a sphere is a shell few pixels wide) and then subtract it before applying the mask.

In general, the masking operation changes the number of independent Fourier pixels, that is
the number of degrees of freedom, but it is very difficult to give a precise number. This
adversely affects the results of statistical criteria, particularly in the case of the 3σ criterion
as when FSC approaches zero the curve oscillates widely and too low a threshold can
dramatically change the resolution estimation. Non-linear operations such as thresholding or
non-linear filters such as the median filter will also unduly ‘improve’ the resolution. Finally,
various mistakes in the computational EM structure determination process will strongly
affect resolution and overall shape of the FSC curve (Fig. 4).

In the study of resolution estimation of maps reconstructed from projection images it is
known that neither FSC nor SSNR yield correct results when the distribution of projection
directions is strongly non-uniform. Any major gaps in Fourier space will result in
overestimation of resolution and unless 3D SSNR is monitored for anisotropy, there is no
simple way to detect the problem. Even if anisotropy is detected, the analytical tools that
would help to assess its influence on resolution are lacking.

While the resolution measures described here provide specific numerical estimates of
resolution, the ultimate assessment of the claimed resolution is always done by examining
the appearance of the map. In SPR, when the resolution is in the subnanometer range,
features related to secondary structure elements should be identifiable. In the range 5–10Å,
α-helices should appear as cylindrical features while β-sheets as planar objects. At a
resolution better than 5Å, densities approximating the protein backbone trace should be
identifiable (Baker et al., 2007). Conversely, presence of small features at a resolution lower
than ~ 8Å indicates that resolution was overestimated, that the map was not low-pass filtered
properly, and/or that excessive correction for the envelope function of the microscope was
applied (“sharpening” of the map). In ET it is also possible to assess the resolution by
examining the resolvability of known features of the imaged biological material. These can
include spacing in filaments, distances between membranes, or visibility of subcellular
structures. It is certainly the case that in both SPR and ET 3D reconstructions are almost
never performed in the total absence of some a priori information about the specimen, for
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example, the number of monomers and the number of subunits in macromolecular
complexes, are generally known a priori. While this information might be insufficient to
assess the resolution to a satisfying degree of accuracy, it can certainly provide sufficient
grounds to evaluate the general validity of the results within the resolution limit claimed.
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Fig. 1.
Optical resolution is defined as the smallest distance between two points on a specimen that
can be distinguished as two separate entities. Assuming the blur introduced by the
microscope to be Gaussian with a known standard deviation, the resolution is defined as a
distance between points that equals at least one standard deviation. For distances smaller or
equal one standard deviation, the observed pattern, i.e., sum of two Gaussian functions
(green and blue) has an appearance of a pseudo-Gaussian with one maximum (magenta).
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Fig. 2.
Simulated FSC curve (red) with confidence intervals plotted at ±3σ (blue) (Eq.18) and 3σ
criterion curve (magenta) (van Heel, 1987).
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Fig. 3.
Experimental FSC curve encountered in practice of SPR (solid) plotted as a function of
magnitude of spatial frequency with 0.5 corresponding to Nyquist frequency. We also show
an idealized FSC curve (Eq.24) and a hyperbolic tangent filter (Eq.28) fitted to the
experimental FSC.
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Fig. 4.
Typical FSC resolution curves encountered in practice of SPR. s - magnitude of spatial
frequency with 0.5 corresponding to Nyquist frequency. (a) proper FSC curve remains one
at low frequencies, which is followed by a semi-Gaussian fall-off (see Eq.24) and a drop to
zero at around 2/3 of Nyquist frequency, in high frequencies oscillates around zero. (b)
Artifactual “rectangular” FSC: remains one at low frequencies remains one, followed by a
sharp drop, in high frequencies oscillates around zero. Typically it is caused by a
combination of alignment of noise and a sharp filtration during the alignment procedure. (c)
The FSC never drops to zero in the entire frequency range. Normally, this means that the
noise component in the data was aligned, the result are artifactual and the resolution is
undetermined. In rare cases it can also mean that the data was severely undersampled (very
large pixel size). (d) After the FSC curve drops to zero, it increases again in high
frequencies. This artifact can be caused by the low-pass filtration of the data prior to
alignment, errors in the image processing code, mainly in interpolation, by the erroneous
correction for the CTF, including errors in estimation of SSNR, and finally, incorrect
parameters in 3D reconstruction programs (for example iterative 3D reconstruction was
terminated too early). It can also mean that all images were rotated by the same angle. (e)
FSC oscillates around 0.5. It means that data was dominated by one subset with the same
defocus value or there is only one defocus group. The resolution curve is not incorrect per
se, but it is unclear what the resolution is. The resulting structure will have strong artifacts in
real space.

Penczek Page 24

Methods Enzymol. Author manuscript; available in PMC 2011 September 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Penczek Page 25

Table 1

Taxonomy of EM resolution measures.

relation to SSNR statistical properties computed using applicable to

Q-factor remote somewhat understood individual images individual voxels

DPR none not understood averages 2D & 3D

FSC equivalent understood averages 2D & 3D

SSNR - understood individual images 2D, approximations in 3D
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