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Abstract

We consider the convex parametric quadratic programming problem when the end of the para-

metric interval is caused by a multiplicity of possibilities (“ties”). In such cases, there is no clear

way for the proper active set to be determined for the parametric analysis to continue. In this

thesis, we show that the proper active set may be determined in general by solving a certain non-

parametric quadratic programming problem. We simplify the parametric quadratic programming

problem with a parameter both in the linear part of the objective function and in the right-hand

side of the constraints to a quadratic programming without a parameter. We break the analysis

into three parts. We first study the parametric quadratic programming problem with a parame-

ter only in the linear part of the objective function, and then a parameter only in the right-hand

side of the constraints. Each of these special cases is transformed into a quadratic programming

problem having no parameters. A similar approach is then applied to the parametric quadratic

programming problem having a parameter both in the linear part of the objective function and in

the right-hand side of the constraints.
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Chapter 1

Introduction

The general parametric quadratic programming (PQP) problem is

min{(c+ tq)′x+
1
2
x′Cx | Ax ≤ b+ tp}, (1.1)

where c and q are given n-vectors, b and p are given m-vectors, C is a given (n, n) symmetric

positive semi-definite matrix, A = [a1, ..., am]′ is a given (m, n) matrix, where ai is an n-vector,

i = 1, ...,m, and x is an n-vector whose optimal value is to be determined. Throughout this thesis,

prime( ′) denotes transposition. All vectors are column vectors unless primed. For quick reading,

the end of a proof will be denoted by a hollow box (2) and the end of an example will be denoted

by a diamond (3).

The optimality conditions [1] for (1.1) are

Ax ≤ b+ tp, (1.2)

−(c+ tq)− Cx = A′u, u ≥ 0, (1.3)

u′(Ax− b− tp) = 0. (1.4)

1



CHAPTER 1. INTRODUCTION 2

We refer to (1.2), (1.3) and (1.4) as primal feasibility, dual feasibility and complementary slackness,

respectively. For a convex parametric QP problem, these conditions are necessary and sufficient

for optimality.

It is known [1] that both the optimal solution and the associated multiplier vector for (1.1) are

piecewise linear functions of t in a finite set of intervals t0 ≤ t ≤ t1, t1 ≤ t ≤ t2, ..., tv−1 ≤ t ≤ tv,

and t0 < t1 < t2 < ... < tv. Each interval corresponds to a different set of the active constraints.

At the end of each interval, either some previously inactive constraints become active, or some

previously active constraints become inactive, or both. Each ti corresponds to a “corner” point.

The optimal solution and the associated multiplier vector are of the form

x(t) =



h10 + th20 0 ≤ t ≤ t1

h11 + th21 t1 ≤ t ≤ t2

... ...

h1j + th2j tj ≤ t ≤ tj+1

... ...

h1,v−1 + th2,v−1 tv−1 ≤ t ≤ tv,

and

u(t) =



u10 + tu20 0 ≤ t ≤ t1

u11 + tu21 t1 ≤ t ≤ t2

... ...

u1j + tu2j tj ≤ t ≤ tj+1

... ...

u1,v−1 + tu2,v−1 tv−1 ≤ t ≤ tv,

where h1j and h2j (j = 0, ..., v − 1) are n-vectors, u1j and u2j (j = 0, ..., v − 1) are m-vectors.

In each interval j, x(t) and u(t) must satisfy the primal and dual feasibility. The first restriction
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that x(t) is feasible implies tj+1 ≤ t̂j+1, where

t̂j+1 = min{ bi − a
′
ih1j

a′ih2j − pi
| all i = 1, ...,m with a′ih2j > pi},

=
bl − a′lh1j

a′lh2j − pl
. (1.5)

The second restriction that u(t) is non-negative implies tj+1 ≤ t̃j+1, where

t̃j+1 = min{
−(u1j)i
(u2j)i

| all i = 1, ...,m with (u2j)i < 0},

= −
(u1j)k
(u2j)k

. (1.6)

We have used (u1j)i to denote the i-th component of u1j , and (u2j)i to denote the i-th component

of u2j . We use the convention t̂j+1 = +∞ to mean that a′ih2j ≤ pi for all i = 1, ...,m. These two

restrictions above give the upperbound of the interval; i.e., tj+1 = min{t̂j+1, t̃j+1}.

Definition 1.1

(a) The problem (1.1) has primal ties at the corner point tj+1, if t̂j+1 < t̃j+1 and the mini-

mum in (1.5) is obtained for at least two distinct indices.

(b) The problem (1.1) has dual ties at the corner point tj+1, if t̃j+1 < t̂j+1 and the minimum in

(1.6) is obtained for at least two distinct indices.

(c) The problem (1.1) has primal-dual ties at the corner point tj+1 if t̂j+1 = t̃j+1.

(d) The problem has ties at the corner point tj+1 if it has primal ties, dual ties or primal-dual ties.

If there are no ties at all the corner points, the PQP problem (1.1) can be solved by using Best’s

method [2].

For the remainder of this chapter, we will present some basic properties of the PQP plus a

number of examples which illustrate the types of problems which can arise when ties do occur. We

begin with an example of a PQP which has no ties at the corner point.
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Example 1.1

minimize : (−2 + t)x1 − 2x2 + x2
1 + 1

2x
2
2

subject to : x1 ≤ 1, (1)

x2 ≤ 1, (2)

x1 ≥ 0, (3)

x2 ≥ 0. (4)

For every t with t ≤ 0, the optimal solution is x(t) = (1, 1)′. There are no ties at t = 0.

The first two constraints are active at t = 0. The first constraint becomes inactive and the second

constraint remains active when t increases a small amount from 0. The optimal solution is

x(t) =

[
1− 1

2 t

1

]
,

for every t with 0 ≤ t ≤ 2.
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Figure 1.1: An example of no ties with t in the linear part of the objective function.

The geometry of this example is illustrated in Figure 1.1, where the feasible region is shaded.
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The objective function is an ellipse, its center moves along the line x2 = 2 from the point (1, 2)′ to

the point (0, 2)′, as t increases from 0 to 2. The optimal solution moves along the line x2 = 1 from

the point (1, 1)′ to the point (0, 1)′. For every t with t ≥ 2, the optimal solution is (0, 1)′. 3

Best [2] solves the PQP problem under the assumption that ties do not occur at the corner

points. He gives an algorithm which requires solving linear equations with the coefficient matrix

Hj =

[
C A′j

Aj 0

]
,

where A′j is the matrix of gradients of all the constraints active at iteration j.

Best proves one of the properties of H(A) as follows [2]:

Let H(A) =

[
C A′

A 0

]
, where A is any (m, n) matrix. Suppose A has full row rank. Then H(A)

is nonsingular only if s′Cs > 0 for all non-zero s such that As = 0.

Suppose (1.1) has an optimal solution x(tj) for t = tj . Suppose A′j is the matrix of gradients

of all the constraints active at x(tj); bj and pj are vectors whose components are associated with

the rows of Aj , respectively. Assume Aj has full row rank and s′Cs > 0 for all s 6= 0 with Ajs = 0.

Then, Hj =

[
C A′j

Aj 0

]
is non-singular. The optimality conditions assert that the optimal solution

x(tj) and the associated multiplier vector v(tj) are uniquely determined by the linear equations

Hj

[
x(tj)

v(tj)

]
=

[
−c

bj

]
+ tj

[
−q

pj

]
.

The full (m-dimensional) vector of multipliers, u(tj), is obtained from v(tj) by assigning zero to

those components of u(tj) associated with constraints inactive at x(tj), and the appropriately

indexed components of v(tj), otherwise.

Now suppose t increases from tj . Let x(t) denote the optimal solution and v(t) denote the

multiplier vector whose components are associated with the active constraints as functions of the

parameter t. Provided there are no changes in the active set, x(t) and v(t) are uniquely determined
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by the linear equations

Hj

[
x(t)

v(t)

]
=

[
−c

bj

]
+ t

[
−q

pj

]
.

The solution can conveniently be obtained by solving two sets of linear equations:

Hj

[
h1j

v1j

]
=

[
−c

bj

]
, (1.7)

Hj

[
h2j

v2j

]
=

[
−q

pj

]
, (1.8)

which both have the coefficient matrix Hj . Having solved these for h1j , h2j , v1j and v2j , the

optimal solution for (1.1) is

x(t) = h1j + th2j , (1.9)

and the associated multiplier vector is

v(t) = v1j + tv2j . (1.10)

The full vector of multipliers u(t) may be obtained from v(t) and the set of the constraints inactive

at x(tj). We write u(t) as

u(t) = u1j + tu2j . (1.11)

We set tj+1 = min{t̂j+1, t̃j+1}, where

t̂j+1 = min{ bi − a
′
ih1j

a′ih2j − pi
| all i = 1, ...,m with a′ih2j > pi},

=
bl − a′lh1j

a′lh2j − pl
, (1.12)

t̃j+1 = min{
−(u1j)i
(u2j)i

| all i = 1, ...,m with (u2j)i < 0},

= −
(u1j)k
(u2j)k

. (1.13)

Then the optimal solution is given by (1.9) and the associated multiplier vector is given by (1.11),

for every t with tj ≤ t ≤ tj+1.
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The algorithm leaves a specified method by which the linear equations (1.7) and (1.8) are solved.

Possible ways of solving them are factorizations of Hj , submatrices of Hj , or partitions of H−1
j .

It shows updating formulae for the new factors when Aj is modified by the addition, deletion,

or exchange of a row. At the end of each parametric interval, the active set changes by either

adding, deleting or exchanging a constraint, with the assumption that no ties occur. The method

terminates when either the optimal solution has been obtained for all values of the parameter, or,

a further increase in the parameter results in either the feasible region being null or the objective

function being unbounded from below. It uses the linear equation solving method associated with

a particular quadratic programming algorithm to provide a natural extension of that method for

the solution of the PQP problem (1.1).

Ritter [2] gives a more general method for the PQP problem with ties. In his method, he solves

the similar linear equations with the same coefficient matrix Hj in each iteration j. If at a corner

point tj , there are ties, then the method chooses an ε > 0 sufficiently small, and solves the problem

from t = tj + ε ≤ tj+1, which has no ties. The difficulty of this approach is that tj+1 is not known

before we determined the optimal solution for the interval j. Therefore we do not know how small

to make ε such that t ≤ tj+1.

Perold [4] does not consider the possibility of “ties” when describing a parametric algorithm for

large-scale mean-variance portfolio optimization problems.

In practice, PQP problems can be quite large. For example, portfolio optimization problems

may have many thousands of variables. There may exist ties at the corner points. If there are ties,

it is not easy to decide which constraints become active and which constraints become inactive in

the next interval of t.

Suppose t = tj is a corner point, and assume that there are ties at tj . There may be many

subsets of linearly independent gradients of the active constraints, and it is hard to find which

subset will remain active when t increases a small amount from tj .
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Arseneau [5] develops an PQP algorithm in which “ties” may occur. The algorithm solves

a convex quadratic programming problem where both the objective function and the constraints

involve a small and positive scalar ε if the corner point tj has “ties”. However, ε is only used to

symbolically determine the current active set. A numerical value for ε is never used. The algorithm

is modified from algorithm in [2]. This modified QP algorithm give an efficient way to solve the

PQP problem with ”ties”, however, it is complex and needs several assumptions.

Berkelaar, Roos and Terlaky [8] introduce an algorithm for solving a parametric QP with

the perturbation either in the linear part of the objective function or in the right-hand side of

the constraints. They use the optimal set and optimal partition approach to solve the problem

when degeneracy occurs. It is an algorithm using primal and dual optimal solutions. Terlaky

and his students Hadigheh, Romanko [9] extended the algorithm for solving the convex quadratic

optimization with the perturbation with in the linear part of the objective function and in the

right-hand side of the constraints.

The convex parametric quadratic programming problem can also be solved by a different method

of solving a parametric LCP (linear complementarity programming) problem [10]. In order to solve

the parametric PQP problem of the following form:

minimize : (c+ λc∗)′x+ 1
2x
′Dx

subject to : A x ≥ b+ λb∗,

x ≥ 0,

where D is a symmetric positive semi-definite matrix and λ is the parameter, we can solve a

parametric LCP problem

w −Mz = q + λq∗,

w, z ≥ 0,

where

M =

[
D −A′

A 0

]
, q =

[
c

−b

]
, q∗ =

[
c∗

−b∗

]
.
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Since M is a positive semi-definite matrix, this parametric LCP can be solved by the algorithm

given in Murty’s book [10].

The contribution of this thesis is to provide solutions for (1.1) in the presence of ties, by

simplifying the parametric QP problem into a related QP problem without the parameter. The

results depend on a number of special cases which will be analyzed separately. In the rest of this

chapter, we will give a series of numerical examples which will illustrate the nature of the problem.

The following is an example of a PQP problem having a tie at the corner point with the

parameter t only in the linear part of the objective function. The problem will be solved in Section

2.1 by the method proposed in this thesis.

Example 1.2

minimize : − 10
3 x1 + (−8

3 + t)x2 + 1
2x

2
1 + x2

2

subject to : x1 + 2x2 ≤ 2, (1)

2x1 + x2 ≤ 2, (2)

x1 + x2 ≤ 4
3 , (3)

x1 ≥ 0, (4)

x2 ≥ 0. (5)

When −4
3 ≤ t ≤ 0, the optimal solution is x0 = (2

3 ,
2
3)′, the first three constraints are active at

x0 and their gradients are linearly dependent. The multiplier vector for the first three constraints

is

u =


u1

u2

u3

 =


−t

4
3 + t

−t

 ,
for every t with −4

3 ≤ t ≤ 0. When t increases from negative to zero, u1 and u3 become zero

simultaneously, therefore, there are dual ties at the corner point t = 0. When t increases a small
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amount from zero, both the first and the third constraints become inactive and only the second

constraint remains active. The optimal solution is

x(t) =

[ 2
3 + 2

9 t

2
3 −

4
9 t

]
,

for every t with 0 ≤ t ≤ 3
2 .
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Figure 1.2: An example of a tie with t in the linear part of the objective function.

The geometry of this example is illustrated in Figure 1.2, where the feasible region is shaded.

The objective function is an ellipse, its center moves down the line x1 = 10
3 from the point (10

3 ,
4
3)′,

as t increases from 0. The optimal solution moves along the line 2x1 +x2 = 2 from the point (2
3 ,

2
3)′

to the point (1, 0)′ as t increases from 0 to 3
2 . For every t with t ≥ 3

2 , the optimal solution is (1, 0)′,

and is a constant. 3

The following example is a special case of several constraints becoming active simultaneously

(ties). This problem will be solved in Section 2.3 by the method proposed in this thesis.
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Example 1.3

min{tq′x | Ax ≤ b}. (1.14)

Assume the feasible region for (1.14) is non-null. The geometry of this type of problem is illustrated

in Figure 1.3, where the feasible region is shaded. When t = 0, (1.14) becomes

min{0 | Ax ≤ b}.

The phenomenon being illustrated here is alternate optimal solutions. When t = 0, any feasible

solution is also optimal. Let y− denote the optimal solution for (1.14) when t < 0, and let y+

denote the optimal solution for (1.14) when t > 0. Let x0 be an interior point in the feasible region,

then x0 is optimal for (1.14) for t = 0.
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Figure 1.3: A special case of parametric programming problem.

In this example, when t < 0, constraints (1) and (4) in Figure 1.3 are active at the optimal

solution y−; when t = 0, there are no constraints active at the optimal solution x0; when t > 0,

constraints (2) and (3) are active at the optimal solution y+. There are ties at the corner point

t = 0 because when t increases from negative to zero, the multipliers corresponding to constraints

(1) and (4) become zero simultaneously. This example also illustrates that x0 and y+ cannot be

connected with a linear function of t. 3



CHAPTER 1. INTRODUCTION 12

The following is an example of a PQP problem having a tie at a corner point with the parameter

t only in the right-hand side of the constraints. The problem will be solved in Section 3.1 by the

method proposed in this thesis.

Example 1.4

minimize : − 2x1 − 2x2 + 1
2x

2
1 + x2

2

subject to : x1 ≤ 1, (1)

x2 ≤ 1, (2)

x1 + x2 ≤ 2− t, (3)

x1 + 2x2 ≤ 3− 1
2 t, (4)

x1 ≥ 0, (5)

x2 ≥ 0. (6)

When t ≤ 0, the optimal solution is x(t) = (1, 1)′. The first two constraints are active at x0

when t < 0. The third and the fourth constraints become active simultaneously when t = 0, so

there are primal ties at t = 0. When t increases a small amount from zero, the second and the

fourth constraints become inactive, and both the first and the third constraints remain active. The

optimal solution is

x(t) =

[
1

1− t

]
,

for every t with 0 ≤ t ≤ 1
2 .

The geometry of this example is illustrated in Figure 1.4, where the feasible region for t = 0

is shaded. The objective function is an ellipse. The optimal solution moves along the line x1 = 1

from the point (1, 1)′ to the point (1, 1
2)′, as t increases from 0 to 1

2 .

For every t with 1
2 ≤ t ≤ 2, the optimal solution is x(t) =

[ 2
3(2− t)
1
3(2− t)

]
. For every t with t > 2,

the problem is infeasible. 3
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Figure 1.4: An example of a tie with t in the right-hand side of the constraints.

The following is an example of a PQP problem having a tie at a corner point with the parameter

t both in the linear part of the objective function and in the right-hand side of the constraints. The

problem will be solved in Section 4.1 by the method proposed in this thesis.

Example 1.5

minimize : − 2x1 + (−2 + t)x2 + 1
2x

2
1 + x2

2

subject to : x1 ≤ 1− t, (1)

x2 ≤ 1, (2)

x1 + x2 ≤ 2− t, (3)

x1 + 2x2 ≤ 3− 1
2 t, (4)

x1 ≥ 0, (5)

x2 ≥ 0. (6)
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For every t with −1
5 ≤ t ≤ 0, the optimal solution is x(t) = (1− t, 1 + 1

4 t)
′. The first and the

fourth constraints are active when −1
5 < t ≤ 0. The second and the third constraints become active

simultaneously when t = 0, so there are primal ties at t = 0. When t increases a small amount

from zero, the second, the third and the fourth constraints all become inactive and only the first

constraint remains active. The optimal solution is

x(t) =

[
1− t

1− 1
2 t

]
,

for every t with 0 ≤ t ≤ 1.

The geometry of this example is illustrated in Figure 1.5, where the feasible region for t = 0 is

shaded. The objective function is an ellipse, its center moves down along the line x1 = 2 from the

point (2, 1)′, as t increases from zero. The optimal solution moves along the line x1 − 2x2 = −1

from the point (1, 1)′ to the point (0, 1
2)′, as t increases from 0 to 1. When t > 1, the problem is

infeasible. 3
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Figure 1.5: An example of a tie with t both in linear part of the objective function and in the

right-hand side of the constraints.
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In the following part, some definitions, notations and lemmas will be introduced. They will be

used in the later chapters.

Notation 1.1 Let x0 be an optimal solution and u0 be an associated multiplier vector for (1.1)

for t = 0. Let A′0 be the matrix of gradients of all the constraints active at x0, let b0 be the vector

whose components are those bi associated with the rows of A0; i.e., A0x0 = b0.

Definition 1.2 The optimal solution for (1.1) for some t > 0, x(t), is a diminishment of x0 if

the set of the constraints active at x(t) is a subset of or equals to the set of those constraints active

at x0.

The following result shows that the optimal solution and the associated multiplier vector for

a general parametric QP problem are linear functions of the parameter provided that the active

constraints remain unchanged.

Lemma 1.1 Let x1 and x2 be optimal solutions for (1.1) for t = t1 and t = t2, respectively,

and suppose t1 < t2. Let u1 and u2 be associated multiplier vectors for x1 and x2, respectively.

Assume that x1 and x2 have the same active constraints. Let A′0 be the matrix of gradients of

all the constraints active at x1, let b0 and p0 be the vectors whose components are those bi and pi

associated with the rows of A0, respectively. So, A0x1 = b0 + t1p0, A0x2 = b0 + t2p0. Then

x∗(t) = x1 +
x2 − x1

t2 − t1
(t− t1)

is an optimal solution for (1.1) with an associated multiplier vector

u∗(t) = u1 +
u2 − u1

t2 − t1
(t− t1),

for every t with t1 ≤ t ≤ t2.
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Proof

Since u1 and u2 are multiplier vectors, we have u1 ≥ 0, u2 ≥ 0. It is easy to see that u∗(t) ≥ 0 for

every t with t1 ≤ t ≤ t2. Let A′1 be the matrix of gradients of all the constraints inactive at x1,

and let b1 and p1 be the vectors whose components are those bi and pi associated with the rows of

A1. Then A1x1 < b1 + t1p1, A1x2 < b1 + t2p1. We have

A0x
∗(t) = A0x1 +A0(x2 − x1)

t− t1
t2 − t1

= A0x1
t2 − t
t2 − t1

+A0x2
t− t1
t2 − t1

= b0 + tp0, (1.15)

A1x
∗(t) = A1x1 +A1(x2 − x1)

t− t1
t2 − t1

= A1x1
t2 − t
t2 − t1

+A1x2
t− t1
t2 − t1

< b1 + tp1. (1.16)

So A′0 is the matrix of gradients of all the constraints active at x∗(t), for every t with t1 ≤ t ≤ t2.

For t = t1 and t = t2, the optimality conditions for (1.1) assert that

−c− t1q − Cx1 = A′0u1, (1.17)

−c− t2q − Cx2 = A′0u2. (1.18)

Subtract (1.17) from (1.18), then multiply both sides by t−t1
t2−t1 ,

− (t− t1)q − t− t1
t2 − t1

C(x2 − x1) =
t− t1
t2 − t1

A′0(u2 − u1). (1.19)

Add (1.17) to (1.19),

−c− tq − Cx1 −
t− t1
t2 − t1

C(x2 − x1) = A′0u1 +
t− t1
t2 − t1

A′0(u2 − u1).

That is,

−c− tq − Cx∗(t) = A′0u
∗(t).

From (1.15) and (1.16),

Ax∗(t) ≤ b+ tp,

for every t with t1 ≤ t ≤ t2. Thus,

Ax∗(t) ≤ b+ tp,

−c− tq − Cx∗(t) = A′0u
∗(t), u∗(t) ≥ 0,

A0x
∗(t) = b0 + tp0.
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So, x∗(t) and u∗(t) satisfy the optimality conditions for (1.1). Therefore, x∗(t) is an optimal solu-

tion for (1.1) and u∗(t) is an associated multiplier vector, for every t with t1 ≤ t ≤ t2. 2

From Lemma 1.1, we know that if the active constraints for the optimal solutions for some t1

and t2 are coincident, the optimal solution is a linear function of t, for every t with t1 ≤ t ≤ t2. In

fact, when t changes a small amount, the active constraints of the optimal solutions may not remain

coincident. When t increases, sometimes there are originally inactive constraints becoming active;

sometimes all the inactive constraints remains inactive and there may be some active constraints

becoming inactive. In this chapter, we mainly study the latter case: there are no inactive constraints

becoming active, but there may be some active constraints becoming inactive. In this case, the

optimal solution (when t only increases a small amount) is also a linear function of t.

Instead of studying t from tj to tj+1, in this thesis, we always let t begin from t0 = 0. We can

do that because at each interval tj ≤ t ≤ tj+1, we can let t = t− tj , then t begins from zero.

For t beginning at 0, we have an n-vector h0 such that x(t) = x0 + th0 is an optimal solution

for (1.1), for every t with 0 ≤ t ≤ t̄, for some t̄ > 0.

Lemma 1.2 Let x(t) = x0 + th0 be an optimal solution for (1.1) and u(t) = ū0 + tu1 be an

associated multiplier vector, for every t with 0 < t ≤ t̄, where t̄ is some positive number. Suppose

that x(t) is a diminishment of x0, for every t with 0 < t < t̄. Then ū0 is an associated multiplier

vector for x0 for (1.1).

Proof

Let t0 satisfy 0 < t0 < t̄.

When t = t0, x(t0) = x0 + t0h0, u(t0) = ū0 + t0u1, from the optimality conditions,

−c− t0q − Cx0 − t0Ch0 = A′0ū0 + t0A′0u1. (1.20)
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When t = t0

2 < t̄, x( t
0

2 ) = x0 + t0

2 h0, u( t
0

2 ) = ū0 + t0

2 u1, from the optimality conditions,

−c− t0

2
q − Cx0 −

t0

2
Ch0 = A′0ū0 +

t0

2
A′0u1. (1.21)

Multiply (1.21) by 2,

−2c− t0q − 2Cx0 − t0Ch0 = 2A′0ū0 + t0A′0u1. (1.22)

Subtracting (1.20) from (1.22) gives

−c− Cx0 = A′0ū0.

Since u(t) = ū0 + tu1 ≥ 0, for every t with 0 < t ≤ t̄, we have ū0 ≥ 0. Thus,

Ax0 ≤ b,

−c− Cx0 = A′0ū0, ū0 ≥ 0,

A0x0 = b0.


Thus, ū0 is an associated multiplier vector for x0 for (1.1) as required. 2

From the above analysis, we can introduce the following notation.

Notation 1.2 Let x(t) = x0+th0 denote an optimal solution for (1.1) with an associated multiplier

vector u(t) = u0 + tu1, for every t with 0 ≤ t ≤ t̄, where x0 is an optimal solution for (1.1) for

t0 = 0, and u0 is an associated multiplier vector for x0.

Lemma 1.3 Assume that (1.1) has optimal solutions, for every t with 0 ≤ t ≤ t̂. There exists an

optimal solution x(t) = x0 + th0 for (1.1) being a diminishment of x0, for every t with 0 < t < t̄,

where 0 < t̄ ≤ t̂.

Proof

Let H be the set of all the indices of the gradients of the constraints inactive at x0. For every
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i ∈ H, a′ix0 < bi. If a′ih0 ≤ pi, for every t with 0 ≤ t < t̂,

a′ix(t) = a′i(x0 + th0) = a′ix0 + ta′ih0 < bi + tpi.

If a′ih0 > pi, let ci = bi − a′ix0 > 0, there always exists a t̄i > 0 such that t̄i(a′ih0 − pi) ≤ ci, then

for every t with 0 ≤ t < min{t̄i, t̂},

a′ix(t) = a′i(x0 + th0) < a′ix0 + t̄ia
′
ih0 = bi − ci + ta′ih0 ≤ bi + tpi.

Let t̄ = min{t̂, min{t̄i | a′ih0 > 0}} > 0. Then for every t with 0 ≤ t < t̄ and every i ∈ H, we have

a′ix(t) < bi + tpi, and this completes the proof. 2

Definition 1.3 We call (h0, t̄) an optimal continuation of x0 for (1.1), where t̄ > 0, if x(t) =

x0 + th0 is optimal for (1.1) with an associated multiplier vector u(t) = u0 + tu1 for every t with

0 ≤ t < t̄.

Remark 1.1 An optimal continuation depends on a specified active set. For some active sets, an

optimal continuation may not exist.

From Best’s algorithm, t̄ = min{t̂, t̃}, where

t̂ = min{ bi − a
′
ix0

a′ih0 − pi
| all i = 1, ...,m with a′ih0 > pi},

=
bl − a′lx0

a′lh0 − pl
, (1.23)

t̃ = min{
−(u0)i
(u1)i

| all i = 1, ...,m with (u1)i < 0},

= −
(u0)k
(u1)k

. (1.24)

Remark 1.2 For t = t̄, x(t̄) = x0 + t̄h0 is also an optimal solution for (1.1). However, we do not

consider it in the optimal continuation because x(t̄) is not a diminishment of x0. In the proofs of

this thesis, we mainly base on the “diminishment”.
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Many proofs in the next three chapters involve the following property of the convex quadratic

programming problem.

Lemma 1.4 If the convex quadratic programming problem

min{c′x+
1
2
x′Cx | Ax ≤ b} (1.25)

is unbounded from below, then for any feasible solution x1 for (1.25), there exists a vector s such

that x1 − σs is feasible for (1.25), for every positive scalar σ, and s′Cs = 0, c′s > 0.

Proof

Since (1.25) is unbounded from below, for any feasible solution x1, there exists a vector s such that

x1 − σs is also feasible for (1.25), for every positive scalar σ, and

c′(x1 − σs) +
1
2

(x1 − σs)′C(x1 − σs)→ −∞, as σ → +∞.

The objective function for (1.25) for x1 − σs is

c′(x1 − σs) +
1
2

(x1 − σs)′C(x1 − σs) = c′x1 +
1
2
x′1Cx1 − σc′s− σx′1Cs+

1
2
σ2s′Cs. (1.26)

If s′Cs 6= 0, then s′Cs > 0, since C is positive semidefinite. Then (1.26) is bounded from below, for

σ > 0, which is a contradiction. Therefore, s′Cs = 0, and this implies Cs = 0 since C is positive

semidefinite. So the right-hand side of (1.26) becomes

c′x1 +
1
2
x′1Cx1 − σc′s.

Since this must decrease to negative infinity as σ increases to positive infinity. Thus, c′s > 0, and

it completes the proof. 2



Chapter 2

A Parameter only in the Objective

Function

Before studying (1.1), we analyze a simpler case in which the parameter is only in the linear part

of the objective function. We solve it by solving a related QP problem which has no parameter.

2.1 Solution of the PQP Problem with a Parameter in the Lin-

ear Part of the Objective Function by Solving a Related QP

Problem without the Parameter

Consider the following PQP problem

min{(c+ tq)′x+
1
2
x′Cx | Ax ≤ b}. (2.1)

Assumption 2.1 There exists a t̂ > 0 such that (2.1) has an optimal solution for every t with

21
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0 ≤ t < t̂.

Before introducing the theorems, we need the following lemma first.

Lemma 2.1 If there is a t1 > 0 such that (2.1) has no optimal solution, for every t with 0 < t ≤ t1,

then (2.1) is unbounded from below, for every t with t > 0.

Proof

Since the feasible region of (2.1) doesn’t change as t changes, (2.1) is always feasible. Since (2.1)

has no optimal solution for every t with 0 < t ≤ t1, (2.1) is unbounded from below for every t with

0 < t ≤ t1. Let ft(x) denote the objective function of (2.1) with the subscript t denoting explicit

dependence on t. Then for a feasible solution x1 for (2.1), there exists an n-vector s such that

x1 − σs is feasible for (2.1), for every positive scalar σ, and the objective function ft(x) satisfies

ft(x1 − σs)→ −∞, as σ → +∞,

for every t with 0 < t ≤ t1. Therefore, s satisfies (c + t1q)′s > 0 and s′Cs = 0. Combining these

with the feasibility restriction, s needs to satisfy

As ≥ 0, s′Cs = 0, t1q′s > −c′s.

Since (2.1) has an optimal solution for t = 0, we have c′s ≤ 0. So, t1q′s > −c′s ≥ 0. Then for

every t with t > t1, we have A(x1 − σs) ≤ b, Cs = 0 and (c+ tq)′s > 0, for every positive scalar σ.

Therefore,

(c+ tq)′(x1−σs)+
1
2

(x1−σs)′C(x1−σs) = (c+ tq)′x1 +
1
2
x′1Cx1−σ(c+ tq)′s→ −∞, as σ → +∞.

Thus, (2.1) is unbounded from below, for every t with t > 0. 2

Remark 2.1 If there are alternate optimal solutions for (2.1) when t = 0, then x0 may have no

optimal continuation.
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In order to illustrate Remark 2.1 , recall (1.14) in Example 1.3 that we introduced in Chapter 1.

In (1.14), x0 is an optimal solution for t = 0, the optimal solution “jumps” to y+ from x0 as t

increases from zero to positive, and x0 and y+ cannot be connected with a linear function of t.

Thus, x0 has no optimal continuation in this case. However, there does exist an optimal solution

for t = 0 for which there is an optimal continuation, namely y+.

The following two theorems show how to get h∗0 in the optimal continuation of x0 for (2.1).

Theorem 2.1 Let Assumption 2.1 be satisfied. Suppose (h∗0, t̄) is an optimal continuation of x0

for (2.1). In addition, suppose the optimal solution x(t) = x0 + th∗0 is a diminishment of x0, for

every t with 0 < t < t̄. Then h∗0 is an optimal solution for

min{q′h0 +
1
2
h′0Ch0 | A0h0 ≤ 0, (c+ Cx0)′h0 = 0}. (2.2)

Proof

The optimality conditions for (2.1) when t = 0 assert that

A0x0 = b0,

−c− Cx0 = A′0u0, u0 ≥ 0,

 (2.3)

where u0 is a multiplier vector for x0 whose components are associated with the rows of A0. The

optimality conditions when 0 < t < t̄ assert that

Ax(t) ≤ b,

−c− tq − Cx(t) = A′u, u ≥ 0,

u′(Ax(t)− b) = 0.


(2.4)
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Since the optimal solution x(t) is a diminishment of x0, for every t with 0 < t < t̄, the matrix of

gradients of all the constraints active at x(t) is a submatrix of A′0. We can simplify (2.4) to

A0x(t) ≤ b0,

−c− tq − Cx(t) = A′0u, u ≥ 0,

u′(A0x(t)− b0) = 0,


(2.5)

where u = u(t) is a multiplier vector for x(t) whose components are those ui associated with the

rows of A0. Some components of u may be zero corresponding to constraints active at x0 but

inactive at x(t). Substitute x(t) = x0 + th∗0 and u = u0 + tu1 into (2.5), and with (2.3), we have

A0h
∗
0 ≤ 0, (c+ Cx0)′h∗0 = 0,

−c− tq − Cx0 − tCh∗0 = A′0u, u ≥ 0,

u′A0h
∗
0 = 0.


(2.6)

The optimality conditions for the problem

min{(c+ Cx0)′h0 + tq′h0 +
t

2
h′0Ch0 | A0h0 ≤ 0, (c+ Cx0)′h0 = 0} (2.7)

are

A0h0 ≤ 0, (c+ Cx0)′h0 = 0,

−c− tq − Cx0 − tCh0 = A′0v + (c+ Cx0)w, v ≥ 0,

v′A0h0 = 0.


(2.8)

Define h0 = h∗0, v = u, and w = 0. Then from (2.6), h0, v and w satisfy (2.8). So, h0 = h∗0 is

optimal for (2.7). Using the primal constraint (c + Cx0)′h0 = 0, the objective function for (2.7)

can be simplified. Thus h0 = h∗0 is also optimal for

min{tq′h0 +
t

2
h′0Ch0 | A0h0 ≤ 0, (c+ Cx0)′h0 = 0}.

For t > 0, we have shown that h0 = h∗0 is optimal for

min{q′h0 +
1
2
h′0Ch0 | A0h0 ≤ 0, (c+ Cx0)′h0 = 0}
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as required. 2

The importance of the optimal problem (2.2) is illustrated in the following theorem.

Theorem 2.2 Let Assumption 2.1 be satisfied. Suppose h∗0 is an optimal solution for (2.2), and

suppose that w1 and w2 are multipliers associated with the constraints A0h0 ≤ 0 and (c+Cx0)′h0 = 0

in (2.2), respectively. Then (h∗0, t̄) is an optimal continuation of x0 for (2.1), and v(t) = u0 +

t(w1 − w2u0) is a multiplier vector for x(t) = x0 + th∗0 whose components are associated with the

rows of A0, for every t with 0 ≤ t < t̄, where t̄ = min{t̂, t̃} > 0, and

t̂ = min{bi − a
′
ix0

a′ih
∗
0

| all i = 1, ...,m with a′ih
∗
0 > 0}, (2.9)

t̃ = min{ −(u0)i
(w1 − w2u0)i

| all i = 1, ...,m with (w1 − w2u0)i < 0}. (2.10)

The full (m-dimensional) vector of multipliers, u(t), is obtained from v(t) by assigning zero to

those components of u(t) associated with constraints inactive at x0 and the appropriately indexed

components of v(t), otherwise.

Proof

Let A′1 be the matrix of gradients of all the constraints inactive at x0, let b1 be the vector whose

components are those bi associated with the rows of A1; i.e., A1x0 < b1. Similar to the proof of

Lemma 1.3, there exists a t̄1 > 0 such that A1(x0 + th∗0) < b1, for every t with 0 < t < t̄1.

Since h∗0 is optimal for (2.2), h∗0 and the associated multipliers w1 and w2 satisfy the optimality

conditions

A0h
∗
0 ≤ 0, (c+ Cx0)′h∗0 = 0, (2.11)

−q − Ch∗0 = A′0w1 + (c+ Cx0)w2, w1 ≥ 0, (2.12)

w′1A0h
∗
0 = 0, (2.13)
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where w2 is a scalar. For t > 0, (2.12) can also be written as

−tq − tCh∗0 = A′0(tw1) + (c+ Cx0)(tw2), tw1 ≥ 0, (2.14)

or

−c− Cx0 − tq − tCh∗0 = A′0(tw1) + (c+ Cx0)(tw2 − 1), tw1 ≥ 0. (2.15)

Since x0 is an optimal solution for (2.1) for t = 0 and A′0 is the matrix of gradients of all the

constraints active at x0, there exists an multiplier vector u0 whose components are associated with

the constraints active at x0, satisfying

−c− Cx0 = A′0u0, u0 ≥ 0. (2.16)

From (2.15) and (2.16),

−(c+ Cx0)− tq − tCh∗0 = A′0(tw1)− (tw2 − 1)A′0u0,

= A′0[tw1 − (tw2 − 1)u0]. (2.17)

There exists a t̄2 > 0 such that tw2 ≤ 1; i.e., tw2 − 1 ≤ 0, for every t with 0 < t < t̄2. Since

(tw1) ≥ 0, u0 ≥ 0 and tw2 − 1 ≤ 0, then for every t with 0 < t ≤ t̄2,

tw1 − (tw2 − 1)u0 ≥ 0. (2.18)

From (2.16) and the second constraint in (2.2), we have

u′0A0h
∗
0 = −(c+ Cx0)′h∗0 = 0,

together with (2.13), it follows

[tw1 − (tw2 − 1)u0]′A0h
∗
0 = 0. (2.19)

Then from (2.17), (2.18) and (2.19), we have

−c− Cx0 − tq − tCh∗0 = A′0[tw1 − (tw2 − 1)u0], tw1 − (tw2 − 1)u0 ≥ 0,

(tw1 − (tw2 − 1)u0)′A0h
∗
0 = 0.

 (2.20)
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Let v = tw1 − (tw2 − 1)u0, combine (2.11) and (2.20),

A0h
∗
0 ≤ 0,

−c− tq − C(x0 + th∗0) = A′0v, v ≥ 0,

v′(A0th
∗
0) = 0.


(2.21)

Let t̄ = min{t̄1, t̄2} > 0. Since A0x0 = b0 and A1(x0 + th∗0) < b1, for every t with 0 < t < t̄1, it

follows that for every t with 0 < t < t̄,

A(x0 + th∗0) ≤ b,

−c− tq − C(x0 + th∗0) = A′0v, v ≥ 0,

v′(A0(x0 + th∗0)− b0) = 0.


(2.22)

Thus, x(t) = x0 + th∗0 and the multiplier vector v = u0 + t(w1 − w2u0) whose components are

associated with the rows of A0 satisfy the optimality conditions for (2.1), for every t with 0 ≤ t < t̄.

So x(t) = x0 + th∗0 is optimal for (2.1), for every t with 0 ≤ t < t̄. Therefore, (h∗0, t̄) is an optimal

continuation of x0 for (2.1) as required.

Since x(t) = x0 + th∗0 is an optimal solution for (2.1), if a′ih
∗
0 > 0, then a′ix0 < bi. From (2.9),

t̂ > 0. Since v = u0 + t(w1 − w2u0) ≥ 0, if (w1 − w2u0)i < 0, then (u0)i > 0. Thus, from (2.10),

t̃ > 0. Therefore, t̄ = min{t̂, t̃} > 0. 2

Note: If the constraint a′ix ≤ bi active at x0 remains active at x(t) for every t with 0 < t < t̄,

then a′ih0 = 0.

We illustrate Theorems 2.1 and 2.2 by applying them to Example 1.2. In Example 1.2, c =

(−10
3 , −

8
3)′, q = (0, 1)′, C =

[
1 0

0 2

]
, x0 = (2

3 ,
2
3)′, and c + Cx0 = (−8

3 , −
4
3)′. Since the first

three constraints are active at x0, we have A0 =


1 2

2 1

1 1

. The optimal problem (2.2), in this case
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becomes

minimize : h2 + 1
2h

2
1 + h2

2

subject to : h1 + 2h2 ≤ 0, (1)

2h1 + h2 ≤ 0, (2)

h1 + h1 ≤ 0, (3)

− 8
3h1 − 4

3h2 = 0. (4)

(2.23)

The optimal solution for (2.23) is

h∗ =

[ 2
9

−4
9

]
.

The geometry of the problem (2.23) is shown in Figure 2.1. The half-line beginning at α and

going towards β is the feasible region of (2.23). The level sets of the objective function are ellipses

centered at (0, −1
2)′.

−1 0 1 2

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

...................... ................ x1.....................................................................................................................................................................................................................................................................................................................................................................................................................

•α

•β

• •h
∗
0

..........
...............

.......................................................................................................................................................................
............
.........
........
........
..

2x1 + x2 = 0

......................

................

x2

Figure 2.1: The related QP problem for Example 1.2.
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Let w1 = (w11, w12, w13)′ be a multiplier vector for the first three constraints, and w2 be a

multiplier for the fourth constraint in (2.23). Then, we have

w11 = w13 = 0,

and w12, w2 satisfy

w12 −
4
3
w2 = −1

9
.

Since u0 = (0, 4
3 , 0)′, it follows that

w1 − u0w2 =


0

−1
9

0

 ,
thus

v(t) =


0

4
3

0

+ t


0

−1
9

0

 .
From Theorem 2.2,

x(t) = x0 + th∗0 =

[ 2
3 + 2

9 t

2
3 −

4
9 t

]
,

is an optimal solution for the problem in Example 1.2, for every t with 0 < t ≤ t̄, where t̄ is solved

as following by applying (2.9) and (2.10):

t̂1 = min{−,−,−,−,
2
3
4
9

} =
3
2
,

t̃1 = min{−,
−4

3

−1
9

,−,−,−} = 12,

from which

t̄ = min{3
2
, 12} =

3
2
.
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One might wonder in (2.2) if the constraint (c+Cx0)′h = 0 is really necessary. If we remove it

from the previous problem, (2.23) becomes

minimize : h2 + 1
2h

2
1 + h2

2

subject to : h1 + 2h2 ≤ 0,

2h1 + h2 ≤ 0,

h1 + h1 ≥ 0.

(2.24)

The optimal solution is

h∗ =

[
0

−1
2

]
.

Because the objective function for the problem in Example 1.2 is strictly convex, the optimal

solution for it is uniquely determined. Then h∗0 for the present problem is different from what

obtained from (2.23), and is therefore incorrect. Thus, the constraint (c + Cx0)′h = 0 is essential

in (2.2). 3

2.2 The Boundedness of the Problem (2.2) in Theorem 2.1

It is possible that when t = 0 the optimal solutions for (2.1) are not unique. In this case, if we

cannot choose a proper x0, the problem (2.2) may be unbounded from below. (The problem (2.2)

is always feasible because h0 = 0 is its feasible solution.) Refer back to the discussion and Figure

1.3 following Example 1.3.

What is the implication of (2.2) being unbounded from below? Theorem 2.3 below will give the

answer. Before introducing the theorem, we first need two lemmas.

Lemma 2.2 If (2.2) is unbounded from below, then the following problem

min{−q′s | Cs = 0, c′s = 0, A0s ≥ 0} (2.25)
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is unbounded from below.

Proof

Since (2.2) is unbounded from below, then for a feasible solution h1 for (2.2), there exists an s such

that h1−σs is also feasible for (2.2), for any positive scalar σ, and s satisfies q′s > 0 and s′Cs = 0.

From the feasibility of h1 − σs, we can get A0s ≥ 0 and (c + Cx0)′s = 0. Because C is positive

semi-definite, s′Cs = 0 implies Cs = 0. Furthermore, Cs = 0 and (c + Cx0)′s = 0 imply c′s = 0.

Thus, s satisfies −q′s < 0, Cs = 0, c′s = 0, A0s ≥ 0.

Therefore, s is feasible for (2.25) and −q′s < 0. For every positive scalar σ, σs is also feasible

for (2.25), and

−q′(σs)→ −∞, as σ → +∞.

Thus (2.25) is unbounded from below. 2

Lemma 2.3 If (2.25) has an optimal solution s∗ = 0, then (2.2) is bounded from below and thus

has an optimal solution.

Proof

Assume on the contrary that (2.2) is unbounded from below. Then from Lemma 2.2, (2.25) is

also unbounded from below. This contradicts that (2.25) has an optimal solution s∗ = 0. This

contradiction establishes that (2.2) is indeed bounded from below. 2

Consider the problem

min{−q′s | c′s = 0, Cs = 0, A0s ≥ 0, As ≥ Ax0 − b}. (2.26)

It is feasible, because s = 0 is its feasible solution.
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Theorem 2.3 Assume (2.2) is unbounded from below. Assume (2.26) is bounded from below and

has an optimal solution s. Then, s 6= 0. Let x1 = x0 − s. Let A′1 be the matrix of gradients of

all the constraints active at x1 in (2.1), and let b1 be the vector whose components are those bi

associated with the rows of A1; i.e., A1x1 = b1. Then x1 is also optimal for (2.1) for t = 0, and

moreover, the problem

min{q′h1 +
1
2
h′1Ch1 | A1h1 ≤ 0, (c+ Cx1)′h1 = 0} (2.27)

has a finite optimal solution.

Proof

We first show that if (2.26) has an optimal solution s, then

s 6= 0. (2.28)

Otherwise, if s = 0 is an optimal solution for (2.26), the optimality conditions assert

q = cu1 + Cu2 −A′0u3 −A′u4, u3, u4 ≥ 0, (2.29)

u′4(Ax0 − b) = 0. (2.30)

Since A′0 is the matrix of gradients of all the constraints active at x0, (2.29) and (2.30) can be

simplified to

q = cu1 + Cu2 −A′0u3 −A′0ū4 = cu1 + Cu2 −A′0(u3 + ū4), u3, ū4 ≥ 0, (2.31)

A0x0 − b0 = 0, (2.32)

where ū4 is the multiplier vector whose components are those (u4)i associated with the rows of A0.

Then s = 0, u1, u2 and u3 + ū4 satisfy the optimality conditions for (2.25), which are

Cs = 0, c′s = 0, A0s ≥ 0,

q = cu1 + Cu2 −A′0(u3 + ū4), u3 + ū4 ≥ 0,

(u3 + ū4)′A0s = 0.
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Thus, s = 0 being an optimal solution for (2.25), together with Lemma 2.3, contradicts that (2.2)

is unbounded from below. Thus, if (2.26) has an optimal solution s, then s 6= 0, which verifies

(2.28).

Now we will prove that x1 is also optimal for (2.1) for t = 0, and (2.27) has a finite optimal

solution. From the fourth constraint of (2.26), As ≥ Ax0 − b, we have

A(x0 − s) ≤ b,

which means

Ax1 ≤ b.

From the first and second constraints of (2.26), c′s = 0, Cs = 0, the objective function for x = x1

is

c′x1 +
1
2
x′1Cx1 = c′(x0 − s) +

1
2

(x0 − s)′C(x0 − s) = c′x0 +
1
2
x′0Cx0.

Thus, x1 is also an optimal solution for (2.1) for t = 0.

Since s is an optimal solution for (2.26), the optimality conditions give us

q = Cu+ cv −A′0w0 −A′w1, w0, w1 ≥ 0,

w′0A0s = 0, w′1(Ax0 − b−As) = 0.

 (2.33)

Since A1 is the matrix of gradients of all the constraints active at x1, A1x1 = b1; i.e., A1(x0−s) = b1,

(2.33) can be simplified to

q = Cu+ cv −A′0w0 −A′1w̄1, w0, w̄1 ≥ 0,

w′0A0s = 0, A1s = A1x0 − b1,

 (2.34)

where w̄1 is the multiplier vector whose components are those (w1)i associated with the rows of A1.

From w′0A0s = 0, we know that if a′is = (A0s)i 6= 0, then (w0)i = 0. Let A′2 be the matrix of all

the ai in A0 satisfying a′is = 0; i.e., A2s = 0. Let b2 be the vector whose components are those bi
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associated with the rows of A2. Since A2 is a submatrix of A0, A2x0 = b2. We have A2(x0−s) = b2;

i.e., A2x1 = b2. Thus, A2 is also a submatrix of A1. So, (2.34) is equivalent to

q = Cu+ cv −A′2w̄0 −A′1w̄1 = Cu+ cv −A′1w, w̄0, w̄1, w ≥ 0,

A2s = 0, A1s = A1x0 − b1,


where w is a vector whose components are associated with the rows of A1. Therefore, s1 = 0 and

u, v, w satisfy

Cs1 = 0, c′s1 = 0, A1s1 ≥ 0,

q = Cu+ cv −A′1w, w ≥ 0,

w′A1s1 = 0,


which are precisely the optimality conditions for

min{−q′s | Cs = 0, c′s = 0, A1s ≥ 0}. (2.35)

Thus, s1 = 0 is optimal for (2.35). Therefore from Lemma 2.3, (2.27) has a finite optimal solution. 2

Theorem 2.4 If (2.26) is unbounded from below, then (2.1) is also unbounded from below, for

every t with t > 0.

Proof

If (2.26) is unbounded from below, then for a feasible solution s for (2.26), there exists a vector

d such that s − σd is feasible for (2.26), for every positive scalar σ, and q′d < 0. That is, q′d <

0, c′d = 0, Cd = 0, and Ad ≤ 0.

Then, x0 + σd satisfies

A(x0 + σd) = Ax0 + σAd ≤ b,

and

(c+ tq)′(x0 + σd) +
1
2

(x0 + σd)′C(x0 + σd) = (c+ tq)′x0 +
1
2
x′0Cx0 + σtq′d→ −∞, as σ → +∞,
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for every t with t > 0. Thus, (2.1) is unbounded from below, for every t with t > 0. 2

2.3 Example 1.3 Continued

Consider (1.14) in Example 1.3. If we begin with t = 0 and an interior point optimal solution x0,

(2.2) in this problem becomes

min{q′h0 | h0 has no constraints}.

It is unbounded if q 6= 0. Then we consider (2.26), which in this problem is

min{−q′s | As ≥ Ax0 − b}. (2.36)

Its optimal solution is same as

min{q′(x0 − s) | A(x0 − s) ≤ b}.

Suppose s0 is an optimal solution for (2.36), and let x1 = x0 − s0. Then, x1 = x0 − s0 is optimal

for

min{q′x1 | Ax1 ≤ b}. (2.37)

So for every t with t > 0, x1 is also optimal for

min{tq′x1 | Ax1 ≤ b},

which is precisely (1.14), and x1 is precisely the point y+ in Figure 1.3.

Assume A′1 is the matrix of the gradients of all the constraints active at x1. From the optimality

conditions for (2.37), we have −q = A′1u1, u1 ≥ 0. In this example, (2.27) becomes

min{q′h1 | A1h1 ≤ 0}. (2.38)
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Since −q = A′1u1 and u1 ≥ 0, it follows that h1 = 0 satisfies the optimality conditions for (2.38),

which are

A1h1 ≤ 0,

−q = A′1u1, u1 ≥ 0,

u′1A1h1 = 0.


Thus, h1 = 0 is an optimal solution for (2.38), the multiplier vector u1 satisfies −q = A′1u1.

When t = 0, the multiplier for x1 = x0 − s0 is u0 = 0. When t > 0, x1 and tu1 satisfy −q =

A′1(tu1), (tu1) ≥ 0. Thus, v(t) = u0 + tu1 = tu1 is the multiplier for x(t) = x1, for every t with

t > 0. 3



Chapter 3

A Parameter only in the Constraints

In this chapter, we will study another simple case – the PQP problem with the parameter t only

in the right-hand side of the constraints.

Consider the following PQP problem

min{c′x+
1
2
x′Cx | Ax ≤ b+ tp}. (3.1)

From the QP duality, the dual of (3.1) is

max{c′x+
1
2
x′Cx+ u′(Ax− b− tp) | Cx+A′u = −c, u ≥ 0}. (3.2)

It is a PQP problem with the parameter t only in the linear part of the objective function, thus

we could solve it using the method introduced in Chapter 2. Assume (x∗(t), u∗(t))′ is an optimal

solution for (3.2), for every t with t ∈ G, where G is the region of t on which (3.2) has optimal

solutions. If C is positive definite, then (3.1) is strictly convex. From Strict Converse Duality

Theorem[1], x∗(t) is an optimal solution for (3.1), for every t with t ∈ G. However, if C is positive

semi-definite, that is, (3.1) is not strictly convex, then x∗(t) may not be an optimal solution for

(3.1), and it is hard to find an optimal solution for (3.1) from its dual.

37
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In this chapter, we will develop another way to solve the PQP problem with the parameter only

in the right-hand side of the constraints, with C being positive semi-definite.

3.1 Solution of the PQP Problem with a Parameter in the Right-

Hand Side of the Constraints by Solving a Related QP Prob-

lem without the Parameter

Assumption 3.1 There exists a t̂ > 0 such that (3.1) has an optimal solution for every t with

0 ≤ t < t̂.

To determine the feasibility of (3.1) for t > 0, we can solve the (n+ 1)-variable linear program-

ming problem

max{t | Ax− tp ≤ b}, (3.3)

where both x and t are variables in the LP. If the optimal solution for (3.3) is zero, then there

exists no t > 0 such that Ax ≤ b + tp has a solution, therefore, (3.1) is infeasible for every t with

t > 0. If (3.3) has an optimal solution t̂ > 0, then (3.1) is feasible for every t with 0 ≤ t ≤ t̂, and

infeasible for every t with t > t̂. If (3.3) is unbounded from above, then (3.1) is feasible for every t

with t ≥ 0.

The following two theorems show how to obtain h∗0 in the optimal continuation of x0 for (3.1).

Recall the notation in Chapter 1. x0 is an optimal solution for (3.1) for t = 0. A′0 is the matrix

of gradients of all the constraints active at x0. Let p0 be the vector whose components are those pi

associated with the rows of A0.

Theorem 3.1 Let Assumption 3.1 be satisfied. Suppose (h∗0, t̄) is an optimal continuation of x0



CHAPTER 3. A PARAMETER ONLY IN THE CONSTRAINTS 39

for (3.1). In addition, suppose the optimal solution x(t) = x0 + th∗0 for (3.1) is a diminishment of

x0, for every t with 0 < t < t̄. Then there exists a vector u0 such that

[
h∗0

u0

]
is an optimal solution

for the problem

min{−p′0u0 +
1
2
h′0Ch0 | A0h0 ≤ p0, (c+ Cx0)′h0 + p′0u0 = 0, −c− Cx0 = A′0u0, u0 ≥ 0}. (3.4)

Proof

The outline of the proof is as follows. We first prove that

[
h∗0

u0

]
is an optimal solution for (3.10) (see

below). Then we change (3.10) to its equivalent form (3.12) (see below), and using the optimality

conditions for (3.12), prove that

[
h∗0

u0

]
is an optimal solution for (3.4).

Since (h∗0, t̄) is an optimal continuation of x0 for (3.1); i.e., x(t) = x0 + th∗0 is an optimal

solution for (3.1), for every t with 0 ≤ t < t̄. The optimality conditions for (3.1) assert

A(x0 + th∗0) ≤ b+ tp,

−c− C(x0 + th∗0) = A′u, u ≥ 0,

u′[A(x0 + th∗0)− (b+ tp)] = 0,


where u = u(t). These are equivalent to

A(x0 + th∗0) ≤ b+ tp,

−c− Cx0 − tCh∗0 = A′u, u ≥ 0,

u′[(Ax0 − b) + t(Ah∗0 − p)] = 0.


(3.5)

Since x(t) is a diminishment of x0, for every t with 0 < t < t̄, all the constraints active at x(t) are

also active at x0. Consequently, the matrix of the gradients of all the constraints active at x(t) is

a submatrix of A′0. Thus, (3.5) can be simplified to

A0h
∗
0 ≤ p0,

−c− Cx0 − tCh∗0 = A′0u, u ≥ 0,

u′(A0h
∗
0 − p0) = 0,


(3.6)
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where u = u0 + tu1 is a multiplier vector whose components are associated with the rows of A0,

and u0 is a multiplier vector for x0 whose components are associated with the rows of A0, so u0

satisfies the optimality conditions for t = 0,

−c− Cx0 = A′0u0, u0 ≥ 0. (3.7)

Since (u0 + tu1)′(A0h
∗
0 − p0) = 0, for every t with 0 < t < t̄, u0 must satisfy

u′0(A0h
∗
0 − p0) = 0. (3.8)

Because −c− Cx0 = A′0u0, u′0(A0h
∗
0 − p0) = 0 can also be written as

(c+ Cx0)′h∗0 + p′0u0 = 0. (3.9)

Combining (3.6), (3.7) and (3.9), we get

A0h
∗
0 ≤ p0, (c+ Cx0)′h∗0 + p′0u0 = 0, −c− Cx0 = A′0u0, u0 ≥ 0,

−c− Cx0 − tCh∗0 = A′0u, u ≥ 0,

u′(A0h
∗
0 − p0) = 0.


Therefore,

[
h∗0

u0

]
is an optimal solution for the problem

min{(c+ Cx0)′h0 +
1
2
th′0Ch0 | A0h0 ≤ p0, (c+ Cx0)′h0 + p′0u0 = 0, −c− Cx0 = A′0u0, u0 ≥ 0},

(3.10)

because

[
h0

u0

]
=

[
h∗0

u0

]
and v1 = u, v2, v3, v4 = 0 satisfy the optimality conditions

A0h0 ≤ p0, (c+ Cx0)′h0 + p′0u0 = 0, −c− Cx0 = A′0u0, u0 ≥ 0,[
−(c+ Cx0)− tCh0

0

]
=

[
A′0

0

]
v1 +

[
c+ Cx0

p0

]
v2 +

[
0

A0

]
v3 +

[
0

−I

]
v4, v1, v4 ≥ 0,

v′1(A0h0 − p0) = 0,

v′4u0 = 0.


(3.11)
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From the constraint (c+ Cx0)′h0 + p′0u0 = 0 in (3.10), (3.10) is equivalent to

min{−p′0u0 +
1
2
th′0Ch0 | A0h0 ≤ p0, (c+Cx0)′h0 + p′0u0 = 0, −c−Cx0 = A′0u0, u0 ≥ 0}. (3.12)

The optimality conditions for (3.12) are

A0h0 ≤ p0, (c+ Cx0)′h0 + p′0u0 = 0, −c− Cx0 = A′0u0, u0 ≥ 0,[
−tCh0

p0

]
=

[
A′0

0

]
w1 +

[
c+ Cx0

p0

]
w2 +

[
0

A0

]
w3 +

[
0

−I

]
w4, w1, w4 ≥ 0,

w′1(A0h0 − p0) = 0,

w′4u0 = 0.


(3.13)

From (3.11), it follows that

[
h0

u0

]
=

[
h∗0

u0

]
and w =


w1

w2

w3

w4

 =


u

1

0

0

 satisfy (3.13). Therefore,

[
h∗0

u0

]

satisfies [
−Ch∗0

p0

]
=

[
A′0

0

]
u

t
+

[
c+ Cx0

p0

]
1
t

+

[
0

A0

]
α1 +

[
0

−I

]
α2,

where

α1 = (1− 1
t
)h∗0,

and

α2 = (1− 1
t
)(A0h

∗
0 − p0).

Since A0h
∗
0 ≤ p0, and for every t with 0 < t < 1, 1− 1

t < 0, thus,

α2 = (1− 1
t
)(A0h

∗
0 − p0) ≥ 0.

Since u ≥ 0, t ≥ 0,
u

t
≥ 0.

Since u′(A0h
∗
0 − p0) = 0, it follows that

(
u

t
)′(A0h

∗
0 − p0) = 0.
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Since we have u′0(A0h
∗
0 − p0) = 0 from (3.8),

α′2u0 = (1− 1
t
)(A0h

∗
0 − p0)′u0 = 0.

Thus,

[
h0

u0

]
=

[
h∗0

u0

]
and w1 = u

t , w2 = 1
t , w3 = α1, w4 = α2 satisfy

A0h0 ≤ p0, (c+ Cx0)′h0 + p′0u0 = 0, −c− Cx0 = A′0u0, u0 ≥ 0,[
−Ch0

p0

]
=

[
A′0

0

]
w1 +

[
c+ Cx0

p0

]
w2 +

[
0

A0

]
w3 +

[
0

−I

]
w4, w1, w4 ≥ 0,

w′1(A0h0 − p0) = 0,

w′4u0 = 0,


which are precisely the optimality conditions for (3.4). Thus, we have

[
h∗0

u0

]
is an optimal solution

for (3.4) as required. 2

The importance of the optimal problem (3.4) is illustrated in the following theorem.

Theorem 3.2 Let Assumption 3.1 be satisfied. Suppose

[
h∗0

u0

]
is an optimal solution for (3.4),

and suppose that w1, w2, w3 and w4 are multipliers associated with the constraints A0h0 ≤ p0,

(c + Cx0)′h0 + p′0u0 = 0, −c − Cx0 = A′0u0 and u0 ≥ 0, respectively. Then (h∗0, t̄) is an optimal

continuation of x0 for (3.1), and v(t) = u0 + t(w1 − w2u0) is an associated multiplier vector for

x(t) = x0 + th∗0, for every t with 0 ≤ t < t̄, where t̄ = min{t̂, t̃} > 0, and

t̂ = min{ bi − a
′
ix0

a′ih
∗
0 − pi

| all i = 1, ...,m with a′ih
∗
0 > pi}, (3.14)

t̃ = min{ −(u0)i
(w1 − w2u0)i

| all i = 1, ...,m with (w1 − w2u0)i < 0}. (3.15)

The full (m-dimensional) vector of multipliers, u(t), is obtained from v(t) by assigning zero to

those components of u(t) associated with constraints inactive at x0 and the appropriately indexed

components of v(t), otherwise.
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Proof

Let A′1 be the matrix of the gradients of all the constraints inactive at x0 for (3.1), let b1 be the

vector whose components are those bi associated with the rows of A1. Then A1x0 < b1. Similar

to the proof of Lemma 1.3, there is a t̄1 > 0, such that A1(x0 + th∗0) < b1 + tp1 for every t with

0 ≤ t < t̄1.

Since

[
h∗0

u0

]
is an optimal solution for (3.4), the optimality conditions assert that

[
−Ch∗0

p0

]
=

[
A′0

0

]
w1 +

[
c+ Cx0

p0

]
w2 +

[
0

A0

]
w3 +

[
0

−I

]
w4, w1, w4 ≥ 0, (3.16)

w′1(A0h
∗
0 − p0) = 0. (3.17)

Multiplying both sides of (3.16) and (3.17) by t gives[
−tCh∗0

tp0

]
=

[
A′0

0

]
(tw1)+

[
c+ Cx0

p0

]
(tw2)+

[
0

A0

]
(tw3)+

[
0

−I

]
(tw4), (tw1), (tw4) ≥ 0, (3.18)

(tw1)′(A0h
∗
0 − p0) = 0. (3.19)

From (3.18), it follows

−tCh∗0 = A′0(tw1) + (c+ Cx0)(tw2),

and this is equivalent to

−(c+ Cx0)− tCh∗0 = A′0(tw1) + (c+ Cx0)(tw2 − 1).

From the optimality conditions for (3.1) when t = 0, −(c+ Cx0) = A′0u0, so

−(c+ Cx0)− tCh∗0 = A′0(tw1 − (tw2 − 1)u0).

The second and the third constraints of (3.4) give

u′0(A0h
∗
0 − p0) = 0,

together with (3.19), we have

(tw1 − (tw2 − 1)u0)′(A0h
∗
0 − p0) = 0.
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Let v(t) = tw1 − (tw2 − 1)u0. For t̄2 > 0 given small enough, tw2 ≤ 1; i.e., tw2 − 1 ≤ 0, for every t

with 0 ≤ t ≤ t̄2. Thus, v(t) ≥ 0 since w1, u0 ≥ 0. Since A0x0 = b0, we have

tA0h
∗
0 ≤ tp0,

−c− C(x0 + th∗0) = A′0v(t), v(t) ≥ 0,

v(t)′((A0x0 − b0) + t(Ah∗0 − p0)) = 0,


and since A1(x0 + th∗0) < b1 + tp1, it follows

A(x0 + th∗0) ≤ b+ tp,

−c− C(x0 + th∗0) = A′0v(t), v(t) ≥ 0,

v(t)′(A0(x0 + th∗0)− (b0 + tp0)) = 0.


Let t̄ = min{t̄1, t̄2} > 0. Then x(t) = x0+th∗0 and the associated multiplier v(t) = u0+t(w1−w2u0)

satisfy the optimality conditions for (3.1), for every t with 0 ≤ t < t̄. Thus x(t) = x0+th∗0 is optimal

for (3.1), for every t with 0 ≤ t < t̄. Therefore, (h∗0, t̄) is an optimal continuation of x0 for (3.1) as

required.

Since x(t) = x0 + th∗0 is an optimal solution for (3.1), if a′ih
∗
0 > pi, then a′ix0 < bi. From (3.14),

t̂ > 0. Since v = u0 + t(w1 − w2u0) ≥ 0, if (w1 − w2u0)i < 0, then (u0)i > 0. From (3.15), t̃ > 0.

Therefore, t̄ = min{t̂, t̃} > 0. 2

Recall Example 1.4 in Chapter 1. The first four constraints are active at x0 = (1, 1)′. Let

u0 = (v1, v2, v3, v4)′ be an multiplier vector for x0 whose components are associated with the first

four constraints. Then we can get an optimal continuation h∗0 =

[
h1

h2

]
of x0 by solving (3.4), which
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in this problem is

minimize : 1
2h

2
1 + h2

2 + v3 + 1
2v4

subject to : h1 ≤ 0,

h2 ≤ 0,

h1 + h2 ≤ −1,

h1 + 2h2 ≤ −1
2 ,

−h1 − v3 − 1
2v4 = 0,

v1 + v3 + v4 = 1,

v2 + v3 + 2v4 = 0,

v1 ≥ 0,

v2 ≥ 0,

v3 ≥ 0,

v4 ≥ 0.

The optimal solution is

h∗0 =

[
0

−1

]
,

and

u0 =


v1

v2

v3

v4

 =


1

0

0

0

 .
From Theorem 3.2, the optimal solution for the problem of Example 1.4 is

x(t) = x0th
∗
0 =

[
1

1− t

]
,
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with the multiplier vector

v(t) = u0 + t(w1 − w2u0) =


1

0

0

0

+ t


−2

0

2

0

 ,

whose components are associated with the first four constraints, for every t with 0 < t < t̄.

Again from Theorem 3.2, the upper limit t̄ is determined by applying (3.14) and (3.15):

t̂1 = min{−,−,−,−,−, 1
1
} = 1,

t̃1 = min{− 1
−2

,−,−,−} =
1
2
,

from which

t̄ = min{1, 1
2
} =

1
2
.

Therefore,

x(t) =

[
1

1− t

]
is optimal for the problem, for every t with 0 ≤ t ≤ 1

2 , in agreement with our geometric determina-

tion of the optimal solution in Example 1.4. 3

3.2 Reduction of Theorem 3.2 to the “No Ties” Case

In this section, we will show that (3.4) can be simplified to known results for the “no ties” case.

Consider the problem

min{c′x+
1
2
x′Cx | Ax ≤ b+ tp}. (3.20)

Let x0 be an optimal solution for (3.20) for t = 0, let A′0 be the matrix of gradients of all the

constraints active at x0, and let b0 and p0 be the vectors whose components are those bi and pi
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associated with the rows of A0, respectively. Suppose that there exists a t̄ > 0 such that an optimal

solution x(t) = x0 + th∗0 for (3.20) has the same active constraints as those for x0, for every t with

0 < t < t̄, and u = u0 + tu1 is an associated multiplier vector. Assume A0 has full row rank and

H0 =

[
C A′0

A0 0

]
is nonsingular. Then, s′Cs > 0 for all s 6= 0, A0s = 0.

From the optimality conditions for (3.20) for t = 0,[
C A′0

A0 0

][
x0

u0

]
=

[
−c

b0

]
. (3.21)

From the optimality conditions for (3.20) for t > 0, we have

A0(x0 + th∗0) = b0 + tp0 ⇒ A0h
∗
0 = p0,

and

−c− C(x0 + th∗0) = A′0(u0 + tu1). (3.22)

From (3.21), we have −c− Cx0 = A′0u0. Thus (3.22) implies −Ch∗0 = A′0u1. So we get[
C A′0

A0 0

][
h∗0

u1

]
=

[
0

p0

]
. (3.23)

Since

[
C A′0

A0 0

]
is nonsingular,

[
h∗0

u1

]
and

[
x0

u0

]
are uniquely determined by (3.23) and (3.21).

Indeed, this is the identical solution obtained by Best in the “no ties” case.

Under the same “no ties” assumption, (3.4) can be simplified. Since A0 has full row rank, which

means that the active constraints at x0 are linear independent, we know that u0 is unique. So we can

take out the third and the fourth constraints without changing the problem. The second constraint

(c + Cx0)′h0 + u′0p0 = 0 can be written as u′0(A0h0 − p0) = 0. Also because of the uniqueness of

u0, the term −p′0u0 in the objective function is a constant. Thus, the optimal solution h∗0 for (3.4)

is also optimal for

min{1
2
h′0Ch0 | A0h0 ≤ p0, u

′
0(A0h0 − p0) = 0}. (3.24)
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From the optimality conditions, the optimal solution h∗0 for (3.24) satisfies

−Ch∗0 = A′0v1 +A′0u0v2, v1 ≥ 0,

v′1(A0h
∗
0 − p0) = 0,

where v2 is a scalar. Let v = v1 + v2u0. Since u′0(A0h
∗
0 − p0) = 0, we have

−Ch∗0 = A′0v, (3.25)

v′(A0h
∗
0 − p0) = 0. (3.26)

Since

[
C A′0

A0 0

]
is nonsingular, we can get a unique solution

[
h0

v

]
from

[
C A′0

A0 0

][
h0

v

]
=

[
0

p0

]
. (3.27)

The solution

[
h0

v

]
for (3.27) satisfies (3.25) and (3.26), so it is an optimal solution for (3.24). Thus

the optimal solution that has same active constraints as x0 is uniquely determined by (3.27). This

verifies that we will get the correct optimal solution using the result in Theorem 3.2 in Section 3.1

for the “no ties” case.

3.3 Feasibility and Boundedness of the Problem (3.4) in Theorem

3.1

Assume (3.1) is feasible for every t with 0 < t ≤ t̄ throughout this section. The critical problem

(3.4) may in general be infeasible, feasible and bounded, or feasible and unbounded. In this section,

we will show that it is always feasible and bounded.

Consider the feasible region of (3.4), namely

S ≡ {

[
h0

u0

]
| A0h0 ≤ p0, (c+ Cx0)′h0 + p′0u0 = 0, −c− Cx0 = A′0u0, u0 ≥ 0},
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= {

[
h0

u0

]
| A0h0 ≤ p0, u

′
0(A0h0 − p0) = 0, −c− Cx0 = A′0u0, u0 ≥ 0}.

The optimality conditions for the problem

min{(c+ Cx0)′h0 | A0h0 ≤ p0}, (3.28)

imply that if (3.28) has an optimal solution, then the set S is not empty.

Lemma 3.1 (3.28) is feasible.

Proof

We know that x0 is optimal for min{c′x+ 1
2x
′Cx | Ax ≤ b} and A0x0 = b0. Assumption 3.1 implies

that (3.1) is feasible for every t with 0 < t < t̄. Then, there exists an x1 such that A0x1 ≤ b0 + tp0,

for some t0 satisfying 0 < t0 < t̄. Then,

A0(x1 − x0) ≤ b0 + t0p0 − b0,

⇒ A0(x1 − x0) ≤ t0p0,

⇒ A0
x1 − x0

t0
≤ p0.

Thus, x1−x0
t0

is a feasible solution for (3.28). So (3.28) is feasible. 2

Lemma 3.2 (3.28) is bounded.

Proof

Assume on the contrary that (3.28) is unbounded. Then for a feasible solution h1 for (3.28), there

exists an s1 such that h1 − σs1 is feasible, for every positive scalar σ, and

(c+ Cx0)′(h1 − σs1)→ −∞, as σ → +∞.
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So we have

(c+ Cx0)′s1 > 0,

A0s1 ≥ 0.

 (3.29)

From the optimality conditions for the original problem (3.1), when t = 0, we have

−c− Cx0 = A′0u0, u0 ≥ 0.

Together with (3.29), it follows

(c+ Cx0)′s1 = −(A′0u0)′s1 = −u′0(A0s1) ≤ 0.

This is in contradiction to (c+ Cx0)′s1 > 0. So, (3.28) is bounded. 2

Theorem 3.3 (3.4) is feasible.

From Lemma 3.1 and Lemma 3.2, (3.28) is feasible and bounded, which means (3.28) has an optimal

solution. So the set S is not empty. Therefore, (3.4) is feasible.
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To study the boundedness of (3.4), we rewrite (3.4) as

minimize : [ 0 −p′0 ]

[
h0

u0

]
+ 1

2 [h′0 u′0 ]

[
C 0

0 0

][
h0

u0

]

subject to : [A0 0 ]

[
h0

u0

]
≤ p0,

[ 0 A′0 ]

[
h0

u0

]
= −c− Cx0,

[ (c+ Cx0)′ p′0 ]

[
h0

u0

]
= 0,

[ 0 −I ]

[
h0

u0

]
≤ 0.

(3.30)

Theorem 3.4 (3.30); i.e., (3.4) is bounded.

Proof

Assume on the contrary that (3.30) is unbounded. Then for a feasible solution

[
h0

u0

]
for (3.30),

such that there exists a vector

[
s1

s2

]
, satisfying

[ 0 −p′0 ]

[
s1

s2

]
> 0,

[ s′1 s′2 ]

[
C 0

0 0

][
s1

s2

]
= 0,
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and

[
h0

u0

]
− σ

[
s1

s2

]
is feasible, for every positive scalar σ. Thus we have

−p′0s2 > 0,

s′1Cs1 = 0⇒ Cs1 = 0,

A0s1 ≥ 0,

A′0s2 = 0,

(c+ Cx0)′s1 + p′0s2 = 0⇒ c′s1 + p′0s2 = 0,

s2 ≤ 0.


From −p′0s2 > 0 and c′s1 + p′0s2 = 0, we get c′s1 > 0. Since A0s1 ≥ 0, A(x0 − σs1) ≤ b, for σ small

and positive. we have

c′(x0 − σs1) +
1
2

(x0 − σs1)′C(x0 − σs1)

= c′x0 +
1
2
x′0Cx0 − σc′s1 < c′x0 +

1
2
x′0Cx0.

This is in contradiction to x0 being an optimal solution for (3.1) for t = 0. Therefore, (3.30) is

bounded. 2

3.4 The Boundedness of the Original Problem (3.1)

Lemma 3.3 If (3.1) has an optimal solution x0 when t = 0, and it is feasible for every t with

t > 0, then it is also bounded from below for every t with t > 0.

Proof

Assume on the contrary that (3.1) is unbounded for some t = t1 > 0. Then for a feasible solution

x1 for t = t1, there exists a vector s such that x1 − σs is feasible for (3.1) for t = t1, for every
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positive scalar σ, and c′s > 0, s′Cs = 0. From the feasibility of x1 and x1 − σs, we have As ≥ 0.

Let x2(σ) = x0 − σs. Then x2(σ) is feasible for (3.1) for t = 0, for every positive σ. The objective

function

c′x2(σ) +
1
2
x2(σ)′Cx2(σ) = c′x0 +

1
2
x′0Cx0 − σc′s→ −∞, as σ → +∞.

This contradicts that (3.1) has an optimal solution x0 when t = 0. Thus we get the result as

required. 2



Chapter 4

The General Parametric QP Problem

In this chapter, we will study the general parametric QP problem with a parameter both in the

linear part of the objective function and in the right-hand side of the constraints.

4.1 Solution of the General PQP Problem by Solving a Related

QP Problem without the Parameter

Consider the following PQP problem

min{(c+ tq)′x+
1
2
x′Cx | Ax ≤ b+ tp}. (4.1)

Assumption 4.1 There exists a t̂ > 0 such that (4.1) has an optimal solution for every t with

0 ≤ t < t̂.

Recall the notation in Chapter 1. x0 is an optimal solution for (4.1) for t = 0. A′0 is the matrix

of the gradients of all the constraints active at x0. Let p0 be the vector whose components are

54
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those pi associated with the rows of A0.

Theorem 4.1 Let Assumption 4.1 be satisfied. Suppose (h∗0, t̄) is an optimal continuation of x0

for (4.1). In addition, suppose the optimal solution x(t) = x0 + th∗0 is a diminishment of x0, for

every t with 0 < t < t̄. Then there exists a vector u0 such that

[
h∗0

u0

]
is an optimal solution for the

problem

min{−p′0u0+q′h0+
1
2
h′0Ch0 | A0h0 ≤ p0, (c+Cx0)′h0+p′0u0 = 0, −c−Cx0 = A′0u0, u0 ≥ 0}. (4.2)

The proof of the theorem is similar to the proof of Theorem 3.1.

Proof

Since (h∗0, t̄) is an optimal continuation of x0 for (4.1), x(t) = x0 + th∗0 is an optimal solution for

(4.1), for every t with 0 < t < t̄. The optimality conditions for (4.1) assert,

A(x0 + th∗0) ≤ b+ tp,

−c− tq − C(x0 + th∗0) = A′u, u ≥ 0,

u′[A(x0 + th∗0)− (b+ tp)] = 0,


where u = u(t). These are equivalent to

A(x0 + th∗0) ≤ b+ tp,

−c− tq − Cx0 − tCh∗0 = A′u, u ≥ 0,

u′[(Ax0 − b) + t(Ah∗0 − p)] = 0.


(4.3)

Since x(t) is a diminishment of x0, for every t with 0 < t < t̄, all the constraints active at x(t) are

also active at x0. So the matrix of the gradients of all the constraints active at x(t) is a submatrix
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of A′0. Thus, (4.3) can be simplified to

A0h
∗
0 ≤ p0,

−c− Cx0 − tq − tCh∗0 = A′0u, u ≥ 0,

u′(A0h
∗
0 − p0) = 0,


(4.4)

where u = u0 + tu1 is a multiplier vector for x(t) whose components are associated with the rows

of A0, and u0 is a multiplier vector for x0 whose components are also associated with the rows of

A0. So u0 satisfies the optimality conditions for t = 0, which are

−c− Cx0 = A′0u0, u0 ≥ 0. (4.5)

From (4.5), it follows that

(c+ Cx0)′h∗0 + p′0u0 = 0. (4.6)

Combining (4.4), (4.5) and (4.6), we get

A0h
∗
0 ≤ p0, (c+ Cx0)′h∗0 + p′0u0 = 0, −c− Cx0 = A′0u0, u0 ≥ 0,

−c− Cx0 − tq − tCh∗0 = A′0u, u ≥ 0,

u′(A0h
∗
0 − p0) = 0.


Therefore,

[
h∗0

u0

]
is an optimal solution for the problem

min{(c+Cx0)′h0+tq′h0+
1
2
th′0Ch0 | A0h0 ≤ p0, (c+Cx0)′h0+p′0u0 = 0, −c−Cx0 = A′0u0, u0 ≥ 0},

(4.7)

because

[
h0

u0

]
=

[
h∗0

u0

]
and v1 = u, v2, v3, v4 = 0 satisfy the optimality conditions for (4.7), which

are

A0h0 ≤ p0, (c+ Cx0)′h0 + p′0u0 = 0, −c− Cx0 = A′0u0, u0 ≥ 0,[
−(c+ Cx0)− t(q + Ch0)

0

]
=

[
A′0

0

]
v1 +

[
c+ Cx0

p0

]
v2 +

[
0

A0

]
v3 +

[
0

−I

]
v4, v1, v4 ≥ 0,

v′1(A0h0 − p0) = 0,

v′4u0 = 0.


(4.8)
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From the second constraint of (4.7), (4.7) is equivalent to

min{−p′0u0 + tq′h0 +
1
2
th′0Ch0 | A0h0 ≤ p0, (c+ Cx0)′h0 + p′0u0 = 0, −c− Cx0 = A′0u0, u0 ≥ 0}.

(4.9)

The optimality conditions for (4.9) are

A0h0 ≤ p0, (c+ Cx0)′h0 + p′0u0 = 0, −c− Cx0 = A′0u0, u0 ≥ 0,[
−t(q + Ch0)

p0

]
=

[
A′0

0

]
w1 +

[
c+ Cx0

p0

]
w2 +

[
0

A0

]
w3 +

[
0

−I

]
w4, w1, w4 ≥ 0,

w′1(A0h0 − p0) = 0,

w′4u0 = 0.


(4.10)

From (4.8), it follows that

[
h0

u0

]
=

[
h∗0

u0

]
and w =


w1

w2

w3

w4

 =


u

1

0

0

 satisfy (4.10).

Therefore,

[
h∗0

u0

]
satisfies

[
−q − Ch∗0

p0

]
=

[
A′0

0

]
u

t
+

[
c+ Cx0

p0

]
1
t

+

[
0

A0

]
α1 +

[
0

−I

]
α2,

where

α1 = (1− 1
t
)h∗0,

and

α2 = (1− 1
t
)(A0h

∗
0 − p0).

Since A0h
∗
0 ≤ p0, and for every t with 0 < t < 1, 1− 1

t < 0. Thus,

α2 = (1− 1
t
)(A0h

∗
0 − p0) ≥ 0,

and
u

t
≥ 0.
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Since u′(A0h
∗
0 − p0) = 0,

(
u

t
)′(A0h

∗
0 − p0) = 0.

Since u = u0 +tu1, we can write the third equation in (4.4), u′(A0h
∗
0−p0) = 0, as (u0 +tu1)′(A0h

∗
0−

p0) = 0, for every t with 0 < t < t̄. It follows that u′0(A0h
∗
0 − p0) = 0. So we have

α′2u0 = (1− 1
t
)(A0h

∗
0 − p0)′u0 = 0.

Thus,

[
h0

u0

]
=

[
h∗0

u0

]
and w1 = u

t , w2 = 1
t , w3 = α1, w4 = α2 satisfy

A0h0 ≤ p0, (c+ Cx0)′h0 + p′0u0 = 0, −c− Cx0 = A′0u0, u0 ≥ 0,[
−q − Ch0

p0

]
=

[
A′0

0

]
w1 +

[
c+ Cx0

p0

]
w2 +

[
0

A0

]
w3 +

[
0

−I

]
w4, w1, w4 ≥ 0,

w′1(A0h0 − p0) = 0,

w′4u0 = 0,


which are precisely the optimality conditions for (4.2). Thus,

[
h∗0

u0

]
is an optimal solution for (4.2)

as required. 2

The importance of the optimal problem (4.2) is illustrated in the following theorem.

Theorem 4.2 Let Assumption 4.1 be satisfied. Suppose

[
h∗0

u0

]
is an optimal solution for (4.2),

and suppose that w1, w2, w3 and w4 are multipliers associated with the constraints A0h0 ≤ p0,

(c + Cx0)′h0 + p′0u0 = 0, −c − Cx0 = A′0u0 and u0 ≥ 0, respectively. Then (h∗0, t̄) is an optimal

continuation of x0 for (4.1), and v(t) = u0 + t(w1 − w2u0) is an associated multiplier vector for

x(t) = x0 + th∗0, for every t with 0 ≤ t < t̄, where t̄ = min{t̂, t̃} > 0, and

t̂ = min{ bi − a
′
ix0

a′ih
∗
0 − pi

| all i = 1, ...,m with a′ih
∗
0 > pi}, (4.11)

t̃ = min{ −(u0)i
(w1 − w2u0)i

| all i = 1, ...,m with (w1 − w2u0)i < 0}. (4.12)
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The full (m-dimensional) vector of multipliers, u(t), is obtained from v(t) by assigning zero to

those components of u(t) associated with constraints inactive at x0 and the appropriately indexed

components of v(t), otherwise.

Proof

Let A′1 be the matrix of the gradients of all the constraints inactive at x0 for (4.1), let b1 be the

vector whose components are those bi associated with the rows of A1. Then A1x0 < b1. Similar to

the proof of Lemma 1.3, there exists a t̄1 > 0, such that A1(x0 + th∗0) < b1 + tp1, for every t with

0 ≤ t < t̄1.

Since

[
h∗0

u0

]
is an optimal solution for (4.2), the optimality conditions assert that

[
−q − Ch∗0

p0

]
=

[
A′0

0

]
w1 +

[
c+ Cx0

p0

]
w2 +

[
0

A0

]
w3 +

[
0

−I

]
w4, w1, w4 ≥ 0, (4.13)

w′1(A0h
∗
0 − p0) = 0. (4.14)

Multiply both sides of (4.13) and (4.14) by t,[
−tq − tCh∗0

tp0

]
=

[
A′0

0

]
(tw1) +

[
c+ Cx0

p0

]
(tw2) +

[
0

A0

]
(tw3) +

[
0

−I

]
(tw4), (tw1), (tw4) ≥ 0,

(4.15)

(tw1)′(A0h
∗
0 − p0) = 0. (4.16)

From (4.15), we have

−tq − tCh∗0 = A′0(tw1) + (c+ Cx0)(tw2),

and this is equivalent to

−(c+ Cx0)− t(q + Ch∗0) = A′0tw1 + (c+ Cx0)(tw2 − 1).

From the optimality conditions for (4.1) when t = 0,

−(c+ Cx0) = A′0u0, u0 ≥ 0,
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we have,

−(c+ Cx0)− t(q + Ch∗0) = A′0(tw1 − u0(tw2 − 1)).

The second and the third constraints of (4.2) give

u′0(A0h
∗
0 − p0) = 0,

together with (4.16), we have

(tw1 − (tw2 − 1)u0)′(A0h
∗
0 − p0) = 0.

Let v(t) = tw1 − u0(tw2 − 1). For t̄2 is given small enough, we have tw2 ≤ 1; i.e., tw2 − 1 ≤ 0, for

every t with 0 ≤ t ≤ t̄2. Thus, v(t) ≥ 0. Since A0x0 = b0, it follows from above that

tA0h
∗
0 ≤ tp0,

−c− tq − C(x0 + th∗0) = A′0v(t), v(t) ≥ 0,

v(t)′((A0x0 − b0) + t(Ah∗0 − p0)) = 0.


Furthermore, since A1(x0 + th∗0) < b1 + tp1, for every t with 0 ≤ t < t̄1, we have

A(x0 + th∗0) ≤ b+ tp,

−c− tq − C(x0 + th∗0) = A′0v(t), v(t) ≥ 0,

v(t)′(A0(x0 + th∗0)− (b0 + tp0)) = 0.


Let t̄ = min{t̄1, t̄2} > 0. Then x(t) = x0+th∗0 and the associated multiplier v(t) = u0+t(w1−w2u0)

satisfy the optimality conditions for (4.1), for every t with 0 ≤ t < t̄. Thus, x(t) = x0 + th∗0 is

optimal for (4.1), for every t with 0 ≤ t < t̄. Therefore, we have (h∗0, t̄) is an optimal continuation

of x0 for (4.1) as required.

Since x(t) = x0 + th∗0 is an optimal solution for (4.1), if a′ih
∗
0 > pi, then a′ix0 < bi. From (4.11),

t̂ > 0. Since v = u0 + t(w1 − w2u0) ≥ 0, if (w1 − w2u0)i < 0, then (u0)i > 0. From (4.12), t̃ > 0.

Therefore, t̄ = min{t̂, t̃} > 0. 2
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Recall Example 1.5 in Chapter 1. In the problem of Example 1.5, the first four constraints are

active at x0 = (1, 1)′. Let u0 = (v1, v2, v3, v4)′ be an associated multiplier vector for x0 whose

components are associated with the first four constraints. Then, we can get an optimal continuation

h∗0 =

[
h1

h2

]
of x0 by solving (4.2), which in this problem is

minimize : h2 + 1
2h

2
1 + h2

2 + v1 + v3 + 1
2v4

subject to : h1 ≤ −1,

h2 ≤ 0,

h1 + h2 ≤ −1,

h1 + 2h2 ≤ −1
2 ,

−h1 − v1 − v3 − 1
2v4 = 0,

v1 + v3 + v4 = 1,

v2 + v3 + 2v4 = 0,

v1 ≥ 0,

v2 ≥ 0,

v3 ≥ 0,

v4 ≥ 0.

The optimal solution is

h∗0 =

[
−1

−1
2

]
,

and

u0 =


v1

v2

v3

v4

 =


1

0

0

0

 .
From Theorem 4.2, the optimal solution for the problem of Example 1.5 is

x(t) = x0 + th∗0 =

[
1− t

1− 1
2 t

]
,
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with the multiplier vector

v(t) = u0 + t(w1 − w2u0) =


1

0

0

0

+ t


1

0

0

0

 ,

whose components are associated with the first four constraints, for every t with 0 < t < t̄. From

Theorem 4.2, the upper limit t̄ is determined by applying (4.11) and (4.12):

t̂1 = min{−,−,−,−, 1
1
,

1
1
2

} = 1,

t̃1 = min{−,−,−,−} = +∞,

from which

t̄ = min{1, +∞} = 1.

Therefore,

x(t) =

[
1− t

1− 1
2 t

]
is optimal for the problem, for every t with 0 ≤ t ≤ 1, in agreement with our geometric determina-

tion of the optimal solution in Example 1.5. 3

4.2 Feasibility of the Problem (4.2) in Theorem 4.1

In this section, we will show that the critical problem (4.2) is feasible. Let S be the feasible region

of (4.2), namely,

S ≡ {

[
h0

u0

]
| A0h0 ≤ p0, (c+ Cx0)′h0 + p′0u0 = 0, −c− Cx0 = A′0u0, u0 ≥ 0},

= {

[
h0

u0

]
| A0h0 ≤ p0, u

′
0(A0h0 − p0) = 0, −c− Cx0 = A′0u0, u0 ≥ 0}.

The optimality conditions for the problem

min{(c+ Cx0)′h0 | A0h0 ≤ p0}, (4.17)
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imply that if (4.17) has an optimal solution, then the set S is not empty.

Theorem 4.3 Assume that (4.1) is feasible for every t with 0 < t ≤ t̄. Then S is not empty. So

(4.2) is feasible.

Proof

From the analysis of above, we only need to show that (4.17) has an optimal solution, that is, (4.17)

is feasible and bounded.

We know that x0 is optimal for min{c′x + 1
2x
′Cx | Ax ≤ b} and A0x0 = b0. Assumption 4.1

implies that (4.1) is feasible, for every t with 0 < t < t̂. Let x1 be a feasible solution for (4.1) for

t = t0, where t0 satisfies 0 < t0 < t̂. Then, A0x1 ≤ b0 + t0p0. It follows that

A0(x1 − x0) ≤ b0 + t0p0 − b0,

⇒ A0(x1 − x0) ≤ t0p0,

⇒ A0
x1 − x0

t0
≤ p0.

Thus, x1−x0
t0

is a feasible solution for (4.17), so (4.17) is feasible.

Assume on the contrary that (4.17) is unbounded. Then for a feasible solution h1 for (4.17),

there exists an s1 such that h1 − σs1 is feasible, for every positive scalar σ, and

(c+ Cx0)′(h1 − σs1)→ −∞, as σ → +∞.

Thus, we have

(c+ Cx0)′s1 > 0,

A0s1 ≥ 0.

 (4.18)

In the original problem (4.1), when t = 0, the optimality conditions assert that

−c− Cx0 = A′0u0, u0 ≥ 0,
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Together with (4.18), it follows that

(c+ Cx0)′s1 = −(A′0u0)′s1 = −u′0(A0s1) ≤ 0.

This contradicts (c+ Cx0)′s1 > 0. So, (4.17) is bounded.

Therefore, (4.17) is feasible and bounded, thus has an optimal solution, then we have (4.2) is

feasible as required. 2

4.3 The Boundedness of the Problem (4.2) in Theorem 4.1

The problem (4.2) maybe unbounded and have no optimal solution, which means that x0 has no

optimal continuation. Then we want to find another optimal solution x1 for (4.1) for t = 0, such

that x1 has an optimal continuation.

In this section, we show how to decide whether (4.2) unbounded or not, and prove that such x1

above always exists if Assumption 4.1 satisfies, and also give a way to find x1.

The following theorem gives to a way to check the boundedness of (4.2) by checking a simpler

optimal problem.

Theorem 4.4 Let Assumption 4.1 be satisfied. Then, (4.2) is unbounded if and only if the problem

min{−q′s1 | Cs1 = 0, c′s1 = 0, A0s1 ≥ 0} (4.19)

is unbounded from below.

Proof

Rewrite (4.2) as
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minimize : [ q′ −p′0 ]

[
h0

u0

]
+ 1

2 [h′0 u′0 ]

[
C 0

0 0

][
h0

u0

]

subject to : [A0 0 ]

[
h0

u0

]
≤ p0,

[ 0 A′0 ]

[
h0

u0

]
= −c− Cx0,

[ (c+ Cx0)′ p′0 ]

[
h0

u0

]
= 0,

[ 0 −I ]

[
h0

u0

]
≤ 0.

(4.20)

If (4.2) is unbounded, then there exists a vector

[
s1

s2

]
, such that

[ q′ −p′0 ]

[
s1

s2

]
> 0,

[ s′1 s′2 ]

[
C 0

0 0

][
s1

s2

]
= 0,

and

[
h0

u0

]
− σ

[
s1

s2

]
is feasible, for every positive scalar σ. Thus, we have
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q′s1 − p′0s2 > 0,

s′1Cs1 = 0⇒ Cs1 = 0,

A0s1 ≥ 0,

A′0s2 = 0,

(c+ Cx0)′s1 + p′0s2 = 0⇒ c′s1 + p′0s2 = 0,

s2 ≤ 0.


The optimal conditions for (4.1) when t = 0 assert that −c − Cx0 = A′0u0, u0 ≥ 0. Together

with A0s1 ≥ 0, Cs1 = 0, we have

c′s1 = (c+ Cx0)′s1 = (−A′0u0)′s1 = −u′0(A0s1) ≤ 0.

That is, c′s1 ≤ 0.

If c′s1 < 0, from c′s1 + p′0s2 = 0, we have p′0s2 > 0. Since Assumption 4.1 satisfies, (4.1) has

optimal solutions when 0 ≤ t < t̂. Let x(t0) = x0 + t0h0 be an optimal solution for (4.1), for

t = t0 with 0 ≤ t0 < t̂, then x(t0) = x0 + t0h0 is also an feasible solution for (4.1) for t = t0;

i.e., A0(x0 + t0h0) ≤ b0 + t0p0. So A0x0 = b0 implies A0h0 ≤ p0. Furthermore, since s2 ≤ 0, we

have

h′0A
′
0s2 ≥ p′0s2 > 0. (4.21)

But since A′0s2 = 0, the left-hand side of (4.21) equals to zero. It is a contradiction. Thus, we have

c′s1 = 0 and p′0s2 = 0.

Since p′0s2 = 0 and q′s1 − p′0s2 > 0, it follows that q′s1 > 0; i.e., −q′s1 < 0. Since s1 satisfies

Cs1 = 0, c′s1 = 0, A0s1 ≥ 0 and −q′s1 < 0. For every positive scalar σ, σs1 also satisfies

C(σs1) = 0, c′(σs1) = 0, A0(σs1) ≥ 0, and

−q′(σs1)→ −∞, as σ → +∞.

Thus (4.19) is unbounded.
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On the other hand, if (4.19) is unbounded from below, then there exists an s1 such that

q′s1 > 0, Cs1 = 0, c′s1 = 0, A0s1 ≥ 0.

Then let s2 = 0, and deserve that

[ q′ −p′0 ]

[
s1

s2

]
> 0,

and

[ s′1 s′2 ]

[
C 0

0 0

][
s1

s2

]
= 0.

Furthermore,

[
h0

u0

]
− σ

[
s1

s2

]
is feasible, for every positive scalar σ > 0. Thus, (4.2) is unbounded

from below. 2

From the theorem above, it is straightforward to deduce the following lemma.

Lemma 4.1 If (4.19) has an optimal solution s∗1 = 0, then (4.2) is bounded and thus has an

optimal solution.

Consider the problem

min{−q′s | c′s = 0, Cs = 0, A0s ≥ 0, As ≥ Ax0 − b}. (4.22)

It is feasible since s0 = 0 is a feasible solution.

Theorem 4.5 Suppose that (4.2) is unbounded from below. Assume (4.22) has an optimal solution

s. Then s 6= 0. Let x1 = x0−s. Let A′1 be the matrix of gradients of all the constraints active at x1,

let b1 be the vector whose components are those bi associated with the rows of A1; i.e., A1x1 = b1.

Let p1 be the vector whose components are those pi associated with the rows of A1. Then x1 is also

an optimal solution for problem (4.1) when t = 0, and moreover, the problem

min{−p′1u0+q′h0+
1
2
h′0Ch0 | A1h0 ≤ p1, (c+Cx0)′h0+p′1u0 = 0, −c−Cx1 = A′1u0, u0 ≥ 0} (4.23)



CHAPTER 4. THE GENERAL PARAMETRIC QP PROBLEM 68

has a finite optimal solution.

Proof

We first show that if (4.22) has an optimal solution s, then

s 6= 0. (4.24)

Otherwise, if s = 0 is an optimal solution for (4.22), the optimality conditions assert that

q = cu1 + Cu2 −A′0u3 −A′u4, u3, u4 ≥ 0, (4.25)

and

u′4(Ax0 − b) = 0, (4.26)

Since A′0 is the matrix of gradients of all the constraints active at x0, (4.25) and (4.26) can be

simplified to

q = cu1 + Cu2 −A′0u3 −A′0ū4 = cu1 + Cu2 −A′0(u3 + ū4), u3, ū4 ≥ 0, (4.27)

A0x0 − b0 = 0, (4.28)

where ū4 is the multiplier vector whose components are those (u4)i associated with the rows of A0.

Then s = 0, u1, u2 and u3 + ū4 satisfy the optimality conditions for (4.19), which are

Cs = 0, c′s = 0, A0s ≥ 0,

q = cu1 + Cu2 −A′0(u3 + ū4), u3 + ū4 ≥ 0,

(u3 + ū4)′A0s = 0.


Thus, s = 0 being an optimal solution for (4.19), together with Lemma 4.1, contradicts that (4.2)

is unbounded from below. Thus, if (4.22) has an optimal solution s, then s 6= 0, which verifies

(4.24).

Now we will prove that x1 is also optimal for (4.1) for t = 0, and (4.23) has a finite optimal

solution. From the fourth constraint of (4.22), As ≥ Ax0 − b, we have A(x0 − s) ≤ b, which means

Ax1 ≤ b.
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From the first and second constraints of (4.22), c′s = 0, Cs = 0, the objective function for x1 is

c′x1 +
1
2
x′1Cx1 = c′(x0 − s) +

1
2

(x0 − s)′C(x0 − s) = c′x0 +
1
2
x′0Cx0.

Thus, x1 is also optimal for (4.1) for t = 0.

Since s is an optimal solution for (4.22), the optimality conditions give us:

q = Cu+ cv −A′0w0 −A′w1, w0, w1 ≥ 0,

w′0A0s = 0, w′1(Ax0 − b−As) = 0.

 (4.29)

Since A1 is the matrix of gradients of all the constraints active at x1, A1x1 = b1; i.e., A1(x0−s) = b1,

(4.29) can be simplified to

q = Cu+ cv −A′0w0 −A′1w̄1, w0, w̄1 ≥ 0,

w′0A0s = 0, A1s = A1x0 − b1,


where w̄1 is a multiplier vector whose components are associated with the rows of A1. From

w′0A0s = 0, we know that if a′is = (A0s)i 6= 0, then (w0)i = 0. Let A′2 be the matrix of all

the ai in A0 such that a′is = 0; i.e., A2s = 0. Let b2 be the vector whose components are

associated with the rows of A2. Since A2 is a submatrix of A0, we have A2x0 = b2. Then,

A2(x0 − s) = b2; i.e., A2x1 = b2. Thus, A2 is also a submatrix of A1. So,

q = Cu+ cv −A′2w̄0 −A′1w̄1 = Cu+ cu−A′1w, w̄0, w̄1, w ≥ 0,

A2s = 0, A1s = A1x0 − b1,


where w is a vector whose components are associated with the rows of A1. Therefore, s1 = 0 and

w satisfy

Cs1 = 0, c′s1 = 0, A1s1 ≥ 0,

q = Cu+ cv −A′1w, w ≥ 0,

w′A1s1 = 0,
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which are the optimality conditions for

min{−q′s1 | Cs1 = 0, c′s1 = 0, A1s1 ≥ 0}. (4.30)

So s1 = 0 is optimal for (4.30).

Then, from Lemma 4.1, (4.23) has a finite optimal solution. 2

Theorem 4.6 If (4.22) is unbounded from below, then (4.1) is either infeasible or unbounded from

below, for every t with t > 0.

Proof

If (4.22) is unbounded from below, then for a feasible solution s for (4.22), there exists a vector d

such that s− σd feasible for (4.22), for every positive scalar σ, and q′d < 0. So d satisfies

q′d < 0, c′d = 0, Cd = 0, Ad ≤ 0.

If for a t > 0, (4.1) is feasible. Let x̄(t) be a feasible solution for it. Then Ax̄(t) ≤ b+ tp. Since

Ad ≤ 0, we have

A(x̄(t) + σd) = Ax̄(t) + σAd ≤ b+ tp.

Furthermore,

(c+tq)′(x̄(t)+σd)+
1
2

(x̄(t)+σd)′C(x̄(t)+σd) = (c+tq)′x̄(t)+
1
2
x̄(t)′Cx̄(t)+σtq′d→ −∞, as σ → +∞,

since q′d < 0. Thus, (4.2) is either infeasible or unbounded from below for every t with t > 0. 2



Chapter 5

Concluding Remarks

We want to solve the general parametric quadratic programming problem (4.1). Assume it has

an optimal solution x0 for t = 0. First we study the feasibility of (4.1) for t > 0 by checking the

optimal solution for (3.3). If (3.3) has an optimal solution t̂ > 0, then (4.1) is feasible for every t

with 0 ≤ t ≤ t̂. Then we solve a non-parametric quadratic programming problem (4.2). We prove

that (4.2) is feasible. If (4.2) is bounded and thus has an optimal solution h∗0, then x(t) = x0 + th∗0

is an optimal solution for (4.1), for every t with 0 ≤ t < t̄, where t̄ can be solved from (4.11) and

(4.12), and t̄ is a “corner” point for the parametric QP. If (4.2) is unbounded from below, then we

consider the LP problem (4.22). If (4.22) has an optimal solution s, then let x1 = x0− s, and solve

(4.23) for h∗0. Then x(t) = x1 + th∗0 is an optimal solution for (4.1), for every 0 ≤ t ≤ t̄. If (4.22) is

unbounded from below, then (4.1) is unbounded from below, for every t with 0 < t ≤ t̂.
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Appendix

Throughout this thesis, we have shown that difficulties arising from ties in a PQP can be resolved

by solving an appropriate QP. It is possible that the resulting QP may have degenerate points, thus

creating further difficulties. However, we argue here that such degenerate points are a consequence

of the linear constraints in the model problem and can be resolved by solving an LP. The use of

Bland’s rules in solving the LP [11] guarantees that the LP and thus the QP can be solved in a

finite number of steps.

Consider general convex QP problem

min{c′x+
1
2
x′Cx | Ax ≤ b}. (1)

Let f(x) = c′x+1
2x
′Cx. Suppose x0 is a quasi-stationary point determined by an algorithm. Suppose

that x0 is degenerate; i.e., the gradients of those constraints active at x0 are linearly dependent.

Let A′0 be the matrix of gradients of all the constraints active at x0 and let b0 be the vector whose

components are those bi associated with the rows of A0. We can consider the following LP problem

min{−(c+ Cx0)′s0 | A0s0 ≥ 0}. (2)

Theorem 1 The problem (2) either has an optimal solution s0 = 0 or is unbounded from below.

If (2) has an optimal solution then x0 is optimal for the original QP problem. If (2) is unbounded

from below, let s0 be a feasible solution such that (c+ Cx0)′s0 > 0 and let

σ̂ = max{σ | A(x0 − σs0) ≤ b},

σ̃ =


(s′0Cs0)−1(c+ Cx0)′s0, s′0Cs0 > 0,

+∞, s′0Cs0 = 0,

and σ = min{σ̂, σ̃}.

Then σ > 0. If σ = +∞, then (1) is unbounded from below. If σ < +∞, then x0 − σs0 is feasible

for (1) and f(x0 − σs0) < f(x0).
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Proof

The problem (2) is feasible since s0 = 0 is a feasible solution. If (2) has an optimal solution,

then the optimal solution is s0 = 0, otherwise (2) is unbounded from below. From the optimality

conditions for (2), there exists a u0 ≥ 0 such that c+ Cx0 = −A′0s0, thus x0 is optimal for (1).

If (2) is unbounded from below, then there exist a feasible solution s0 such that (c+Cx0)′s0 > 0.

If σ̂ = +∞, and s′0Cs0 = 0; i.e., Cs0 = 0, then c′s0 > 0. Thus,

f(x0−σs0) = c′(x0−σs0)+
1
2

(x0−σs0)′C(x0−σs0) = c′x0 +
1
2
x′0Cx0−σc′s0 → −∞, as σ → +∞.

If σ̂ < +∞ and σ̃ = +∞, then

f(x0 − σs0)− f(x0) = −σc′s0 < 0.

If σ̃ < +∞, then

f(x0−σs0)−f(x0) = −σ(c+Cx0)s0+
σ2

2
s′0Cs0 ≤ −σ(c+Cx0)′s+

σ

2
(c+Cx0)′s0 = −σ

2
(c+Cx0)′s0 < 0.

Therefore, f(x0 − σs0) < f(x0). 2

Theorem 1 shows that when a degenerate quasi stationary point is determined by an active set

QP algorithm, solving the indicated LP using Bland’s rules will determine in a finite number of

steps that either the current point is optimal or will construct a search direction which will give a

strict decrease in the objective function.

Theorem 1 is apparently well known and was communicated to the author by M. J. Best [1].
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