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ABSTRACT 

We determine a new resolution requirement for the smoothed particle 

hydrodynamics (SPH) numerical method when self-gravity is included. Comparison 

calculations between an SPH code and an Eulerian grid code are performed. The 

calculations are of a computationally demanding molecular cloud collapse and 

fragmentation problem. We demonstrate that the results given by the two different 

hydrodynamic methods are in good agreement, so long as the minimum resolvable 

mass in the SPH calculations is always less than the Jeans mass. If this criterion is not 

satisfied, SPH may give incorrect results, with the stability of near-jeans-mass 

clumps depending on the details of how the SPH code is implemented rather than 

on physical processes. We give examples, from the literature, of problems that have 
been encountered in simulations of star, galaxy and cosmological-structure 

formation where this resolution requirement is ignored. 

Key words: hydrodynamics - methods: numerical - binaries: close - stars: 

formation - galaxies: formation - large-scale structure of Universe. 

1 INTRODUCTION 

The smoothed particle hydrodynamics (SPH) numerical 

method was introduced by Lucy (1977) and Gingold & 
Monaghan (1977). The main advantages of SPH over grid

based finite-difference methods are that it is Lagrangian 
and that it does not require a computational grid. This 

makes SPH well suited to problems with large density con
trasts (e.g., cloud collapse/fragmentation, stellar collisions, 

galaxy interactions), since computational effort is not 

wasted simulating the low-density regions. Also, recent SPH 
implementations (e.g. Evrard 1988; Hemquist & Katz 1989; 

Benz 1990; Monaghan 1992) use spatially and temporally 
varying smoothing lengths, so that the resolution increases 

automatically with increasing density; the complex multigrid 
and adaptive-grid schemes that are used for finite-differ

ence methods are avoided. 
Since the creation of SPH, various comparisons have 

been performed between it and other hydro dynamical 
methods. Many authors have performed shock tube and 

spherical collapse calculations (e.g. Woodward & Colella 
1984; Evrard 1988; Hemquist & Katz 1989; Steinmetz & 

Muller 1993). Steinmetz & Muller showed that SPH and the 

PPM numerical method give excellent agreement on a 
demanding blast wave problem and a spherical collapse 

problem if enough particles are used; although SPH accu

rately reproduces the global behaviour of the problem with 
both high and low resolution, the smoothing out of shocks 

over several smoothing lengths becomes more severe as the 

resolution is decreased. Comparisons between SPH and 
other codes have also been done for specific problems. Dur

isen et al. (1986) modelled rapidly rotating polytropes to 
determine whether they would undergo fission to form 

binary systems with two finite-difference codes and an SPH 
code. Steinmetz & Muller compared SPH simulations of the 

passage of a star close to a black hole with the results from 
a flux-corrected-transport (FCT) finite-difference scheme. 

Davies et al. (1993) modelled stellar collisions with both 
SPH and PPM codes. In all three cases, good agreement was 

obtained between the results produced with SPH and those 
from the FCT, PPM and other finite-difference schemes. 

Indeed, Steinmetz & Miiller concluded that for problems 

involving complicated geometries and highly dynamical 
behaviour, SPH is often a better choice than a grid-based 

code. Durisen et al. concluded that SPH required less com
putational effort to obtain results that were equivalent to 

those obtained from their finite-difference schemes. 
One of the main applications of SPH has been in the field 

of star formation. Surprisingly, there have been very few 
comparisons between SPH and other hydro dynamical 
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methods for collapse and fragmentation problems. How

ever, early in the development of SPH, a series of papers 
were produced on the 'standard isothermal test case' (Boss 

& Bodenheimer 1979) for the collapse and fragmentation of 
a molecular cloud core. In these papers, the results from 

SPH (Gingold & Monaghan 1981, 1982; Monaghan & 

Lattanzio 1985, 1986) and Eulerian grid codes (Boss & 

Bodenheimer 1979; Bodenheimer & Boss 1981) were com

pared. The SPH calculations disagreed with the finite-dif
ference results. The finite-difference calculations produced 

two compact fragments whose density increased rapidly 
after their formation. Although the fragments could not be 

followed long enough to determine if they merged or 
formed a binary system, from their rate of collapse and their 

trajectories, Bodenheimer & Boss predicted that the frag

ments would not merge but would form a binary system. 
The SPH results, on the other hand, could be followed much 

longer than the finite-difference results because the binary 
fragments did not collapse quickly; only a slow contraction 

was observed. As the fragments fell towards each other, they 
were found to merge. The source of the disagreement was 

the large smoothing length used in the SPH calculations. 
When the size of the fragments became similar to the 

smoothing length, their collapse was artificially slowed, in 
the SPH calculations, because the gravitational forces were 

softened (see Section 3). Thus, when the fragments 
approached each other on highly elliptical orbits, their sizes 

were unphysically large, leading to a merger. Most recently, 
modem SPH (Bate, Bonnell & Price 1995) and Eulerian 

grid codes (Burkert & Bodenheimer 1993; Myhill & Boss 
1993) have been shown to give excellent agreement on the 

standard test case, due to the use of spatially and temporally 
variable smoothing lengths in SPH. This allows the resolu

tion to increase with the local density and, thus, a fragment 
to keep collapsing indefinitely to arbitrary densities. In 

agreement with the grid code, the new SPH calculations 
lead to the formation of compact fragments which do not 

merge artificially, but instead form a wide, elliptical binary 

system (Bate et al. 1995). 
Although increased resolution eliminates the disagree

ment between SPH and other numerical methods on the 

'standard isothermal test case', as with grid codes, there is 
always the question of 'How much resolution is enough?' 

The resolution required to resolve shocks and other purely 
hydrodynamic behaviour with SPH has been thoroughly 

explored (e.g. Monaghan 1992 and references within). 
However, the resolution that is required when SPH is com

bined with self-gravity still requires more investigation. It 
would be desirable to find a criterion for simulations of self

gravitating systems which determines the resolution that 

SPH requires in order to give the correct results. This is 
important not only for fragmentation calculations, but for 
any self-gravitating system that is simulated with SPH (e.g., 

cosmological-structure and galaxy formation). 

In this paper, we show that SPH produces the correct 
results in problems involving self-gravity, so long as the 

minimum resolvable mass is always less than a Jeans mass. 
An equivalent statement is that the hydrodynamic smooth

ing length and gravitational softening length must always be 
less than the local Jeans length. This criterion is related to 

the problem that caused the early disagreement between 
finite-difference and SPH methods on the 'standard iso-
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thermal test case'. As an example of the resolution problem, 

we compare SPH with an Eulerian grid code on the difficult 

collapse/fragmentation problem that was first presented by 
Burkert & Bodenheimer (1993). 

In Section 2, we briefly describe the implementations of 
the Eulerian and SPH codes. This is followed, in Section 3, 

by a discussion of the softening of gravitational forces in 
SPH, and examples of the unphysical effects that can be 

caused by the lack of resolution in fragmentation and galaxy 
formation calculations. Section 4 gives the initial conditions 

for the comparison calculation. The results from the 
Eulerian code are presented in Section 5. The SPH results 

for the initial fragmentation of the cloud into a binary are 

given in Section 6. These results are discussed in Section 7. 
In Section 8, we consider the fragmentation of the bar of gas 

between the binary fragments using SPH. Finally, in Section 

9, we present our conclusions. 

2 COMPUTATIONAL METHODS 

2.1 Eulerian grid code 

The hydrodynamical equations are integrated using a 

second-order finite-difference method as described by 
Burkert & Bodenheimer (1993, 1996). The calculations are 

performed on a three-dimensional Eulerian, Cartesian grid. 
The full computational region is represented by a standard 

grid with 643 grid cells, equally spaced in all directions. In 
order to improve the resolution in the inner regions, where 

fragmentation occurs, four Cartesian nested concentric 
subgrids, each with 128 x 128 x 64 grid cells, are superim

posed on the standard grid. The linear scale on the first 
subgrid is reduced by a factor of 4 with respect to the 

standard grid, and by additional factors of 2 for each subse
quent subgrid, giving a ratio of cell size on the standard grid 

to smallest zone size of 32. The grid structure is set up at the 
beginning of the calculations and is left fixed during the 

entire run. Shocks are treated using an artificial viscosity of 
the type described by von Neumann & Richtmyer (1950). 

The dimensionless viscosity parameter is set to 0.1. We use 

an isothermal equation of state 

(1) 

where P is the pressure, p is the density, and Cs is the sound 
speed of the gas. However, in order to prevent numerical 

fragmentation (Truelove et al. 1997), zones with exception
ally high densities are heated artificially to keep the local 

Jeans length larger than the zone size (Burkert, Bate & 

Bodenheimer 1997). The artificial heating coefficient I'/p is 

taken to be 0.5. 

2.2 SPH code 

The SPH calculations were performed using a three-dimen

sional SPH code based on a version originally developed by 
Benz (Benz 1990; Benz et al. 1990). The code uses a tree to 

calculate gravitational forces and to find the nearest neigh
bours. The smoothing lengths of particles can vary in time 

and space, and do so to keep the number of neighbours 
approximately constant. A particle has N neigh = 50 neigh

bours on average. The standard form of artificial viscosity is 
used (Monaghan & Gingold 1983; Benz 1990; Monaghan 
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1062 M. R. Bate and A. Burkert 

1992), with the parameters IX" = 1 and f3v = 2. The SPH equa
tions are integrated using a second-order Runge-Kutta

Fehlberg integrator. Individual time-steps are used for each 

particle (Bate et al. 1995). 
Again, we use the isothermal equation of state given by 

equation (1) (with the exception of Section 8). However, if 

a pure isothermal equation of state is used, and if the 

smoothing lengths of particles are able to decrease without 
limit as the density increases, the SPH calculations cannot 

be followed after the first fragment forms because of the 
high particle densities (and therefore short time-steps) in 

the fragment. To avoid this, we introduce a minimum 
particle smoothing length (e.g. Bonnell et a!. 1991). This 

slows the collapse of a fragment by reducing the gravita
tional forces between the particles in the fragment (see 

Section 3). Furthermore, if the fragment is rotating, its col

lapse will be stopped entirely when centrifugal forces 
become comparable to the reduced gravitational forces. 

Thus the simulation can be continued at the expense of 
ignoring the internal evolution of the fragment (e.g. Bonnell 

et al. 1991; Bate et a!. 1995). 

3 GRAVITATIONAL FORCES IN SPH 

For the conclusions reached in this paper, it is important 
that we discuss the softening of gravitational forces that is 

used in SPH. Just as with an N-body code, the problem of a 
diverging gravitational force between two particles with 

small separations must be avoided. Two methods are com

monly used. The first method (e.g. Evrard 1988) is to use the 
Plummer force law 

(2) 

that is commonly used in N-body codes. The smallest 

possible value of E is determined by the requirement that 

the calculations are not dominated by particle-particle 
encounters. This force law is also used for implementations 

of SPH which use the special purpose GRAvity-PipE 
(GRAPE) hardware to calculate gravity forces and nearest 

neighbours (Steinmetz 1996). The second method is to 
soften gravitational forces using the SPH kernel (Gingold & 

Monaghan 1977; Hernquist & Katz 1989; Benz 1990). In 
SPH, the mass of a particle can be thought of as being 

smoothed out over the volume of the kernel, with the kernel 
function describing the particle's density distribution as a 

function of radius. We use the standard spline kernel 

(Monaghan & Lattanzio 1985) 

ifO~q<l 

if1~q<2 (3) 

otherwise, 

where q=r/A, r is the distance from the particle, and A 
determines the width of the kernel. For hydrodynamic 
quantities, the parameter A is known as the smoothing 

length and is given the symbol h. Using the interpretation 
that the density distribution of a particle is smoothed out 

over a kernel, when two particles approach each other, the 
gravitational force between them is naturally softened, with 

the gravitational softening length E = A =h (e.g. Benz 1990). 

The kernel method has the advantage that, for the kernel of 
equation (3), the gravity is Newtonian outside 2E, whereas 

the Plummer force law only converges slowly to the 
Newtonian value. Also, using kernel softening is the more 

natural method, since the concept of a particle's mass being 

smoothed out over the volume of the kernel gives both the 
hydrodynamic and gravitational forces. Note, however, that 

the kernel method for softening gravity may also be used 
with a value of E that is independent of h (e.g. 

Hernquist & Katz 1989). One reason to do so is because, if 
E =h and variable smoothing lengths are used, the potential 

energy of a particle is continuously changing. However, 
these changes can easily be accounted for when calculating 

the potential energy of the system (Benz 1990), and the 

advantage of having E =h is that the gravity and hydro
dynamic resolutions are equal. 

If the gravitational softening length E is kept fixed, and yet 
variable hydrodynamic smoothing lengths are used, E and h 
may become very different from each other. We now 
investigate the effect this has on an SPH calculation. Con

sider a marginally stable, Jeans-mass clump of gas with mass 

M J and radiusRJ. For the clump to be stable against gravita
tional collapse, the outwards pressure force on a particle has 

to balance the inwards gravitational force. If RJ is much 
larger than h and E, the SPH forces are good approxima

tions to the true forces. However, if RJ is similar to h, the 
pressure forces are smoothed, and if R J is similar to E, the 

gravitational forces are softened. Thus the behaviour of 
such a clump depends on the method by which the smooth

ing and softening are performed. 
Consider two SPH particles in a Jeans-mass clump of gas 

withRJ ~h. The forces between them, as a function of separ
ation, are plotted in Fig. l(a). If E =h, the ratio of the 

gravitational to the pressure forces between them is 
approximately equal to unity and is roughly constant for 

r < h (Fig. 1 b, medium-thickness lines). However, if E > h, 
pressure forces dominate over gravitational forces (Fig. 1b, 

thin lines), while, if E < h, gravitational forces dominate over 
pressure forces (Fig. 1b, thick lines). Moreover, these 

effects increase as the separation between the particles is 
decreased. For a clump that is very stable against collapse or 

a clump that is massively unstable this makes little differ
ence. However, if M ~MJ (i.e., the clump is self-gravitating) 

the details of how the softening and smoothing are done 
determine whether the clump is stable or unstable to 

collapse. If E > h, pressure forces dominate over gravity 
forces and the clump will try to expand; a marginally Jeans

unstable clump is stabilized against collapse. If E < h, 
artificial collapse on a scale smaller than the formal resolu

tion of SPH may be induced inside a marginally Jeans-stable 

clump (see Section 7), since gravitational forces between 
particles within a subclump may strongly dominate over 

pressure forces, and this domination increases as the par
ticles contract towards each other. Finally, note that with 

E =h, a Jeans-unstable clump will collapse; however, its col
lapse will be slower than is physical, since both the pressure 

forces and gravitational forces within the clump are reduced 
in magnitude. 

In summary, if a clump of gas with M ~MJ has a radius 
close to h or E, the SPH code has reached its resolution limit. 

Going beyond this limit may lead to unphysical results, since 
the stability of the clump against collapse depends on the 
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Figure 1. In the upper graph (a), the pressure forces (solid line) 

and gravitational forces between two particles within a Jeans-mass 

clump of radius R = h are given as a function of the separation r of 

the particles. Gravitational forces are given using the Plummer 

force law (dotted) and kernel softening (dashed) with the gravity 

softening length E equal to the hydrodynamic smoothing length h 

(medium-thickness lines), with E=h/2 (thick lines), and with E=2h 

(thin lines). In the lower graph (b), the ratios of the various forms 

of gravitational force to the pressure force are given. Note that, if 

E < h, gravity dominates over pressure while, when E > h, pressure 

forces dominate over gravitational forces for separations r ;51.5h. 

gravitational force law and the kernel functions that are 
used (which may differ from those'described above), rather 

than on physical processes. In the following section, we give 
examples from the literature of how exceeding this limit 

may affect SPH calculations. 

3.1 Examples of the unphysical effects of SPH gravity 
softening 

3.1.1 Fragmentation calculations 

If an SPH code is implemented so that e =h and a minimum 
smoothing length is enforced, gravitational forces on scales 

less than e are reduced regardless of the number of particles 
within a kernel. This can be helpful. For example, such a 

method slows the collapse of high-density fragments when 
their size is close to minimum smoothing length and, thus, 

allows fragmentation calculations to be continued much 
longer than if the fragments were allowed to collapse freely 

(as described in Section 2.2). 
However, the reduction of gravitational forces on scales 

less than e is also responsible for the early disagreement 
between SPH and finite-difference methods on the 

'standard isothermal test case' (see Section 1). Fig. 2 gives 
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Figure 2. The maximum density versus time for the 'standard iso

thermal test case' (Boss & Bodenheimer 1979). The calculations 

were performed using SPH with the gravitational softening length 

equal to the hydrodynamic smoothing length E=h and with no 

minimum smoothing length (solid line) or minimum smoothing 

lengths of 5 per cent (dotted line) and 10 per cent (dashed line) of 

the initial cloud radius. Time is given in units of the initial cloud 

free-fall time tff =5.52 x 1011 s. The calculation was performed with 

8.0 x 103 particles. 

the maximum density versus time for three calculations of 
the 'standard iosothermal test case'. The calculations were 

performed using SPH with e =h and kernel softening. They 
are similar to those presented by Bate et al. (1995). The 

three calculations are identical to each other, except in their 
use of a minimum smoothing length. In one calculation, no 

minimum smoothing length is used, while the other two use 
minimum smoothing lengths of 5 and 10 per cent of the 

initial cloud radius. It is observed that while the calculation 
with no minimum smoothing length (Fig. 2, solid line) col
lapses rapidly towards infinite density at t ~ 1.26 t ff , the cal

culations with the minimum smoothing lengths (Fig. 2, 

dotted and dashed lines) show only a slow contraction ofthe 
fragments because of the softening of gravitational forces 

between particles with a kernel. Although early SPH calcu
lations did allow for the smoothing lengths to decrease as 

the cloud collapsed, the smoothing lengths were still large 
because a global (rather than local) smoothing length was 

used for all particles. For example, in the calculation of the 
'standard isothermal test case', performed by Gingold & 

Monaghan (1981), the smoothing lengths began at 10 per 
cent of the initial cloud radius and were reduced to a mini

mum of 3 per cent during the calculation. The use of large 
smoothing lengths is not crucial when the gas within a ker

nel has less than a Jeans mass, since then it cannot collapse 
under its own gravity. However, when the mass of the gas 

contained within a kernel becomes greater than a Jeans 
mass, its collapse is inhibited by the softening of the gravita

tional forces; it only contracts slowly rather than collapsing 
on a free-fall time-scale. When the 'standard isothermal test 

case' was performed with early SPH codes and the results 

compared to a finite-difference code, this unphysically slow 
contraction of two fragments as they fell towards each other 

resulted in their merger (with SPH) rather than the forma
tion of a binary system (with a finite-difference code). The 
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use of a spatially and temporally variable smoothing length 

in modem SPH codes helps alleviate this problem. How
ever, as we demonstrate in the following sections, a problem 

can still occur because an SPH kernel is still constrained to 
contain a fixed number of particles, and the combined mass 

of these particles may exceed a leans mass. 
As hinted at above, in SPH implementations where e and 

h are not constrained to be equal, the numerical effects on 

a fragmentation calculation may be even more important. If 
e >h, leans-unstable clumps on the scale of e will be 

stabilized against collapse. If e < h, artificial collapse of 
leans-stable clumps on the scale of h may be induced, as will 

be demonstrated in Section 7. 

3.1.2 Cosmological-structure and galaxy formation 

calculations 

The effects of gravity softening in SPH are not limited to 
molecular cloud fragmentation calculations. Whenever self

gravitating gaseous clumps are formed, the question of 
resolution must be addressed. Sommer-Larsen, Vedel & 

Hellsten (1997) considered the effects of hydrodynamic 
smoothing and gravity softening on calculations of galaxy 

formation. They showed that, if e > h, then unphysical, self
gravitating, isothermal, stationary gas spheres may be 

formed as a consequence of the softened gravitational 

forces; as described above, if e > h, softening of gravity leads 
to leans-unstable clumps being stabilized against collapse. 

They concluded that care should be taken when comparing 
the results from such calculations to reality. 

Owen & Villumsen (1997) performed two-dimensional 
calculations of cosmological-structure formation using an 

SPH code with baryonic and dark matter. They found that 
as they increased the resolution of their calculations, the 

dark matter results converged, but the baryonic matter 
results did not. With the dark matter, although the structure 

became more clearly defined with higher resolution, the 
underlying particle distribution was the same. However, the 

baryons were found to be systematically more collapsed 
with increased resolution. To achieve convergence of the 

baryonic matter, Owen & Villumsen had to introduce a 
minimum temperature and, hence, minimum leans mass. 

Once this minimum leans mass was resolved, the baryonic 
matter results converged with increasing resolution. They 

attributed this dependence of the degree of collapse of the 
baryons to differences in the resolution of shocks. However, 

it is likely that this dependence of the degree of collapse is 

instead due to the unphysical behaviour of unresolved 
leans-unstable clumps that we describe here. 

4 THE COMPARISON CALCULATION 

As the comparison calculation to demonstrate the unphys

ical behaviour that can be caused by insufficient resolution 
in self-gravitating SPH calculations, we use the computa

tionally demanding fragmentation calculation that was 
recently presented by Burkert & Bodenheimer (1993). The 

initial conditions for the cloud are similar to those of the 
'standard isothermal test case' (Boss & Bodenheimer 1979), 

the main difference being the smaller non-axisymmetric 
density perturbation. The initial cloud is a sphere of radius 

R = 5 X 1016 cm and mass M = 1 Mo in uniform rotation with 

an angular velocity ofQ=7.2 x 10- 13 rad S-I. The cloud has 

an underlying constant density with a non-axisymmetric 

m = 2 perturbation of 10 per cent amplitude 

P = Po[l + 0.1 cos (24) )], (4) 

where 4> is the azimuthal angle about the rotation (z) axis 
and Po = 3.82 x 10 -18 g cm -3. The sound speed of the gas is 

cs = 1.66 X 104 cm s -1. The ratios of the thermal and rota

tional energies to the magnitude of the gravitational poten

tial energy are 0(=0.26 and P=0.16, respectively. 
This collapse/fragmentation problem is demanding, 

because the fragmentation occurs only in the very central 

regions of the cloud. Thus, for a grid code, multiply nested 
sub grids have to be used in order to achieve the required 

resolution. SPH does not have spatially limited resolution 

like a grid code if the smoothing lengths of particles 
decrease as the density increases. However, this calculation 

is also demanding for SPH because of the low mass fraction 
that is contained in the volume where the fragments form; a 

large total number of particles are required because only a 

small fraction of them are contained in the central region 
where the fragmentation occurs. 

5 EULERIAN GRID-CODE RESULTS 

In Fig. 3 we give the density and velocity of the gas during 
the collapse and fragmentation of the molecular cloud core 

using the Eulerian grid code. The initial evolution is as 
presented in (Burkert & Bodenheimer 1993). 

In the early stages of evolution the initial density pertur
bation causes an expansion in the central parts of the cloud. 

An inner region of almost constant density is established 
with two overdense zones at the outer edge of the rarefac

tion wave which result from the initial m = 2 perturbation. 
After one free-fall time, tff = 1.0774 x 1012 s, this region 

starts to collapse again and forms an elongated high-density 
structure. Due to the converging flow, gas from the infalling 

envelope accumulates fastest at the two ends of this bar. 
The ends become self-gravitating, collapse on to themselves 

and form two condensed fragments. Mass continues to flow 
into the region between the binary fragments, leading to the 

formation of a connecting high-density bar which subse
quently fragments too. 

6 SPH BINARY FRAGMENTATION AND 

BAR FORMATION 

We now present the results obtained using SPH. Calcula

tions were performed using 1.0 x 10\ 2.0 x 10\ 3.0 x 10\ 
4.0 X 104 and 8.0 x 104 particles. We use the isothermal 

equation of state. To stop the collapse of fragments to 
infinite densities, which would require the calculations to be 

stopped when the first fragment forms, we use a minimum 
particle smoothing length of 1014 cm. This gives the mini

mum spatial resolution of the SPH calculations which is 
almost two orders of magnitude smaller than the separation 

of the binary that forms with the finite-difference code. 
Hence the use of the minimum smoothing length cannot 

affect the formation of the binary or cause it to merge 

artificially. Unless otherwise stated, we use the kernel to 
soften the gravitational forces and e = h. 

© 1997 RAS, MNRAS 288,1060-1072 
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The fragmentation of the cloud can be divided into two 

main parts: (a) the fragmentation of the cloud into a binary 

and the formation of a bar between the two fragments; and 
(b) the growth of the bar in mass, and its subsequent frag

mentation into multiple fragments. Each stage is investi
gated separately. In this section, we concentrate on the 

binary fragmentation and bar formation. The problem of 
the bar fragmentation is left to Section 8. 

6.1 High-resolution SPH 

Good agreement is obtained between the grid code and the 
highest resolution SPH calculation, with 8.0 x 104 particles 

(cf. Figs 3 and 4). All the major qualitative phases that were 
present in the grid-code calculations are also found in the 

high-resolution SPH calculation. Initially, the centre of the 

cloud expands. The expansion sweeps up material and 
causes two overdense regions to be formed from the initial 

m = 2 perturbation. When the cloud begins to collapse 
again, the two overdense regions fall towards the centre of 

the cloud (Fig. 4 at t = 1.00 ttf), and merge to form a prolate, 
elongated structure (Fig. 4 at t = 1.15 ttf). As more material 

falls on to the elongated structure, the ends become self
gravitating (at t ~ 1.20 ttf) and collapse upon themselves to 

form two protostellar fragments (Fig. 4 at t = 1.26 ttf). 
Between these two fragments is a low-density bar. This bar 

increases in density due to material flowing into it (Fig. 4 at 

t = 1.26-1.29 ttf). When the density along the bar becomes 
approximately uniform, it fragments into many pieces (see 

Section 8). 

2 

e 
" .. o 

2> ... 
;: -1 

-2 

Resolution requirements for SPH 1065 

The maximum and central densities as functions of time 
are compared to those from the grid code in Fig. 5. Both 
codes give similar behaviour, with two minor differences. 

The density peak that is given by the grid code at t ~ 1.12 ttf 
is not given by the SPH code, because the resolution of the 

SPH code is lower when the two overdense regions merge. 

Also, the times at which the fragments are formed differs 
slightly between the codes, with the SPH code taking 

~0.02ttf longer. Note that, with both the grid code and the 
SPH code, the maximum density increases only slowly and 

the central density is stable from t = 1.15 to 1.20 ttf. This is 
the period during which the elongated structure (formed 

from the merger of the two overdense regions) is growing in 

mass. The two codes give excellent agreement in the central 
density during this quasi-static phase. Once the two ends of 

the structure each contain roughly a Jeans mass (at 

t ~ 1.20 ttf), they collapse more or less independently to form 
the binary. 

6.2 Low-resolution SPH 

With low resolution (Fig. 6), using only 1.0 x 104 particles, 
the grid code and SPH show good agreement only up until 

t ~ 1.10 Itf. The initial expansion in the central regions ofthe 
cloud is reproduced with 1.0 x 104 particles, as is the forma

tion of two overdense regions at the edge of the cloud's core 
and their merger to form an elongated structure (Fig. 6 at 

t= 1.00-1.15 ttf). However, as the elongated structure 
increases in mass, it collapses to form a bar, rather than 

-2 -1 0 2 -2 -1 0 2 -2 -1 0 2 

~ 0.5 

5 .. 
§ 

>, -0.5 

-1 

-1 -0.5 0 0.5 

x [10.8 em] 
-0.5 0 0.5 -0.5 0 0.5 

x [10.8 em] x [10.8 em] 

Figure 3. Density and velocity in the x-y plane for the binary-bar fragmentation test calculation performed with a grid code. Contours of 
equal density are shown. Velocity arrows give the direction of the flow with the length of an arrow proportional to the speed. The time t in 

units of the initial cloud free-fall time tff = 1.0774 x 1012 s, contour interval A log p and the maximum velocity Vmax are: (upper left panel) 
t=1.0tlf , A log p=0.05, vm",=4.79 x 104 em S-I; (upper middle panel) t=l.ltlf , Alogp=0.25, vmax =5.43 x 104 em S-I; (upper right panel) 
t= 1.15 tlf , A log P =0.10, vmax =6.01 x 104 em S-I; (lower left panel) t= 1.23 tlf , A log P =0.25, vmax =8.58 x 104 em S-I; (lower middle panel) 
t= 1.26 tlf , A log P =0.25, Vmax = 14.40 X 104 em S-I; (lower right panel) t= 1.29 tlf , A log p=0.50, Vmax= 18.69 X 104 em S-I. 
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Figure 4. Density and velocity in the x-y plane for the binary-bar fragmentation test calculation performed with SPH using 8.0 x 10' 

particles. Density contours are drawn every 1/20 of a decade in the first frame, and 1/4 of a decade in the other frames. In addition, the heavy

density contour shows the region within which P > Pc<it. Velocity vectors are given with length proportional to speed; an arrow representing 
1 km S-1 is given beneath the frames. Times are given for each frame in units of the initial cloud free-fall time tff = 1.0774 x 1012 s. 
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Figure 5. Maximum density Pmax (left) and the density in the centre of the coordinate system Peen (right) versus time. Results from the 

Eulerian grid code are given (thick solid lines), along with those from SPH calculations performed with 8.0 x 10' (solid lines), 4.0 x 10' 

(dotted lines), 3.0 x 104 (dashed lines), 2.0 x 10' (long-dashed lines), and 1.0 x 10' (dot-dashed lines) particles. There are two 1.0 x 10' 

particle simulations, one performed with €=h (dot-short-dashed lines), and one with €=1.0 x 101' cm (dot-long-dashed lines). The 

horizontal lines give the critical density P"'it below which a Jeans mass is resolved in each SPH calculation. The filled dots give the points at 

which each calculation surpasses Perit. The arrows indicate the time at which the elongated structure is formed by the merger of the two 

overdense regions in the grid-code calculation. The free-fall time is tff = 1.0774 X 1012 s. 

forming two independent self-gravitating cores (Fig. 6 at 
t = 1.20 tff)' The collapse of the bar continues, primarily 
along its minor axes, to form a high-density spindle (Fig. 6 at 
t= 1.24-1.29 tff)' Eventually, the spindle forms multiple 
fragments. 

6.3 Medium-resolution SPH 

With intermediate resolutions of 2.0 x 10\ 3.0 X 104 and 
4.0 x 104 particles, the fragmentation proceeds as in the 
high-resolution calculation (e.g. Fig. 7): two equal-mass 
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Figure 6. Density and velocity in the x-y plane for the binary-bar fragmentation test calculation performed with SPH using 1.0 x 104 

particles. See Fig. 4 for details. 

fragments form with a low-density bar of gas between them; 

the bar increases in density via accretion and eventually 
fragments. However, with these resolutions, the difference 
in density between the bar and the fragments is less pro

nounced than for the highest resolution calculation (cf. Figs 
4 and 7) due to greater smoothing. The resolution is only 

just high enough with 2.0 x 104 particles to resolve the 
binary fragmentation. Calculations performed with 

3.0 x 104 and 4.0 x 104 particles quickly converge to the 
result given with 8.0 x 104 particles, with a much greater 

distinction between the bar and the fragments than with 
only 2.0 x 104 particles. 

7 DISCUSSION OF THE BINARY 

FRAGMENTATION 

If SPH is implemented with spatially and temporally vari
able smoothing and softening lengths then, unlike a grid

based code, there is no fixed spatial limit on its resolution 
(unless a minimum smoothing length is introduced). How

ever, although there is no fixed spatial resolution limit, there 

is a fixed mass resolution limit. The variable smoothing 
lengths of particles are constrained to contain a roughly 

constant number of particles (Nneigh = 50) and, hence, a cer
tain mass (assuming that all particles are of equal mass). 

Therefore SPH has mass-limited resolution. For a clump of 
gas to be resolved, its behaviour must be dominated by 

physical processes, and not the numerical implementation. 
As described in Section 3, the behaviour of a Jeans-mass 

© 1997 RAS, MNRAS 288, 1060-1072 

clump of gas with radius ';::jh is dominated by the numerical 

implementation. Thus the minimum resolvable mass must 
be significantly larger than the number of particles con

tained within a volume of radius h. Navarro & White (1993) 

(using Nneigh = 40) found that ;;:; 100 particles were required 
to give reasonable results when modelling the adiabatic 

collapse and virialization of a gas cloud or modelling the 
merging of two clumps of gas. Thus we take the smallest 

mass that an SPH calculation can resolve to be equal to the 

mass of ';::j2Nneigh particles. Note also that this resolution 
limit can be expressed as a spatial resolution limit, since 

2Nneigh particles are contained within sphere of radius ';::j3h. 
This resolution limit does not affect the global results of an 

SPH fragmentation calculation unless the Jeans mass 
becomes comparable to the mass of 2Nneigh particles (or, 

alternately, the Jeans radius becomes comparable to ';::j3h). 
In this case, the stability of the clump against collapse 

depends on the details of how the gravitational forces are 
softened and the pressure forces are smoothed (Section 3). 

In the calculations of the previous sections, E =h so that a 
Jeans-mass clump will collapse; however, because both 

gravity and pressure forces between particles within the 
volume of a kernel are reduced in magnitude, it collapses 

more slowly than it should. 

This artificially slow collapse of a Jeans-mass clump is the 
source of the problem in the 1.0 x 104 particle test calcula

tion. Let us consider what resolution is required to follow 
correctly the evolution of the elongated structure that is 

formed at t';::j 1.12 Iff. The criterion to be satisfied is that the 
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Figure 7. Density and velocity in the x-y plane for the binary-bar fragmentation test calculation performed with SPH using 2.0 x 10' 

particles. See Fig. 4 for details. 

minimum resolvable mass must always be less than a Jeans 

mass. The Jeans mass is given by Tohline (1982) as 

(5) 

where T is the temperature, 11 is the mean molecular weight, 
Rg is the gas constant, and G is the gravitational constant. As 
described above, we take the minimum resolvable mass in 

an SPH calculation to be the mass of 2Nneigh particles. 
Assuming that all particles have equal mass, this is 

(6) 

where Mtot and N tot are the total mass and number of par

ticles, respectively. Combining equations (5) and (6) gives 
the maximum resolvable density for an SPH collapse cal

culation, 

(7) 

For the current test calculation, with Nneigh = 50, this critical 
density is Perit>::!7 X 1O-24(Ntot)2. Fig. 5 compares the critical 
density with the maximum density during each test calcula

tion. It can be seen that with 1.0 x 104 particles, Perit is 
reached soon after the two overdense regions merge to form 

the elongated structure (t>::! 1.15 tff ) and before the expected 

formation of the binary. With greater numbers of particles, 

Perit is reached only after the elongated structure grows in 
mass via accretion and each end begins to collapse to higher 

densities (t>::! 1.20 tff ). In particular, with 2.0 x 104 particles, 

Perit is only barely high enough for the accretion on to the 
elongated structure and its subsequent collapse into two 
fragments to be followed correctly. This confirms our choice 

of the mass of >::!2Nneigh particles as the minimum resolvable 

mass. 
With E =h, if the above density criterion is adhered to, 

then fragmentation is correctly calculated. If it is not, frag

mentation is inhibited. Regions of high density with greater 

than a Jeans mass collapse too slowly, and hence may 
unphysically merge with other regions (as in this calcula

tion) or be tidally disrupted before they can collapse. 
Since the cause of this problem is the softening of gravity 

forces on a scale less than E =h, one might consider using 
E < h. However, as shown in Section 3, this leads to pressure 

forces between particles being reduced faster than the gravi
tational force between them which can result in artificially 

induced collapse and, potentially, fragmentation on a scale 
less than the formal resolution of SPH! To demonstrate 

this, we present the results from the test case performed 
with 1.0 x 104 particles, but using a constant gravitational 

softening length of E = 1.0 X 1014 cm rather than E =h (Fig. 

8). Indeed, the collapse of each end of the elongated struc
ture to form a fragment is not inhibited (see the growth of 

maximum density versus time in Fig. 5 and the density con
tours in Fig. 8 at t = 1.20 tff). However, at t = 1.24 tff , each end 
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Figure 8. Density and velocity in the x-y plane for the binary-bar fragmentation test calculation performed with SPH using 1.0 x 104 

particles, but with e = 2.0 x 1014 cm rather than e =h as in Fig. 6. See Fig. 4 for details. 

of the elongated structure collapses to form two individual 
fragments. At t = 1.29 tft , this results in four fragments with a 
bar of gas between them. This incorrect fragmentation 
results from the pressure forces between particles being 
smoothed faster than the gravitational forces; the lack of 
pressure support allows each collapsing fragment to hierar
chically fragment. With 2.0 x 104 particles and e < h, this 
artificial fragmentation still occurs, although each pair of 
fragments quickly merges. With higher resolution, the artifi
cial fragmentation does not occur, because each Jeans mass 
contains several smoothing kernels, and thus the mass con
tained within each kernel is sufficiently below a Jeans 
mass. 

In short, the resolution of the code is given by the larger 
of the smoothing length h and the softening length e; 
attempting to improve on this resolution by ad hoc methods 
solves one problem while creating another. Fragmentation 
is inhibited when the softening of gravity is performed with 
e;;;:'h, while with e <h fragmentation may be artificially 
induced. If possible, SPH should be implemented so as to 
maintain e=h, since then artificial fragmentation is 
inhibited, and the hydrodynamic and gravitational resolu
tions are equal. If this is not possible, for example, because 
the SPH code is implemented using the GRAPE hardware, 
then the gravitational softening length e should be made 
equal to the smoothing length h that the gas particles have 
when the density is equal to Perit. This will stop the artificial 
fragmentation that can be induced when e < h and the mass 
contained within a kernel is close to a Jeans mass. Finally, 

© 1997 RAS, MNRAS 288,1060-1072 

SPH should not be implemented so that e > h before Perit is 
reached, since in this case the gravitational resolution limit 
of the code is reached before the hydrodynamic resolution 
limit is reached. If the gravitational resolution of the code is 
lower than the hydrodynamic resolution, then the calcula
tions may become unphysical when the Jeans length is less 
than ~2e, because Jeans-mass clumps will be stabilized 
against collapse. 

A collapse calculation that obeys the above criterion 
should strictly be halted as soon as P > Perit> because, after 
this point, the results may depart from reality. However, this 
criterion alone is too stringent if Perit is reached only within 
an already condensed fragment. If the global result does not 
depend on the internal evolution of the fragments, the cal
culation will give the correct global evolution long after Perit 

is passed. Indeed, this assumption was used by Bate et al. 
(1995) to allow fragments to be replaced by 'sink' particles 
in order to reduce the computation time for fragmentation 
calculations. For example, with 2.0 x 104 particles the binary 
fragmentation and self-gravitating bar are in qualitative 
agreement with the grid-code, even though the maximum 

density passes Perit only shortly after the binary fragments 
begin to form. Also, when the 'standard isothermal test 
case' (Boss & Bodenheimer 1979) was computed by Bate et 
al. (1995) using SPH, only 8.0 x l(f particles were used, but 
the calculation gave excellent agreement with the grid-code 
results of Myhill & Boss (1993) well after the above criter
ion was broken. These calculations give good agreement 
long after Perit is surpassed, because only the small regions 
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within the fragments themselves are incorrectly modelled. 

Thus, rather than monitoring just the maximum density in 

an SPH calculation, the locations where the density exceeds 

the critical density should be considered. 

The heavy contour lines in Figs 4, 6, 7 and 8 show the 

regions within which P > Perit (in Fig. 4 the heavy contours 
are deep within the fragments). With 1.0 x 104 particles, the 

affected region is most of the centre of the cloud after 

t ~ 1.16 tif (Fig. 6). Thus the fragmentation calculation 

becomes unreliable beyond this point. With 3.0 x 104 par

ticles and higher, the Jeans-mass criterion is broken only 

within the fragments (e.g. Fig. 4). Therefore, until the dense 

bar of gas forms between the binary, only the evolution 

inside the fragments may be handled incorrectly. The calcu

lation with 2.0 x 104 particles (Fig. 7) is an intermediate 

case; the region where P > Perit includes both fragments and 

the gas between them, and yet the binary fragmentation is 

just resolved. 

Finally, even if P > Perit for a finite region of a simulation, 

the results in this region are not necessarily incorrect. If it is 
impossible for this region to gather a Jeans mass, then 

breaking the resolution criterion will not matter. For 

example, if the gas with P > Perit falls on to a fragment faster 

than it can collapse under its self-gravity, further fragmenta

tion will be prevented. Considering the velocity of the gas 

within the regions with P > Perit in the 8.0 x 104 particle cal
culation, we find that, indeed, the gas falls to the centre of 

the fragments faster than it can collapse under its own self

gravity up until t ~ 1.28 tif. Thus the calculation can be cor

rectly followed to this point. Beyond this, the bar between 

the binary has a density P > Peri" and the velocity along the 

bar is low. Thus we cannot determine the correct evolution 

of the bar. A similar problem occurs if, rather than being in 

free-fall on to a fragment, the gas becomes rotationally 

supported around a fragment and its density is greater than 

Perit. In this case, fragmentation of the disc will be inhibited 

(if E?:.h), or may be artificially induced (if E < h). 

8 BAR FRAGMENTATION 

When Burkert & Bodenheimer (1993) first presented their 

fragmentation calculation, they found that after the frag

mentation to form a binary, a self-gravitating bar of gas 

formed between the binary and fragmented. This formation 

and fragmentation of a high-density bar between two frag

ments is not unique; other initial conditions also lead to this 

state (e.g. Bonnell et al. 1991). In the calculation of Burkert 

& Bodenheimer (1993) the bar fragmented into nine frag

ments. In Section 5, using the same code but with the inclu

sion of an artificial viscosity and heating to keep the local 

Jeans length larger than the zone size, six fragments form 

inside the bar, with two additional fragments in the discs 

around the binary components. The number of fragments 

produced from the bar fragmentation depends on the reso

lution. With higher resolution, the collapse of the bar is 

halted, due to artificial viscosity and heating, when the bar is 

thinner, and more fragments will be produced because the 

ratio of the length of the bar to its width is larger. In the 

calculation presented here, the bar is constrained to be ~ 3 

grid cells in thickness by the artificial viscosity and heating. 

With unlimited resolution and without heating, the bar may 

collapse to an infinite-density filament, as suggested by the 

work of Inutsuka & Miyama (1992) and by Truelove et al. 

(1997). 

Similarly, with SPH, we cannot determine what the result 

is with a purely isothermal equation of state. With 8.0 x 104 

particles, the calculation can be followed correctly up to 

densities of Perit~1O-13 g cm-3• Beyond this density, a Jeans 

mass is composed of less than ~2Nneigh particles and is not 

correctly resolved. However, in reality, the gas should 

become optically thick at around this density and start to 

heat with a polytropic constant "1=7/5 (Tohline 1982). This 

fact can be exploited to allow the calculation to be followed 

further than with a purely isothermal equation of state, 

since the Jeans mass will increase with increasing density, 

rather than decrease, and thus the Jeans mass can always be 

kept above the mass of ~2Nneigh particles. 
In the following calculations, we use the polytropic equa

tion of state 

(8) 

where K is a constant that is set equal to the square of the 

isothermal sound speed Cg • The polytropic constant "I varies 

with density as 

"1=1, 

"1=7/5, 

"1=5/3, 

p5,r x 10- 13 g cm-3, 

r x 10- 13 < P 5, 10- 11 g cm-\ 

p> 10- 11 g cm-3, 

(9) 

and r controls the density at which the heating starts due to 

the gas becoming optically thick. The change of )' from 7/5 

to 5/3 is used, instead of a minimum smoothing length, to 

stop the contraction of high-density fragments and, thus, to 

keep the time-steps large enough to continue the calcula

tion. No minimum smoothing length is enforced. With r ;S 1, 

this equation of state allows us to follow the calculation 

indefinitely, since the mass of 2Nneigh particles is always less 

than a Jeans mass. Compared to maintaining a purely iso

thermal equation of state, heating the gas provides extra 

support against the collapse of the bar upon itself. Begin

ning the heating at a lower density more strongly inhibits 

fragmentation of the bar, because the Jeans mass is 

increased. Thus, if the bar fragments with a certain value of 

r, then more fragments are likely to be produced with less 

heating (assuming that collapse to an infinite-density fila

ment is avoided). 

In Fig. 9, we follow the fragmentation calculation until 

t = 1.315 tif with E = h and using the polytropic equation of 

state with r = 1. After the fragmentation to form a binary, a 

bar of gas forms between them, as in the previous calcula

tions. The bar grows in density, becomes self-gravitating, 

and fragments at t= 1.31 tif when the density in the bar is 

~ 10- 12 g cm-3• Since a Jeans mass is always resolved, the 

fragmentation is not a numerical effect, although the posi
tions of fragments along the bar do depend on numerical 

noise. Four fragments are formed in the fragmenting bar. 

Also, just before the bar fragments, a disc fragmentation 

occurs in the circumstellar disc surrounding one of the origi

nal binary fragments; although the initial conditions were 

symmetric, numerical noise has grown throughout the cal

culation which leads to symmetry breaking. In total, five 

fragments form in addition to the original binary. Two more 

calculations, with the heating beginning at lower densities 

(r = 0.1 and 0.3), were also performed. With r = 0.3, a single 

© 1997 RAS, MNRAS 288, 1060-1072 
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Figure 9. Density and velocity in the x-y plane for the binary-bar fragmentation test calculation perfonned with SPH using 8.0 x 104 

particles, a polytropic equation of state, and e =h. Density contours are drawn every 1/2 of a decade. Velocity vectors are given with length 

proportional to speed; an arrow representing 2 km s -1 is given beneath the frames. Times are given for each frame in units of the initial cloud 

free-fall time tff = 1.0774 x 1012 s. 

fragment was formed near the centre of the bar, and neither 
of the circumstellar discs fragmented. With 1: = 0.1, no frag
ments were formed apart from the original binary; the gas in 
the self-gravitating bar was slowiy accreted by the two 
protostars. 

Therefore, whether or not the bar fragments depends 
sensitively on when the gas becomes optically thick and 
starts to heat. For the above equation of state, the bar will 

fragment only if 1: ~ 0.3, with the number of the fragments 
increasing as 1: is increased. If fragments are formed in the 
bar, they subsequently fall towards the closest of the original 
fragments (as does the gas in the bar with 1:=0.1). Their 
survival or merger depends on chaotic interactions and the 
sizes of the protostellar fragments. For example, in the cal
culation of Fig. 9, one of the fragments from the bar merges 
with the fragment produced via the disc fragmentation. 

9 CONCLUSIONS 

We have determined what resolution is required for a 
smoothed particles hydrodynamics (SPH) code with self
gravity to follow collapse and fragmentation problems cor
rectly. If the required resolution is not used, the 
fragmentation may be incorrectly modelled, with the results 
depending on the method by which the gravitational and 

© 1997 RAS, MNRAS 288,1060-1072 

pressure forces between particles are softened and 
smoothed, respectively. If the scale for softening the gravita
tional forces E is greater than or equal to the hydrodynamic 
smoothing length h, then collapse and/or fragmentation of 
Jeans-mass clumps on the scale of his inhibited. If gravity is 
softened on a shorter scale than h, then collapse and/or 
fragmentation of a near-Jeans-mass clump may be artifi
cially induced. These problems may manifest themselves in 
any SPH calculations which include self-gravity (e.g., 
cosmological-structure and galaxy formation calculations). 

To avoid these resolution problems, an SPH calculation 
must obey the resolution criterion that the minimum resolv
able mass is always less than the local Jeans mass. In prac
tice, this means that, if the code is implemented such that 
E=h, the minimum Jeans mass that is reached during the 
calculation must always be greater than approximately twice 
the number of particles in an SPH kernel (2Nneigh). If a fixed 
value of E must be used to implement the SPH code, then E 

should be chosen to be equal to the value that h has when 
the mass of 2Nneigh particles is equal to the Jeans mass. An 
SPH code should not be implemented with E > h, since then 
the gravitational resolution is lower than the hydrodynamic 
resolution. If this criterion is obeyed, the dependence of the 
results. on the method by which the smoothing and softening 
are done is avoided. 
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As an example of the importance of this criterion, we 
have presented calculations of a demanding fragmentation 
calculation performed with an Eulerian grid code and with 
SPH. We find that the SPH results are in good qualitative 
and quantitative agreement with those from the Eulerian 
grid code, provided that this resolution criterion is adhered 
to. 

Finally, we note that the need for this criterion is 
unrelated to the need for the leans constraint suggested by 
Truelove et al. (1997). They require the minimum resolv
able mass to be less than the local leans mass to avoid the 
growth of numerical perturbations, whereas the criterion 
presented here is required so that the behaviour of near
Jeans-mass clumps is determined by physical processes and 
not on the specific implementation of the SPH code. How
ever, in both cases the minimum resolvable mass is required 
to be always less than the Jeans mass and, thus, in satisfying 
one of these constraints the other is also satisfied. 
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