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ABSTRACT

The Burgers equation with a small viscosity term, initial and periodic boundary condi-

tions is resolved numerically using a spatial approximation constructed from an orthonormal

basis of wavelets.

The algorithm is directly derived from the notions of multiresolution analysis and tree

algorithms. Before the numerical algorithm is described these notions are first recalled.

The method uses extensively the localization properties of the wavelets in the physical and

Fourier spaces. Moreover, we take advantage of the fact that the involved linear operators

have constant coefficients. Finally, the algorithm can be considered as a time marching

version of the tree algorithm.

The most important point is that an adaptative version of the algorithm exists: it allows

one to reduce in a significant way the number of degrees of freedom required for a good

computation of the solution.

Numerical results and description of the different elements of the algorithm are provided

in combination with different mathematical comments on the method and some comparison

with more classical numerical algorithms.
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1. INTRODUCTION

The nonlinear parabolic equation

Ou uau z' 2u

known as the Burgers equation is one of the simplest combining both nonlinear propagation

and diffusive effects. It represents a first step in the hierarchy of approximations of the

Navier-Stokes equation. Solutions of this equation exhibit a delicate balance between the

nonlinear advection and the diffusion terms. This situation leads to solutions with rapid

and localized variations. Moreover, exact solutions are known (thanks to the Hopf-Cole

transformation). Thus, this equation appears to be a very convenient and useful test problem

for new numerical schemes.

This paper is devoted to the numerical resolution of the Burgers equation (1) with pe-

riodic boundary conditions on [0,1] and known initial condition: u(0, t) = u(1, t); u(x, 0) =

sin(27rx). We use a new algorithm based on a spatial approximation provided by an orthonor-

mal wavelet basis exploiting as much as possible the numerical localization and regularity

properties of the wavelets. One of the greatest advantages of this algorithm is that the

whole method can automatically adapt itself to the generation of large gradient regions in

the solution.

After a short review of the notions of multiresolution analysis and tree algorithms that

are required for the construction of orthonormal wavelet bases and that are the keystones

of our numerical algorithm, some properties of r - regular wavelet bases and particularly

of spline wavelets (Section 2) are recalled. The choices and definitions for the numerical

algorithm are discussed first in the regular case (Section 3.1) and secondly in the adapted

case (Section 3.2). Numerical results are presented in Section 4 with a complete description

of the different elements of the method. Comparison with a classical Fourier pseudospectral

method is provided. Section 5 is devoted to concluding remarks.

2. CONSTRUCTION AND BASIC PROPERTIES OF ORTHONORMAL

WAVELET BASIS

The natural framework in which to construct bases of wavelets is given by the multireso- '

lution analysis. This new concept, elaborated by S. Mallat and Y. Meyer, is also well adapted

to the approximation of functions for numerical purposes. 0

The existence of a "Fast Wavelet Transform," based on the class of tree algorithms studied

by S. Mallat and I. Daubeschies, is also a nodal point.
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We briefly describe the main definitions and results we will need. The reader is referred

to the book of Y. Meyer [Meyer 1987] for a complete account on the subject. Local analysis

properties will demonstrate the quality of the wavelet approximation and help to explain

the flagging process used in the adaptative version of the algorithm. The periodic spline

wavelets will be presented at the end of this section and the different properties motivating

their choice for the numerical resolution of partial differential equations will be recalled.

2.1. Multiresolution Analysis

As introduced by S. Mallat and Y. Meyer, a multiresolution of L2 (1I?) is a specific

approximation scheme for finite energy functions. In this paper we restrict ourselves to

n = 1. A multiresolution of L2 (IR) is an increasing sequence of closed linear subspaces

V,j E Z such that:

+00 +00

(2.1) n = {o}, U V is dense in L2(JR)
-00 -00

(2.2) f(x) E V = f(2x) E V+ 1

(2.3) f(x) E Vo 4=:€, f(x - k) E Vo, Vk E X

(2.4) There exists a function g(x) in V such that the collection g(x - k), k e Z is a Riez

basis for V

(A collection of vectors ei,j E J, in a Hilbert space H is a Riez basis if any vector x C H

can be written in a unique way as a sum x = Iaj ej where (E aj 12)1/2 is finite and defines

an equivallent norm.)

The multiresolution analysis is called r-regular if the function g(x) defined by (2.4) has

the following property:

(2.5) 10'g(x)l < Cp(1 + Ixl) -P for a < r, all x E R and all integer p.

This property can be interpreted as a quantification of the localization properties of the

function g in the physical space (a = 0) and in the Fourier space (a > 1).

Let us give two examples of multiresolution analysis that generate classical spaces. The

first one, to which people familiar with spectral methods automatically think, is provided by

the Paley-Wiener analysis. In this analysis, V is made of functions whose spectrum belongs

to the interval [-2-1,21J-]. g is the cardinal sinus g(x) = ! It is well-known that g
2rZ



is infinitely derivable but is badly localized in the physical space. Consequently, for every

value of r, this multi-resolution analysis is not r-regular.

The second example is the spline multiresolution which will provide the spline wavelets

that will be used in the following numerical implementation of the algorithm. Here, given an

integer m > 2, Vi consists of all functions with rn- 2 continuous derivatives whose restrictions

to any interval [k2-', (k + 1)2-1] coincide with a polynomial of degree less or equal to m - 1.

g(x) is given by the so-called basic spline g,.(x) which is the m fold convolution of the

characteristic function of [0, 1]. g,, is supported by [0, m] and, satisfies (2.5) for r = m - 2.

2.2. The Construction of Wavelets from the Multiresolution Analysis

The construction of the wavelet basis stems from the fact that during the process of

refinement in the approximation one wants to only store the improvement from the approx-

imatior j to the approximation j + 1. Mathematically, one introduces at each step j, the

subspace W, defined as the orthogonal complement of Vi in V3+,. The W space family

satisfies the scaling (2.2) and translation invariance (2.3) properties imposed on V3, so that

attention can be focused on W. Then one has the fundamental theorem proved by S. Mallat

and Y. Meyer.

Theorem: There exists a function ?p of Wo such that {?)(x - k), k E 2} is an orthonormal

basis of Wo. ?k has the same regularity properties (2.5) as g, and V2 is an oscillating function:

(2.6) J xP(x)dx = 0 for 0 < k < r.

Then, the family of functions {?Pik(x) = 2j/ 24(2'x - k), k E Z} is an orthonormal family

of Wj and, as L2(JR) = EjEWj, {Vtk(x),j c X, k E &} is a hilbertian basis of L2 (J).

This family is an orthonormal wavelet family. Combined with (2.5) for a > 0, equation (2.6)

characterizes the localisation of the wavelet generating function in the Fourier space.

The proof of the theorem introduces an orthonormal basis of Vj that will be denoted

by {k(x) = 2j/2q(2jx - k), k E Z}. These functions are called by S. Mallat the scaling

functions due to the fact that f 4(x)dx = 1. They satisfy the same regularity properties (2.5)

as g.

Given an integer jo and writing L 2(JR) = E,) E >, Wj one obtains another hilbertian

basis of L2 (BR) : {o,k,2kk,j > jo, k E &}.

Let us go back now to the two examples:

The Paley-Wiener Analysis provide ILI'e wavelet generating function i(X) given by:

=2 cos7rx - sin 27rx and e'(w) X1/2<w<1

r(2x - 1

3



where ' stands for the Fourier transform of i : tk(w) = f 4(x)e- w dx.

has a compact support but the localization of 0 is poor as it decreases as -L at infinity

and O(w) = 0 if Iwi < , which means, in a weak sense, that all the moments of 0 are

vanishing.

The spline multiresolution analysis provides the "exponentially localized wavelets" de-

rived by P. G. Lemarie and G. Battle [Battle 1987, Lemari6 1989]. The generating wavelet

,O(x) satisfies the following properties:

(2.7) O(x) and all its derivatives to the order m - 2 are continuous

there exist e > 0 such that 10(x) I _ Cce-e1 zi, I-() Cie-,-m,...

(2.8)

I2_< C,_e-ml-I

(2.9) J00 x'(x)dx = 0 for k = 0,... ,m - 1

is given in the Fourier space by

e I PMl 2, sin 2 m '"I-. () o- ](s

where Pm is the m order polynomial given by

P,_i (sin2 w) 1

(sinw)2m- = (W + kw) 2m"

The scaling function 0 is also "exponentially localized" and satisfies:

1 sinm(7rw)

¢~w) = (7rw), [P,_,(sin,(7rw))]i

For m = 6 the generating spline wavelet 4' and scaling function 4 are plotted in Figure 1.

2.3. Tree Algorithms

The tree or pyramidal algorithms are the basic tools for the fast computation of wavelet

coefficients. Also. the numerical algorithm presented here is efficient thanks to its pyramidal

structure.

4



If jM is a given integer, fixing the level of approximation at 2-M, the tree algorithm

allows fast computation of the wavelet coefficients from JM - 1 to an order jo,jo < jM,

starting from the scaling coefficients in VM.

Writing

iM-1

(2.10) Vm, = VEJ E W3
j=jO

and starting from the jM approximation of a function U, we have

Hv,,(U)(x) = E 2'ml2c,.,0(2jmx - k).
kEZ

(Generally, 1Ix stands for the orthogonal projector from L2 (1R) on the subspace X.) At

each level j, S. Mallat [Mallat 1988] shows that, due to the orthogonality properties and the

scaling, IHw_, (U) and IIv_, (U), written as:

lwj_,(U)(x) = 2 2 d.._, 1V(2j-'x - t)
IEZg

and

nv_1 (U)(x) = 24 c1_i,(2'-1x - t)

IEZ

can be computed from Hv (U) using the formulas:

i-1,l = E cijk g(2V - k)
k

and

Cj_ , = j C3 ,k h(21 - k)
k

where g and h are two discrete functions depending only on the multiresolution analysis and

independent of j. These functions are precisely defined as:

vg E BV: g(n) = 7 < i1,o, 00o,n > and h(n) =7= <&.i,o, q0,. >

with

g(-n) = g(n), h(-n) = h(n)

where < .,. > stands for the L2(IR) inner product (< f,g >= f f(x)g(x)dx).

Practically, it means that with the storage of two discrete functions h and g which are well

localized thanks to the localization of 4' and 0 , one computes with an order of NLogN(2TM =

N) operations the (2iM - 2 o ) wavelet coefficients and the 230 scaling coefficients corresponding

to the formula (2.10). The discrete functions h(n) and g(n) are plotted on Figure 2 in the

5



physical and Fourier spaces in the case of the spline multiresolution with m = 6. They

classically appear as C low pass filter and a high pass filter respectively.

2.4. Approximation properties of Wavelets

Approximation properties of orthonormal wavelets can be interpreted from different

points of view:

As the space generated by the wavelets up to an order j - 1 is the space Vy of the

multiresolution, the approximation results are driven by the properties of the scaling function

2j/ 20(2jx) that, with its translates Oil, generate V. It is then a more classical problem of

approximation by translates. The general results relating the quality of the approximation

to the degree r of r-regularity of the multiresolution can be found in Y. Meyer's book [Meyer

1990].

Moreover, if the space V is split in the different contributions of W, 1 < j - 1, a char-

acterization of the Sobolev space Ha(R) can be obtained from the decay of the wavelet

coefficients as :

Theorem: If fbelongs to H- (JR), if V,j E X is a r-multiresolution of L2() and if-r <

s < r then fbelongsto H(R) if and only ifIvO(f) E L2 (R) and IIl-wi(f)l12 = ej2-is,j E N,

where ej E 1(N).

Another important result for approximation by wavelets deals with the characterization

of singularities from the wavelet decomposition. The singularity of a function at a point x0

can be described with the Lipschitz exponent a defined as:

f(x) is a Lipschitz at x0 ,(0 < a < 1) if and only if for all x in a neighborhood of x0 one

has:

If W - fC'o)I= 0(II - xoIX1).

The following theorem hclds:

Theorem: A function f belonging to L 2(JR) is a Lipschitz with 0 < a < 1 in all points of

an open interval if and only if for all x in the interval one has:

I < fiPjk > I=
•

As pointed out by Stephane Mallat [Mallat 1990], an extension of this result can be

obtained when the initially a singular function f is smoothed by a smoothing kernel. For

instance with a gauusian of variance o one has the following result:
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The wavelet coefficient of the smoothed function at the scale 2-4 is of the same order of

magnitude as the wavclet coefficient of the original function f at the scale s = -/2- 27+ o2.

The previous theorem then holds by changing 2- j in V2 - 2-7 + 2.

On one hand, when 2-1 > , i.e., when the scales under study are larger than the

smoothing scale, the previous theorem shows that the characterization of the degree a from

the wavelet coefficients of the smoothed function is still possible. On the other hand, when

2- j < , the scaling effect disappears and no characterization of the degree of singularity is

possible from the wavelet coefficients of the smoothed function.

2.5. Periodic Spline Wavelets

As pointed out by Y. Meyer [Meyer 1990], the complete tool box built in L 2(JR) can be

used in the periodic case for L2([0, 1]) by introducing a standard periodization technique. It

has been implemented by V. Perrier and C. Basdevant [Perrier and Basdevant 1989]. This

technique consists at each scale in folding, around the integer values, the wavelets 2Pjk and

the scaling functions Ojk centered in [0, 1] resulting in

4'pgk(X) = 1:Vj.( - 1)
1EZI

and

'kPj1(z) = Z: dik(x - 1).
IEZ

This folding provides a multiresolution analysis of L2 ([0, 1]). Due to the finite size of [0,1],

j takes only positive values and k takes a finite number of values at each scale: 0 < k <

2j - 1. Moreover, the periodized function Opo,0 that generates Vpo is constant and equal to

1. Following V. Perrier and C. Basdevant, the periodic m order spline scaling functions and

wavelets are { jz:Z) = 23/ d

O~jo()= 23,2'(~

where kpjk and 'pjAk generate respectively Vj and Wpj.

For simplicity in the notation, from now on the subscript p will be removed. When

necessary the subscript up will be added for the non periodized functions.

As far as numerical application is concerned, the spline multiresolution offers the following

advantages.

First, it is known that if the degree m of the spline is even, there exists a Lagrangian

interpolant function g9 3 of VM such that gjm(k2 - jm) = 8k,o. (6 stands for the Kronecker

symbol: 6 ,,o = 1 if and only if k = 0.) The functions gjm(x - k2 - m) 0 < k < 2iM are then

7



an unconditional basis of VM. Thanks to this basis, it is possible, for any function U(x), to

consider its interpolation on VM given by

flcv;M(U)(xr) = U(k2-'m )gm(x - k2-3m ).
(u<k<2iM

This collocation projection is very useful when one wants to apply the classical but efficient

pseudospectral treatment to nonlinear terms (see Section 3.1.5).

A second point of interest stems the numerical localization of the generating functions

,0 and 0,,p in physical and Fourier spaces. Numerically, the exponential decay of these

functions can be described by the required support to which O,,p or O,,p (or 4 ,'p and &P) can

be restricted without altering their L2 norms (equal to 1) up to a fixed precision a.

In the physical space, the support of the periodized functions Ojk and Oj/k is directly

connected to the support of 0,p , and if,,p jk as soon as the length of these last supports is

less than 1 (otherwise the support of Ojk and jbjk is [0,1]). Moreover if S, and S,,p are

the supports of 0,,p and ?k,,p the supports of 0,,4p 3k and Oup ik are respectively -F and S-u-

For m = 6, the following estimations are obtained:

precision a support of ,,p support of Oup

10- 3  Ix < 3.50 Jlx < 3.25
i0- I < 4.75 lxi < 4.75

and an estimate of the increase of the length of these supports with m can be found in [Perrier

and Basdevant 1989]. For j _> 3, m = 6 and up to a precision a = 10- , the functions (Oup)j'

and (4 up)jk have a numerically compact support of length less than 1.

In the Fourier space, the periodization does not affect the support of the functions and

4. If S are the bounds of the support of (or ), 2jSi ar- the bounds of the support of 4jk
(or 4 j'k). For m 6 we obtained

precision a support of support of

10- 3  JwI < 0.625 0.34 < Iwi < 1.29

10 - 4  IwI < 0.685 0.27 < JwJ < 1.40

The length of these supports decreases as m increases. We will strongly use the fact that,

for m = 6 and a = 10- 3 , the numerical supports of Pk and 4 j+2.k are disconnected.

A third advantage of the spline wavelets is the very easy control of their cancellation

(the first m - 2 moments of each wavelet vanish). As has been shown in Section 2.4, on

one hand, this property is required to have a good convergence of the wavelet series and a

8



good characterization of the local properties of the analyzed function. On the other hand,

as m increases the localization in the physical space of the wavelet decreases. To obtain a

"satisfactorily localized function" with "good cancellation," one has to define a compromise

for the choice of m. All the numerical results presented in this paper are obtained with

m = 6.

To be complete, one must recall that an efficient implementation of periodic spline wavelet

decomposition has been described by V. Perrier and C. Basdevant [Perrier et al. 1989]. It

allows computation with order of NLog(N) operations of the wavelet coefficients of a periodic

function described by N regularly distributed collocation points. This algorithm has been

extended to a non complete (non regular) distribution of points.

3. THE ALGORITHM

Taking apart the Lagrangian methods, num(,'ical algorithms can be roughly speaking

separated into three families: finite difference schemes, finite element methods and spectral

schemes.

The class of finite difference schemes is known to be very efficient in intricate configura-

tions because it can be easily adapted to resolve localized difficulties such as large gradient

regions or sharp boundary conditions. This flexibility, however, hides a difficulty in control-

ling precision. Moreover, the computation cost increases considerably with the precision.

The finite element schemes offer a better controlled precision and are extensively used

for intricate boundary condition problems in multidimension. However they suffer from

difficulties in getting very flexible and fast algorithms.

The precision of spectral methods is well-known ([Gottlieb and Orszag 1977], [Canuto

et al. 1987]) and their efficiency for problems with a high degree of regularity has been

demonstrated. However, they are fundamentally ill-suited to problems that develop strong

local gradients or discontinuities in their solutions.

The wavelet approach provides a multiscale decomposition based on orthonormal, regular

and numerically well localized functions. It can then a priori offer an interesting compromise

between precision, efficiency, and adaptability.

3.1. Description of the Algorithm on a Regular Grid

3.1.1. The Grid Points

Given a family of wavelets, one can characterize the space X that they generate by the
k 1

dyadic grid built from the set of all yj, = k + 1r such that 'jk belongs to X (see Figure 3).

9



If X is a space VjM, then a regular grid corresponding to the centers of the scaling functions

4
'iJh is built from the xk. 2iM is the level of approximation.

3.1.2. The Algorithm

The algorithm is first described generally for the evolution equation

SC+LU+G(U) =0

U(0,t) = U(1,t)

(3.1)

U = Uo for t = 0

t>0,0<X<1

where L is a linear operator and G is a function of U and its derivatives. An approximate

solution UM, belonging to a trial space XM, (XM = Vim in the case of a regular grid) is

sought as a solution of the equation:

{ _M .+ LMUM = Ixm(G(UM) )at

UM(X,O) = Hhmuo.

Here LM is an approximation of L, of the form PxMLHlxM, where HXM is the orthogonal

projection onto XM, and PXM is another projection onto XM parallel to the orthogonal of

YM, another space .o HxM(G(uM)); the approximate equation becomes

{ at LMUM - GMat
(3.2)

UM(X,0) 
= UoM( ).

Using the classical name conventions for the Methods of Weighted Residuals (MWR) (see

[Canuto et al. 1987]), we call trial functions the wavelets , 0 < j < jM, 0 < k < 2i and

O0,o and introduce a family of functions 0,,-r E T, called the test functions: they generate our

space YM. The weighted residuals minimization statement is then equivalent to the following

variational formulation:

<(3 { t LMUM -GM,v>=0 forallvEYM
(3.3) 

U X ) = UUM(x,O) =UoL(x)

where < .,. > stands for the L' inner product on [0,1]. In the case of the Burgers equation

(1), we will have LU = -v9-y, G(U) = -2(U21 ) GM(U) = rlc(G(U) and the test functions

06 will be defined in the next paragraph.

10



3.1.3. Choice of the Test Functions and of the Time Discretization Scheme

The general idea of the algorithm is to comply with the localization of the wavelets in

the Fourier space and in the physical space. We know that, in comparison to the Fourier

functions eil=, the localization in the physical space implies the mixing of the frequencies

that prevents the wavelets from being eigenfunctions of differential operators. However, they

are not far from being so. Indeed, the localization of the wavelets in the Fourier space leaves

the differential operators nearly diagonal.

In the particular case of the spline wavelets, it has been shown previously that, to a given

precision a, the numerical supports of 1o and Vl are disconnected as soon as Ij -j' > n(a)

(for a = 10- 3 ,n = 1). If D is a differential operator with constant coefficients, the same

property holds also for D4j'k and oj,k with a new precision a' depending on the spectrum of

D. If, for instance D = (1 - vo=62 ), the precision is unchanged.

The algorithm we are going to describe here takes large advantage of this property.

Moreover, thanks to the fact that the coefficients of the Burgers equation are constant, some

precalculations can be performed once and for all. Indeed, the main part of the work to be

performed at each time step of the MWR can be done only one time and reused at every

time step. This is done by a proper choice of the test functions O,.

Let us be more precise in the case of an Euler time discretization scheme, implicit for the

dissipation term and explicit for the convection term. This choice is made only for sake of

simplicity in the following presentation and more sophisticated schemes are currently used

for the numerical implementations (see Section 4).

Equation 3.3 is discretized as follows:

< (1 _ vAt 9
2 

)UZa,, =8(uZ) 2 v > for all v E YM

uM (X,0) = Uo0. -2a

Choosing r = (j, k) and 0, = Ol, such that

(3.5) Ojk(X) = (I- vAt-2) ')-bjk(X)

I OOWx = 00OO(X

we invert once and for all the above direct problem at each scale.

Following this choice, the following set of equations is obtained:

<,ZkI= ', +<11t (, . >

< UZf+ , €oo0 > = < UZ, 00 >



that can be written as:

< UZ+',Oj1 >=< U, Ojk > + < (U), k >

(3.6)
< uf+, 0o>=< u ,Oo >

where we introduced another set of functions:{~~ - (_ I - at 2 )) k

(3.7) 
=

0 () = 0.

Using a Crank Nicholson discretization scheme and spline wavelets of order m = 6, the

function 0 associated with -0,p using (3.5) is plotted on Figure 5. Roughly speaking, the Oji,

functions look like the corresponding wavelets Ojk: In the case of the spline wavelets, the

Ojk functions are exponentially localized in both Fourier and ph sical spaces. Moreover they

have the same number of zero moments as the original wavelets and their numerical support

in the Fourier space is included in those of the corresponding wavelets. At each scale, the

Ojk deduce one from the other by translation but the wavelet rescaling property from one

scale to the other is no longer valid.

3.1.4. Computation of < UZ, OjA >

A fast computation of these coefficients is possible thanks to the previous remarks. If,

following 2.10, one writes:

Vj < jM - 2 n lm = nlvj+, E ) W
jM-I>I>j+2

following 3.1.1 with D = (I _ vAt 92 ), a numerically good approximation of < UD, Oi, > is

< Hv+,(U~r), Ojk >. Then, recalling that:

'I~v+2 = e+ IIWj+1

one gets

< U 9 k >_ < nV, 2 (UZ'), Oi >!-< vl,+(U ),Okj > + < nw.,+(UZ),Oj >.

Since we have liv+, (U~r) = , and lwj+, (UD) = E dj+lI+ll we obtain

< UM, Oi > cj_ ,+i,. ci,(i - 2k) + d1+1,0t(i - 2k)

where ai and fli are two families of discrete functions parameterized by j and depending on

the multiresolution analysis, on the equation and on the time scheme. They are defined as

Vn E W a(n) =< 4i,,Oi-,o > and Oi(n) =< ¢On,0i-1,0 >

12



and

a(-n) = aj(n) and P3j(-n) = #3i(n).

As in the tree algorithm (Section 2.3), the calculation of {< Uir,0jk >, for 0 < j <

3M-i and 0 < k < 2j} involves two filtering procedures. The whole calculation requires

order NLogN operations. The coefficients of the filters a and O3, are stored in the memory

at the beginning of the calculation in an array of size proportionnal to NLogN .

One wants to emphasize that the one-time computation involved in the calculation of the

functions O, is possible because the operator I - vAt-= has constant coefficients.

The computation of < UZ, 0j > can be done the same way using two other families of

filters, a.,;, as soon as (UZ) 2 is computed (see next section).

Recalling that the filters aj, 18,, a , 3 depend on At, it must be said that the independence

of At with respect to j is not required. Practically it means that the time step At can be

adapted to the spatial scale, a possibility that can be useful in optimizing the time stability

and precision conditions.

3.1.5. Estimation of the Nonlinear Terms

The calculation of the nonlinear terms, precisely (U) 2 , is done using the classical collo-

cation technique.

3.1.6. Implementation of the Algorithm

At each time step, the algorithm works as follows: supposing that (UZ) is known by its

values at grid points, its scaling coefficients or its wavelets coefficients, U + ' is computed

using an order of NLogN operations as shown in Table 1.

Un E Vim Pseudospectral 2 E

j Tree Algorithm I
<U A&,,j > < (UZ,)2, O >

U E VM

Table 1.
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3.2. Description of the Algorithm on a Non Regular Grid

Up to now, XM was equal to ViM which means that every wavelet Vjk with(j, k) such

that 0 < j :5 jM and 0 < k < 2j - 1 was considered in the approximation of the solution.

However, the distribution of scales significantly building a given function in the sense

provided by its wavelet decomposition has no reason to be regular in the whole interval

[0,1]. Figure 7 shows the wavelet decomposition of the solution of (1) as large gradient

regions develop locally around x = .5. According to the values of the wavelet coefficients,

small scales (j > 5) are only meaningful in a region very close to .5 and for time larger than

.5/7r. More precisely, if we choose a given precision a on the L' norm and look at the number

of wavelets required to approximate the solution at different times it appears that only a

small number of coefficients of the wavelet decomposition are needed. For instance, with a

L' norm precision of 106 the number of wavelets required to reconstruct the solution at

t = 1/7r is 74. The distribution of these "active" wavelets follows the cone shape structure of

Figure 7. Our main goal is to compute only the wavelet coefficients < UJ, Vjk > in a region

as close as possible to this "active" space.

The adaptative version of our algorithm is designed in order to fulfill efficiently this

requirement. It involves different steps:

Step 1: Estimation of the required space of approximation for the next time step: In

a way comparable to what is done in spectral methods (see Gottlieb - Orzag 1977), the

accuracy of the computation is examined, locally in the case of wavelets, from the shape of

the local spectrum provided by the wavelet decomposition at every point.

Step 2: Adaptation of the space of approximation for the next time step: According

to the result of the previous estimate and the knowledge of the operators of the Burgers

equation, the space of approximation XM is optimized (XM.) for future time by truncation

of non "active" small scale wavelets or local addition of smaller scale wavelets (that are

supposed to become "active" during the future time steps). (The smallest scale wavelets in

XM. belong to W3M,_I)

Step 3: Time advancing on the adapted space XM,.

We are going now to describe in more detail the adaptative version of the algorithm

in terms of flagging criterion (Step 1) and new trial and test functions (Steps 2 and 3).

Moreover it will be shown that the general structure of the algorithm remains unchanged.

3.2.1. New Trial Space XM and Test Space YM but Same Algorithm

Figure 4 shows the selected values of (j, k) of an adapted grid generated by the adapted
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version of the algorithm for the Burgers equation (1) at t = 1/;W. Precisely,

XM. = span {'jA:, (j, k) E JK}

where

JK = {(j,k) such that 0 < j <JM,0< k < 2i

or such that j = jM, k, _ k < k2

or, j = jM +1,k' <k <k'J

1 - - 2

with jM = 6, kl = 22 k2 = 31 k' = 54 k' = 73. jM. = 8.

To define completely the algorithm, one has also to define the YM. space. This is done in

exactly the same way as it has been presented in the regular case: the generating functions

of YMa are derived from the basis functions of XMa using (3.5). Due to the local form of

the algorithm, the whole procedure remains unchanged when the trial and test spaces are

adapted. The complete procedure is identically reproduced without modification.

This highly attractive property is due to the localization properties of the wavelets and

of the algorithm in physical and Fourier spaces.

The adaptive procedure is precisely a controlled modification of the space of approxima-

tion in which one looks for the solution. As this procedure consists in adding or subtract-

ing orthonormal functions, the so-called restriction and interpolation operators are exactly

known: they are directly provided by the tree algorithm. Moreover, no reversibility problems

are encountered during the restriction and interpolation procedures.

For completeness, some words must be said on the flagging procedure used to modify

the subscript space JK (this is the practical way to adapt XM). In the case of the Burgers

equation, this procedure is very simple and cheap. Basically, starting from the smallest scale

available (jss),the attention is focused on the smallest scale projection of the solution

nIwI 5 (U) = k < UZi VPjssk > "kjssk

k such that (jss,k)EJK

As shown in Section 2 and Figure 8, this function is localized in the strong gradient

regions. The energy associated with the wavelets ijssk, precisely I < 'ijss,, UZ > 12,

reveals the amount of energy of the solution in the scale jss around the point 1 -:F +

k .S The Burgers equation is such that, due to the presence of nonlinear terms in the

equation that generate smaller and smaller scale, only small values of these coefficients are

relevant (otherwise oscillations occur). Consequently, if I < Ojssk, UZ > 12 is greater than

a predetermined value, the space XM of approximation is adapted by adding new smaller

scaled wavelets 4', , (j. = jss + 1), around the point - + -'. Adaptivity means also
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restriction of the space XM. and, using a comparable criterion, small scale (jss) wavelets can

be removed in a region where the terms I < UD, 1kj*
2 are not significant. (This occurs in the

second regime of the Burgers solution when the viscosity smooths the gradients previously

generated during the first regime.)

4. NUMERICAL RESULTS

This section is devoted to a practical and numerical description of the algorithm. The

basic elements of the problem and the algorithm are repeated for clarity.

The periodic regularized Burgers equation

8U UBU = P0
2
U19t ir x -- X2

t > , [0, 1],v = -2
ir

U(0, t) =U(1, t)

U(x, 0) - sin(2rz)

is solved numerically in the space of splines of order m = 6. The trial functions are the

periodic spline wavelets OkiA and 000 . The test functions are defined following the general

procedure described in Section 3.1.5. All the following results are obtained using an Adams-

Bashforth time scheme for the nonlinear convection term and a Crank-Nicholson time scheme

for the diffusion term. The integration time step, for every scale is At = 10-. We recall here,

that the choice of the time scheme and the value of At directly influence the definition of the

functions Ojk and rk. However, knowing the time discretization scheme, their estimation is

staightforward.

The filters used in the wavelet decomposition are noted h and g. The filters defined to

compute the scalar products < Ur, Ojk > and < (UD) 2 , OA > are noted aj,,Oj and ac, jj

respectively. The Figures 1, 2, and 5 show in the Fourier and in the physical spaces some

selected elements of the different mathematical beings defined above.

The evolution of the approximated solution U(x, t) from t = 0 to t = 1.5 is plotted on

Figure 6 where JM = 8 and a regular grid (Figure 3) is used. Considering the theoretical

solution of the Burgers equation (see [Basdevant et al. 1986]), this can be considered as a

reference estimation of the solution. Figure 7 shows the wavelet coefficients of the solution

at the same times. Figure 8 shows the time evolution of the energy carried by the scale

j-6.

At the same times, the same elements are plotted for a calculation run using jM =

7 and a regular grid. Figure 9 reveals that the lack of resolution in the strong gradient

region (around : = .5) induces numerical oscillations of the solutions close to those observed
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when a Gibbs phenomenon occurs. These oscillations are however localized in space mainly

thanks to the filtering operation performed by the spline projection of the variables and their

derivatives. Figure 10 shows again the time evolution of an approximate solution obtained

with a computation started with jM = 6 (that is to say 26 = 64 degrees of freedom and

jss = 5) and that has been obtained using the adaptative procedure. From a time close to

t= .5/7r when the local gradients begin to be very large the adaptative procedure adapts

progressively the space to JM4 = 7 and (kl, k2 ) = (22,31) (that is to say 64 + 20 = 84

degrees of freedom) and then (for .66/7r < t 1.4/r) to 3Mo = 8 and (k',k') = (54,73)

(that is to say 64 + 20 + 20 = 104 functions). The corresponding dyadic grid is the one

of Figure 4, the smallest scales j = 6 and j = 7 being used only when required. Finally

on Figure 11, the evolution of the approximate solution using the same time discretization

and a Fourier pseudospectral spatial discretization is plotted. The resolution is 2' = 128.

First, one observes, in comparison to Figure 9 which is obtained with the same resolution

(i.e the same number of degrees of freedom), that the oscillations are much more spread in

the Fourier case, due to the non localization of the basis. Secondly, comparison with Figure

10 shows that with a maximum of 104 well distributed degrees of freedom, a much better

result can be obtain from the adapted algorithm. It is known (see [Basdevant et al. 1986])

that to improve the precision of a Fourier spectral method without increasing the number of

degrees of freedom, intricate coordinate transformations are required that imply moreover

an a priori knowledge of the solution shape.

A comparison of the four different approximations presented above is made in Table 2.

T,.. is the time needed to reach the maximum slope at x = 0.5, and Sm.. is the value of

this slope. No optimization study of the time marching scheme has been made that would

have improved the estimates of S,. and T,. (see [Basdevant et al. 1986]).

Table 2: Comparison of some different methods.

Algorithm 27rT== S../2. Degrees of
(AB-CN Time scheme) Exact:1.6037 Exact:152.005 freedom

Present Algorithm. m = 6 No 256

jM = 8, regular grid 1.64 150.3 oscillations
Present Algorithm. m = 6 Localized 128

jM = 7, regular grid 1.63 135.0 oscillations
Present Algorithm. m = 6 No < 104

jM = 6 ,JM. = 8 adapted grid 1.64 150.3 oscillations

Fourier pseudospectral Spread 128

n = 128 1.62 134.8 oscillations
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5. CONCLUSIONS

The numerical resolution of the 1D periodic and regularized Burgers equation has been

performed using a new algorithm. This algorithm is based on the wavelet representation of

the space of approximation. In the so-called regular grid case, this space is nothing more

than the classical spline space, but in the non regular grid case it is more flexible than a

classical grid refinement generated space.

The special feature of this algorithm that uses explicitly the wavelet basis stands on

the fact that it extensively takes into account the localization properties of the wavelets in

the physical and Fourier spaces. Indeed, the exponential decay of the spline wavelets in

both spaces allows, on one hand handling the differential operators as if they were nearly

diagonal and, on the other hand, working in the physical space with very flexible orthogonal

and numerically well localized functions. The scale decomposition provided by the wavelet

coefficients and the knowledge of the Burgers operators are used to manage at each time

step the space of approximation. The whole algorithm can then adapt itself to the solution.

Moreover, in the case of constant regular operators, advantage can be taken by pre-inverting

the problem at each scale once and for all at the beginning of the calculation. Then, the

whole algorithm can be seen as a time advancing pyramidal algorithm.

In this paper, the method has been described and a numerical application has been

provided that uses spline wavelets of order 6. Some mathematical remarks have been given

but the results on numerical analysis of the method will be published elsewhere.

To date, we are not sure that the choice of the spline wavelets is optimal for efficient

and adaptable resolution of partial differential equations; furthermore, the existence of a

stronger connection between the wavelets and the resolved equation at each scale has not

been investigated. However, it must be recalled that the spline wavelets achieve an optimal

combined localization in physical and Fourier spaces, as far as orthonormal wavelets are

concerned.

The limitation to a 1-D problem and periodic boundary conditions is not connected to

the algorithm or the wavelet approach even if various specific problems will have to be faced.

This choice has been made for clarity and simplicity. Extensions to more realistic problems

involving different boundary conditions and multidimensions are currently underway.
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Figure 4. Adapted dyadic grid 3M 6,{j =6,k1l = 22, k2 = 31,j=7, k -

54,k = 3}.
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Figure 6. Time evolution of the approximated solution: m =6,jM= 8
regular grid algorithm. 256 degrees of freedom.
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