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RESOLUTION OF THE WAVEFRONT SET
USING CONTINUOUS SHEARLETS

GITTA KUTYNIOK AND DEMETRIO LABATE

Abstract. It is known that the Continuous Wavelet Transform of a distribu-
tion f decays rapidly near the points where f is smooth, while it decays slowly
near the irregular points. This property allows the identification of the sin-
gular support of f . However, the Continuous Wavelet Transform is unable to
describe the geometry of the set of singularities of f and, in particular, identify
the wavefront set of a distribution. In this paper, we employ the same frame-
work of affine systems which is at the core of the construction of the wavelet
transform to introduce the Continuous Shearlet Transform. This is defined by
SHψf(a, s, t) = 〈fψast〉, where the analyzing elements ψast are dilated and
translated copies of a single generating function ψ. The dilation matrices form
a two-parameter matrix group consisting of products of parabolic scaling and
shear matrices. We show that the elements {ψast} form a system of smooth
functions at continuous scales a > 0, locations t ∈ R2, and oriented along lines
of slope s ∈ R in the frequency domain. We then prove that the Continuous
Shearlet Transform does exactly resolve the wavefront set of a distribution f .

1. Introduction

It is well known that, provided ψ is a “nice” continuous wavelet on R
n and f is

a distribution that is smooth apart from a discontinuity at a point x0 ∈ Rn, the
Continuous Wavelet Transform

Wψf(a, t) = a−n
2

∫
Rn

f(x) ψ
(
a−1(x − t)

)
dx, a > 0, t ∈ R

n

decays rapidly as a → 0 unless t is near x0 [19, 25]. As a consequence, the Con-
tinuous Wavelet Transform is able to resolve the singular support of a distribution
f , i.e., to identify the set of points where f is not regular. However, the transform
Wψf(a, t) is unable to provide additional information about the geometry of the
singular support. In many situations, it is essential to not only identify the location
of a certain distributed singularity, but also its orientation in the sense of resolv-
ing the wavefront set. This is, for instance, particularly useful in the study of the
propagation of singularities associated with partial differential equations [20, 27].

Received by the editors April 24, 2006 and, in revised form, November 1, 2007.
2000 Mathematics Subject Classification. Primary 42C15; Secondary 42C40.
Key words and phrases. Analysis of singularities, continuous wavelets, curvelets, directional

wavelets, shearlets, wavefront set, wavelets.
The first author acknowledges support from Deutsche Forschungsgemeinschaft (DFG), Grant

KU 1446/5-1.
The second author acknowledges support from NSF Grant DMS 0604561.

c©2008 American Mathematical Society

2719

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2720 GITTA KUTYNIOK AND DEMETRIO LABATE

Historically, the idea of using continuous transforms to identify both the location
and the geometry of the set of singularities of a distribution can be traced back to
the notion of wave packet transforms, introduced independently by Bros and Iagol-
nitzer [1] and Córdoba and Fefferman [10]. More recently, Smith [26] and Candès
and Donoho [6, 7] have introduced continuous transforms, which use parabolic scal-
ing and rotations in polar coordinates and have the ability to resolve the wavefront
set of a distribution. In particular, the Continuous Curvelet Transform of Candès
and Donoho is closely related to the successful discrete curvelet construction [5].
However, the Continuous Curvelet Transform does not have the simple mathemat-
ical structure of the wavelet transform. For instance, it requires infinitely many
generators, thereby losing useful properties of the Continuous Wavelet Transform
such as being associated with an affine group structure.1 This raises the question,
whether it is possible to construct a genuinely “wavelet-like” continuous transform,
which is capable of precisely resolving the wavefront set of distributions while being
equipped with the same simple affine structure of the Continuous Wavelet Trans-
form.

Another motivation for our investigation and the use of the framework of affine
systems comes from the study of discrete wavelets, and, more specifically, their
ability to approximate efficiently smooth functions with singularities. This property
is closely related to the micro-local properties of the Continuous Wavelet Transform.
To illustrate this point, consider a one-dimensional function f that is smooth apart
from a discontinuity at a point x0 and consider its wavelet representation:

f =
∑

j,k∈Z

〈f, ψj,k〉ψj,k,

where ψj,k(x) = 2j/2 ψ(2jx − k) and ψ is a “nice” wavelet. Notice that the coeffi-
cients of the representation are just samples of the Continuous Wavelet Transform
at points (2−j , 2−jk), for j, k ∈ Z, that is, Wψf(2−j , 2−jk) = 〈f, ψj,k〉. Since the
elements Wψf(2−j , 2−jk) decay rapidly for j → ∞ unless k is near x0, it follows
that one can approximate f accurately by using very few coefficients of the wavelet
representation. Indeed, the wavelet representation is optimally sparse for this type
of functions (cf. [24, Ch.9]). However, the situation is significantly different in
higher dimensions, where more general discontinuities are usually present or even
dominant, and traditional wavelets are not equally effective. Consider, for example,
the wavelet representation of a two-dimensional function that is smooth away from
a discontinuity along a curve. Because the discontinuity is spatially distributed,
it interacts extensively with the elements of the wavelet basis, and thus “many”
wavelet coefficients are needed to represent the function accurately. In fact, this
is a manifestation of the fact that the Continuous Wavelet Transform is unable to
deal with distributed discontinuities effectively. As pointed out by several authors
(see [4, 5]), to overcome this limitation, one needs a transform with the ability
to capture the geometry of multidimensional phenomena. In this paper, we will
show that this can be achieved by properly reexamining the notion of a continuous
wavelet transform in higher dimensions.

Indeed, the Continuous Shearlet Transform, which is introduced in this paper,
fully exploits the framework of the affine group on R

2 to precisely capture the

1Recall that also the corresponding discrete curvelets have no affine structure and are not
associated to a Multiresolution Analysis.
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RESOLUTION OF WAVEFRONT SET USING CONTINUOUS SHEARLETS 2721

geometric information of two-dimensional functions. More precisely, the Continuous
Shearlet Transform maps a tempered distribution f ∈ S ′(R2) to SHψf(a, s, t) =
〈f, ψast〉 on the transform domain {(a, s, t) : a > 0, s ∈ R, t ∈ R

2}, where the
analyzing elements ψast are dilated and translated copies of a single generating
function ψ ∈ L2(R2). This generator ψ is called a continuous shearlet, and is
chosen to be arbitrarily smooth with compact support in the frequency domain. The
dilation matrices consist of the product of a parabolic scaling matrix associated with
some a > 0 and a shear matrix associated with some s ∈ R. As a result, the elements
ψast constitute an affine system of well-localized waveforms at various scales a,
orientations controlled by s and spatial locations t. Due to the parabolic scaling,
the elements ψast become increasingly thin as a → 0, and this anisotropic behavior
allows them to detect the singularities along curves. As a result, the Continuous
Shearlet Transform is able to identify not only the singular support of a distribution
f , but also the orientation of distributed singularities along curves. In particular,
the decay properties of the Continuous Shearlet Transform as a → 0 precisely
characterize the wavefront set of f (see Section 5) with the translation parameter
detecting the location and the shear parameter s detecting the orientation of a
singularity.

We would also like to mention that the study of the discrete analog of the Con-
tinuous Shearlet Transform is currently being developed by the authors and their
collaborators. In particular, by employing the advantageous properties of the shear
operator over the rotation operator, it was recently shown that discrete shearlets are
associated with a Multiresolution Analysis and with directional subdivision schemes
generalizing those of traditional wavelets. This is very relevant for the development
of fast algorithmic implementations. In addition, shearlets provide optimally sparse
representations for bivariate functions with discontinuities along curves. We refer
to [13, 15, 16, 17, 18, 22, 21] for more detail about the research about shearlets.

Note added: Following submission of this paper, it was shown in [11] that the
Continuous Shearlet Transform is related with a locally compact group, the so-
called Shearlet group, in the sense of the continuous shearlet systems being gener-
ated by a strongly continuous, irreducible, square-integrable representation of this
group. This additional rich mathematical structure enables, for instance, the appli-
cation of uncertainty principles to tune the accuracy of the transform [11], and of
the coorbit theory to study smoothness spaces, so-called Shearlet Coorbit Spaces,
associated with the decay of the shearlet coefficients [12].

The paper is organized as follows. In Section 2 we recall the basic properties of
affine systems on R

n and the Continuous Wavelet Transform, and then introduce
the Continuous Shearlet Transform (Section 3). In Section 4 we apply this new
transform to several examples of distributions containing different types of singu-
larities. The main result of this paper is proved in Section 5, where we show that
the Continuous Shearlet Transform exactly characterizes the wavefront set of a dis-
tribution. Finally, in Section 6, we discuss several variants and generalizations of
our construction.

1.1. Notation and definitions. We adopt the convention that x ∈ Rn is a column

vector, i.e., x =

⎛⎜⎝x1

...
xn

⎞⎟⎠, and that ξ ∈ R̂n is a row vector, i.e., ξ = (ξ1, . . . , ξn). A
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2722 GITTA KUTYNIOK AND DEMETRIO LABATE

vector x multiplying a matrix a ∈ GLn(R) on the right is understood to be a column
vector, while a vector ξ multiplying a on the left is a row vector. Thus, ax ∈ Rn

and ξa ∈ R̂n. The Fourier transform is defined as

f̂(ξ) =
∫

Rn

f(x) e−2πiξx dx,

where ξ ∈ R̂n, and the inverse Fourier transform is

f̌(x) =
∫

R̂n

f(ξ) e2πiξx dξ.

We consider three fundamental operators on L2(Rn): the translations Ty :
(Tyf)(x) = f(x − y), where y ∈ Rn; the dilations DA : (DAf)(x)
= | detA|−1/2f(A−1x), where A ∈ GLn(R); and the modulations Mz : (Mz f̂)(ξ) =
e2πiξz f̂(ξ), where z ∈ Rn.

The following proposition, which is easily verified, states some basic properties
of the translation and dilation operators.

Proposition 1.1. Let G = {U = DA Ty : (A, y) ∈ GLn(R) × Rn}. Then G is
a subgroup of the group of unitary operators on L2(Rn) which is preserved by the
action of the operator U �→ Û , where Û f̂ = (Uf)∧. In particular, we have:

(i) DA Ty = TAy DA;
(ii) DA1 DA2 = DA1A2 , for each A1, A2 ∈ GLn(R);
(iii) for U = DA Ty, then Û = D̂A M−y, where D̂Af̂(ξ) = | detA|1/2 f̂(ξ A);
(iv) for S ⊂ R̂n a measurable set, and L2(S) = {f̂ ∈ L2(R̂n) : supp f̂ ⊆ S}, we

have: D̂A L2(S) = L2(SA−1).

Recall that a countable collection {ψi}i∈I in a Hilbert space H is a Parseval
frame (sometimes called a tight frame) for H if∑

i∈I

|〈f, ψi〉|2 = ‖f‖2, for all f ∈ H.

This is equivalent to the reproducing formula f =
∑

i〈f, ψi〉ψi, for all f ∈ H, where
the series converges in the norm of H. This shows that a Parseval frame provides
a basis-like representation even though a Parseval frame need not be a basis in
general. We refer the reader to [8, 9] for more details about frames.

For any E ⊂ R̂n, we denote by L2(E)∨ the space {f ∈ L2(Rn) : supp f̂ ⊂ E}.

2. Affine systems and wavelets

2.1. One-dimensional continuous wavelet transform. Let A1 be the affine
group associated with R, consisting of all pairs (a, t), a, t ∈ R, a > 0, with group
operation (a, t) · (a′, t′) = (aa′, t + at′). The (continuous) affine systems generated
by ψ ∈ L2(R) are obtained from the action of the quasi-regular representation π(a,t)

of A1 on L2(R); that is,{
ψa,t(x) = π(a,t) ψ(x) = Tt Da ψ(x) : (a, t) ∈ A1

}
,

where the translation operator Tt is defined by Ttψ(x) = ψ(x − t) and the dilation
operator Da is defined by Daψ(x) = a−1/2ψ(a−1x).
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It was observed by Calderón [2] that, if ψ satisfies the admissibility condition

(2.1)
∫ ∞

0

|ψ̂(aξ)|2 da

a
= 1 for a.e. ξ ∈ R,

then any f ∈ L2(R) can be recovered via the reproducing formula:

f =
∫

A1

〈f, ψa,t〉ψa,t dµ(a, t),

where dµ(a, t) = dt da
a2 is the left Haar measure of A1. Here the Fourier transform

is defined by ψ̂(ξ) =
∫

ψ(x) e−2πiξx dx. As usual, ψ̌ will denote the inverse Fourier
transform. The function ψ is called a continuous wavelet, if ψ satisfies (2.1), and
Wψf(a, t) = 〈f, ψa,t〉 is the Continuous Wavelet Transform of f . We refer to [14]
for more details about this.

Discrete affine systems and wavelets are obtained by “discretizing” appropriately
the corresponding continuous systems. In fact, by replacing (a, t) ∈ A1 with the
discrete set (2j , 2jm), j, m ∈ Z, one obtains the discrete dyadic affine system

(2.2)
{
ψj,m(x) = T2jm Dj

2 ψ(x) = Dj
2 Tm ψ(x) : j, m ∈ Z

}
,

and ψ is called a wavelet if (2.2) is an orthonormal basis or, more generally, a
Parseval frame for L2(R).

Recall that a countable collection {ψi}i∈I in a Hilbert space H is a Parseval
frame (sometimes called a tight frame) for H if

∑
i∈I |〈f, ψi〉|2 = ‖f‖2 for all f ∈ H.

This is equivalent to the reproducing formula f =
∑

i∈I〈f, ψi〉ψi for all f ∈ H,
where the series converges in the norm of H. Thus Parseval frames provide basis-
like representations even though a Parseval frame need not be a basis in general.
We refer the reader to [8, 9] for more details about frames.

2.2. Higher-dimensional continuous wavelet transform. The natural way of
extending the theory of affine systems to higher dimensions is by replacing A1

with the full affine group of motions on Rn, An, consisting of the pairs (M, t) ∈
GLn(R)×Rn with the group operation (M, t) ·(M ′, t′) = (MM ′, t+Mt′). Similarly
to the one-dimensional case, the affine systems generated by ψ ∈ L2(Rn) are given
by {

ψM,t(x) = Tt DM ψ(x) : (M, t) ∈ An

}
,

where here the dilation operator DM is defined by DM ψ(x) = | detM |− 1
2 ψ(M−1x).

The generalization of the Calderón admissibility condition to higher dimensions and
the construction of multidimensional wavelets is a far more complex task than the
corresponding one-dimensional problem, and yet not fully understood. We refer
to [23, 29] for more details.

Now let G be a subset of GLn(R) and define Λ ⊆ An by Λ = {(M, t) : M ∈
G, t ∈ Rn}. If there exists a function ψ ∈ L2(Rn) such that, for all f ∈ L2(Rn), we
have:

(2.3) f =
∫

Rn

∫
G

〈f, Tt DM ψ〉Tt DM ψ dλ(M) dt,

where λ is a measure on G, then ψ is a continuous wavelet with respect to Λ. The
following result, that is a simple modification of Theorem 2.1 in [29], gives an exact
characterization of all those ψ ∈ L2(Rn) that are continuous wavelets with respect
to Λ. The proof of this theorem is reported in the Appendix.
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Theorem 2.1. Equality (2.3) is valid for all f ∈ L2(Rn) if and only if, for all
ξ ∈ Rn \ {0},

(2.4) ∆(ψ)(ξ) =
∫

G

|ψ̂(M tξ)|2 | detM | dλ(M) = 1.

The choice of the measure λ on G is not unique. If G is not simply a subset of
GLn(R), but also a subgroup, then we can use the left Haar measure on G which
is unique up to a multiplicative constant. Also, observe that Theorem 2.1 extends
to functions on subspaces of L2(Rn) of the form

L2(V )∨ = {f ∈ L2(Rn) : supp f̂ ⊂ V }.

2.3. Localization of wavelets. The decay properties of the functions ψM,t =
Tt DM ψ, where ψ̂ ∈ C∞

0 , are described by the following proposition.

Proposition 2.2. Suppose that ψ ∈ L2(Rn) is such that ψ̂ ∈ C∞
0 (R), where R =

supp ψ̂ ⊂ Rn. Then, for each k ∈ N, there is a constant Ck such that, for any
x ∈ Rn, we have

|ψM,t(x)| ≤ Ck | detM |− 1
2 (1 + |M−1(x − t)|2)−k.

In particular, Ck = k m(R)
(
‖ψ̂‖∞ + ‖�kψ̂‖∞

)
, where � =

∑n
i=1

∂2

∂ξ2
i

is the fre-
quency domain Laplacian operator and m(R) is the Lebesgue measure of R.

The proof of this proposition relies on the following known observation, whose
proof is included for completeness.

Lemma 2.3. Let g be such that ĝ ∈ C∞
0 (R), where R ⊂ Rn is the supp ĝ. Then,

for each k ∈ N, there is a constant Ck such that for any x ∈ Rn,

|g(x)| ≤ Ck (1 + |x|2)−k.

In particular, Ck = k m(R)
(
‖ĝ‖∞ + ‖�kĝ‖∞

)
.

Proof. Since g(x) =
∫

R
ĝ(ξ) e2πiξx dξ, then, for every x ∈ R2,

(2.5) |g(x)| ≤ m(R) ‖ĝ‖∞.

An integration by parts shows that∫
R

�ĝ(ξ) e2πiξx dξ = −(2π)2 |x|2 g(x)

and thus, for every x ∈ R2,

(2.6) (2π |x|)2k |g(x)| ≤ m(R) ‖�kĝ‖∞.

Using (2.5) and (2.6), we have

(2.7)
(
1 + (2π |x|)2k

)
|g(x)| ≤ m(R)

(
‖ĝ‖∞ + ‖�kĝ‖∞

)
.

Observe that, for each k ∈ N,

(1 + |x|2)k ≤
(
1 + (2π)2 |x|2

)k ≤ k
(
1 + (2π |x|)2k

)
.
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Using this last inequality and (2.7), we have that for each x ∈ Rn,

|g(x)| ≤ k m(R) (1 + |x|2)−k
(
‖ĝ‖∞ + ‖�kĝ‖∞

)
.

�

A simple re-scaling argument now proves Proposition 2.2.

Proof of Proposition 2.2. A direct computation gives:

ψ(M−1(x − t)) =
∫

R

ψ̂(ξ) e2πiM−1(x−t)ξ dξ

=
∫

R

ψ̂(ξ) e2πi(x−t)M−tξ dξ

=
∫

(Mt)−1R

ψ̂(M tη) e2πi(x−t)η | detM | dη.

It follows that

|ψ(M−1(x − t))| ≤ m((M t)−1R) | detM | ‖ψ̂(M t·)‖∞ = m(R) ‖ψ̂‖∞.

Using a simple modification of the argument in Lemma 2.3, we have that

(2π |M−1(x − t)|)2k |ψ(M−1(x − t))| ≤ m(R) ‖�kψ̂‖∞.

Next, arguing again as in Lemma 2.3 we have that

|ψ(M−1(x − t))| ≤ k m(R) (1 + |M−1(x − t)|2)−k
(
‖ψ̂‖∞ + ‖�kψ̂‖∞

)
.

This completes the proof. �

3. Continuous shearlet transform

3.1. Definition. In this paper, we will be interested in the affine systems obtained
when Λ is a subset of A2 of the form

(3.1) Λ = {(M, t) : M ∈ G, t ∈ R
2},

and G ⊂ GL2(R) is the set of matrices:

(3.2) G =

⎧⎨⎩M = Mas =

⎛⎝a −
√

a s

0
√

a

⎞⎠ , a ∈ I, s ∈ S

⎫⎬⎭ ,

where I ⊂ R
+, S ⊂ R. It is useful to notice that the matrices M can be factorized

as M = B A, where B is the shear matrix B =
(

1 −s

0 1

)
and A is the diagonal

matrix A =
( a 0

0
√

a

)
. In particular, A produces parabolic scaling; that is, f(Ax) =

f
(
A
(

x1

x2

))
leaves invariant the parabola x1 = x2

2. Thus, the matrix M can be
interpreted as the superposition of parabolic scaling and shear transformation.

We will now consider those functions, which satisfy (2.1) for the subset Λ of
the affine group, given by (3.1). In order to distinguish these functions from a
general continuous wavelet, in the following we will refer to them as continuous
shearlets. We will consider two situations, corresponding to I = R

+, S = R or
I = {a : 0 ≤ a ≤ 1}, S = {s ∈ R : |s| ≤ s0}, for some s0 > 0.

For ξ = (ξ1, ξ2) ∈ R2, ξ2 = 0, let ψ be given by

(3.3) ψ̂(ξ) = ψ̂(ξ1, ξ2) = ψ̂1(ξ1) ψ̂2( ξ2
ξ1

).
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Proposition 3.1. Let Λ be given by (3.1) and (3.2) with I = R+, S = R, and
ψ ∈ L2(R2) be given by (3.3) where:

(i) ψ1 ∈ L2(R) satisfies the Calderón condition (2.1);
(ii) ‖ψ2‖L2 = 1.

Then ψ is a continuous shearlet for L2(R2) with respect to Λ.

Proof. A direct computation shows that M t(ξ1, ξ2)t = (aξ1, a
1/2(ξ2 − sξ1))t. By

choosing as measure dλ(M) = da
| det M |2 ds, the admissibility condition (2.4) becomes

(3.4) ∆(ψ)(ξ) =
∫

R

∫
R+

|ψ̂1(a ξ1)|2 |ψ̂2(a− 1
2 ( ξ2

ξ1
− s))|2 a− 3

2 da ds = 1.

Thus, by Theorem 2.1, to show that ψ is a continuous shearlet it is sufficient to
show that (3.4) is satisfied. Using the assumption on ψ1 and ψ2, we have:

∆(ψ)(ξ) =
∫

R

∫
R+

|ψ̂1(a ξ1)|2 |ψ̂2(a− 1
2 ( ξ2

ξ1
− s))|2 a− 3

2 da ds

=
∫

R+
|ψ̂1(a ξ1)|2

(∫
R

|ψ̂2(a− 1
2 ξ2

ξ1
− s)|2 ds

) da

a

=
∫

R+
|ψ̂1(a ξ1)|2

da

a
= 1 for a.e. ξ = (ξ1, ξ2) ∈ R

2.

This shows that equality (3.4) is satisfied and, hence, ψ is a continuous shearlet. �

If the set S is not all of R, then we need some additional assumptions on ψ.
Consider the subspace of L2(R2) given by L2(C)∨ = {f ∈ L2(R2) : supp f̂ ⊂ C},
where

C = {(ξ1, ξ2) ∈ R
2 : |ξ1| ≥ 2 and | ξ2

ξ1
| ≤ 1}.

We have the following result.

Proposition 3.2. Let Λ be given by (3.1) and (3.2) with I = {a : 0 ≤ a ≤ 1},
S = {s ∈ R : |s| ≤ 2}, and ψ ∈ L2(R2) be given by (3.3) where:

(i) ψ1 ∈ L2(R) satisfies the Calderón condition (2.1), and supp ψ̂1 ⊂ [−2,−1
2 ]∪

[12 , 2];
(ii) ‖ψ2‖L2 = 1 and supp ψ̂2 ⊂ [−1, 1].

Then ψ is a continuous shearlet for L2(C)∨ with respect to Λ, that is, for all
f ∈ L2(C)∨,

f(x) =
∫

R2

∫ 2

−2

∫ 1

0

〈f, ψast〉ψast(x)
da

a3
ds dt.

Proof. We apply again Theorem 2.1 to functions on L2(C)∨. Using the assumptions
on ψ2, S and I we have that, for ξ ∈ C:∫ 1√

a
(

ξ2
ξ1

+2)

1√
a
(

ξ2
ξ1

−2)

|ψ̂2(s)|2 ds =
∫ 1

−1

|ψ̂2(s)|2 ds = 1.
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Thus, for a.e. ξ ∈ C we have that

∆(ψ)(ξ) =
∫ 2

−2

∫ 1

0

|ψ̂(M t
asξ)|2 a− 3

2 da ds

=
∫ 2

−2

∫ 1

0

|ψ̂1(aξ1)|2 |ψ̂2(a− 1
2 ( ξ2

ξ1
− s))|2a− 3

2 da ds

=
∫ 1

0

|ψ̂1(aξ1)|2
∫ 1√

a
(

ξ2
ξ1

+2)

1√
a
(

ξ2
ξ1

−2)

|ψ̂2(s)|2 ds
da

a

=
∫ 1

0

|ψ̂1(aξ1)|2
da

a
.

Since ξ1 ≥ 2, using the assumptions on the support of ψ̂1 and condition (2.1), from
the last expression we have that, for a.e. ξ ∈ C,

∆(ψ)(ξ) =
∫ ξ1

0

|ψ̂1(a)|2 da

a
=

∫ 2

1
2

|ψ̂1(a)|2 da

a
=

∫ ∞

0

|ψ̂1(a)|2 da

a
= 1.

This shows that the admissibility condition (2.4) for this system is satisfied and
this completes the proof. �

There are several examples of functions ψ1 and ψ2 satisfying the assumptions of
Proposition 3.1 as well as Proposition 3.2. In addition, we can choose ψ1, ψ2 such
that ψ̂1, ψ̂2 are real-valued and belong to C∞

0 (see [15, 18] for the construction of
these functions).

a = 1, s = −3

a = 1, s = 0 a = 1, s = 06

Figure 1. Support of the shearlets ψ̂ast (in the frequency domain)
for different values of a and s.

Now we can define the Continuous Shearlet Transform:

Definition 3.3. Let ψ ∈ L2(R2) be given by (3.3) where:
(i) ψ1 ∈ L2(R) satisfies the Calderón condition (2.1), and ψ̂1 ∈ C∞

0 (R) with
supp ψ̂1 ⊂ [−2,−1

2 ] ∪ [12 , 2];
(ii) ‖ψ2‖L2 = 1, and ψ̂2 ∈ C∞

0 (R) with supp ψ̂2 ⊂ [−1, 1] and ψ̂2 > 0 on (−1, 1).
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The set of functions generated by ψ under the action of Λ, namely:

{ψast = TtDMas
ψ = a− 3

4 ψ
(
M−1

as (· − t)
)

: a ∈ I ⊂ R
+, s ∈ S ⊂ R, t ∈ R

2},
where Mas was defined in (3.2), is called a continuous shearlet system. The Con-
tinuous Shearlet Transform of f is defined by

SHψf(a, s, t) = 〈f, ψast〉, a ∈ I ⊂ R
+, s ∈ S ⊂ R, t ∈ R

2.

Observe that, unlike the traditional wavelet transform which depends only on
scale and translation, the shearlet transform is a function of three variables, that
is, the scale a, the shear s and the translation t. Many properties of the continuous
shearlets are more evident in the frequency domain. A direct computation shows
that

ψ̂ast(ξ) = a
3
4 e−2πiξt ψ̂(a ξ1,

√
a(ξ2 − s ξ1))

= a
3
4 e−2πiξt ψ̂1(a ξ1) ψ̂2(a− 1

2 ( ξ2
ξ1

− s)).

Thus, each function ψ̂ast is supported on the set:

supp ψ̂ast ⊂ {(ξ1, ξ2) : ξ1 ∈ [− 2
a ,− 1

2a ] ∪ [ 1
2a , 2

a ], | ξ2
ξ1

− s| ≤
√

a}.

As illustrated in Figure 1, each continuous shearlet ψast has frequency support on
a pair of trapezoids, symmetric with respect to the origin, oriented along a line of
slope s. The support becomes increasingly thin as a → 0.

When S = R and I = R+, by Proposition 3.1, the Continuous Shearlet Transform
provides a reproducing formula (2.3) for all f ∈ L2(R2):

‖f‖2 =
∫

R2

∫ ∞

−∞

∫ ∞

0

|SHψf(a, s, t)|2 da

a3
ds dt.

On the other hand, if S, I are bounded sets, by Proposition 3.2, the Continuous
Shearlet Transform provides a reproducing formula only for functions in a proper
subspace of L2(R2). However, even when S, I are bounded, it is possible to obtain
a reproducing formula for all f ∈ L2(R2) as follows. Let

ψ̂(v)(ξ) = ψ̂(v)(ξ1, ξ2) = ψ̂1(ξ2) ψ̂2( ξ1
ξ2

),

where ψ̂1, ψ̂2 are defined as in Definition 3.3, and let Λ(v) = {(M, t) : M ∈ G(v), t ∈
R2}, where

(3.5) G(v) =

⎧⎨⎩M = Mas =

⎛⎝ √
a 0

−
√

a s a

⎞⎠ , a ∈ I, s ∈ S

⎫⎬⎭ .

Then, proceeding as above, it is easy to show that ψ(v) is a continuous shearlet for
L2(C(v))∨ with respect to Λ(v), where C(v) is the vertical cone:

C(v) = {(ξ1, ξ2) ∈ R
2 : |ξ2| ≥ 2 and | ξ2

ξ1
| > 1}.

Accordingly, we introduce the shearlet system {ψ(v)
ast = Tt DMψ(v) : a ∈ I, s ∈

S, t ∈ R2}, for (M, t) ∈ Λ(v), and the associated Continuous Shearlet Transform
SH(v)

ψ f(a, s, t) = 〈f, ψ
(v)
ast〉. Finally, let W (x) be such that Ŵ (ξ) ∈ C∞(R2) and

(3.6) |Ŵ (ξ)|2 + χC1(ξ)
∫ 1

0

|ψ̂1(aξ1)|2
da

a
+ χC2(ξ)

∫ 1

0

|ψ̂1(aξ2)|2
da

a
= 1,
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for a.e. ξ ∈ R2, where C1 = {(ξ1, ξ2) ∈ R2 : | ξ2
ξ1
| ≤ 1}, C2 = {(ξ1, ξ2) ∈ R2 :

| ξ2
ξ1
| > 1}. Then it follows that W is a C∞-window function in R2 with Ŵ (ξ) =

1 for ξ ∈ [−1/2, 1/2]2, Ŵ (ξ) = 0 outside the box {ξ ∈ [−2, 2]2}. Finally, let
(PC1f)∧ = f̂ χC1 and (PC2f)∧ = f̂ χC2 . Then, for each f ∈ L2(R2) we have:

‖f‖2 =
∫

R2
|〈f, Tt W 〉|2 dt +

∫
R2

∫ 2

−2

∫ 1

0

|SH(PC1f)(a, s, t)|2 da

a3
ds dt

+
∫

R2

∫ 2

−2

∫ 1

0

|SH(v)
(PC2f)(a, s, t)|2 da

a3
ds dt.(3.7)

The proof of this equality is reported in the Appendix. Equation (3.7) shows that
f is continuously reproduced by using isotropic window functions at coarse scales,
and two sets of continuous shearlet systems at fine scales: one set corresponding
to the horizontal cone C (in the frequency domain) and another set corresponding
to the vertical cone C(v). The advantage of this construction, with respect to the
simpler one where S = R, is that in this case the set S associated with the shear
variable is the closed interval S = {s : |s| ≤ 2}. This property will be important in
Subsection 4.4 and Section 5.

There are other choices of the subset Λ, given by (3.1), generating affine systems
with properties similar to the continuous shearlet systems. Variants and general-
izations of this construction will be discussed in Section 6.

3.2. Localization of shearlets. Since the continuous shearlets ψ we constructed
in the previous subsection satisfy ψ̂ ∈ C∞

0 (R2), it follows that the analyzing ele-
ments of the associated continuous shearlet systems decay rapidly as |x| → ∞; that
is,

ψast(x) = O(|x|−k) as |x| → ∞, for every k ≥ 0.

More precisely, we have the following result.

Proposition 3.4. Let ψ ∈ L2(R2) be a continuous shearlet satisfying ψ̂ ∈ C∞
0 (R2),

and let M be defined as in (3.2). Then, for each k ∈ N, there is a constant Ck such
that, for any x ∈ R2, we have

|ψast(x)| ≤ Ck | detM |− 1
2 (1 + |M−1(x − t)|2)−k

= Ck a− 3
4 (1 + a−2(x1 − t1)2 + 2a−2s(x1 − t1)(x2 − t2)

+a−1(1 + a−1s2)(x2 − t2)2)−k.

In particular, Ck = k 15
2

(
‖ψ̂‖∞ + ‖�kψ̂‖∞

)
, where � = ∂2

∂ξ2
1

+ ∂2

∂ξ2
2

is the frequency
domain Laplacian operator.

Proof. Observe that, for t =
(

t1
t2

)
and x = ( x1

x2 ) in R2, we have:

ψast(x) = | detM |− 1
2 ψ(M−1(x − t)) = a− 3

4 ψ
(a−1 (x1 − t1) + s a−1(x2 − t2)

a− 1
2 (x2 − t2)

)
.

The proof then follows from Proposition 2.2, where

R = {(ξ1, ξ2) : ξ1 ∈ [− 2
a ,− 1

2a ] ∪ [ 1
2a , 2

a ], |s − ξ2
ξ1
| ≤

√
a}.

It is easy to check that m(R) = 15
2 . �
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4. Analysis of singularities

As observed above, the continuous shearlet ψ, constructed in Section 3, satisfies
ψ̂ ∈ C∞

0 (R2). It follows that ψ ∈ S(R2) and, therefore, the Continuous Shearlet
Transform SHψf(a, s, t) = 〈f, ψast〉, a > 0, s ∈ R, t ∈ R2, is well defined for all
tempered distributions f ∈ S ′.

In the following, we will examine the behavior of the Continuous Shearlet Trans-
form of several distributions containing different types of singularities. This will be
useful to illustrate the basic properties of the shearlet transform, before stating a
more general result in the next section. Indeed, the rate of decay of the Continuous
Shearlet Transform exactly describes the location and orientation of the singular-
ities. Interestingly, despite the different mathematical structure, the decay rates
found for the Continuous Shearlet Transform are consistent with those found using
the Continuous Curvelet Transform in [6].

In order to state our results, it will be useful to introduce the following notation to
distinguish between the following two different behaviors of the Continuous Shearlet
Transform.

Definition 4.1. Let f be a distribution on R2, SHψf(a, s, t) be defined as in
Definition 3.3, and let r ∈ R. Then SHψf(a, s, t) decays rapidly as a → 0 if

SHψf(a, s, t) = O(ak) as a → 0, for every k ≥ 0.

We use the notation: SHψf(a, s, t) ∼ ar as a → 0 if there exist constants 0 < α ≤
β < ∞ such that

α ar ≤ SHψf(a, s, t) ≤ β ar as a → 0.

4.1. Point singularities. We start by examining the decay properties of the Con-
tinuous Shearlet Transform of the Dirac δ.

Proposition 4.2. If t = 0, we have

SHψδ(a, s, t) ∼ a− 3
4 as a → 0.

In all other cases, SHψδ(a, s, t) decays rapidly as a → 0.

Proof. For t = 0 we have

〈δ, ψast〉 = ψas0(0) = a− 3
4 ψ(0) ∼ a− 3

4 as a → 0.

Next let t = 0. Then
〈δ, ψast〉 = ψast(0),

and, by Proposition 3.4, for each k ∈ N, we have

|ψast(0)| ≤ Ck a− 3
4 (1 + a−2t21 + 2a−2st1t2 + (1 + a−1s2)a−1t22)

−k.

Thus, if t2 = 0, then |ψast(0)| = O(ak−3/4) as a → 0. Otherwise, if t2 = 0, t1 = 0,
then |ψast(0)| = O(a2k−3/4) as a → 0. �

Next let us consider the point singularity σα(x) = |x|α for −2 < α < ∞. The
Continuous Shearlet Transform shows the following decay.

Proposition 4.3. Let SHσα
(a, s, t) be defined as in Definition 3.3. If t = 0, we

have
SHσα

(a, s, t) ∼ a
5
4+α as a → 0.

In all other cases, SHσα
(a, s, t) decays rapidly as a → 0.
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Proof. First observe that σ̂α(x) = Cα |ξ|−2−α. Using Fubini, we compute

〈σ̂α, ψ̂ast〉 = Cα

∫
R2

|ξ|−2−αψ̂ast(ξ) dξ

= Cα a
3
4

∫
R2

ψ̂1(aξ1) ψ̂2(a− 1
2 ( ξ2

ξ1
− s)) (ξ2

1 + ξ2
2)−1−α

2 e−2πiξt dξ1 dξ2

= Cα a− 1
4

∫
R2

ψ̂1(ξ1) ψ̂2(a− 1
2 (
√

a ξ2
ξ1
−s))(a−2ξ2

1+ξ2
2)−1−α

2 e−2πi(a−1ξ1,ξ2)t dξ1 dξ2

= Cα a− 3
4

∫
R2

ψ̂1(ξ1) ψ̂2(ξ2) (a−2ξ2
1 + ξ2

1a−1(ξ2 + a− 1
2 s)2)−1−α/2

· e−2πia−1/2(a−1/2ξ1,ξ1(ξ2+a−1/2s))t ξ1 dξ1 dξ2

= Cα a
1
4+ α

2

∫
R2

(a−1 + (ξ2 + a− 1
2 s)2)−1−α

2

· e−2πia−1ξ1(t1+st2) e−2πia−1/2ξ1ξ2t2dξ1 dξ2.

Let t = 0. Then

〈σ̂α, ψ̂ast〉 = Cα a
1
4+ α

2

∫
R

ψ̂1(ξ1)
ξ1+α
1

∫
R

ψ̂2(ξ2)
(a−1 + (ξ2 + a− 1

2 s)2)1+
α
2

dξ2 dξ1.

For a � 1, we obtain∣∣∣∣∣
∫

R

ψ̂2(ξ2)
(a−1 + (ξ2 + a− 1

2 s)2)1+
α
2

dξ2

∣∣∣∣∣ = a1+ α
2

∫
R

∣∣∣∣∣ ψ̂2(ξ2)
(1 + a(ξ2 + a− 1

2 s)2)1+
α
2

∣∣∣∣∣ dξ2

∼ a1+ α
2

∫
R

|ψ̂2(ξ2)| dξ2.(4.1)

Thus,∣∣∣〈σ̂α, ψ̂ast〉
∣∣∣ ≤ Cα a

5
4+α

∫
R

∣∣∣∣∣ ψ̂1(ξ1)
ξ1+α
1

∣∣∣∣∣ dξ1

∫
R

∣∣∣ψ̂2(ξ2)
∣∣∣ dξ2 ∼ a

5
4+α as a → 0.

Next let t = 0. If t1 + s t2 = 0, using again (4.1), we observe that∣∣∣〈σ̂α, ψ̂ast〉
∣∣∣

≤Cα a
1
4+ α

2

∣∣∣∣∣
∫

R

ψ̂1(ξ1) ξ−1−α
1 e−2πia−1ξ1(t1+st2)

∫
R

ψ̂2(ξ2) e−2πia−1/2ξ1ξ2t2

(a−1+(ξ2+a− 1
2 s)2)1+

α
2

dξ2 dξ1

∣∣∣∣∣
≤C ′

α a
5
4+α |ψ̃1( t1+st2

a )|
∫

R

∣∣∣ψ̂2(ξ2)
∣∣∣ dξ2,

where ψ̃1(u) =
∫

R
ξ−1−α
1 ψ̂1(ξ1) e−2πiuξ1 dξ1 is a band-limited function decaying

rapidly for |u| → ∞ (since ψ1 is band-limited and C∞, its behavior is similar
when ψ̂1(u) is divided by u1+α). If t1 + s t2 = 0, then one uses a similar estimate
employing the exponential function e−2πia−1/2ξ1ξ2t2 . �

Observe that, for α = −2, which corresponds to the Dirac delta, we have the
same rate of convergence a−3/4 as computed above.
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4.2. Linear singularities. Next we will consider the linear delta distribution
νp(x1, x2) = δ(x1 + p x2), p ∈ R, defined by

〈νp, f〉 =
∫

R

f(−p x2, x2) dx2.

The following result shows that the Continuous Shearlet Transform precisely deter-
mines both the position and the orientation of the linear singularity, in the sense
that the transform SHψνp(a, s, t) always decays rapidly as a → 0 except when t is
on the singularity and s = p, i.e., the direction perpendicular to the singularity or,
in other words, in which the singularity occurs.

Proposition 4.4. If t1 = −p t2 and s = p, we have

SHψνp(a, s, t) ∼ a− 1
4 as a → 0.

In all other cases, SHψνp(a, s, t) decays rapidly as a → 0.

Proof. The following heuristic argument gives

ν̂p(ξ1, ξ2) =
∫ ∫

δ(x1 + p x2) e−2πiξx dx2 dx1

=
∫

e−2πix2(ξ2−p ξ1) dx2 = δ(ξ2 − p ξ1) = ν(− 1
p )(ξ1, ξ2).

That is, the Fourier transform of the linear delta on R2 is another linear delta on
R2, where the slope − 1

p is replaced by the slope p. A direct computation gives:

〈ν̂p , ψ̂ast〉 =
∫

R

ψ̂ast(ξ1, pξ1) dξ1

= a
3
4

∫
R

ψ̂(aξ1,
√

apξ1 −
√

asξ1) e2πiξ1(t1+pt2) dξ1

= a− 1
4

∫
R

ψ̂(ξ1, a
− 1

2 pξ1 − a− 1
2 sξ1) e2πia−1ξ1(t1+pt2) dξ1

= a− 1
4

∫
R

ψ̂1(ξ1) ψ̂2(a− 1
2 (p − s)) e2πia−1ξ1(t1+pt2) dξ1

= a− 1
4 ψ̂2(a− 1

2 (p − s)) ψ1(a−1(t1 + pt2)).

If s = p, then there exists some a > 0 such that |p − s| >
√

a. This implies that
ψ̂2(a−1/2(p − s)) = 0, and so 〈ν̂p , ψ̂ast〉 = 0. On the other hand, if t1 = −p t2 and
s = p, then ψ̂2(a−1/2(p − s)) = ψ̂2(0) = 0, and

〈ν̂p , ψ̂ast〉 = a− 1
4 ψ̂2(a− 1

2 (p − s)) ψ1(0) ∼ a− 1
4 as a → 0.

If t1 = −p t2, by Proposition 2.2, we observe that, for all k ∈ N,

〈ν̂p , ψ̂ast〉 ≤ a− 1
4 ψ̂2(a− 1

2 (p − s)) |ψ1(a−1(t1 + pt2))|
≤ Ck a− 1

4 ψ̂2(a− 1
2 (p − s)) (1 + a−2(t1 + pt2)2)−k = O(a2k− 1

4 ) as a → 0.

�

Next, let us consider the two-dimensional Heaviside function H(x1, x2) =
χ{x1≥0}(x1, x2).
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Proposition 4.5. If t1 = 0 and |s| ≤
√

a, we have

SHH(a, s, t) ∼ a
3
4 as a → 0.

In all other cases, SHH(a, s, t) decays rapidly as a → 0.

Proof. We will use the relation between H and the derivative of the delta distribu-
tion. Since ν0(x1, x2) = δ(x1) = ∂

∂x1
H(x1, x2), then Ĥ(ξ1, ξ2) = −i1

ξ 1
ν̂(ξ1, ξ2). It

follows that:

〈Ĥ, ψ̂ast〉 = i

∫
R

1
ξ 1

ψ̂ast(ξ1, 0) dξ1

= ia
3
4

∫
R

1
ξ 1

ψ̂(aξ1,−
√

asξ1)e−2πit1ξ1 dξ1

= ia
3
4

∫
R

1
ξ 1

ψ̂(ξ1,−a− 1
2 sξ1) e−2πit1a−1ξ1 dξ1

= ia
3
4

∫
R

1
ξ 1

ψ̂1(ξ1) ψ̂2(−a− 1
2 s) e−2πit1a−1ξ1 dξ1

= i ψ̂2(−a− 1
2 s) a

3
4

∫
R

1
ξ 1

ψ̂1(ξ1) e−2πit1a−1ξ1 dξ1.

Similarly to the proof of Proposition 4.4, if |s| >
√

a, then 〈Ĥ, ψ̂ast〉 = 0, and thus,
SHH(a, s, t) decays rapidly as a → 0. On the other hand, if t1 = 0 and |s| ≤

√
a,

we obtain

|〈Ĥ, ψ̂ast〉| ≤ max
ξ2

|ψ̂2(ξ2)| a
3
4

∫
R

|1ξ 1
ψ̂1(ξ1)| dξ1 ∼ a

3
4 as a → 0.

Finally, in case t1 = 0,

|〈Ĥ, ψ̂ast〉| ≤ max
ξ2

|ψ̂2(ξ2)| a
3
4 ψ̃( t1

a ),

where ψ̃(u) =
∫

R

1
ξ 1

ψ̂1(ξ1) e−2πiuξ1 dξ1 is a band-limited function decaying rapidly
as a → 0. �

4.3. Polygonal singularities. Here we consider the characteristic function χV of
the cone V = {(x1, x2) : x1 ≥ 0, qx1 ≤ x2 ≤ px1}, where 0 < q ≤ p < ∞. We have
the following result.

Proposition 4.6. For t = 0, if s = − 1
p or s = −1

q , we have

SHψχV (a, s, t) ∼ a
3
4 as a → 0,

and if s = − 1
p and s = −1

q , we have

SHψχV (a, s, t) ∼ a
5
4 as a → 0.

For t = 0, if s = − 1
p or s = −1

q , we have

SHψχV (a, s, t) ∼ a
3
4 as a → 0.

In all other cases, SHψχV (a, s, t) decays rapidly as a → 0.

The decay of the Continuous Shearlet Transform of χV is illustrated in Figure 2.
As shown in the figure, the decay of SHψχV (a, s, t) exactly identifies the location
and orientation of the singularities. It is interesting to notice that the orientation of
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Figure 2. Decay properties of the Continuous Shearlet Transform SHψχV (a, s, t)

the linear singularities can even be detected considering only the “point singularity”
at the origin.

Proof of Proposition 4.6. The Fourier transform of χV can be computed to be

χ̂V (ξ1, ξ2) = C
1

(ξ1 + qξ2)(ξ1 + pξ2)
, where C =

(p + q)2

(2π)2
.

A direct computation gives:

〈χ̂V , ψ̂ast〉

= Ca
3
4

∫
R

∫
R

1
(ξ1 + qξ2)(ξ1 + pξ2)

ψ̂1(aξ1) ψ̂2(a− 1
2 ( ξ2

ξ1
− s)) e2πiξt dξ1 dξ2

= Ca− 1
4

∫
R

∫
R

1
(a−1ξ1 + qξ2)(a−1ξ1 + pξ2)

ψ̂1(ξ1) ψ̂2(a− 1
2 (a ξ2

ξ1
− s))

·e2πi(a−1ξ1,ξ2)t dξ1 dξ2

= Ca− 3
4

∫
R

∫
R

ξ1

(a−1ξ1 + qξ1(a−1/2ξ2 + a−1s))(a−1ξ1 + pξ1(a−1/2ξ2 + a−1s))

·ψ̂1(ξ1) ψ̂2(ξ2) e2πiξ1(a
−1(t1+st2)+a−1/2ξ2t2) dξ1 dξ2

= Ca
1
4

∫
R

∫
R

ξ1

(a−1/2ξ1(1 + sq) + qξ1ξ2)(a−1/2ξ1(1 + sp) + pξ1ξ2)

·ψ̂1(ξ1) ψ̂2(ξ2) e2πiξ1(a
−1(t1+st2)+a−1/2ξ2t2) dξ1 dξ2.

Let us first consider the case t = 0. By the previous computation we can rewrite
〈χ̂V , ψ̂as0〉 as

Ca
1
4

∫
R

∫
R

ξ1

(a−1/2ξ1(1 + sq)+qξ1ξ2)(a−1/2ξ1(1 + sp) + pξ1ξ2)
ψ̂1(ξ1) ψ̂2(ξ2) dξ1 dξ2.
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If s = − 1
p and s = −1

q , for a � 1 we can rewrite 〈χ̂V , ψ̂as0〉 as

Ca
5
4

∫
R

∫
R

ξ1

(ξ1(1 + sq) + a1/2qξ1ξ2)(ξ1(1 + sp) + a1/2pξ1ξ2)
ψ̂1(ξ1) ψ̂2(ξ2) dξ1 dξ2

∼ C ′a
5
4

∫
R

∫
R

ξ1

(ξ1(1 + sq))(ξ1(1 + sp))
ψ̂1(ξ1) ψ̂2(ξ2) dξ1 dξ2;

hence

〈χ̂V , ψ̂as0〉 ∼ a
5
4 as a → 0.

The above computation also shows that if t = 0 and s = − 1
p or s = −1

q , we have

〈χ̂V , ψ̂as0〉 ∼ a
3
4 as a → 0.

Next, let us consider the situation, where t lies on one singularity but t = 0,
i.e., t2 = pt1 or t2 = qt1. Here we will only examine the first case. The second
one can be treated similarly. First let s = − 1

p , i.e., s is perpendicular to the linear
boundary of the cone x2 = px1. For a � 1 we have

〈χ̂V , ψ̂ast〉 = Ca
1
4

∫
R

∫
R

ξ1

(a−1/2ξ1(1 − q/p) + qξ1ξ2)pξ1ξ2
ψ̂1(ξ1)ψ̂2(ξ2)

·e2πia−1/2pt1ξ1ξ2dξ1dξ2

= Ca
3
4

∫
R

∫
R

ξ1

(ξ1(1 − q/p) + a1/2qξ1ξ2)pξ1ξ2

·ψ̂1(ξ1)ψ̂2(ξ2)e2πia−1/2pt1ξ1ξ2dξ1dξ2

∼ a
3
4 as a → 0.

Secondly, let s = − 1
p . We have:

〈χ̂V , ψ̂ast〉

= Ca
1
4

∫
R

∫
R

ξ1

(a−1/2ξ1(1 + sq) + qξ1ξ2)(a−1/2ξ1(1 + sp) + a−1/2pξ1ξ2)

·ψ̂1(ξ1) ψ̂2(ξ2) e2πiξ1t1(a
−1(1+sp)+a−1/2pξ2) dξ1 dξ2

= Ca
1
4

∫
R

ϕ(ξ1) ψ̂1(ξ1) e2πia−1t1(1+sp)ξ1 dξ1,

where

ϕ(ξ1) =
∫

R

ξ1

(a−1/2ξ1(1 + sq) + qξ1ξ2)(a−1/2ξ1(1 + sp) + pξ1ξ2)
ψ̂2(ξ2)

·e2πia−1/2t1pξ1ξ2dξ2.

Since ψ1 and ψ2 are band-limited, the function ϕ has compact support; hence
(ϕψ̂1)∨ is of rapid decay towards infinity. Thus

〈χ̂V , ψ̂ast〉 = C a
1
4 (ϕψ̂1)∨(a−1t1(1 − sp)) = O(ak) as a → 0.

Finally, in case t2 = pt1, t2 = qt1 and t1 = 0, a similar argument to the one above
shows that 〈χ̂V , ψ̂ast〉 decays rapidly also in this case. �
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4.4. Curvilinear singularities. We will now examine the behavior of the Con-
tinuous Shearlet Transform of a distribution having a discontinuity along a curve.
Throughout this section we will assume that the shearlet ψ̂(ξ1, ξ2) = ψ̂1(ξ1) ψ̂2( ξ1

ξ2
)

satisfies the following additional assumptions: ψ̂1 is odd, ψ̂2 is even and strictly
decreasing. This assumption will be used in the proof of Proposition 4.7.

Let B(x1, x2) = χD(x1, x2), where D = {(x1, x2) ∈ R
2 : x2

1 + x2
2 ≤ 1}. We have

the following:

Proposition 4.7. If t21 + t22 = 1 and s = t2
t1

, t1 = 0, we have

SHψB(a, s, t) ∼ a
3
4 as a → 0.

In all other cases, SHψB(a, s, t) decays rapidly as a → 0.

The assumption t1 = 0 shows that the shearlet transform SHψB(a, s, t) is unable
to handle the vertical direction s → ∞. To provide a complete analysis of the
singularities of B, we need to use both SHψB(a, s, t) and SHψB(v)(a, s, t) (as defined
in Section 3). Since the shearlets ψ

(v)
ast are defined on the vertical cone C(v), using

SHψB(v)(a, s, t) one can obtain a similar result to Proposition 4.7, for s = t1
t2

,
t2 = 0. Since the argument for both cases is exactly the same, we will only examine
the transform SHψB(a, s, t).

In order to prove Proposition 4.7, we need to recall the following facts. First,
we recall the asymptotic behavior of Bessel functions, that is given by the following
lemma (cf. [28]):

Lemma 4.8. There exists a constant C0 such that

J1(2πλ) ∼ C0 λ− 1
2 (e2πiλ + e−2πiλ) as λ → ∞,

and, for N = 1, 2, . . . , there are constants CN satisfying( d

dλ

)N

J1(2πλ) ∼ CN λ− 1
2 (e2πiλ ±N e−2πiλ) as λ → ∞,

where the sign in ±N depends on N and J1 is the Bessel function of order 1.

Secondly, we recall the following fact concerning oscillatory integrals of the First
Kind, that can be found in [28, Ch.8]:

Lemma 4.9. Let A ∈ C∞
0 (R) and Φ ∈ C1(R), with Φ′(t) = 0 on supp A. Then

I(λ) =
∫

R

A(t) e2πiλΦ(t)dt =
(−1)N

(2πiλ)N

∫
R

DN
(
A(t)

)
e2πiλΦ(t)dt,

for N = 1, 2, . . . , where D
(
A(t)

)
= d

dt

( A(t)
Φ′(t)

)
.

We can now prove Proposition 4.7.

Proof of Proposition 4.7. The Continuous Shearlet Transform of B(x) is given by:
(4.2)

SHψB(a, s, t) = 〈B, ψast〉 = a
3
4

∫
R

∫
R

ψ̂1(aξ1) ψ̂2(a− 1
2 ( ξ2

ξ1
− s)) e2πiξt B̂(ξ) dξ1 dξ2.

The Fourier transform B̂(ξ1, ξ2) is the radial function:

B̂(ξ1, ξ2) = 2
∫ 1

−1

√
1 − x2 e2πix

√
ξ2
1+ξ2

2 dx = |ξ|−1 J1(2π|ξ|),
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where J1 is the Bessel function of order 1. Therefore, the asymptotic behavior of
B̂(λ) follows from Lemma 4.8, with the factor λ−1/2 replaced by λ−3/2.

Because of the radial symmetry, it is convenient to convert (4.2) into polar
coordinates:

SHψB(a, s, t)

= a
3
4

∫ ∫
ψ̂1(aρ cos θ) ψ̂2(a− 1

2 (tan θ − s)) e2πiρ(t1 cos θ+t2 sin θ) B̂(ρ) ρ dρ dθ

= a− 5
4

∫ ∫
ψ̂1(ρ cos θ) ψ̂2(a− 1

2 (tan θ − s)) e2πi ρ
a (t1 cos θ+t2 sin θ) B̂( ρ

a ) ρ dρ dθ.(4.3)

We will now examine the asymptotic decay of the function SHψB(a, s, t) along the
curve ∂B for a → 0. Thus, we set t21+t22 = 1 and, without loss of generality, assume
a < 1. As we will show, the decay depends on whether the direction associated
with s is normal to the curve ∂B or not.

Let us begin by considering the non-normal case s = t2/t1. From (4.3), we have:

SHψB(a, s, t) = a− 5
4

∫
I(a, ρ) B̂( ρ

a ) ρ dρ,

where (using the conditions on the support of ψ̂2)

I(a, ρ) =
∫
| tan θ−s|<√

a

ψ̂1(ρ cos θ) ψ̂2(a− 1
2 (tan θ − s)) e2πi ρ

a (t1 cos θ+t2 sin θ) dθ.

Observe that the domain of integration is the cone | tan θ − s| <
√

a about the
direction tan θ = s, with a < 1. This implies that θ ranges over an interval. Since
the conditions on the support of ψ̂1 imply that |ρ cos θ| ⊂ [12 , 2], it follows that ρ
also ranges over an interval and, as a consequence, I(a, ρ) is compactly supported
in ρ.

We will show that I(a, ρ) is an oscillatory integral of the First Kind that de-
cays rapidly for a → 0 for each ρ. To show that this is the case, we will apply
Lemma 4.9 to I(a, ρ), where A(θ; ρ) = ψ̂1(ρ cos θ) ψ̂2(a−1/2(tan θ − s)), Φ(θ; ρ) =
ρ(t1 cos θ+t2 sin θ) and λ = a−1 and ρ is a fixed parameter. Observe that Φ′(θ; ρ) =
ρ(−t1 sin θ + t2 cos θ) and Φ′(θ; ρ) = 0 for tan θ = t2

t1
. Thus, provided |s− t2

t1
| ≥

√
a,

it follows that Φ′(θ; ρ) = 0 on supp A. A direct computation gives

D
(
A(θ; ρ)

)
=

∂

∂θ

ψ̂1(ρ cos θ) ψ̂2(a− 1
2 (tan θ − s))

ρ(−t1 sin θ + t2 cos θ)

=
sin θ

t1 sin θ − t2 cos θ
ψ̂′

1(ρ cos θ) ψ̂2(a− 1
2 (tan θ − s))

+ a− 1
2

sec2 θ

ρ(t2 cos θ − t1 sin θ)
ψ̂1(ρ cos θ) ψ̂′

2(a
− 1

2 (tan θ − s))

+
t2 sin θ + t1 cos θ

ρ2(t2 cos θ − t1 sin θ)2
ψ̂1(ρ cos θ)ψ̂2(a− 1

2 (tan θ − s)).

Thus, since tan θ = t2
t1

, using the assumptions on ψ̂1, ψ̂2, we obtain∣∣D(
A(θ; ρ)

)∣∣ < a− 1
2 C(θ, ρ)

(
‖ψ̂′

1ψ̂2‖∞ + ‖ψ̂1ψ̂
′
2‖∞ + ‖ψ̂1ψ̂2‖∞

)
.

As observed above, the assumptions on the support of ψ̂1, ψ̂2 imply that D
(
A(θ; ρ)

)
is compactly supported in ρ away from ρ = 0. Using this observation and Φ′(θ) = 0,
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it follows that
‖D(A)‖∞ < C a− 1

2 .

Applying the same estimate repeatedly, we have that for each N ∈ N,

‖DN (A)‖∞ < CN a−N
2 .

Thus, using Lemma 4.9 with λ = a−1, we conclude that for each N ∈ N there is a
constant CN > 0 such that

sup
ρ

|I(a, ρ)| < CN a
N
2 .

This implies that, under the assumption that we made for t = (t1, t2) and s, the
function SHψB(a, s, t) decays rapidly for a → 0.

Let us now consider the function |〈B̂, ψ̂ast〉|, where t21 + t22 = 1 and s = t2/t1
(corresponding to the direction normal to ∂B). For simplicity, let (t1, t2) = (1, 0).
The general case follows using a similar argument. From (4.3), using the change of
variables u = a−1/2 sin θ, we obtain

(4.4) 〈B̂, ψ̂a0(1,0)〉 = a− 3
4

∫
B̂( ρ

a ) ηa(ρ) e2πi ρ
a ρ dρ,

where

ηa(ρ) =
∫ (1+a)−1/2

−(1+a)−1/2
ψ̂1(ρ

√
1 − au2) ψ̂2(

u√
1 − au2

) e2πi ρ
a (

√
1−au2−1) du√

1 − au2
.

The assumptions on the support of ψ̂2 and ψ̂1 imply that |u| < (1 + a)1/2 and that
|ρ
√

1 − au2| ⊂ [ 12 , 2], respectively. Thus, ρ ranges over a closed interval and, as
a consequence, the functions ηa(ρ) are compactly supported. For 0 < a < 1, the
functions

ha(u) = ψ̂1(ρ
√

1 − au2) ψ̂2(
u√

1 − au2
)

e2πi ρ
a (

√
1−au2−1)

√
1 − au2

are equicontinuous and they converge uniformly:

lim
a→0

ha(u) = h0(u) = ψ̂1(ρ) ψ̂2(u) e−πiρu2
.

Thus, we have the uniform limit:

lim
a→0

ηa(ρ) = η0(ρ) =
∫ 1

−1

ψ̂1(ρ) ψ̂2(u) e−πiρu2
du,

and the same convergence holds for all u-derivatives. In particular, ‖ηa‖∞ < C, for
all a < 1.

Using the asymptotic estimate given by Lemma 4.8 into (4.4), for a small, we
have:

|〈B̂, ψ̂a0(1,0)〉| ∼ C a− 3
4

(∫ (a

ρ

) 3
2
ηa(ρ) e4πi ρ

a ρ dρ +
∫ (a

ρ

) 3
2
ηa(ρ) ρ dρ

)
= C a

3
4

(
F̂a

(
−2

a

)
+

∫
Fa(ρ) dρ

)
,

where Fa(ρ) = ηa(ρ) ρ−1/2. The family of functions {Fa : 0 < a < 1} has all its ρ

derivatives bounded uniformly in a, and so F̂a(− 2
a ) decays rapidly as a → 0. On

the other hand,
∫

Fa(ρ) dρ tends to
∫

η0(ρ) ρ−1/2 dρ as a → 0.
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One can show that there is a constant C > 0 such that
∫

η0(ρ) ρ−1/2 dρ > C.
To do that, and ensure that the integral does not vanish, the functions ψ1 and ψ2

have to be chosen appropriately. This can be done, for example, by choosing ψ̂1

odd and ψ̂2 even and decreasing. The proof of this fact is omitted.
Using these observations, we conclude that

|〈B̂, ψ̂a0(1,0)〉| ∼ a
3
4 as a → 0.

Finally, if t is not on ∂B, then one can show that SHψB(a, s, t) has rapid decay.
This follows from the general analysis given in Section 5. �

5. Characterization of the wavefront set

using the Shearlet Transform

The examples described in Section 4 suggest that the set of singularities of a
distribution on R

2 can be characterized using the Continuous Shearlet Transform.
In this section, we will show that this is indeed the case. In order to do this, it will
be useful to introduce the notions of singular support and wavefront set.

For a distribution u, we say that x ∈ R2 is a regular point of u if there exists
some φ ∈ C∞

0 (Ux), where Ux is a neighborhood of x and φ(x) = 0, such that
φ u ∈ C∞

0 (Rn). Recall that the condition φ u ∈ C∞
0 is equivalent to (φ u)∧ being

rapidly decreasing. The complement of the regular points of u is called the singular
support of u and is denoted by sing supp(u). It is easy to see that the singular
support of u is a closed subset of supp(u).

The wavefront set of u consists of certain (x, λ) ∈ R2×R, with x ∈ sing supp(u).
For a distribution u, a point (x, λ) ∈ R2 ×R is a regular directed point for u if there
are neighborhoods Ux of x and Vλ of λ, and a function φ ∈ C∞

0 (R2), with φ = 1 on
Ux, so that, for each N > 0, there is a constant CN with

|(u φ)∧(η)| ≤ CN (1 + |η|)−N ,

for all η = (η1, η2) ∈ R2 satisfying η2
η1

∈ Vλ. The complement in R2 × R of the
regular directed points for u is called the wavefront set of u and is denoted by
WF (u). Thus, the singular support is measuring the location of the singularities
and λ is measuring the direction perpendicular to the singularity.2

In the examples presented in Section 4, one can verify the following:
(i) Point Singularity δ(x): sing supp(δ) = {0} and WF (δ) = {0} × R.
(ii) Linear Singularity νp(x): sing supp(νp) = {(−px2, x2) : x2 ∈ R} and

WF (νp) = {((−px2, x2), p) : x2 ∈ R}.
(iii) Curvilinear Singularity B(x): sing supp(B) = {(x1, x2) : x2

1 + x2
2 = 1} and

WF (B) = {((x1, x2), λ) : x2
1 + x2

2 = 1, λ = x2
x1
}.

As observed in Section 4, all these sets are exactly identified by the decay prop-
erties of the Continuous Shearlet Transform. Indeed, we have the following general
result:

Theorem 5.1. (i) Let R = {t0 ∈ R2 : for t in a neighborhood U of t0,
|SHψf(a, s, t)| = O(ak) and |SH(v)

ψ f(a, s, t)| = O(ak) as a → 0, for all

2This definition is consistent with [6], where the direction of the singularity is described by the
angle θ. Observe that our approach does not distinguish between θ and θ+π, since the continuous
shearlets have frequency support that is symmetric with respect to the origin. However, in Section
6 we discuss a variant of the Continuous Shearlet Transform, which can distinguish these cases.
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k ∈ N, with the O(·)–terms uniform over (s, t) ∈ [−1, 1] × U}. Then

sing supp(f)c = R.

(ii) Let D = D1 ∪ D2, where D1 = {(t0, s0) ∈ R2 × [−1, 1] : for (s, t) in a
neighborhood U of (s0, t0), |SHψf(a, s, t)| = O(ak) as a → 0, for all k ∈ N,
with the O(·)–term uniform over (s, t) ∈ U} and D2 = {(t0, s0) ∈ R

2 ×
[1,∞) : for ( 1

s , t) in a neighborhood U of (s0, t0), |SH(v)
f (a, s, t)| = O(ak) as

a → 0, for all k ∈ N, with the O(·)–term uniform over ( 1
s , t) ∈ U}. Then

WF(f)c = D.

The statement (ii) of the theorem shows that the Continuous Shearlet Transform
SHψf(a, s, t) identifies the wavefront set for directions s such that |s| = | ξ2

ξ1
| ≤

1 (in the frequency domain). The Continuous Shearlet Transform SH(v)
ψ f(a, s, t)

identifies the wavefront set for directions s such that |s| = | ξ1
ξ2
| ≤ 1, corresponding

to | ξ2
ξ1
| ≥ 1. This result is in part inspired by Theorems 5.1 and 5.2 in [6] where a

similar result is proved for the Continuous Curvelet Transform. Several lemmata
will be needed in order to prove Theorem 5.1. In these proofs, some ideas from [6]
will be adapted to the distinct mathematical structure of the shearlet approach.

The following lemma shows that if t is outside the support of a function g, then
the Continuous Shearlet Transform of g decays rapidly as a → 0.

Lemma 5.2. Let g ∈ L2(R2) with ‖g‖∞ < ∞, and a < 1. If supp(g) ⊂ B ⊂ R2,
then for all k > 1,

|SHψg(a, s, t)| = |〈g, ψast〉| ≤ Ck C(s)2 ‖g‖∞ a
1
4
(
1 + C(s)−1a−1d(t,B)2

)−k
,

where C(s) =
(

1 + s2

2 +
(
s2 + s4

4

) 1
2
) 1

2

and Ck is as in Proposition 3.4.

Proof. Since ‖g‖∞ < ∞, by Proposition 3.4, for all k ∈ N, there is a Ck > 0 such
that:

|〈g, ψast〉| ≤ ‖g‖∞
∫
B
|ψast(x)|dx

≤ Ck ‖g‖∞ a− 3
4

∫
B

(
1 + ‖M−1(x − t)‖2

)−k

dx

= Ck ‖g‖∞ a− 3
4

∫
B+t

(
1 + ‖M−1x‖2

)−k

dx,(5.1)

where M =
(

a −√
a s

0
√

a

)
. Observe that ‖x‖ = ‖MM−1x‖ ≤ ‖M‖op ‖M−1x‖, and,

thus,

‖M−1x‖ ≥ 1
‖M‖op

‖x‖.

Since M =
(

1 −s
0 1

) (
a 0
0
√

a

)
and ‖

(
a 0
0
√

a

)
‖op =

√
a, then

‖M−1x‖ ≥ C(s)−1 a− 1
2 ‖x‖,
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where C(s) = ‖
(

1 −s
0 1

)
‖op. Using these observation in (5.1), we have that

|〈g, ψast〉| ≤ Ck ‖g‖∞ a− 3
4

∫
B+t

(
1 + C(s)−2a−1‖x‖2

)−k

dx

≤ Ck C(s)2 ‖g‖∞ a
1
4

∫ ∞

C(s)−1a−1/2d(t,B)

(1 + r2)−kr dr

= Ck C(s)2 ‖g‖∞ a
1
4

(
1 + C(s)−2a−1d(t,B)2

)−k

.

At last, we compute C(s). We have
(

1 −s
0 1

) (
1 0
−s 1

)
=

(
1+s2 −s
−s 1

)
. The largest

eigenvalue of this matrix is λmax = 1 + s2

2 +
(
s2 + s4

4

) 1
2
. Thus we have

C(s) =

(
1 +

s2

2
+

(
s2 +

s4

4

) 1
2
) 1

2

for all s ∈ R.

�

Remark. The dependence on s in Lemma 5.2 cannot be removed. If this were the
case, then, for some subset C of R2 with positive distance to 0, we would need that

Bs

(
x
y

)
=

(
1 −s
0 1

)(
x
y

)
=

(
x + sy

y

)
has a positive distance from 0 for all (x, y) ∈ C independent of s. For this, we only
need to consider the “inner” boundary of C, which “separates” it from 0. Let ε > 0
and consider the point (xε, ε) ∈ C. Ss maps this point to (xε + sε, ε). Obviously,
there exists an s ∈ R with xε + sε = 0. Since ε is arbitrary, we can always find
a shear s, which maps a point of C arbitrarily close to 0. The application of the
parabolic scaling via a afterwards doesn’t change this fact. Thus, in order to obtain
a uniform estimate, it is sufficient to assume that s ∈ S ⊂ R, where S is compact.

We can now prove the following inclusions.

Proposition 5.3. Let R and D be defined as in Theorem 5.1. Then:

(i) sing supp(f)c ⊆ R,
(ii) WF(f)c ⊆ D.

Proof. (i) Let t0 be a regular point of f . Then there exists φ ∈ C∞
0 (R2) with

φ(t0) ≡ 1 on B(t0, δ), which is the ball centered at t0 with radius δ, such that
φf ∈ C∞(R2). We will show that t0 ∈ R. For this, we decompose SHψf(a, s, t) as

(5.2) SHψf(a, s, t) = 〈ψast, φf〉 + 〈ψast, (1 − φ)f〉.

Observe that

|〈ψast, φf〉| ≤ a
3
4

∫
R2

|ψ̂1(aξ1)| |ψ̂2( 1√
a
( ξ2

ξ1
− s))| |φ̂f(ξ1, ξ2)| dξ1 dξ2 = I+ + I−,

where I+ is the integral restricted to ξ1 ≥ 0 and I− is the integral restricted to
ξ1 < 0.
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Since φ ∈ C∞
0 (R2), then |φ̂f(ξ)| = O(1 + |ξ|)−k. Using this fact together with

the assumptions on the support of ψ̂ast, for k > 2, we have:

I+ = a
3
4

∫
R+×R

|ψ̂1(aξ1)| |ψ̂2( 1√
a
( ξ2

ξ1
− s))| |φ̂f(ξ1, ξ2)| dξ1 dξ2

≤ Ck‖ψ̂‖∞a
3
4

∫ 2
a

1
2a

∫ (s+
√

a)ξ1

(s−√
a)ξ1

(1 + ξ2
1 + ξ2

2)−k/2 dξ2 dξ1

≤ Ck‖ψ̂‖∞a
3
4

∫ 2
a

1
2a

(1 + ξ1)−k

∫ (s+
√

a)ξ1

(s−√
a)ξ1

dξ2 dξ1

= 2 Ck‖ψ̂‖∞a
3
4

∫ 2
a

1
2a

(1 + ξ1)−k
√

aξ1 dξ1

≤ 2 Ck‖ψ̂‖∞a
5
4

∫ 2
a

1
2a

(1 + ξ1)−k+1 dξ1

≤ 2 Ck‖ψ̂‖∞a
5
4

k − 2
(2 a)k−2.

Thus, I+ decays rapidly as a → 0, uniformly over (t, s) ∈ B(t0, δ
2 )×R. The estimate

for I− is similar and, hence, the first term on the RHS of (5.2) decays rapidly as
a → 0, uniformly over (t, s) ∈ B(t0, δ

2 ) × R.
Using Lemma 5.2, we estimate the second term on the RHS of (5.2) as:

|〈ψast, (1 − φ)f〉| ≤ Ck C(s)2 ‖(1 − φ)f‖∞ a
1
4 (1 + C(s)−1a−1d(t, B(t0, δ)c)2)−k,

where k ∈ N is arbitrary. Since ‖(1 − φ)f‖∞ < ∞ and s is bounded, this yields

|〈ψast, (1 − φ)f〉| = O(ak) as a → 0,

uniformly over (t, s)∈B(t0, δ
2 )×[−1, 1]. A similar estimate holds when SHψf(a, s, t)

is replaced by SH(v)
ψ f(a, s, t). This proves (i).

(ii) Let (t0, s0) be a regular directed point of f , with s0 ∈ [−1, 1]. Then there
exists a φ ∈ C∞

0 (R2) with φ(t0) ≡ 1 on a ball B(t0, δ1) such that, for each k ∈ N,
we have |φ̂f(ξ)| = O((1 + |ξ|)−k) for all ξ ∈ R2 satisfying ξ2

ξ1
∈ B(s0, δ2). We will

prove that (t0, s0) ∈ D. For this, we decompose SHψf(a, s, t) as in (5.2). The
second term on the RHS of (5.2) can be estimated as in the case (i). For the first
term of (5.2), we only need to show that supp ψ̂ast ⊂ {ξ ∈ R2 : ξ2

ξ1
∈ B(s0, δ2)} for

all (s, t) ∈ B(s0, δ2) × B(t0, δ1), since in this cone φ̂f decays rapidly. As above, we
only consider the case ξ1 > 0; the case ξ1 ≤ 0 is similar. The support of ψ̂ast in
this half-plane is given by

{(ξ1, ξ2) : ξ1 ∈ [ 1
2a , 2

a ], ξ2 ∈ ξ1[s −
√

a, s +
√

a]}.

Let (s, t) ∈ B(s0, δ2)×B(t0, δ1). The cone {ξ ∈ R2 : ξ2
ξ1

∈ B(s0, δ2)} is bounded by

the lines ξ2 = (s0 − δ2)ξ1 and ξ2 = (s0 + δ2)ξ1. Now let (ξ1, ξ2) ∈ supp ψ̂ast. Then,
for a small enough, we have

| ξ2
ξ1

− s0| ≤
√

a ≤ δ2,
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and this completes the proof in this case. In case |s0| ≥ 1 (this corresponds to
| ξ2
ξ1
| ≤ 1), we proceed exactly as above, using the transform SH(v)

ψ f(a, s, t) rather
than SHψf(a, s, t). �

For the converse inclusions we need some additional lemmata. For simplicity of
notation, in the following proofs the symbols C ′ and Ck are generic constants and
may vary from expression to expression (in the case of Ck, the constant depends
on k).

Lemma 5.4. Let S ⊂ R be a compact set, and let g ∈ L2(R2) with ‖g‖∞ < ∞.
Suppose that supp g ⊂ B for some B ⊂ R

2 and define (Bη)c = {x ∈ R
2 : d(x,B) >

η}. Further define h ∈ L2(R2) by

ĥ(ξ) =
∫ ∞

0

∫
(Bη)c

∫
S

SHψg(a, s, t) ψ̂ast(ξ) ds dt
da

a3
.

Then ĥ(ξ) decays rapidly as |ξ| → ∞ with constants dependent only on ‖g‖∞ and
η.

Proof. Using the fact that S is compact, Lemma 5.2 implies that, for each k > 0,

|SHψg(a, s, t)| ≤ Ck a
1
4 (1 + a−1d(t,B)2)−k,

where Ck depends on ‖g‖∞ but not on s. By definition, the support of ψ̂ast is
contained in the set

(5.3) Γ(a, s) = {ξ ∈ R
2 : 1

2 ≤ a|ξ| ≤ 2, |s − ξ2
ξ1
| ≤

√
a}.

Thus, |ψ̂ast(ξ)| ≤ C ′a
3
4 χΓ(a,s)(ξ) and

(5.4)
∫

S

χΓ(a,s)(ξ) ds ≤
∫

S∩
[

ξ2
ξ1

−
√

a,
ξ2
ξ1

+
√

a
] ds ≤ C ′ √a.

Collecting the above arguments,

ĥ(ξ) ≤
∫ ∞

0

∫
(Bη)c

∫
S

|SHψg(a, s, t)| |ψ̂ast(ξ)| ds dt
da

a3

≤ Ck

∫ ∞

0

∫
(Bη)c

∫
S

a χΓ(a,s)(ξ) (1 + a−1d(t,B)2)−k ds dt
da

a3

≤ Ck

∫ ∞

0

∫
(Bη)c

∫
S

χΓ(a,s)(ξ) ds a (1 + a−1d(t,B)2)−k dt
da

a3

≤ Ck

∫ 2
|ξ|

1
2|ξ|

a− 3
2

∫
(Bη)c

(1 + a−1d(t,B)2)−k dt da

≤ Ck

∫ 2
|ξ|

1
2|ξ|

a− 3
2

∫ ∞

η

(1 + a−1r2)−k r dr da

≤ Ck

∫ 2
|ξ|

1
2|ξ|

a− 1
2 (1 + a−1η2)−k+2 da

≤ Ck |ξ|−
1
2 (1 + |ξ| η2)−k+2.

Since this holds for each k > 0, ĥ(ξ) decays rapidly as |ξ| → ∞. �
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Lemma 5.5. Let S ⊂ R and B ⊂ R2 be compact sets. Suppose that G(a, s, t)
decays rapidly as a → 0 uniformly for (s, t) ∈ S × B. Define h ∈ L2(R2) by

ĥ(ξ) =
∫ ∞

0

∫
B

∫
S

G(a, s, t) ψ̂ast(ξ) ds dt
da

a3
.

Then ĥ(ξ) decays rapidly as |ξ| → ∞.

Proof. As in Lemma 5.4, we will use the fact that |ψ̂ast(ξ)| ≤ C ′ a
3
4 χΓ(a,s)(ξ), where

Γ(a, s) is given by (5.3) and the estimate (5.4). Also, by hypothesis, for each k > 0
and a > 0 we have

sup{|G(a, s, t)| : |ξ| ∈ [ 1
2a , 2

a ], t ∈ B} ≤ Ck ak.

Using all these observations, we have that, for each k > 0,

|ĥ(ξ)| ≤
∫ ∞

0

∫
B

∫
S

|G(a, s, t)| |ψ̂ast(ξ)| ds dt
da

a3

≤ Ck

∫ ∞

0

∫
B

∫
S

χΓ(a,s)(ξ) ak− 9
4 ds dt da

≤ Ck

∫ 2
|ξ|

1
2|ξ|

ak− 7
4 da

≤ Ck |ξ|−k+ 3
4 .

�

The proof of the following lemma adapts several ideas from [3, Lemma 2.3].

Lemma 5.6. Suppose 0 ≤ a0 ≤ a1 < 1 and |s| ≤ s0. Then for K > 1, there is a
constant CK , dependent on K only, such that:

|〈ψa0st, ψa1s′t′〉| ≤ CK

(
1 +

a1

a0

)−K (
1 +

|s − s′|2
a1

)−K (
1 +

‖(t − t′)‖2

a1

)−K

.

Proof. By the properties of ψ, for ‖ξ‖ > 1
2 and any k > 0, there exists a corre-

sponding constant Ck such that

|ψ̂(ξ)| ≤ Ck
1

(1 + |ξ1| + |ξ2|)k
.

Further, ψ̂(ξ) = 0 for ‖ξ‖ < 1
2 . Thus, observing that M t

asξ = (a ξ1,
√

a ξ2−
√

a s ξ1),
we obtain

|ψ̂ast(ξ)| ≤ Ck
a

3
4

(1 + a |ξ1| +
√

a |ξ2 − s ξ1|)k
.

Using polar coordinates, by writing ξ1 = r cos θ and ξ2 = r sin θ, this expression
can be written as

|ψ̂ast(r, θ)| ≤ Ck
a

3
4

(1 + a r| cos θ| +
√

a r| sin θ − s cos θ|)k
.

For |θ| ≤ β, with β < π/2, using the assumption |s| ≤ s0, the last expression can
be controlled by

(5.5) |ψ̂ast(r, θ)| ≤ Ck
a

3
4

(1 + a r +
√

a r | sin θ − s|)k
.
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In addition, since sin θ ∼ θ on |θ| ≤ π/2, we can replace sin θ with θ in the above
expression.

Let ∆s = s− s′, a0 = min(a, a′) and a1 = max(a, a′). Using (5.5), and applying
the same argument on |θ| ≤ π/2 and π/2 < |θ| ≤ π, it follows that∫

| ξ2
ξ1 |<tan β

∣∣∣ψ̂a′s′t′(ξ) ψ̂ast(ξ)
∣∣∣ dξ

≤ Ck

∫ ∞

1
a0

∫ π

−π

(a a′)
3
4 r

(1 + a r +
√

a r |θ − s|)k
(
1 + a′ r +

√
a′ r |θ − s′|

)k
dθ dr

≤ Ck

∫ ∞

a−1
0

(a a′)
3
4 r

(1 + a r)k′
(1 + a′ r)k

∫ ∞

−∞

1

(1 + α |θ|)k (1 + α′ |θ + ∆s|)k
dθ dr,

where α =
√

a r
1+a r , α′ =

√
a′ r

1+a′ r . Using a simple calculation, for α > α′ > 1, k > 1,∫ ∞

−∞

1

(1 + α |θ|)k (1 + α′ |θ + ∆s|)k
dθ ≤ Ck

1

α (1 + α′ |∆s|)k
.

From the definition of α′, for r ≥ 1/a′, we obtain 1
2

1√
a′ ≤ α′ ≤ 1√

a′ . Thus, for
r ≥ 1/a′, provided k > 1, the last expression gives

(5.6)
∫ ∞

−∞

1

(1 + α |θ|)k (1 + α′ |θ + ∆s|)k
dθ ≤ Ck

(1 + a r)√
a r

(
1 +

|∆s|√
a′

)−k

.

Another simple estimate, provided k′ > 1, yields

(5.7)
∫ ∞

1
a0

1

(1 + a0 r)k′
(1 + a1 r)k

dr ≤ Ck′
1
a0

(
1 +

a1

a0

)−k

.

Thus, using (5.6) and (5.7), for α > α′ > 1, a0 = a′ and a1 = a, we obtain∫
| ξ2

ξ1 |<tan β

∣∣∣ψ̂a′s′t′(ξ) ψ̂ast(ξ)
∣∣∣ dξ ≤ Ck

(
a1

a0

) 1
4
(

1 +
a1

a0

)−k+1 (
1 +

|∆s|
√

a0

)−k

≤ Ck

(
1 +

a1

a0

)−k+2 (
1 +

|∆s|
√

a0

)−k

.

Similarly, for α > α′ > 1, a1 = a′ and a0 = a, a similar calculation gives∫
| ξ2

ξ1 |<tan β

∣∣∣ψ̂a′s′t′(ξ) ψ̂ast(ξ)
∣∣∣ dξ ≤ Ck

(
a1

a0

) 3
4
(

1 +
a1

a0

)−k (
1 +

|∆s|
√

a1

)−k

≤ Ck

(
1 +

a1

a0

)−k+1 (
1 +

|∆s|
√

a1

)−k

.

In general, renaming the index k, we can show that

(5.8)
∫
| ξ2

ξ1 |<tan β

∣∣∣ψ̂a′s′t′(ξ) ψ̂ast(ξ)
∣∣∣ dξ ≤ Ck

(
1 +

a1

a0

)−k (
1 +

|∆s|
√

a1

)−k

.
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To complete the proof, we will employ the formulas

∂

∂ξ1
ψ̂ast(ξ) = (a −

√
a s) ψ̂ast(ξ),

∂

∂ξ2
ψ̂ast(ξ) =

√
a ψ̂ast(ξ),

∂2

∂ξ2
1

ψ̂ast(ξ) = (a −
√

a s)2 ψ̂ast(ξ),
∂2

∂ξ2
2

ψ̂ast(ξ) = a ψ̂ast(ξ).

Thus, observing that a, a′ < 1 and |s| < s0 yields∣∣∣∆ξ ψ̂ast(ξ) ψ̂a′s′t′(ξ)
∣∣∣ ≤ C ′ a1 |ψ̂ast(ξ)| |ψ̂a′s′t′(ξ)|.

Set

L = I − ∆ξ

(2π)2 a1
.

On the one hand, for each k, we have

(5.9)
∣∣∣Lk

(
ψ̂ast ψ̂a′s′t′

)
(ξ)

∣∣∣ ≤ C ′ |ψ̂ast(ξ)| |ψ̂a′s′t′(ξ)|.

On the other hand,

(5.10) Lk(e−2πiξ(t−t′)) =
(

1 +
‖t − t′‖2

a1

)k

e−2πiξ(t−t′).

Repeated integrations by parts give

〈ψast, ψa′s′t′〉 =
∫
| ξ2

ξ1 |<tan β

ψ̂ast(ξ) ψ̂a′s′t′(ξ) dξ

=
∫
| ξ2

ξ1 |<tan β

(a a′)3/4 ψ̂(M t
asξ) ψ̂(M t

a′s′ξ) e−2πiξ(t−t′) dξ

=
∫
| ξ2

ξ1 |<tan β

Lk
(
(a a′)3/4 ψ̂(M t

asξ) ψ̂(M t
a′s′ξ)

)
L−k

(
e−2πiξ(t−t′)

)
dξ.

Therefore, from the last expression, using (5.8)–(5.10), it follows that

|〈ψast, ψa′s′t′〉| ≤ Ck

(
1 +

‖t − t′‖2

a1

)−k (
1 +

a1

a0

)−k (
1 +

|∆s|
√

a1

)−k

.

The proof is completed recalling that, for m > 0, (1 + |x|)−2m ∼ (1 + |x|2)−m.
That is, there are constants C1, C2 > 0 such that C1 (1 + |x|2)−m ≤ (1 + |x|)−2m ≤
C2 (1 + |x|2)−m. �

From Lemma 5.6, the following result can be easily deduced.

Lemma 5.7. Let φ1 ∈ C∞(R2) be supported in B(0, 1), and define φ(x) =
φ1(a−1

φ (x− t)).

(i) Suppose 0 ≤ √
a0 ≤ √

a1 ≤ aφ < 1. Then for K > 0,

|〈φ ψa0st, ψa1s′t′〉| ≤ CK

(
1 +

a1

a0

)−K (
1 +

|s − s′|2
a1

)−K (
1 +

‖(t − t′)‖2

a1

)−K

.

(ii) Suppose 0 ≤ √
a0 ≤ aφ ≤ √

a1 < 1, a1 ≤ aφ. Then for K > 0,

|〈φ ψa0st, ψa1s′t′〉| ≤ CK

(
1 +

a1

a0

)−K
(

1 +
|s − s′|2

a2
φ

)−K (
1 +

‖(t − t′)‖2

a1

)−K

.
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(iii) Suppose 0 ≤ √
a0 ≤ aφ ≤ a1 ≤ √

a1 < 1. Then for K > 0,

|〈φ ψa0st, ψa1s′t′〉| ≤ CK

(
1 +

aφ

a0

)−K
(

1 +
‖(t − t′)‖2

a2
φ

)−K

.

Now we can complete the proof of Theorem 5.1.

Proof of Theorem 5.1. Since one direction was proved by Proposition 5.3, we only
have to prove the inclusions:

(i) R ⊆ sing supp(f)c;
(ii) D ⊆ WF(f)c.

First we prove (i). Let t0 ∈ R. Then for all t ∈ B(t0, δ), where B(t0, δ) denotes
a ball centered at t0 of radius δ, we have that |SHψf(a, s, t)| = O(ak) as a → 0,
for all k ∈ N with the O(·)–term uniform over (t, s) ∈ B(t0, δ) × [−1, 1]. A similar
estimate holds for SH(v)

ψ f(a, s, t).
Choose φ ∈ C∞(R2) to be supported in B(t0, ν) with ν � δ and let η = δ

2 .
Let ĝ0(ξ) = (φ P (f))∧(ξ), where P (f) =

∫
R
〈f, TbW 〉TbW db and W is the window

function defined by (3.6). Further, define ĝi, i = 1, . . . , 4 as

ĝi(ξ) = χC1(ξ)
∫
Qi

ψ̂ast(ξ)SHψg(a, s, t) dµ(a, s, t), i = 1, 2,

ĝi+2(ξ) = χC2(ξ)
∫
Qi

ψ̂ast(ξ)SH(v)
ψ g(a, s, t) dµ(a, s, t), i = 1, 2,

where C1, C2 are defined after equation (3.6), dµ(a, s, t) = da
a3 ds dt, and Q1 =

[0, 1] × [−2, 2] × B(t0, η) and Q2 = [0, 1] × [−2, 2] × B(t0, η)c. Now set g = φf and
consider the decomposition

φ̂f(ξ) = ĝ0(ξ) + ĝ1(ξ) + ĝ2(ξ) + ĝ3(ξ) + ĝ4(ξ).

The term ĝ0(ξ) decays rapidly as |ξ| → ∞ since φ and P (f) are in C∞. The term
ĝ2(ξ) decays rapidly as |ξ| → ∞ by Lemma 5.4. In addition, by Lemma 5.5, ĝ1(ξ)
decays rapidly as |ξ| → ∞ provided that SHψg decays rapidly as a → 0 uniformly
over (t, s) ∈ B(t0, η) × [−2, 2]. In the sequel, we will only analyze the terms ĝi for
i = 1, 2; the cases i = 3, 4 are similar.

We claim that SHψg indeed decays rapidly as a → 0 uniformly over B(t0, η) ×
[−2, 2]. In order to prove this, we decompose f as f = P (f) + PC1f + PC2f , where
(PC1f)∧ = f̂ χC1 and (PC2f)∧ = f̂ χC2 . It is clear that SHψ(φP (f)) decays rapidly
by the smoothness of φ and P (f). Next, we examine the term PC1f . The analysis of
PC2f is very similar and will be omitted. We use the decomposition PC1f = f1+f2,
where

fi(x) =
∫
Qi

ψast(x)SHψf(a, s, t) dµ(a, s, t), i = 1, 2.

Let us start by considering the term corresponding to f1. First we observe that

SHψ(φf1)(a, s, t) = 〈φ f1, ψast〉 =
∫
Q1

〈φ ψast, ψa′s′t′〉 SHψf(a′, s′, t′) dµ(a′, s′, t′).

We will now decompose Q1 = Q10∪Q11∪Q12, corresponding to a′ > δ, a′ ≤ δ <
√

a′

and
√

a′ ≤ δ, respectively. In case
√

a,
√

a′ ≤ δ, by Lemma 5.7, we obtain

(5.11) |〈φ ψast, ψa′s′t′〉| ≤ CK

(
1 +

a1

a0

)−K (
1 +

‖(t − t′)‖2

a1

)−K

.
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This implies that, for m > 4 and K ≥ m − 1,

(5.12)
∫ δ

0

(
1 +

a1

a0

)−K

(a′)m da′

(a′)3
≤ Cm,K am−2, 0 < a < δ.

In fact, for a′ = a0 ≤ a = a1,∫ a

0

(
1 +

a

a′

)−K

(a′)m da′

(a′)3
= am−2

∫ 1

0

(1 + x)−K dx = CK am−2.

For a = a0 ≤ a′ = a1,∫ δ

a

(
1 +

a′

a

)−K

(a′)m da′

(a′)3
= am−2

∫ δ/a

1

xm−3 (1 + x)−K
dx

≤ am−2

∫ ∞

1

xm−3 (1 + x)−K
dx = CK,m am−2.

Thus, (5.12) follows from the last two estimates. Using (5.12) it follows that∫
Q12

〈φ ψast, ψa′s′t′〉 SHψf(a′, s′, t′) dµ(a′, s′, t′)

≤ C ′
∫ 2

−2

∫
B(t0,η)

∫ δ

0

(
1 +

a1

a0

)−K

(a′)m da′

(a′)3
dt′ ds′

≤ Cm am−2,

for all m > 4. Using the other cases of Lemma 5.7, one can show similar estimates
for the integrals over the sets Q10 and Q11. This proves that SHφf1(a, s, t) decays
rapidly for a → 0 uniformly over B(t0, η) × [−2, 2].

Let us now consider the term corresponding to f2:

SHψ(φf2)(a, s, t) = 〈φ f2, ψast〉 =
∫
Q1

〈φ ψast, ψa′s′t′〉 SHψf(a′, s′, t′) dµ(a′, s′, t′).

We will decompose Q2 = Q21∪Q22, corresponding to ‖(t−t′)‖ > η and ‖(t−t′)‖ ≤
η, respectively. Observe that, for ‖(t − t′)‖ > η and K > 1,∫

B(t0,η)c

(
1 +

‖(t − t′)‖2

a1

)−K

dt′ ≤
∫ ∞

η

(
1 +

r2

a1

)−K

r dr ≤ C ′ a1

(
1 +

η

a1

)−K+2

.

Further notice that, on the region Q21, the function SHψf(a′, s′, t′) is bounded by
C ′ (a′)3/4 since f is bounded. Thus∫

Q21

〈φ ψast, ψa′s′t′〉 SHψf(a′, s′, t′) dµ(a′, s′, t′)

≤ C ′
∫ 2

−2

∫ δ

0

∫
B(t0,η)c

(
1 +

‖(t − t′)‖2

a1

)−K

dt′
(

1 +
a1

a0

)−K

(a′)3/4 da′

(a′)3
ds′

≤ C ′
∫ η

0

a1

(
1 +

η

a1

)−K+2 (
1 +

a1

a0

)−K
da′

(a′)9/4
,

and this is of rapid decay, as a → 0, uniformly over Q21. As for the region Q22, if
t ∈ B(t0, η) and ‖(t−t′)‖ > η, then t′ ∈ B(t0, δ) and thus the function SHψf decays
rapidly, for a → 0, over this region. Repeating the analysis from the case Q12,
we can prove that

∫
Q22

〈φ ψast, ψa′s′t′〉Ψf (a′, s′, t′) dµ(a′, s′, t′) is of rapid decay,
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as a → 0, uniformly over Q22. Combining these observations, we conclude that
SHψ(φf2)(a, s, t) decays rapidly as a → 0 uniformly over B(t0, η) × [−2, 2].

It follows that SHψg(a, s, t) decays rapidly as a → 0 uniformly for all (s, t) ∈
B(t0, η) × [−2, 2] and, thus, by Lemma 5.5, ĝ1(ξ) decays rapidly as |ξ| → ∞. We
can now conclude that ĝ decays rapidly as |ξ| → ∞, hence completing the proof of
(i).

For part (ii), we only sketch the idea of the proof, since it is very similar to part
(i). Let (t0, s0) ∈ D. We consider separately the cases |s0| ≤ 1 and |s0| ≥ 1. In the
first case, for all t ∈ B(t0, δ) and s ∈ B(s0, ∆), we have that |SHψf(a, s, t)| = O(ak),
as a → 0, for all k ∈ N with the O(·)–term uniform over (t, s) ∈ B(t0, δ)×B(s0, ∆).
Choose φ ∈ L2(R2) which is supported in a ball B(t0, ν) with ν � δ and let
η = δ

2 . Then the proof proceeds as in part (i), replacing B(t0, δ) × [−2, 2] with
B(t0, δ) × B(s0, ∆). Also, for the estimates involving inner products of ψast and
ψa′s′t′ we will now use Lemma 5.7 including the directionally sensitive term. For
example, when

√
a,
√

a′ ≤ δ, by Lemma 5.7 we will use the estimate

|〈φ ψast, ψa′s′t′〉| ≤ CK

(
1 +

a1

a0

)−K (
1 +

|s − s′|2
a1

)−K (
1 +

‖(t − t′)‖2

a1

)−K

,

rather than (5.11). We can proceed similarly for the other estimates. The proof for
the case |s0| ≥ 1 is exactly the same, with the transform SH(v)

ψ f(a, s, t) replacing
SHψf(a, s, t). �

6. Extensions and generalizations

of the Continuous Shearlet Transform

As mentioned above, there are several variants and generalizations of the contin-
uous shearlets introduced in Section 3. In fact, using the theory of affine systems,
we can obtain several other examples of continuous shearlets depending on the three
variables: scale, shear and location.

For example, we can generalize our construction by considering the case where
Λ is given by (3.1) and M is of the form

Mδ =

⎛⎝a −aδ s

0 aδ

⎞⎠ = B Aδ, a ∈ I, s ∈ S,

where B =
(

1 −s

0 1

)
, Aδ =

(
a 0

0 aδ

)
and 0 ≤ δ ≤ 1 is fixed. If δ = 1

2 , we obtain the
Continuous Shearlet Transform as defined in Section 3. In general, for other choices
of δ, Aδ will provide different kinds of anisotropic scaling (up to the case δ = 1,
where the dilation is isotropic). Using a construction similar to the one given in
Section 3 for the continuous shearlet systems, for each 0 ≤ δ ≤ 1 we can construct
well localized systems of the form

{ψast = Tt DMδ
ψ : (Mδ, t) ∈ Λ},

where ψ̂ast is supported on the set:

supp ψ̂ast ⊂ {(ξ1, ξ2) : ξ1 ∈ [− 2
a ,− 1

2a ] ∪ [ 1
2a , 2

a ], | ξ2
ξ1

− s| ≤ a1−δ}.

This provides a new family of transforms SHδ
ψf(a, s, t) = 〈f, ψast〉, for various val-

ues of δ. It turns out that, provided 0 ≤ δ < 1, the behavior of the transforms
SHδ

ψf(a, s, t) is very similar to the Continuous Shearlet Transform in dealing with
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pointwise and linear singularities. More precisely, one can repeat the analysis in
Sections 4.1, 4.2 and 4.3 using SHδ

ψf(a, s, t) (notice δ = 1). Also in the case of curvi-
linear singularities (see Section 4.4), the behavior of the transforms SHδ

ψf(a, s, t) is
similar to the Continuous Shearlet Transform, provided 0 < δ < 1. However, our
proof of Theorem 5.1 makes use of the fact that δ = 1

2 ; that is, we need to use the
Continuous Shearlet Transform.

Another variant of affine systems generated by Λ, given by (3.1), is obtained by
reversing the order of the shear and dilation matrices, namely, by letting

Mδ =

⎛⎝a −a s

0 aδ

⎞⎠ = Aδ B, a ∈ I, s ∈ S,

where Aδ, B are defined as above, and 0 ≤ δ ≤ 1 is fixed. Also in this case, we
can construct variants of the continuous shearlet systems. Using the same ideas as
above, we obtain a system of functions ψast with support

supp ψ̂ast ⊂ {(ξ1, ξ2) : ξ1 ∈ [− 2
a ,− 1

2a ] ∪ [ 1
2a , 2

a ], |a1−δ ξ2
ξ1

− s| ≤ a1−δ}.

It turns out (as one can see from the support condition) that the transform associ-
ated with these systems is not even able to “locate” the linear singularities, in the
sense described in Section 4.2.

The frequency support of the continuous shearlets is symmetric with respect to
the origin. Therefore the Continuous Shearlet Transform is unable to distinguish
the orientation associated with the angle θ from the angle θ + π (cf. Footnote
2). In order to be able to distinguish these two directions, we can modify our
construction as follows. Let ψ ∈ L2(R2) be defined as in Section 3, except that
supp ψ̂1 ⊂ [ 12 , 2]. That is, we have a one-sided version of the shearlet ψ̂ illustrated
in Figure 1. It is then clear that, if we consider the affine system generated by ψ
under the action of Λ be given by (3.1) and (3.2), this cannot provide a reproducing
system for all of L2(R2). In fact, ψ is a wavelet for the subspace L2(H)∨, where
H = {(ξ1, ξ2) ∈ R2 : ξ1 ≥ 0}. In order to obtain a wavelet for the space L2(R2),
we can modify the set Λ as follows. Let Λ′ be given by (3.1), where G ⊂ GL2(R)
is the set of matrices:

(6.1) G =

⎧⎨⎩M =

⎛⎝�a −�
√

a s

0 �
√

a

⎞⎠ , a ∈ I, s ∈ S, � = −1, 1

⎫⎬⎭ ,

where I ⊂ R
+, S ⊂ R. Then the function ψ is a continuous wavelet for L2(R2)

with respect to Λ′. These modified versions of the continuous shearlets depend on
four variables a, s, t, � and have frequency support:

supp ψ̂ast� ⊂
{
{(ξ1, ξ2) : ξ1 ∈ [− 2

a ,− 1
2a ], | ξ2

ξ1
− s| ≤

√
a}, if � = −1,

{(ξ1, ξ2) : ξ1 ∈ [ 1
2a , 2

a ], | ξ2
ξ1

− s| ≤
√

a}, if � = 1.

We remark that these modified versions of the continuous shearlets are in fact
complex functions, whereas the shearlets we use throughout this paper are real
functions.

Finally, there exists a natural way to construct continuous shearlets also in di-
mensions larger than 2. We refer to [18] for a discussion about the generalizations
of shear matrices to higher dimensions.
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Appendix A. Additional computations

Proof of Theorem 2.1. Suppose that (2.4) holds. Then, by applying Parseval and
Plancherel formulas, for any f ∈ L2(Rn),∫

Rn

∫
G

|〈f, Tt DM ψ〉|2 dλ(M) dt

=
∫

Rn

∫
G

∣∣∣∣∫
Rn

f̂(ξ) ψ̂(M tξ) e2πiξtdξ

∣∣∣∣2 | det M | dλ(M) dt

=
∫

Rn

∫
G

∣∣∣∣(f̂ ψ̂(M t·)
)∨

(t)
∣∣∣∣2 | detM | dλ(M) dt

=
∫

G

∫
Rn

∣∣∣∣(f̂ ψ̂(M t·)
)∨

(t)
∣∣∣∣2 dt | detM | dλ(M)

=
∫

G

∫
Rn

|f̂(ξ)|2 |ψ̂(M tξ)|2 | detM | dξ dλ(M)

=
∫

G

|f̂(ξ)|2 ∆(ψ)(ξ) dξ = ‖f‖2.

Equation (2.3) follows from the above equality by polarization.
Conversely, suppose that∫

Rn

∫
G

|〈f, Tt DM ψ〉|2 dλ(M) dt = ‖f‖2

for all f ∈ L2(Rn). Let ξ0 be a point of differentiability of ∆(ψ)(ξ) and let f̂(ξ) =
|B(ξ0, r)|−1/2 χB(ξ0,r)(ξ), where B(ξ0, r) is a ball centered at ξ0 of radius r. By
reversing the chain of equalities above we conclude that

1
|B(ξ0, r)|

∫
B(ξ0,r)

∆(ψ)(ξ) dξ = 1

for all r > 0. Letting r → 0, we obtain that ∆(ψ)(ξ0) = 1, and, since almost each
ξ ∈ R

n is a point of differentiability, (2.4) holds. �

The proof easily extends to functions f ∈ L2(V )∨. In fact, it suffices to replace
f̂ with f̂χV in the argument above.

Proof of Equality (3.7). Using Plancherel and Parseval formulas, we obtain

∫
R2

|〈f, Tt W 〉|2 dt =
∫

R2

∣∣∣∣∫
R2

f̂(ξ) Ŵ (ξ) e2πiξt dξ

∣∣∣∣2 dt

=
∫

R2

∣∣∣∣(f̂ Ŵ
)∨

(t)
∣∣∣∣2 dt

=
∫

R2
|f̂(ξ)|2 |Ŵ (ξ)|2 dξ.(A.1)
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Using a similar computation,∫
R2

∫ 2

−2

∫ 1

0

|〈PC1f, ψast〉|2
da

a3
ds dt

=
∫

R2

∫ 2

−2

∫ 1

0

∣∣∣∣∫
R2

f̂(ξ) χC1(ξ) ψ̂(M t
asξ) e2πiξt dξ

∣∣∣∣2 da

a3/2
ds dt

=
∫ 2

−2

∫ 1

0

∫
R2

∣∣∣∣(f̂ χC1 ψ̂(M t
as·)

)∨
(t)

∣∣∣∣2 dt
da

a3/2
ds

=
∫ 2

−2

∫ 1

0

∫
R2

|f̂(ξ)|2 χC1(ξ) |ψ̂(M t
asξ)|2 dξ

da

a3/2
ds.(A.2)

As in the proof of Proposition 3.2, for ξ ∈ C1, it follows that∫ 2

−2

∫ 1

0

|ψ̂(M t
asξ)|2

da

a3/2
ds =

∫ 1

0

|ψ̂1(aξ1)|2
da

a
.

Thus, using the last equality, (A.2) yields
(A.3)∫

R2

∫ 2

−2

∫ 1

0

|〈PC1f, ψast〉|2
da

a3
ds dt =

∫
R2

|f̂(ξ)|2χC1(ξ)
∫ 1

0

|ψ̂1(aξ1)|2
da

a
dξ.

Similarly, we can conclude that
(A.4)∫

R2

∫ 2

−2

∫ 1

0

∣∣∣〈PC2f, ψ
(v)
ast〉

∣∣∣2 da

a3
ds dt =

∫
R2

|f̂(ξ)|2χC2(ξ)
∫ 1

0

|ψ̂1(aξ2)|2
da

a
dξ.

Thus, combining (A.1), (A.3) and (A.4) and using (3.6), it follows that∫
R2

|〈f, Tt W 〉|2 dt +
∫

R2

∫ 2

−2

∫ 1

0

|〈PC1f, ψast〉|2
da

a3
ds dt

+
∫

R2

∫ 2

−2

∫ 1

0

∣∣∣〈PC2f, ψ
(v)
ast〉

∣∣∣2 da

a3
ds dt

=
∫

R2
|f̂(ξ)|2

(
|Ŵ (ξ)|2 + χC1(ξ)

∫ 1

0

|ψ̂1(aξ1)|2
da

a
+ χC2(ξ)

∫ 1

0

|ψ̂1(aξ2)|2
da

a

)
dξ

= ‖f‖2.

�
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