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ABSTRACT

Awell-known problem in solar physics is that solutions for the transverse magnetic field direction are ambiguous
with respect to a 180

�
reversal in the field direction. In this paper we focus on three methods for the removal of the

180
�
ambiguity applied to three MHD models. These methods are (1) the reference field method, (2) the method of

magnetic pressure gradient, and (3) the magnetic field divergence-free method. All three methods are noniterative,
and methods 2 and 3 are analytical and fast. We apply these methods to three MHD equilibrium model fields: (1) an
analytical solution of a nonlinear force-free magnetic field equilibrium from Low, (2) a simulation of an emerging
twisted flux tube from Fan &Gibson, and (3) a pre-eruptive twisted magnetic flux rope equilibrium reached by relax-
ation fromAmari et al. Wemeasure the success of methods within ‘‘inverse horizontal field’’ regions in the boundary,
which are mathematically defined by B? = :?Bz > 0. When such regions overlap with the magnetic field neutral
lines, they are known as ‘‘bald patches’’ (BPs) or inverse topology. Our most important conclusion is that the mag-
netic divergence-free method is far more successful than the other two methods within BPs. This method requires a
second level of measurements of the vertical magnetic field. As high-quality multilevel magnetograms will come on-
line in the near future, our work shows that multilayer magnetic field measurements will be highly desirable to ob-
jectively and successfully tackle the 180

�
ambiguity problem.

Subject headinggs: MHD — Sun: magnetic fields

Online material: color figures

1. INTRODUCTION

After three decades of effort, photospheric magnetic fields are
still the most accessible observational data concerning magnetic
fields in the solar atmosphere. They provide crucial information
on understanding magnetic fields even at other levels where the
field cannot be easily determined. As much as we depend on the
photospheric magnetic field measurements, the 180

�
ambiguity

remains a problem that inhibits the effective use of vector mag-
netic fields taken in the photosphere. The problem occurs because
all common magnetographs exploit the Zeeman effect (Hagyard
et al. 1982;Mickey 1985; Ai&Hu1986; Lites et al. 1993; Sakurai
et al. 1995;Mickey et al. 1996). A spectrum line is split and polar-
ized when a magnetic field is present. Vector magnetic fields are
inferred from circular and linear polarization often represented by
the Stokes parameters, I, Q, U, and V. As the transverse magnetic
field directions are invariant to linear polarization states, this inher-
ently results in twopossible values differing by 180

�
in the direction

of the transverse magnetic fields (Unno 1956). In a nutshell, the
problem is that the observed transverse field has an azimuth angle
� or � þ 180

�
, andwe cannot easily tell which direction is correct.

Numerous efforts have been made toward solving the 180
�

ambiguity problem (Amari & Démoulin 1992). Methods have
evolved gradually from a simple comparison between observed
and extrapolated fields to computerized automatic procedures.
These methods can be classified as ‘‘reference field’’ (Gary &
Hagyard 1990), ‘‘multistep process’’ (Canfield et al. 1993; Wang
et al. 2001; Moon et al. 2003), ‘‘interactive,’’ such as the AZAM

utility implemented by B. Lites (Metcalf et al. 2006), ‘‘automated
minimization’’ (Metcalf 1994; Georgoulis et al. 2004), ‘‘vertical
current minimization’’ (Gary & Démoulin 1995; Georgoulis
2005), ‘‘noniterative analytical’’ (Cuperman et al. 1993; Li et al.
1993; Skumanich & Semel 1996), and ‘‘spectroscopic’’ (Landi
Degl’Innocenti 1993). Except for the spectroscopic method and
the noniterative analytical methods by Cuperman et al. (1993)
and Li et al. (1993) that were tested with a MHD model, all the
other methods are routinely applied to observational data by in-
dividual researchers. Recently, Metcalf et al. (2006) provided an
overview of nearly all existing algorithms for resolving the 180

�

ambiguity problem when applied to synthetic data at a single
height level. They concluded that theminimization method is the
most promising, but it is time consuming.

Our approach is to compare three methods: the reference field
method, the magnetic pressure gradient method, and the mag-
netic field divergence-freemethod, as applied to threeMHDmod-
els. Among these methods, the reference field method is the most
commonly used and easily implemented in observations. Themag-
netic pressure gradient method is based solely on the force-free
magnetic field assumption. The divergence-free method is based
on the universal rule of the magnetic field, which is free of di-
vergence everywhere. This condition requires a second level of
magnetic field, which forms a major obstacle to a broad use of the
method for solving the 180

�
ambiguity problem. It has only been

explored by a few in the literature (Li et al. 1993; Boulmezaoud&
Amari 1999) with an analytic nonlinear force-free field model
(Low 1982), but has never been used solely on real observations.
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The three methods are examined by Cuperman et al. (1992, 1993)
and Li et al. (1993) using Low’s solution. The second and the third
methods are not iterative. They solve the 180

�
ambiguity problem

1 pixel at a time. In the current work we apply the threemethods to
the Low model and two other MHD models. We configure the
Low model to a different quadruple-like configuration in the pho-
tosphere from those used by Cuperman et al. (1992, 1993) and Li
et al. (1993). It resembles some flare-productive regions as deter-
mined from observations and simulations (Antiochos et al. 1999;
Li et al. 2005).

On physical grounds, it is well known that photospheric mag-
netic fields are not force-free, because they are in a high-� envi-
ronment where both neutral and ionized gas pressure balance
with magnetic pressure (Metcalf et al. 1995). Most importantly,
the instability of the magnetic field leading to solar flares and
coronal mass ejections probably originates in the corona, where
the field constantly adjusts to equilibrium as a result of contin-
uous plasmamotions in the boundary. This picture is reflected by
the recent progress on three-dimensional simulations of large-
scale magnetic flux eruptions (Amari et al. 2000, 2003a, 2003b,
2004, 2005, 2006; Fan & Gibson 2003, 2004; Leka et al. 2005).
Instead of solving MHD equilibrium equations with the pho-
tospheric field as a boundary condition, these models follow the
evolution of a coronal magnetic configuration that is driven by
photospheric or subphotospheric constraints. In two particular
models of interest in this paper, the instability is caused either
by a twisted flux tube rising at constant speed from the boundary
to the corona (Fan &Gibson 2004) or by some photospheric con-
straints associated with flux cancellation or diffusion (Amari
et al. 2000). Both simulations consider rising flux tubes interact-
ing with either a surrounding, nearly potential magnetic field in
the corona or a totally unconfined configuration. Differing from
Low’s model, both simulations describe the dynamic status of the
magnetic field from the boundary to the corona. It is compelling to
examine whether the three methods used to remove the 180

�
am-

biguity problem will succeed over a majority of pixels in the dy-
namic simulations as they did with Low’s force-free field analytic
solution. In order to effectively compare the success of the meth-
ods, the success rates are estimated within a mathematically de-
fined magnetic field configuration called the ‘‘inverse horizontal
field.’’ The configurations imply the presence of twisted flux ropes
over magnetic polarity inversion lines in both the Fan and Amari
models, but not in the Low model.

We organize our presentation as follows. In x 2 we describe
the three MHD models and discuss their differences. In x 3 we
introduce the three methods used to remove the 180

�
ambiguity

problem. In x 4 we explain the experiment procedure. Section 5
provides the test results and discussions. A summary is given in x 6.

2. MODELS

All three models that we use to test the 180
�
ambiguity meth-

ods are current-carrying bipolar configurations in the boundary.
Among the models of Low (1982), Fan & Gibson (2003, 2004),
and Amari et al. (2000), the Lowmodel is a strict nonlinear force-
free solution, while the Fan and Amari models are not force-free
in the boundary. A significant difference between themodels is the
distribution of the inverse horizontal field configuration, i.e., the
horizontal field pointing in the direction of positive polarity or
the direction of increasing vertical field. Mathematically, this can
be expressed as B? = :?Bz > 0. When this condition occurs over
the vertical magnetic polarity inversion line, it is called ‘‘inverse
topology’’ by Low & Hundhausen (1995), who described mag-
netic support of the quiescent filaments. It is also called a ‘‘bald
patch’’ (BP) by Titov & Démoulin (1999), which describes

where coronal field lines touch the boundary and return to the
corona.

2.1. Model 1: An Analytical Nonlinear Force-Free Field

Low (1982) proposed an analytic nonlinear force-free mag-
netic fieldmodel. Themodel derivation is carried out in spherical
polar coordinates, (r; �; ’), and is expressed in Cartesian coor-
dinates, (x; y; z). The two coordinates are related, as the origin of
the spherical polar coordinates is located at (0; 0;�a), and the
polar axis merges with the z-axis in the Cartesian system. An ini-
tial potential magnetic field is generated by a straight infinite
electric current underneath the photosphere at a given distance,
z ¼ �a. The magnetic field is axially symmetric about the polar
axis duringflux emergence.Under the spherical polar coordinates,
the force-free magnetic field can be reduced to a scalar nonlinear
equation. Under a special case, the magnetic field can be ex-
pressed as a function of radial distance r. Transforming the field
from spherical polar to Cartesian coordinates, the field compo-
nents at height z are

Bx ¼ �
B0a

r
cos ’(r);

By ¼
B0axy

r y2 þ (zþ a)2
� � cos ’(r)�

B0a(zþ a)

y2 þ (zþ a)2
sin ’(r);

Bz ¼
B0ax(zþ a)

r y2 þ (zþ a)2
� � cos ’(r)þ

B0ay

y2 þ (zþ a)2
sin ’(r); ð1Þ

where B0 is a magnetic field strength constant and r 2 ¼ x2 þ
y2 þ a2. The function ’(r) is a free generating function related
to the force-free field function �(r) by

�(r) ¼ �
d’(r)

dr
: ð2Þ

The essence of the model is that the magnetic field vector
only varies with latitude � at a given spherical surface of radius r.
‘‘As we move through successive spherical surfaces of increas-
ing r, the vector orientation would vary according to ’(r)’’ (Low
1982). The model does not include the time evolution of the field.
Various field configurations can be achieved by alternating the
generating function, ’(r). To test our methods we define a gener-
ating functionwith form’(r) ¼ (�/2) ln (r/a), where a ¼ 8 image
pixel grids. It produces a magnetic configuration of a quadruple in
the photosphere, z ¼ 0 (Fig. 1, top). Themagnetic topology of the
model is like a pair of magnetic flux tubes with opposite polarity
twisting together in the boundary. Such twisting is gradually re-
laxedwith increasing height. In Figure 1 (top) the background im-
age is the vertical magnetic field, Bz. The horizontal field vectors
are plotted in white and black corresponding to Bz � 0 and
Bz > 0, respectively. In the Low model the inverse horizontal
field regions do not overlap with the vertical magnetic polarity
inversion line, i.e., there is no BP. This is shown in Figure 1
(bottom).

2.2. Model 2: Simulation of a Twisted Flux Tube Emergence

Unlike the analytical nonlinear force-free magnetic field model
of Low (1982), Fan & Gibson (2003, 2004) performed three-
dimensional numerical simulations of the coronal magnetic field
driven by the emergence of a significantly twisted magnetic flux
tube. The flux tube emerges into a preexisting coronal arcade that
has low plasma � and high electric conductivity. Near the lower
boundary where we test the methods, the magnetic fields are non-
force-free, but they become force-free very quickly above the
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boundary (Leka et al. 2005). The simulations show the dynamic
response of the corona when a flux tube rises from the lower
boundary with time. The study results in some interesting features
consistent with observations. For example, the three-dimensional
S-shaped electric current layer along the magnetic inversion line
is consistent with the bright S-shapes in the corona, the so-called
sigmoids, observed in soft X-rays. They often form in active re-
gions prior to coronal mass ejections (Rust & Kumar 1996).
When a sufficient amount of twist is transported into the corona,
the emerged flux tube undergoes a kink instability. With an em-
erging tube of left-handed twist (which is preferred for active re-
gion flux tubes in the northern hemisphere), the onset of the kink

instability causes the formation of an inverse-S-shaped current
sheet as viewed from above.

Among the series of intermediate field configurations, we
choose to test the removal of the 180

�
ambiguity with the con-

figuration at the last stage. At this stage, the flux tube undergoes a
kink instability, implying an eruption. Figure 2 (top) shows the
magnetic field in the boundary. As in Figure 1, the black and
white horizontal vectors represent the horizontal fields against the
positive and negative Bz. The inverse horizontal field region over-
laps with the vertical magnetic polarity inversion line, i.e., a BP is
present. In fact, it is known from Fan’s simulation that such a con-
figuration corresponds to a twisted flux tube tangent to the lower
boundary (Fig. 2, bottom).

2.3. Model 3: Simulation of Twisted Flux Tube Eruption

Also recognizing the formation of bright sigmoid coronal struc-
tures prior to eruption, Amari et al. (2000) presented a three-
dimensional simulation of flux rope eruption. The simulation
starts with a current-free magnetic configuration confined in a
large computational box (tomimic the open half-space)with equal
lengths in three dimensions. Instead of letting a highly twisted flux
rope emerge from the lower boundary, the twisting flux tube is
established by first applying twistingmotion to the opposite polar-
ity pair in the photosphere. A stable numerical force-free equilib-
rium is reached when the twisting motion stops and the system is
allowed to relax. The magnetic configuration displays a highly

Fig. 2.—Top: Magnetic field configuration at the lower boundary in the simu-
lation of twisted flux tube emergence (Fan & Gibson 2003, 2004). The snapshot
field is taken at t¼56 when the kink instability occurs. The background image and
thewhite and black arrow bars have the samemeaning as in Fig. 1. Bottom: Inverse
horizontal field regions represented bywhite and black patches. The different colors
indicate positive (white) and negative (black) vertical magnetic field. TheBz neutral
line is marked by the thick solid curve. [See the electronic edition of the Journal for
a color version of this figure.]

Fig. 1.—Top: Nonlinear force-free magnetic field configuration at the photo-
sphere computed from the model by Low (1982). The background image shows
the vertical magnetic field with black and white representing opposite polarities.
The transverse field vectors are presented by white arrow bars when Bz � 0 and
black arrow bars when Bz > 0. Bottom: Vertical magnetic polarity inversion line
(solid curve).White and black patches represent the inverse horizontal field regions
corresponding to positive and negative Bz, respectively. [See the electronic edition
of the Journal for a color version of this figure.]

180
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sheared structure near the polarity neutral line. To simulate flux
cancellation, two opposite polarities start to emerge inside the
initial bipolar configuration, reducing the total signed magnetic
flux. When a critical amount of flux cancellation is reached, the
magnetic topology of the configuration changes from arcadelike
to flux-rope-like, exhibiting a twisted flux rope in equilibrium.
Then further cancellation leads to the global disruption of the
flux rope.

This simulation uses a different drivingmechanism at the lower
boundary from that of the emergence of a twisted flux tube (Fan&
Gibson 2003). Themagnetic field twisting is generated by rotating
motions of the polarity pair in the boundary. The flux rope is only

formed from an arcadelike structure after an opposite polarity pair
emerges within the original polarity pair and a critical magnetic
flux cancellation is reached. Figure 3 (top) shows theAmarimodel
in the boundary. The configuration is a snapshot of the simulation
at equilibrium, which later leads to rapid expansion and recon-
nection. The latter occurs between the expanded field lines and the
overlaying potential field lines.
It is like the Fan model, but unlike the Lowmodel; the electric

current density forms a typical sigmoidal shape above the mag-
netic polarity inversion line as the result of the magnetic recon-
nections when the critical magnetic cancellation is reached. The
horizontal field vectors visibly point away from the negative and
toward the positive polarities at the sites where the emerging po-
larity pair appears (see the two big arrows in Fig. 3, top). This
corresponds to the twisted flux tube tangent to the lower bound-
ary, and the BP is present (see Fig. 3, bottom). The vertical mag-
netic polarity inversion lines overlap with the rectangle shape of
the inverse horizontal field regions. As a result, they are not eas-
ily identified in the plot.

3. METHODS

In this section we describe how the three methods are im-
plemented to solve the 180

�
ambiguity problem in the transverse

fields with models.

3.1. Method 1: Reference Field Method

This method is the most commonly used for solving the 180
�

ambiguity problem (Gary &Hagyard 1990). In the current work,
the directions of the transverse field,B?, are determined by com-
paring them with the potential transverse field directions, B?;pot.
The potential fields are calculated using a Green’s function with
the line-of-sight longitudinal field as a boundary condition (Chiu
& Hilton 1977). The field directions are chosen such that the an-
gles between transverse fields and potential fields are less than or
equal to 90

�
, i.e.,B? = B?;pot � 0. This implies that the reference

potential field method assumes that the field behaves like a po-
tential field. This method can easily fail in locations where the
fields are nonpotential.

3.2. Method 2: Magnetic Field Pressure Gradient

An analytic method is developed by the condition that the mag-
netic field is nonlinear and force-free (Cuperman et al. 1993). Un-
der this assumption, magnetic fields are proportional or parallel to
the electric current density,

:< B ¼ �B; ð3Þ

where� is a scalar varying with space and time.We take the cross
product of the above equation and B to obtain

B< (:< B) ¼ 0: ð4Þ

This is equivalent to

B< (:< B) ¼
1

2
:B2 � (B = : )B: ð5Þ

Because the left-hand side of the equation is equal to zero, the
equation leads to

1

2
:B2 ¼ (B = : )B: ð6Þ

Fig. 3.—Top: Two-dimensional magnetic field at the lower boundary from a
twisted flux rope eruption model (Amari et al. 2000). The configuration is a snap-
shot of the field leading to the rapid expansion and reconnection with a higher
potential arcade. The background image and the white and black arrow bars have
the same meaning as in Fig. 1. Two arrows show the horizontal field vectors point-
ing away from negative polarity (upper arrow) and toward positive polarity (lower
arrow), forming inverse horizontal field configurations. Bottom: Inverse horizontal
field regions represented by white (corresponding to Bz > 0) and black (corre-
sponding to Bz � 0) patches. The vertical magnetic polarity inversion lines are
overlapped with the rectangle regions outlining the inverse horizontal field regions,
making them invisible in the plot. [See the electronic edition of the Journal for a
color version of this figure.]
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In Cartesian coordinates, the z-component of the above equa-
tion is

1

2

@

@z
B2 ¼ Bx

@

@x
þ By

@

@y
þ Bz

@

@z

� �

Bz: ð7Þ

Combining the above equationwith themagnetic field divergence-
free condition :=B � 0, one obtains

1

2

@

@z
B2 ¼ Bx

@Bz

@x
þ By

@Bz

@y

� �

� Bz

@Bx

@x
þ

@By

@y

� �

; ð8Þ

where B2 ¼ B2
x þ B2

y þ B2
z . Variables appearing on the right-

hand side of the equation are the three observable magnetic com-
ponents in the photosphere, and the 180

�
ambiguous directions of

Bx and By. We assume that the magnetic pressure decreases with
vertical direction perpendicular to the solar surface; i.e., the mag-
netic pressure gradient is negative,

@

@z
B2 � 0: ð9Þ

This is the heart of method 2; the signs of B? are determined
to satisfy the above equation at each pixel with the three ob-
servable magnetic field components in the photosphere. It is
interesting to point out that the first term of the right-hand side
of equation (8) is Bx@Bz/@xþ By@Bz/@y

� �

¼ B? = :?Bz. When
B? =:?Bz > 0, it is the inverse horizontal field as defined in the
beginning of x 2. With the condition that B? = :?Bz � 0, Krall
et al. (1982) determined the directions of observed transverse
fields. It is clear that this condition is not sufficient to describe a
BP, the configuration of which indicates the presence of a mag-
netic flux rope. The second term, �Bz @Bx/@xþ @By/@y

� �

¼
�Bz(@Bz/@z), is due to the universal magnetic divergence-free
condition. In this regard, the method is one step closer than
method 1 to representing a realistic solar magnetic field condi-
tion. However, the negative magnetic pressure gradient repre-
sented by equation (9) is not a natural property of the magnetic
field. The method will result in disagreement in regions where
B2 increases with z. We further discuss the success and failure
of themethod in x 5. It is noted that the relation used in thismethod
is only satisfied when the magnetic field is expressed in helio-
graphic coordinates.

The pixel positions are denoted by (i; j) in the boundary in the
heliographic system. We approximate infinite partial differentia-
tions into finite differences between neighboring pixels. The par-
tial differences are written as �B i

� ¼ B�(iþ�i; j)� B�(i; j),
�B j

� ¼ B�(i; jþ�j)� B�(i; j), where B� represents the mag-
netic field componentswhen � ¼ x; y; z in the boundary. The right-
hand side of equation (8) is discretized with equal grid units in the
x- and y-axes, �i ¼ � j,

P � Bx �B i
z

� �

þ By �B j
z

� �

� Bz �B i
x þ�B j

y

� �

: ð10Þ

The method is analytical and noniterative. The right-hand side
of equation (10) is calculated at each pixel for givenmagnetic field
components Bx, By, and Bz among which Bx and By are to be
determined for 180

�
ambiguous directions. In our current workwe

start with an initial transverse field pointing upward; i.e., the trans-
verse field azimuth with respect to the x-axis, �, varies from 0

�
to

180
�
. At each pixel, if the calculated value satisfies the criterion,

i.e., P � 0, the transverse field direction remains the same as the
initial state; otherwise, the direction is flipped 180

�
. Although

the calculation of equation (10) involves neighboring pixels,

the transverse field direction is determined only at the current
pixel. The same procedure is applied to all pixels throughout the
region with the initial transverse field directions without iteration.
The advantage is that it is fast.

3.3. Method 3: Magnetic Field Divergence-Free

From Maxwell’s equation,

:=B � 0: ð11Þ

Wu & Ai (1991) proposed an alternative method for the removal
of the 180

�
ambiguity in the azimuth of transverse fields. In com-

parison with the previous two methods, this method is free from
any assumption about the solar magnetic fields. Expanding the
equation we obtain

@Bx

@x
þ

@By

@y
¼ �

@Bz

@z
: ð12Þ

Bymultiplying both sides of the equation by @Bz/@z, equation (12)
becomes

@Bz

@z

@Bx

@x
þ

@By

@y

� �

¼ �
@Bz

@z

� �2

� 0: ð13Þ

The left-hand side of this equation consists of observed mag-
netic field quantities, which are always less than or equal to 0.
This criterion was applied by Li et al. (1993) to 20 different
magnetic configurations for which exact analytical expressions
were given by Low (1982). Like method 2, it is yet another non-
iterative and analytical method; therefore, the 180

�
ambiguity is

solved pixel by pixel, and the execution is fast. The difference is
that this method requires an observation of the magnetic field at
a higher level. In heliographic coordinates with equal grid units
in the x- and y-axes, the criterion is discretized in the boundary
for all pixels, z ¼ 0:

Q � �Bk
z �B i

x þ�B j
y

� �

� 0: ð14Þ

The discrete variables �B i
x and �B j

y have the same meanings
as those used in equation (10). When the observing region is near
the disk center, an observation of the vertical magnetic field at
a higher level, �k, is needed in order to complete the operation
�Bk

z ¼ Bz(i; j;�k)� Bz(i; j; 0). In our work the magnetic fields
at a second level are selected at the same height as the grid unit in
the x-y plane, equivalent to�i � � j � �k. Observationally, it is
still a challenge to measure multilayer magnetic fields, but it is
comfortably managed with models.

4. EXPERIMENTS

Because our experiments are carried out with MHD models,
we need to complete two tasks before applying methods to sim-
ulated observational data: (1) Establish the magnetic field in a
selected disk location. This is accomplished by performing co-
ordinate transformation. (2) Establish the initial transverse field
directions, which are to be determined for either � or � þ 180

�
.

This is accomplished by assigning transverse field directions
pointing upward for all pixels for the initial transverse field state.
Needless to say, this is consistent with the transverse field di-
rections derived from Stokes parameters.

4.1. Coordinate Transformation

All three MHDmodels are expressed in Cartesian coordinates
assuming regions situated at the solar disk center. In order to

180
�
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obtain off-center magnetic fields we apply the inverse coordinate
transformation matrix from equation (1) of Gary & Hagyard
(1990) to the models:

Bxm

Bym

Bzm

0

B

@

1

C

A
¼

a11 a21 a31

a12 a22 a32

a13 a23 a33

0

B

@

1

C

A

Bxh

Byh

Bzh

0

B

@

1

C

A
; ð15Þ

where Bxm, Bym, and Bzm are the projected model field compo-
nents. The component Bzm is the line-of-sight field, Bxm and Bym

are the transverse fields at a given disk location, and Bxh, Byh,
and Bzh are magnetic field components in the heliographic plane
given by models. The matrix elements are the same as those in
equation (1) by Gary & Hagyard (1990), but the matrix here is
the transpose matrix of that provided in the equation. This is the
first-degree coordinate transformation, as solar global curvature
is not considered. In our experiment we consider three disk lo-
cations:W00

�
,N00

�
, W15

�
,N00

�
, andW30

�
,N30

�
. They repre-

sent the centers of regions, respectively, at the disk center, 15
�

from the central meridian on the solar equator, and 30
�
from the

central meridian and 30
�
north.

4.2. Initial Transverse Field Directions

The observed magnetic field components are established in a
disk location by the coordinate transformation procedure described
above. The observational components Bxo, Byo, and Bzo are con-
verted from the model magnetic field vectors Bxm, Bym, and Bzm,
but Bxo and Byo are 180

�
ambiguous. The line-of-sight field re-

mains unchanged, Bzo ¼ Bzm. The strength of the transverse field
is the same as the observed transverse fields, Bo?j j ¼ ðB2

xoþ
B2
yoÞ

1/2 ¼ ðB2
xm þ B2

ymÞ
1/2
, but the transverse field directions are

assigned 180
�
ambiguity in azimuth. This is achieved by having

the transverse field azimuth, �, vary between 0
�
and 180

�
for all

pixels; i.e., the field directions point upward. The final directions
are determined by the 180

�
ambiguity resolution methods de-

scribed in x 3.

4.3. Coordinates as a Platform for the Removal
of the 180

�
Ambiguity

For method 1, the transverse field directions are determined in
the observing plane. The longitudinal fields are used to extrapolate
potential fields. For methods 2 and 3, the criteria are only valid in
heliographic space. The three observational components,Bxo,Byo,
and Bzo, are first converted to those, Bxh, Byh, and Bzh, at the helio-

graphic plane using the forward coordinate transformation matrix
(Gary & Hagyard 1990). Keep in mind that the horizontal field
components,Bxh andByh, are no longer 180

�
ambiguous under the

off-center situation. AlongwithBzh, they are functions of Bxo,Byo,
and Bzo, where Bxo and Byo are 180

�
ambiguous. The criteria of

methods 2 and 3 are calculated in heliographic coordinates, and
the signs of Bxo and Byo are determined based on the results of the
calculation.

5. RESULTS AND DISCUSSION

We estimate the success rates of the methods within inverse
horizontal field regions, as they are distinct parts of the magnetic
configurations, sometimes leading to eruption when they are BPs.
The success rate is calculated as the ratio of the number of correct
pixels to the total number of pixels within the inverse horizontal
field regions (see the areas of white and black patches in the bot-
tom panels of Figs. 1, 2, and 3). This metric is expressed as a per-
centage and is denoted withMinv. The correct pixels are those for
which the derived horizontal fields agree in direction with those
of the models. Two other metrics are calculated for comparison:
(1) Mtotal, the ratio of the number of correct pixels to the total
number of pixels over the entire region; and (2)MBz

¼
P

Bzj jsuc/
P

Bzj j, where Bzj jsuc is the absolute vertical field over the pixels
for which the 180� ambiguity is successfully removed. The sec-
ond metric was first used by Metcalf et al. (2006). The success
rates are summarized in Table 1. In order to show the success of
particular methods clearly, the highest percents are marked with
an asterisk within each category. The measurement of success is
always carried out in heliographic coordinates. To demonstrate
the success of particular methods, Figures 4, 5, and 6 show vec-
tor magnetic fields at three disk locations. Only those transverse
field vectors of the ‘‘successful pixels’’ are plotted.

5.1. Success and Failure of Methods

All three methods have a high percentage of success with the
nonlinear force-free field model (Low 1982; see Table 1). This is
consistent with the earlier work by Cuperman et al. (1992, 1993)
and Li et al. (1993), although they used slightly different mag-
netic configurations. Method 1 fails in a small portion of the in-
verse horizontal field area due to the fact that a potential field
does not usually match with the inverse horizontal fields. As for
method 2, it should be 100% successful, since the Low model is
a strict nonlinear force-free configuration with the method im-
plicit. Yet, the method fails over some pixels at the boundaries

TABLE 1

Success of Ambiguity Removal Methods

W00
�
,N00

�
(%) W15

�
,N00

�
(%) W30

�
,N30

�
(%)

Model Method Minv MBz
Mtotal Minv MBz

Mtotal Minv MBz
Mtotal

Low ............................................. 1 82.6 90.2 96.2 79.8 88.4 95.3 90.2� 91.3� 86.8�

2 92.4 95.9� 98.8� 78.4 92.6 87.7 80.3 86.6 80.0

3 93.7� 94.3 97.7 94.2� 93.0� 96.7� 86.3 78.7 76.1

Fan............................................... 1 47.6 64.6 72.1 47.2 66.5 73.0 53.6 77.7 78.6

2 4.2 91.8 75.6 20.7 91.4 74.8 23.6 89.4� 74.0

3 92.5� 94.1� 98.0� 84.4� 93.1� 93.9� 73.5� 88.5 87.6�

Amari .......................................... 1 0.4 60.9 34.3 4.3 68.4 35.7 25.1 65.8 41.1

2 7.4 80.1 50.3 21.7 80.6 53.3 23.1 76.3 50.8

3 89.6� 96.9� 95.1� 74.8� 92.9� 81.1� 71.7� 87.1� 75.3�

Notes.—The success rate,Minv, is calculated within the inverse horizontal magnetic region shown in the bottom panels of Figs. 1, 2, and 3;MBz
¼

P

Bzj jsuc/
P

Bzj j is
the ratio of the absolute vertical magnetic field over the number of success pixels to the total number of pixels;Mtotal is the success rate calculated within the entire model
region. Asterisks mark the greatest success for each model, method, and location.
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of opposite signs in the 180
�
ambiguous distribution,Bxo and Byo

(see the black asterisks in Fig. 7 against the components Bxo and
Byo).We call this failure the ‘‘vicinity-pixel effect,’’ which is near
the sudden change in signs of the ambiguous transverse com-
ponents. This effect also appears in method 3 over the same pixels
(see the black asterisks in Fig. 7, bottom). Away to eliminate the
vicinity-pixel effect was discussed by Boulmezaoud & Amari
(1999) when they applied method 3 to Low’s model and achieved
an almost 100% success rate. They employed a standard interpola-
tion technique that gives weighted contributions from surround-
ing pixels. The magnetic fields at a given pixel are obtained by
integral magnetic fields from surrounding pixels with weighted
functions. Byminimizing equation (13) over a pixel (x,y), they de-
termine the transverse field signs at the surrounding pixels.

Fig. 4.—Three methods as applied to model 1 (Low 1982) at different disk
locations, displayed from left to right. From top to bottom, method 1 is the ref-
erence field method, method 2 is the magnetic pressure gradient method, and
method 3 is the magnetic divergence-free method. Pixels are plotted where the
solutions agree with the original models.

Fig. 5.—Three methods applied to the twisted flux tube emergence model of
Fan & Gibson (2003, 2004). Again, the pixels are only plotted with transverse
field vectors, where method applications agree with the model.

Fig. 6.—Three methods applied to a twisted flux tube eruption simulation
(Amari et al. 2000). As in Figs. 4 and 5, pixels are only plotted where the results of
the removal of 180

�
ambiguity agree with the original simulations.

Fig. 7.—Examination of the failure in methods 2 and 3 applied to the Low
model field. The true (top panels) and ambiguous (middle and bottom panels)
transverse distributions are displayed here. White areas represent positive val-
ues, and the black areas represent negative values of the field strength. Black
asterisks mark the pixels where the failure of methods is due to the vicinity-pixel
effect (see the text). White asterisks mark the pixels where the method fails due
to computational errors when using the criterion of method 3.

180
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Method 1 shows slightly increasing success rates with in-
creasing angular distances for bothMinv and MBz

. This is gener-
ally true at success rates between disk locations W00

�
,N00

�
and

W30
�
,N30

�
with all models (seeMinv with method 1 in Table 1).

Since we determine the transverse field directions in an observ-
ing plane in method 1, the phenomenon is probably due to the
fact that a projected magnetic field is more alike in potential when
the region is viewed edge-on. However, this should not be re-
garded as the common conclusion that method 1 is more suc-
cessful than other methods when the regions have large angular
distances. Indeed, the success rates of method 1 are still low for
Fan and Amari models, 53.6% and 25.1%, respectively, within
inverse horizontal magnetic field configurations.

Method 1 fails with both Fan and Amari models, as shown in
Table 1. The success rates over the entire regions are at 70% and
30% levels for the Fan and Amari models, respectively. But the
success rates drop to less than 50% for the Fan model and are
only 0%Y25% for the Amari model when the pixels are exam-
ined within the inverse horizontal field configurations (see also
Figs. 5 and 6, top panels). Since it is known that both Fan and
Amari models contain highly twisted flux tubes over magnetic
polarity inversion lines, the failure of method 1 indicates that the
extrapolated potential fields are often antiparallel with the real
fields within the BP in the boundary.

Method 2 also fails with both Fan and Amari models. The suc-
cess rates range from a few percent to only 20% within the in-
verse horizontal field regions. About 85% of the pixels with the
Fan model and 17% of the pixels with the Amari model in the
inverse horizontal magnetic regions do not satisfy the assump-
tion @B2/@z � 0 implicit in method 2 (see the white areas in
Fig. 8, top panels). Within the inverse horizontal field regions,
over 90% of the pixels in both the Fan and Amari models violate
themethod 2 criterion, equation (10) (see the white areas in Fig. 8,
bottom panels). The discrepancy between the top and bottom pan-
els in Figure 8 is caused by the non-force-freemagnetic fields over
pixels, since the right-hand side of equation (8) is only equivalent
to equation (9) under the force-free field assumption. The figure
suggests that the Amari model departs more from the force-free
condition than the Fan model in the boundary, but the Fan model
violates @B2/@z � 0more than theAmarimodel does. As a result,
method 2 fails for two reasons with both the Fan and Amari mod-
els: (1) the magnetic pressures do not necessarily decrease with
height in some pixels, most of which are found in the inverse hori-
zontal field region in the Fan model; and (2) the field distributions
are not force-free everywhere, even when magnetic pressures do
decrease with height.

Method 3 is the most successful when applied to all three
MHD models by all accounts (see Table 1). It is significantly
more successful with the magnetic field configurations contain-
ing BPs (see the success rates with Fan and Amari models). Some
failures occur over small fractions of pixels for two reasons.
First, about 1.4% of the pixels in the Low model, 1.6% of the
pixels in the Fan model, and 5.0% of the pixels in the Amari
model do not satisfy equation (14). As an example, Figure 7
shows pixels marked with white asterisks where Q > 0. This
was probably caused by the approximate difference calculation
between two heights. Second, the rest of the faulty pixels were
due to the vicinity-pixel effect, as we described with the Low
model in the beginning of this section. The total number of faulty
pixels is very small compared with those obtained by methods 1
and 2.

Method 3 requires magnetic field measurements at a second
level. When the region is at the disk center, only the vertical field
at the second level, Bzh(x; y;�z), is needed. When the region is

off-center, both transverse and line-of-sight components, Bxo(x;
y;�z), Byo(x; y;�z), and Bzo(x; y;�z), are needed at the higher
level in order to provide the vertical field, Bzh(x; y;�z), through
the coordinate transformation procedure. Multilevel magnetic
field observations are not yet a common practice among solar
observatories, except for a few, such as the Huairou Solar Obser-
vatory of theNationalAstronomicalObservatories/ChineseAcad-
emy of Sciences,1 the Mees Solar Observatory,2 and the National
Solar Observatory.3 The technology to obtain multilevel magne-
tograms exists, but it is a question of collecting quality data. With
high-quality multilevel magnetograms emerging in the near fu-
ture, method 3 will inevitably become an attractive method, as it
does not rely on any assumptions about the magnetic field. Mean-
while, we recognize difficulties with method 3 when it is used on
real observational data. The major obstacles with method 3 are
as follows: (1) Replacing infinite differentiations with finite nu-
merical difference calculations. Although Boulmezaoud & Amari
(1999) proposed a method to deal with this problem, the finite
differentials will introduce additional errors by the observational
noise. (2) Themagnetic fieldmeasurements at two levelswill have
different magnetic sensitivities and spatial resolutions. These prob-
lems will have to be dealt with when the method is used on real
data.

5.2. Effect on Current Density and Current
Helicity Calculations

A common application of the photospheric vector magnetic
fields is to calculate the electric current density (Lin&Gaizauskas
1987; Canfield et al. 1993; Leka et al. 1993; de la Beaujardiere
et al. 1993; Li et al. 1997) and helicity density (Abramenko et al.
1996, 1997; Zhang & Bao 1999). Due to the availability of mag-
netograms at a single altitude, only the vertical electric current
density and the partial electric current helicity are widely calcu-
lated. How will the 180

�
ambiguity resolutions affect electric cur-

rent density and helicity distributions? With models we examine
both full and partial electric current density and current helicity

Fig. 8.—Examination of the failure of method 2 applied to MHD simulations
by Fan & Gibson (2004) and Amari et al. (2000). Top panels: Distributions of
@B2/@z. The distributions are calculated by taking the direct discretized differ-
ence between magnetic pressure at two levels: B2(x; y;�z)� B2(x; y; 0). White
areas represent @B2/@z > 0, violating a basic assumption of method 2. Bottom
panels: Distribution of P by eq. (10), where white areas consist of pixels with
P > 0 violating the criterion of method 2.

1 See http://sun.bao.ac.cn.
2 See http://www.solar.ifa.hawaii.edu.
3 See http://solis.nso.edu.
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density. The full electric current density is given byAmpère’s law,
J ¼ c/4�:< B,

4�

c
Jx ¼

@Bz

@y
�

@By

@z
;

4�

c
Jy ¼

@Bx

@z
�

@Bz

@x
;

4�

c
Jz ¼

@By

@x
�

@Bx

@y
; ð16Þ

where c is the speed of light. The vertical electric current den-
sity Jz is usually calculated using observed photospheric vector
magnetic fields (Lin & Gaizauskas 1987; Leka et al. 1993; Wang
et al. 1994; Li et al. 1997). In the case of the electric current den-
sity, the Jz disagreement between models and the resolved 180

�

ambiguity fields not only occurs on the ‘‘faulty pixels’’ but also on
those surrounding pixels. Therefore, success rates for the electric
current density are slightly lower than those for the transverse

fields. Figure 9 shows the vertical electric current density of the
‘‘true’’ distribution (top panels), along with the distributions
calculated from the resolved 180

�
ambiguous fields with the three

models. As expected, the faulty pixels in which the magnetic field
direction is incorrectly computed cause distorted Jz distributions.
This is especially evident with the Fan and Amari models using
methods 1 and 2. The problematic regions fall on those inverse
horizontal magnetic field configurations.

The electric current helicity density is defined asHc ¼ B =:<

B (Seehafer 1990), i.e.,

Hc ¼ Bx

@Bz

@y
�

@By

@z

� �

þ By

@Bx

@z
�

@Bz

@x

� �

þ Bz

@By

@x
�

@Bx

@y

� �

: ð17Þ

Figure 10 shows the total current helicity density distribution
of the Low, Fan, and Amari models and of the 180

�
ambiguityY

resolved fields in the boundary. With methods 1 and 2, the

Fig. 9.—Vertical electric current density for the true distributions given by the field models (top panels) and the distributions calculated from the fields after the
removal of the 180

�
ambiguity (middle and bottom panels). The three columns represent the three models, indicated by ‘‘Low’’ (Low 1982), ‘‘Fan’’ (Fan & Gibson

2004), and ‘‘Amari’’ (Amari et al. 2000).
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distributions for the Fan and Amari models have the distribu-
tions most distorted from the true ones. This is the same situation
as for Jz, namely, that the signs of Hc are reversed mostly within
the inverse horizontal field areas. Integrating Hc over the entire
region in the boundary, we obtain the surface-integrated electric
current helicity CH ¼

R

Hc dx dy. Note that the vertical deriv-
atives of the horizontal fields require the removal of the 180

�

ambiguity of the transverse fields at the second height. Obser-
vationally, the partial surface-integrated current helicity, pCH ¼
R

Bz @By/@x� @Bx/@y
� �

dx dy, is usually calculated to represent
the electric current helicity of the region from observations (see
Abramenko et al. 1996, 1997; Zhang & Bao 1999).

Table 2 lists both the surface-integrated current helicity and
partial surface-integrated current helicity over entire regions (the

unit of the current helicity is arbitrary). Their true values are listed
in the second and third columns marked ‘‘CH’’ and ‘‘pCH,’’ re-
spectively. The helicity values calculated from the resolved 180

�

ambiguity fields are listed under corresponding disk locations and
methods. We mark values of both CH and pCH with asterisks
when they approximate the true values. Method 3 gives consis-
tent values that are close to the true values of the three models,
especiallywhen the regions are disk-center locations. Comparison
between Table 1 and Table 2 shows that the signs of the surface-
integrated current helicity are mostly preserved when the number
of pixels with the correct sign in the transverse fields is greater
than 55%. The total surface-integrated current helicity is insen-
sitive to the ‘‘correct transverse field’’ distribution but sensitive to
the total number of ‘‘correct pixels.’’

5.3. Initial State of the Transverse Fields
and Success of the Methods

Aswe have described in x 4.2, we set the initial transverse fields
pointing upward throughout the region. In fact, the transverse field
azimuth does not exceed 180

�
after it is derived from Stokes pa-

rameters. Therefore, our adoption of the transverse field directions
to start with comes directly from observations.
To be general we have testedwith initial transverse fields point-

ing to the right, i.e., � varies between�90
�
and 90

�
throughout the

region. The successes for the three methods remain exactly the
same aswhen the directions are initially set to vary between 0

�
and

180
�
.

A more extreme case is to set the initial transverse field direc-
tion randomly to either � or � þ 180

�
in the individual pixels.

This results in directions 180
�
apart in about 50% of the adjacent

pixels throughout the region. The success rate remains unchanged
for method 1. This is consistent with the work of method 1, which
determines the transverse field directions by comparing fields be-
tween observed and extrapolated directions, while the extrapo-
lated field is computed from the longitudinal field. But the success
rates are at the 50%Y60% level with methods 2 and 3 no matter
which MHD model is used, where the region is located on the
disk, or whether success rates are calculated within the inverse
horizontal field configuration or over the entire region. This is
because the randomly assigned transverse field directions de-
part too far from the true distribution, and the methods are not
capable of recovering from too many errors. It is fortunate that
such an extreme case violates the magnetic field continuity and
is thus not physical. Therefore, such an initial condition is not
relevant to our work.

Fig. 10.—Electric current helicity density distribution. The true distributions
computed from the magnetic field models are shown on the first row. The den-
sity distribution of 180

�
ambiguityYresolved fields are in the second to fourth

rows using methods 1, 2, and 3, respectively. The three columns represent the
three models, indicated by ‘‘Low’’ (Low 1982), ‘‘Fan’’ (Fan & Gibson 2004),
and ‘‘Amari’’ (Amari et al. 2000).

TABLE 2

Full and Partial Surface-integrated Electric Current Helicity

W00
�
,N00

�
W15

�
,N00

�
W30

�
,N30

�

Model CH pCH Method CH pCH CH pCH CH pCH

Low ..................................... �1.6e8 �0.6e8 1 �1.6e8� �0.6e8� �1.6e8� �0.6e8� �1.7e8� �0.8e8

�1.6e8 �0.6e8 2 �1.6e8� �0.6e8� �1.5e8 �0.6e8� �0.9e8 �0.6e8�

�1.6e8 �0.6e8 3 �1.5e8 �0.6e8� �1.3e8 �0.6e8� �0.7e8 �0.4e8

Fan....................................... �7.3e4 �3.6e4 1 �6.1e4 �3.1e4 �5.4e4 �3.3e4� �7.7e4 �6.4e4

�7.3e4 �3.6e4 2 �4.6e4 �2.2e4 �6.0e4 �4.9e4 �7.2e4� �5.7e4�

�7.3e4 �3.6e4 3 �6.7e4� �3.3e4� �6.7e4� �6.0e4 �7.9e4 �8.2e4

Amari .................................. �1.8e3 �0.9e3 1 0.4e3 0.2e3 0.1e3 �0.1e3 0.1e3 0.4e3

�1.8e3 �0.9e3 2 0.0e3 0.0e3 0.0e3 �0.1e3 �0.4e3 0.2e3

�1.8e3 �0.9e3 3 �1.6e3� �0.8e3� �1.5e3� �1.2e3� �1.5e3� �0.4e3�

Notes.—(CH) Total surface-integrated current helicity within entire model region, eq. (17); ( pCH) Partial surface-integrated current helicity calculated with vector
magnetic fields in the boundary; pCH ¼

R

Bz @By/@x� @Bx/@y
� �

dx dy. Asterisks mark the values closest to the true values (shown in the second and third columns)
within each category.
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6. SUMMARY

We investigate the resolution of the 180
�
ambiguity problem

in response to the inverse horizontal magnetic field. Three meth-
ods are tested with three MHD models. The three methods are
the reference field method, force-free fieldYbased magnetic pres-
sure gradient method, and magnetic field divergence-free method.
The three MHD models are the nonlinear force-free analytical
solution (Low 1982), twisted flux tube emergence model (Fan &
Gibson 2004), and flux rope eruption model (Amari et al. 2000).
Low’s model does not contain BPs, while Fan’s and Amari’s
models do.

1. All three methods are noniterative. Methods 2 and 3 are
analytical; i.e., the 180

�
ambiguity is removed by calculating the

criteria pixel by pixel. They are fast in time.
2. Method 1 is not sensitive to the initial transverse field di-

rections, but analytical methods, such asmethod 2 and especially
method 3, are sensitive. They have a high success rate when the
initial transverse field directions are set correctly for about 50%
of the pixels. In our work, this means the initial transverse fields
point upward for all pixels. Methods 2 and 3 are not capable of
recovering true fields if the initial transverse field directions are
not physical.

3. Although success rates are high with Low’s model for all
three methods, the actual photospheric magnetic field may not
behave as the model describes. For example, the field does not
contain a BP. We cannot conclude that all three methods are suc-
cessful at solving the 180

�
ambiguity problem based on testing

methods with Low’s model.
4. The assumptions used in method 1 usually lead to a hori-

zontal field having the property B? =:?Bz � 0, i.e., a horizontal
field pointing in the direction of decreasing Bz. As a result, the
method does not work well in resolving the 180

�
ambiguity for

regions satisfyingB? =:?Bz > 0, especially over the BPs where
the inverse horizontal field regions overlap with the vertical mag-
netic polarity inversion line.

5. Within the inverse horizontal field regions, Fan’s model
violates the requirement that the magnetic pressure decrease with
height more than Amari’s model does, while Amari’s model is
more non-force-free than Fan’smodel in the boundary.As a result,
method 2 fails with both models.

6. Our strongest result is that the magnetic field divergence-
free method (method 3) is the most successful in resolving the
180

�
ambiguity problem for the BPs, which are important for the

system eruption. The method depends on magnetic field meas-
urements taken at more than one level. Our experiments strongly
indicate that this method is worth the effort to use multilevel mag-
netic field measurements in order to tackle the 180

�
ambiguity

problem.

7. In methods 2 and 3, the infinite differentiations are replaced
with simple numerical differences among neighboring pixels. The
current study shows the effect of the nontreated interpixel depen-
dence. Our results demonstrate that the effect is not severe when
applying methods to numerical models, especially in the appli-
cation of method 3.

8. Accuracy of the surface-integrated current helicity de-
pends on the total number of pixels where the signs of transverse
fields are correctly determined. The total surface-integrated cur-
rent helicity is insensitive to the ‘‘correct transverse field’’ distri-
bution but sensitive to the total number of ‘‘correct pixels.’’

9. With method 3, success rates decrease with field locations
farther away from the disk center. When the success rates are ex-
amined within inverse horizontal magnetic field configurations
with method 1, they have a tendency to slightly increase with in-
creasing angular distance of regions. This is probably due to the
field distortions, which are more alike in potential when they are
viewed edge-on.

While we give a summary of the present experiment above,
we are aware that there are some issues that remain to be an-
swered. Issue 1 is that pointing transverse fields upward for all
pixels as an initial state is obviously not 100% physical. Al-
thoughmethod 3 recovers 98% of the pixels, there may be a more
physical initial state in which method 3 will be more successful.
Issue 2 is the interpixel dependence implementation. Although the
problem is not severe with models, it may become an issue with
real observational data with added noise. These two issues are be-
yond the scope of this paper, and we expect to address them in
future work.

We are indebted to the Ambiguity Resolution Workshop or-
ganized by Bruce Lites, K. D. Leka, and TomMetcalf (aborted in
2005 April due to a snowstorm in Denver and completed in 2005
September, HAO/Boulder). The workshop encouraged authors to
extensively work on the resolution of the 180

�
ambiguity problem

withMHDmodels. J. L. is grateful to David Jewitt for reading the
manuscripts and providing valuable comments on both the sci-
entific merits and the quality of the writing. J. L. thanks her col-
leagueDonMickey for his discussion on some issues in the paper.
We would like to acknowledge Ali Bleybel for his efforts on the
180

�
ambiguity problem when he was T. A.’s student. We thank

the referee for critical comments that greatly improved the paper.
J. L. is supported by NASA grant NAG5-12880, a subcontract of
the NASA grant ‘‘Velocity Structure and Plasma Properties of
Halo CMEs’’ awarded to the Smithsonian Astrophysical Obser-
vatory and the University of Hawaii (SV 3-73017), and the Na-
tional Science Foundation grant ATM 06-31790.
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