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S U M M A R Y
Inconsistencies between an object and its image delivered by tomographical methods are
inevitable. Loss of information occurs during the survey through incomplete and inaccurate data
sampling and may also be introduced during the inverse procedure by smoothness constraints
inadequate to the resolving power of the experimental setup.

A quantitative appraisal of image quality (spatial resolution and image noise) is therefore not
only required for successful interpretation of images but can be used together with measures
of efficiency of the experimental design to optimize survey and inverse procedures.

This paper introduces a low-contrast inversion scheme for electrical resistivity tomography
that supports the reconstructed image with estimates of model resolution, model covariance and
data importance. The algorithm uses a truncated pseudo-inverse and a line search approach to
determine the maximum number of degrees of freedom necessary to fit the data to a prescribed
target misfit. Though computationally expensive, the virtue of the method is that it reduces
subjectivity by avoiding any empirically motivated model smoothness constraints. The method
can be incorporated into a full non-linear inversion scheme for which a posteriori quality
estimates can be calculated.

In a numerical 2-D example the algorithm yielded reasonable agreement between object
and image even for moderate resistivity contrasts of 10:100:1000. On the other hand, the
resolving power of an exemplary four-electrode data set containing classical dipole–dipole
and non-conventional configurations was shown to be severely affected by data inaccuracy.

Insight into the resolving power as a function of space and data accuracy can be used as a
guideline to designing optimized data sets, smoothness constraints and model parametrization.
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1 I N T RO D U C T I O N

Electrical resistivity tomography (ERT) in its geophysical applica-
tion is a method that attempts to reconstruct an image of the resis-
tivity inside the Earth from current and voltage measurements made
on its surface or in boreholes.

The method comprises a measuring process and a reconstruction
process both of which must be regarded as non-ideal, leading to a
loss of information on the object during the imaging procedure.

Present-day instruments allow the acquisition of several thousand
resistance readings and numerous algorithms have been invented
that allow the inference of finely discretized model estimates usually
presented as 2-D or 3-D images. However, a successful interpreta-
tion of images requires an assessment of their quality. Furthermore,
quantification of the loss of information occurring during the imag-
ing process would also allow the comparison of different imaging
systems and provide means for improving their design.

Questions concerning the quality and efficiency of the imaging
process are becoming increasingly important, although they have

puzzled scientists and users since the early years of the method.
Some of these questions refer to:

(1) resolution: how much does the image resemble the object?
(2) stability: what artefacts can be expected to arise from prop-

agation of data error into image noise?
(3) efficiency: how can the design of measurement and inversion

be optimized to achieve maximum information?

The aim of this study is to present a low-contrast inversion scheme
that besides a model estimate also yields measures for resolution and
noise of the image as well as information on the efficiency of the
experimental design. The method uses a linearization of the forward
problem and a generalized inverse constructed by truncated singular-
value decomposition, reducing the subjectivity usually imposed by
empirical smoothness constraints.

The paper is organized in the following way: first, approaches
to quantifying imaging quality are reviewed, next the problem is
formulated in a mathematical manner and model resolution, model
covariance and data resolution as defined from inverse theory are
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introduced to describe the consequences of non-uniqueness. The
main part of the paper deals with the actual construction of these
functionals for the resistivity problem and the derivation of intu-
itively usable estimates as a radius of resolution, a binary flag of
geometrical distortion and a percentage of image noise. The inver-
sion scheme is tested on a synthetic 2-D model using classical and
non-classical measurement configurations. Finally, the effect of ac-
curate and inaccurate data on image resolution is discussed and the
efficiency of the experimental design is assessed.

2 A P P ROA C H E S T O Q UA N T I F Y I N G
I M A G I N G Q UA L I T Y

Numerous approaches addressing the above questions have been
presented by geophysicists and by the community of medical elec-
trical impedance tomography. Most of them fall into one of the
following categories.

Analytical sensitivity studies assessing the influence of a differ-
ential model parameter change on individual measurements were
introduced by Evjen (1938) for 1-D layered models and have led
to the definition of depth of investigation extensively discussed in
the 1970s and concisely summarized by Barker (1989). Advanced
analysis of sensitivity in 2-D (Barker 1979) and 3-D, including their
deformation by inhomogeneities (Spitzer 1998), brought fundamen-
tal insight into the typical structure of apparent resistivity anomalies.

Numerical perturbation studies examine whether the anomalous
response of predefined features in the ground exceed the limits of
detectability (van Nostrand 1953; Dey et al. 1975; Apparao et al.
1992). Both of the above approaches suffer from the disadvantage
that they only investigate the influence of a model perturbation on
individual or sets of data, but not on the image itself.

Numerical model resolution studies based on the application of a
reconstruction algorithm on synthetically calculated data contami-
nated with noise compare directly the similarity between the model
and the image. The comparison of either a set of survey procedures,
a set of inversion algorithms, a set of predefined models or a com-
bination of such sets, is made visually (Sasaki 1992; Beard & Tripp
1995; Dahlin & Loke 1998; Dahlin & Bing 2001) or by definition
of model-misfit functions (Olayinka & Yaramanci 2000).

Besides such exemplary studies and heuristic approaches it has
always been a temptation to derive more general and analytical mea-
sures for the appraisal of imaging quality in impedance tomography.

Resolution analysis based on local sums of sensitivity for all
measurements contained in a set were proposed especially for SIRT-
like reconstruction schemes (Kemna 1995; Friedel 1997; Seichter
1998) but were also considered for conventional matrix inversion
techniques (Park & Van 1991).

Oldenburg & Li (1999) present a method to measure the depth
of investigation by quantifying how much each region of the image
is constrained by the data and how much by subjective model con-
straints. The procedure considers the full non-linear problem and
analyses the difference in two or more inversion results attained
with different model constraints.

The idea of Backus & Gilbert (1968) to consider the imaging pro-
cess as an averaging filter, the properties of which can be described
and influenced, has been used in several approaches, but mainly
for 1-D resistivity sounding problems, such as to construct averag-
ing kernel functions (Oldenburg 1978), to derive upper and lower
bounds for the model parameters (Oldenburg 1983), or to optimize
the design of electromagnetic (EM) surveys (Maurer & Boerner
1998; Maurer et al. 2000). Only recently has image appraisal for

2-D and 3-D electromagnetic inversion been suggested Alumbaugh
& Newman (2000). Unlike in this paper the authors have used clas-
sical smoothness constraints.

Considerable research has been devoted to analytical measures
of resolution and stability in medical impedance tomography. This
paper was most inspired by the approaches of Dobson & Santosa
(1994) and Avis & Barber (1994) who analysed the condition num-
bers and singular-value spectra of various sets of electrode config-
urations.

In geoelectrical inversion the SVD approach has received rela-
tively little attention and has so far been applied only to 1-D resis-
tivity problems (Inman et al. 1973), presumably because of its high
computational costs. The same applies partly to seismic tomography,
where the forward problem is generally sparse and resolution has
been exhaustively studied (e.g. Aki & Richards 1980; Nolet 1987;
Iyer & Hirahara 1993), but only few attempts were made to compute
SVD for realistic large problems (see references in Minkoff 1996).

However, though computationally expensive, the method seems
promising for 2-D and 3-D resistivity problems, since it offers gen-
eral insight into non-uniqueness, resolving power, stability and effi-
ciency while introducing no, or only a few, subjective constraints.

3 M E T H O D

3.1 Causes and consequences of non-uniqueness

The mathematically reassuring facts that the inverse resistivity prob-
lem has a unique solution for 2-D and 3-D objects have been proven
rigorously in significant papers by Kohn & Vogelius (1985) and
Sylvester & Uhlmann (1987). However, the conditions for the unique
reconstruction of the resistivity inside an object from current and
voltage measurements made on its boundary are very demanding.
Voltage and current must be known: (1) as continuous functions on
the whole boundary, (2) for a complete set of spatial patterns of the
driving current and (3) with infinite precision. A similar uniqueness
theorem was already proven by Langer (1933) for the 1-D layered
Earth.

Geophysical applications of ERT systems, however, cover only
a limited part of the Earth, employ a finite number of electrodes
and comprise measurements of limited precision. From this incom-
pleteness of information arises the non-uniqueness encountered in
all practical cases.

ERT comprises two fundamental operations, measurement and
image reconstruction. By measuring the injected current and po-
tential differences for a given set of electrode configurations the
resistivity m(r) of an object is mapped during the forward operation
F on to a set of data

d = Fm + n, (1)

usually apparent resistivities. It is assumed that data contains addi-
tive noise n. Afterwards, the data are treated with a reconstruction
scheme F̃−1, an approximation to the inverse ofF , to obtain a model
estimate (image)

mest = F̃−1d = F̃−1Fm + F̃−1n, (2)

which yields a prescribed target misfit between the measured data
d and the predicted data

dpred = Fmest = FF̃−1d (3)

and may comply with additional constraints. Here it is assumed that
the synthetic forward operator sufficiently approximates the physics
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of the problem. From eq. (2) it can be seen that the similarity of image
and object is ruled by F̃−1F := RM , the model resolution operator.
From eq. (3) it follows that the agreement between data and predicted
data is described by FF̃−1 := RD , the data resolution matrix. For
non-linear imaging systems both of these operators depend on the
object itself. The second term in (2) describes the image noise.
Since the true error is never known, usually the propagation of data
covariance is considered. For problems that are not too non-linear
the model covariance matrix

[cov mest] = F̃−1[cov d]F̃−1T . (4)

can be used as an estimate of image noise (Menke 1989). Before
approximations to the functionals RM , RD and [cov mest] are con-
structed for the resistivity problem a brief schematic example shall
illustrate what information can be expected.

The model resolution operator describes the mapping from the
object to the image for noise-free data. Accounting for non-linearity
it can be expressed as a model-dependent averaging kernel

mest(r) =
∫

�

RM (m, r, r′)m(r′) d3r ′. (5)

It describes what region of the model is projected into the image
at point r. Another way of thinking about the weighting kernel is
to regard it as a point spread function (PSF), which describes what
disturbance a delta-like model perturbation will cause in the image.
Fig. 1 illustrates general properties that the resolution operator may
have.

For an ideal imaging process, the resolving kernel would equal a
delta function RM (m, r , r′) = δ(r − r′) independently of the model
and location. For continuous inverse problems with incomplete data
this perfect resolution can never be attained, but the resolving ker-
nel works as an averaging filter. Image cells will contain localized
averages of the object properties and the width of the kernel is a
measure of resolution. Furthermore, the resolving kernel describes
geometrical distortions that may occur in the image if the maximum
of the PSF lies off the diagonal or RM contains significant side lobes.

A similar weighted averaging relation for the data space is inter-
preted as follows. If the data resolution matrix RD is independent
of the model and equal to the identity matrix, all data can be inde-
pendently resolved, otherwise the predicted data are averages of the
measured data, which indicates redundancy. Therefore, this matrix
yields a measure of the efficiency of a forward procedure. Though
the usefulness of the measures RM , RD and [cov mest] is obvious,
the actual construction for the inverse resistivity problem is com-
plicated by the fact, that the forward problem is non-linear and the
approximate inverse an iterative procedure. In the following, ap-
proximations will be introduced that allow the calculation of useful
estimates to the functionals.

3.2 Construction and decomposition of the forward map

The forward operation for the resistivity problem is usually given
implicitly by Poisson’s equation. Alternatively, it can be expressed as
a non-linear integral equation making use of the sensitivity function.
For each measurement the latter is usually derived by a truncated
Taylor expansion:

Fi [m + �m] = Fi [m] +
∫

�

∂Fi

∂m

∣∣∣∣
m

�m d3r. (6)

and relates model and data perturbations through the Fréchet
derivative

Object

(a)

Image

Object

(b)

Image

Object

(c)

Image

Object

(d)

Image

Figure 1. Schematic model resolution operator: (a) for a discrete model an
imaging process can be regarded to be ideal in the area of a certain image
cell, if its value equals the average of the respective object subdomain. In
this case the model parameter was chosen perfect according to the resolving
power of the data. (b) Contrast deficiency occurs if the support of the point
spread function extends the limits of the respective cell. (c) Geometrical
distortion occurs if the maximum of the PSF lies off the diagonal or (d) the
weighting kernel has significant side lobes.
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�di =
∫

�

Si (m, r)�m d3r with Si (m, r) = ∂Fi

∂m

∣∣∣∣
m

. (7)

As a peculiarity of the dc resistivity problem, not generally valid
for non-linear problems, the Fréchet derivative serves as an abso-
lute weighting function in the non-linear integral formulation of the
forward problem.

di = Fi m =
∫

�

Si (m, r)m(r) d3r. (8)

A proof of this relation was derived by Gómez-Treviño (1987)
from the scaling properties of Maxwell’s equation. We have re-
cently presented another proof based only on the reciprocity theorem
(Brunner et al. 1999). The equivalence of the Fréchet derivative and
the absolute weighting function has far reaching implications: it al-
lows an easy calculation of the forward response of an arbitrarily
inhomogeneous model if only the sensitivity is known, since the
linearized Taylor expansion no longer contains an absolute term.
Furthermore, it follows for the homogeneous case, if resistivity and
apparent resistivity are chosen as data and parameters such that∫

�
Si (mhom, r) d3r = 1.
We now consider an arbitrary set of apparent resistivity data d =

(d1, . . . , d N ) measured on a system of L electrodes. Data are assumed
to be uncorrelated and scaled to uniform variance by a diagonal ma-
trix D containing the reciprocal data standard deviations Dii = 1/σ i .
For all discrete models linearly close to m = (m1, . . . , mM ) the lin-
earized discrete and scaled forward operation can be approximated
by

DF [m + �m] := DS(m + �m). (9)

Non-uniqueness of the inverse problem can be investigated by dis-
criminating the kernel of the forward map from its null-space that
contains indistinguishable models. This can be achieved by singular-
value decomposition (Golub & van Loan 1989) of the matrix DS
into

DS = UWV
T = [Up, U0]

[
Wp 0

0 0

] [
VT

p

VT
0 ,

]
(10)

where U ∈ RN×N and V ∈ RM×M denote unitary matrices formed
by complete sets of data and model eigenvectors, respectively. The
matrix

W = diag(w1, . . . , wq ), q = min(M, N )

is diagonal and contains the singular values

w1 ≥ · · · ≥ wp ≥ wp+1 = · · · = wq = 0.

The rank p of DS denotes the number of theoretically linear inde-
pendent data. Elementary circuit theory tells us that for an L-pole
network the maximum number of independent resistance measure-
ments is pmax = L(L − 1)/2. This means that however complicated
a resistor network may be, or even if L-poles are connected to a con-
tinuous body not more than pmax characteristic transfer impedances
or degrees of freedom can be reconstructed. A natural choice of
degrees of freedom are the model eigenvectors. The model space
M can be separated into two orthogonal subspaces

M = Mp ⊕ M0 with

Mp := {m ∈ M | DSm �= 0} = span(Vp) (11)

M0 := {m ∈ M | DSm = 0} = span(V0). (12)

Model eigenvectors exhibit a natural ordering according to their dis-
tinguishability. This means that the rms data response of a model
containing only a single eigenvector V l is proportional to the re-
spective eigenvalue wl since the orthonormality of the eigenvectors
leads to

‖DSVl‖ = ∥∥UWV
TVl

∥∥ = ‖Ulwl‖ = wl .

In the presence of noise it is therefore very likely that model com-
ponents corresponding to very small eigenvalues yield data well
below the threshold of detectability. It is therefore justified to re-
gard such model eigenvectors as lying effectively in the null-space.
The method of the truncated pseudo-inverse (Shim & Cho 1981)
achieves this by truncation of the singular-value spectrum to the
first r values while zeroing the remainder wr+1 = · · · = w p = 0.
The truncated pseudo-inverse is given by

(DS)† = Vr W
−1
r UT

r ,

where r is the number of effectively non-vanishing singular val-
ues. The positive effect of truncation is a gain in stability since the
propagation of data error into image noise is proportional to the re-
ciprocal of the smallest singular value. On the other side truncation
imposes a severe loss of information because of the exclusion of
image components. A method to determine r carefully according to
data quality is presented in the next section.

3.3 Approximate inverse and quality functionals

During the image reconstruction a model estimate is often found by
minimizing the weighted residual functional

χ 2(mest, d) =
N∑

i=1

(
di − Fi [mest]

σi

)2

(13)

= ‖D(d − F [mest])‖2. (14)

Since the data contain noise that should not be fitted some authors
prefer to minimize not χ 2(mest, d) but its difference with respect to
a target misfit∣∣χ 2(mest, d) − χ 2

∗
∣∣ = min! (15)

Prescribing a target misfit χ2
∗ of unity results in residuals that on

average equal the standard deviations of the data, a reasonably ob-
jective choice. Since the minimization problem (15) has no unique
solution, most inversion schemes add a penalty functional that forces
the image to be not unnecessarily complex. Most approaches use a
smoothing matrix weighted with a smoothing parameter (both em-
pirically defined) to make the inverse problem unique without sacri-
ficing too much resolution. Even if an optimum smoothing parame-
ter, which produces exactly the target misfit, is calculated during an
Occam inversion (deGroot-Hedlin & Constable 1990; LaBrecque
et al. 1996), subjectivity remains in the choice of the smoothness
functional (the order of the derivative matrix, the increase of regu-
larization with depth, etc.). Today most inversion schemes address
this problem empirically, whereas ideally it should be addressed
with respect to the resolving power of the measurement scheme. In
this study the truncated SVD inversion is used because it introduces
only little subjectivity. As a constraint to the minimization problem
(15) it is required that the model estimate shall have no component
in the effective null-space VT

0 mest = 0 that cannot be distinguished
by measurements.
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The minimization problem is attacked by assuming that a solution
is found in step n + 1 in which case the response can be expanded
to

F
[
mest

n+1

] = F
[
mest

n

] + S
(
mest

n+1 − mest
n

)
. (16)

Inserting eq. (16) in eq. (15) an iterative formula can be found

mest
n+1 = mest

n + (DS)†D
(
d − F

[
mest

n

])
, (17)

where DS)† represents the truncated SVD pseudo-inverse. Assum-
ing now that the model mest

n is already linearly close to the true
model m, i.e.

d = F [m] + n = F
[
mest

n

] + S
(
m − mest

n

) + n (18)

we obtain

mest
n+1 = mest

n + (DS)†DS
(
m − mest

n

) + (DS)†Dn

= RM m + (I − RM )mest
n + (DS)†Dn. (19)

Here the model resolution operator is defined as

RM = (DS)†DS = Vr W
−1
r UT

r UpWpVT
p = Vr V

T
r .

The model estimate is obviously built up from three components: it
resembles the object as far as RM allows; where no resolution can be
provided the previous model is filled in; and it contains a component
of propagated noise. Considering unwanted null-space components
it follows from Vr ⊥ V0 that

VT
0 mest

k+1 = VT
0 mest

k . (20)

A model component in the null-space can obviously only be intro-
duced by the starting model but does not result from noise.

An expression similar to (19) for the data resolution matrix
can be found by applying the forward procedure to the model
estimate (17)

d
pred
n+1 = F

[
mest

n+1

] = F
[
mest

n

] + S(DS)†D
(
d − F

[
mest

n

])
= dpred

n + DS(DS)†
(
d − dpred

n

)
= RDd + (I − RD)dpred

n with (21)

RD = DS(DS)† = UpWpVT
pVr W

−1
r UT

r = UT
r Ur . (22)

Finally, an estimate for the model covariance is constructed by in-
serting the weighted forward procedure and its generalized inverse
in eq. (4)[
cov mest

k+1

] = (DS)†[cov d](DS)†T. (23)

3.4 A single-step SVD inversion scheme

The linearized theory presented in the previous section can be ap-
plied to the full non-linear problem as an a posteriori appraisal of
resolution, stability and information density if the sensitivity ma-
trix of the final inversion step is used. In the following numerical
example a single-step inversion algorithm is presented that uses the
homogeneous background as a starting model mest

0 and calculates
only one correction. Single-step algorithms solving only the lin-
earized problem around a homogeneous starting model have been
widely used (Isaacson et al. 1992; Lehmann 1995; Loke & Barker
1995; Perez-Flores & Gomez-Treviño 1997) and have proven to
yield reasonable inversion results for low-contrast models.

The SVD inversion algorithm shown in Fig. 2 is used to de-
termine the effective number of linear independent measurements

data input

model parameterization

set hom. start model

calculate scaling D

SVD of matrix DS

calculate residual

calculate sensitivity S 

r_max=p,  r_min=1

r=(r_max + r_min) / 2

calculate updated model 
 (backsubsitution with r  

singular values)

calculate predicted data  
and residual

r_max-r_min <= 1 χ > χ∗ χ <= χ∗

try with more  
degrees of freedom 

r_min = r

try with fewer 
degrees of freedom 

r_max = r

no

yes yes

no

calculate a posteriori 
model resolution 
model covariance

OUTPUT

yes

Figure 2. Flow chart of the SVD inversion program attaining a minimum
structure model based on the least number of degrees of freedom needed to
sufficiently fit the data.

and resolvable model eigenvectors r by means of a line search ap-
proach. Only such a number of model eigenvectors is incorporated
in the solution as is necessary to fit the data to the prescribed target
misfit.

After data input and a sufficiently fine model parametrization a
homogeneous starting model is set, the sensitivity matrix is calcu-
lated analytically and scaled with the data variances. Next, the data
residual vector is calculated and the system matrix decomposed. The
first model estimate is calculated by a computationally inexpensive
back-substitution after zeroing all singular values above index p/2.
If the fit between the forward response of this model and the data
is worse or better than the prescribed value the number of effective
non-zero singular r values is increased or decreased, respectively.
Repeating this procedure iteratively leads to a model of the least
complexity of all models sufficiently fitting the data. Finally, model
resolution and covariance are calculated on the basis of r degrees
of freedom. As the algorithm internally uses logarithms of data and
model parameters d̂ i = ln di and m̂ j = ln m j and a homogeneous
background, the general theory outlined in the previous section can
be slightly refined by scaling as described in the appendix. Model
resolution, data resolution and model covariance matrices are calcu-
lated by decomposition of the scaled matrices D̂Ŝ. Furthermore, it
follows that each cell of the estimated model contains a geometrical
weighted average of the true resistivity

mest
j =

M∏
k=1

mk
RM, jk . (24)

Finally, the diagonal elements of the logarithmic model covariance
matrix can be scaled back to derive an estimate for the statistical
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deviation δmest
j of the non-logarithmic model resistivity relative to

its expectation 〈mest
j 〉:

δmest
j〈

mest
j

〉 =
(

eδm̂est
j − 1

)
× 100 per cent (25)

with

δm̂est
j =

√
[cov m̂] j j .

It has to be noted that this measure does not reflect the relative stan-
dard deviation, because, owing to the non-linearity of the problem,
the distribution of mest

j is non-Gaussian.

4 N U M E R I C A L E X A M P L E S

In this following example the generalized inverse algorithm is ap-
plied to synthetic data from a 2-D dc problem. First singular-value
spectrum and model eigenvectors are inspected to obtain principal
insight into non-uniqueness, then the model resolution is compared
for accurate and inaccurate data, the results of inversion and im-
age appraisal are presented and finally the data resolution matrix is
discussed.

The experimental setup employed L = 25 electrodes arranged on
a linear profile with a unit spacing of 1 m. The exemplary complete
four-electrode data set comprised L(L − 3)/2 = 275 theoretically
linear independent measurements. It was based on a conventional
dipole–dipole-γ set with a unit dipole width a = 1 and levels from
n = 1 to 22. Since such a set comprises only (L − 2)(L − 3)/2 =
253 measurements and is therefore incomplete L − 3 Schlumberger-
like measurements were added employing a fixed current dipole at
electrodes 1 and 25 and a moving unit dipole for voltage mapping. As
the data set would form a symmetrical completion of a dipole–dipole
set if electrodes were arranged in a circle, it is conventionally called
a circulating dipole–dipole in medical impedance tomography. The
data set was chosen because it performed very well in a comparison
of eight different data sets (Friedel 2000) and furthermore the gain in
information by additional non-conventional measurements becomes
clear from the data resolution matrix.

The 2-D parameter domain consisted of a rectangle x = [−2 m,
26 m], z = [0 m,−10 m] extending the electrode scheme horizontally
by two unit spacings. The domain was parametrized into 1120 cells
of 0.5 × 0.5 m2 width and one additional parameter comprising
the remaining outside background region. The latter was done to
ensure

∫
�

Si (mhom, r′) d3r = 1 needed for the approximate forward
procedure. The parametrization was chosen to be relatively fine to
avoid inherent regularization of the inverse problem.

The parameter sensitivity matrix was calculated analytically for
the homogeneous half-space using the Born approximation. In the
strike direction a transformation in complete elliptic integrals was
used (Lehmann 1995; Loke & Barker 1995). In the x–z plane Gauss–
Legendre integration was used with an adaptive number of 36 to
9216 function evaluations per cell.

4.1 SVD spectrum and model eigenvectors

First insights into the information content of a forward map and
the condition of the inverse can be gained by inspection of the
spectrum of singular values. The SVD spectrum of the sensitiv-
ity matrix (Fig. 3) shows a nearly exponential decay illustrating the
ill-posedness of the inverse problem. This result agrees well with
findings from medical impedance tomography (Dobson & Santosa
1994).

Figure 3. Normalized spectrum of the singular values for a circulating
dipole–dipole data set. The exponential decay illustrates the ill-posedness
of the inverse problem. The vertical line marks the number of degrees of
freedom needed to fit the data in the example.

The decreasing spectrum of singular values corresponds to a suc-
cession of eigenvectors in the model domain sorted according to
their distinguishability. This ordering makes the otherwise arbitrary
choice of an orthonormal system in the space M unique. Fig. 4
shows selected model eigenvectors.

Typically we find symmetric and antisymmetric eigenvectors with
respect to a vertical axis in the centre of the electrode array. High-
frequency features often occur near the electrodes, but there is no
unique relation between the index and the spatial wavelengths con-
tained in the eigenvectors. However, high index eigenvectors usually
show increased complexity, e.g. V 275 which is effectively unresolv-
able with realistic noise. The remarkable symmetry of the eigen-
vectors may inspire new approaches to model parametrization. The
conventional parametrization of models into large numbers of small
blocks leads to huge sensitivity matrices and underdetermined sys-
tems, which have to be stabilized by subjective model constraints.
Parametrization guided by model eigenvectors as natural degrees of
freedom may be used in the future to reduce the dimension of the
inverse problem without sacrificing unnecessarily resolution.

4.2 Resolving power of accurate and inaccurate data

If noise-free data are assumed, the generalized inverse need not
be stabilized by truncation of the SV spectrum. All theoretically
independent data are considered to be independent, the kernel of the
forward map has the maximum rank r = p. Although impractical
for real field data, calculation of the resolution matrix including
all eigenvectors yields valuable insight into the maximum possible
resolution of a measuring system. Fig. 5 illustrates model resolution
for the given data set by depicting the point spread function for four
typical cells. Cell 125 just 1 m below the electrode array is nearly
perfectly resolvable. The same applies to cell 588 at medium depths
beneath the horizontal centre of the electrode spread. The averaging
kernel for cell 348 at lesser depth but off the centre is much wider,
indicating a poorer resolution in this region. Cell 722 located at a
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-1E+0 -1E-2 -1E-4 1E-4 1E-2 1E+00

Figure 4. Selected eigenvectors of the sensitivity matrix in the model do-
main. For vector 275 which is practically unresolvable, the otherwise occur-
ring symmetry or antisymmetry is broken owing to numerical effects.

depth of 6 m and horizontally near the end of the electrode system
lies in a region of very poor image quality. The averaging kernel
is inflated to enormous size, its maximum is not located on the
diagonal element and has significant negative side lobes. In this area

the image will not only be of poor contrast but also geometrically
distorted.

Although browsing through the point spread function of indi-
vidual cells is very instructive, it is laborious and the information
content of RM needs to be condensed to more practical measures.
For this purpose the diagonal elements of RD or the deviation of RD

from the identity (Menke 1989) are often considered. When talking
to experimentalists and users a scaling of the diagonal elements into
a readily understandable measure seems favourable. A value of 1 in
a diagonal element means that the average of the respective parame-
ter cell can be resolved uniquely. Assuming a boxcar-like resolving
kernel with an amplitude of 0.25 located around the diagonal el-
ement would mean that the average of four cells can be resolved
uniquely. This motivates the definition of a radius of resolution

rres, j = r0√
RM, j j

(26)

for each region centred around the mid-point of parameter cell j.
Here πr 2

0 equals the area of the uniform parameter cell. This ob-
viously simplest way to scale diagonal elements may serve as a
first measure of resolution and can be replaced by the computation-
ally more demanding estimate of the half-width of the point spread
function. Since both are inadequate for cells with asymmetrical or
otherwise deformed weighting kernels, at least an additional indi-
cation of geometrical distortion is needed, which most primitively
can be introduced as a distortion flag,

fi = not
(
RM,i i = max

k
RM,ik

)
which indicates that the maximum of the point spread function is off-
diagonal. The bottom diagram of Fig. 5 summarizes the information
contained in the diagonal elements: the colourscale corresponds to
the value of the diagonal element scaled in terms of a radius of
resolution and a white square indicates a distortion flag of zero.

Both measures independently mark out a triangular area of high
image quality below the electrode system, where high resolution
and no or little distortion can be expected. The edges of the triangle
form an angle of approximately 38◦ to the surface.

If a realistic data error is accounted for, the approximate inverse
procedure inevitably needs to be stabilized, which is achieved here
by using only the first r eigenvectors and singular values for the
construction of the inverse and the appraisal functionals. Fig. 6 il-
lustrates selected resolving kernels for a truncated inverse with only
96 degrees of freedom resulting from realistic noise specified in the
next section. Near the surface, resolution is still good, but at greater
depth, the resolving kernels are much wider and show geometrical
distortion. As an extreme example, image cell 722 contains an aver-
age of resistivities in a completely different area and therefore lies
well beyond the depth of investigation. The formerly triangular area
of good resolution and little distortion derived from the diagonal
element collapses to a bathtub-like area.

It is worth noting that the quality functionals are calculated for
a specific model parametrization, which implicitly regularizes the
problem. However, if a sufficiently fine parametrization were chosen
the radius of resolution and distortion flag prove to be very consis-
tent, suggesting that they can be motivated by a continuous theory,
as pointed out by Dobson & Santosa (1994) for the unit disc model
domain.

4.3 Inversion result and image quality

After introducing model resolution for full and truncated SVD in-
verse, the inversion result itself will now be discussed. The model
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(a)

(b)

Figure 5. Top, resolving kernels for four selected cells assuming accurate data considering all 275 model eigenvectors. Bottom, colour represents the radius
of resolution as derived from the diagonal elements of the resolution matrix, white squares mark cells with zero distortion flag.

(a)

(b)

Figure 6. Top, resolving kernels for four selected cells assuming realistic data error considering only 96 of 275 model eigenvectors. Bottom, colour represents
the radius of resolution as derived from the diagonal elements of the resolution matrix, white squares mark cells with zero distortion flag.
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shown in Fig. 7(a) consisted of two rectangular blocks of 10 and
1000 �m embedded in a homogeneous half-space of 100 �m. Data
were calculated synthetically using an FD forward algorithm. All
data were contaminated with Gaussian noise but not with uniform
variance. Experience from many field data sets shows that for con-
figurations with a high geometrical factor (e.g. a dipole–dipole with
large separations), the main contribution to the total error arises
from inaccuracy in voltage measurements. The standard deviation
is usually higher the closer the voltage comes to a site and instrument
dependent minimum voltage U min at which readings are mainly sta-
tistical. To account for such behaviour in a synthetic data set, the
standard deviation of each measurement was estimated as follows:

σi

di
= 1per cent + Umin

Ui
× 100 per cent.

For the given example of a near-surface ERT data set a driving
current of 100 mA and a minimum voltage of 50 µV were assumed.
The corresponding standard deviations varied between 1 per cent
for configurations with the largest and 20 per cent for those with the
smallest measured voltages.

The inversion scheme presented in Fig. 2 required a 96 degrees
of freedom to fit the data to a target misfit of 1 corresponding to an
rms error of 4 per cent. The inverted image (Fig. 7b) shows that the
low-resistivity body was well reconstructed in location and ampli-
tude (9 �m), whereas for the high-resistivity body only the upper
edge could be resolved and its contrast is clearly to small. This can
be explained with a resolution matrix (Fig. 7c). At a depth of 4 m its
radius of resolution is approximately 3 m, indicating that the image
in that region contains averages of a volume much larger than the
body itself. Image noise is seen in the model and the correspond-
ing model covariance matrix (Fig. 7d) predominantly at shallow
depths beneath the electrodes, where resolution is high. Noise is not
projected into the unresolvable regions at greater depths where it
is usually encountered for smoothness-constrained inversion algo-
rithms (Alumbaugh & Newman 2000). The magnitude of the image
noise estimated by the covariance matrix seems slightly too small
in comparison with that estimated from the image itself.

4.4 Efficiency of the data set

The relative importance of an individual data point in the set of
configurations can be estimated from the data resolution matrix.
For accurate data all measurements are linearly independent and
RD equals unity. For inaccurate data only weighted averages of the
measured data can be predicted. Fig. 8 illustrates data resolution
for the noisy data set and 96 incorporated degrees of freedom. The
dipole–dipole measurement 86 in level 2 carries nearly unique in-
formation, for deeper levels data become increasingly correlated,
mostly upward in the pseudosection, indicating that wide spacing
measurements contain much information that is already contained
in a set of shallower measurements. Furthermore, correlations oc-
cur predominantly along diagonals of the pseudosection, i.e. for
measurements with coincident voltage or current dipole positions
(measurement 179). As for the model resolution matrix, information
can be condensed by depicting only the diagonal elements of RD .
Clearly, data importance decreases with higher levels. This analysis
justifies theoretically the often empirically motivated practice of al-
ternatively sparsing out measurements or increasing the dipole width
at high levels. Most noteworthy is the importance of the additional
Schlumberger-like measurements, depicted as an extra row on top
of each triangular pseudosection. In particular, the most asymmet-
rical of these configurations possess a higher information content

than many of the classical dipole–dipole configurations. If multi-
electrode field equipment allows, the measurement of such config-
urations is recommended. A more detailed comparison of data sets
is presented in Friedel (2000).

5 D I S C U S S I O N A N D C O N C L U S I O N S

In this paper, a single-step linearized inversion scheme for dc re-
sistivity data was presented that uses a truncated SVD inverse.
Controlled smoothness and minimum complexity of the solution
is achieved by a line search approach to determine the truncation
value, i.e. the maximum number of degrees of freedom necessary
to fit the data to a prescribed target misfit.

As SVD is well known to be a computationally expensive and
slow procedure the method may never compete with faster algo-
rithms. Its great virtue, however, is that it avoids empirically defined
smoothness constraints that might be inappropriate to the resolving
power of the experimental design. Insight from SVD analysis may,
in contrast, be used as a guideline for the design of optimized ex-
perimental setup, choice of parametrization and model smoothness
functionals. A comparison of various data sets will be the subject
of a subsequent paper.

Besides a resistivity image, the algorithm produces estimates
of model resolution, model covariance and data resolution.
For a low-contrast approximation these estimates can be given
a priori. If the algorithm is incorporated in a full non-linear inversion
scheme and the sensitivity matrix for the final model estimate is used
a posteriori estimates can be derived. The crucial assumption here
is that the model found is linearly close to the true model.

However, analysis of the resolving power in a numerical exam-
ple suggests that the non-uniqueness in the electrical resistivity to-
mography problem arises possibly to a greater degree from its ill-
posedness than from non-linearity.

In a numerical example the linearized single-step scheme pro-
vided reasonable agreement between the image and the input
model, although the latter contained moderate resistivity contrasts
of 10:100:1000 �m. On the other hand, the resolving power of
an exemplary complete four-electrode data set containing classical
dipole–dipole and non-conventional configurations is severely af-
fected by data inaccuracy. Even for perfect data a clearly defined
area could be marked out to which an image of high resolution
and free of geometrical distortion is restricted. For noisy data, this
area shrinks drastically as the weighting kernel functions for given
cells are inflated and groups of parameters and predicted data be-
come increasingly correlated. In the example, the ill-posedness of
the inverse problem can be quantified by the number of effectively
resolvable degrees of freedom in the image (96) which was only
35 per cent of the number of data (275) and less than 9 per cent of
the size of the parameter space (1121). These numbers underline the
need for optimized approaches to the design of experiments and in-
version schemes. Although the theory presented in this paper is only
linear, quantification of the quality of resistivity tomograms and the
efficiency of the imaging process may be used as a guideline in this
way.

To comply with the field users need for few representative and
readily understandable quality estimates for the image, three space-
dependent scalar quantities were introduced: a radius of resolution,
a distortion flag and a percentage of image noise. The radius of
resolution is calculated from the diagonal elements of the model
covariance matrix assuming that the resolving kernel is localized
and nearly a boxcar. Deviations from this assumption are mapped
into the second quantity, the distortion flag, which indicates possible
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(a)

(b)

(c)

(d)

Figure 7. (a) Synthetic input model with two bodies embedded in a homogeneous half-space, (b) inversion result, (c) diagonal elements of resolution matrix
scaled to radius of resolution and (d) model covariance matrix scaled to the percentage of image noise of apparent resistivity.

Figure 8. Data resolution matrix assuming realistic noise. Top: averaging kernels for four selected datum points. Bottom: diagonal elements of the model
resolution matrix. In each diagram the importance of dipole–dipole data is presented in form of a pseudo-section, whereas values for additional asymmetric
Schlumberger-like measurements are depicted in an extra row on top.
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geometrical distortions in the image. Though both measures were
calculated for a certain model parametrization, numerical experi-
ments with finer discretizations proved to be consistent.

The deduction of the simplified functionals from the model res-
olution and covariance matrices is an attempt to condense the enor-
mous amount of information contained in the model resolution and
covariance matrix to user-friendly quantities. As such they are first
and evidently crude approximations and subject to refinement as
theory advances.

A C K N O W L E D G M E N T S

I wish to thank Prof. Franz Jacobs and Dr Hansruedi Maurer for
fruitful discussions and Prof. Ulrich Achauer and an anonymous
reviewer for their helpful comments on the manuscript. I also wish
to thank Jeremy Heighway for reviewing the English. This work
was partially supported by the Deutsche Forschungsgemeinschaft
Ja 590/6.

R E F E R E N C E S

Aki, K. & Richards, P.G., 1980. Quantitative Seismology, Freeman, San
Francisco, CA.

Alumbaugh, D.L. & Newman, G.A., 2000. Image appraisal for 2-D and 3-D
electromagnetic inversion, Geophysics, 65, 1455–1467.

Apparao, A., Rao, T.G., Sastry, R.S. & Sarma, V.S., 1992. Depth of detection
of buried conductive targets with different electrode arrays in resistivity
prospecting, Geophys. Prospect., 40, 749–760.

Avis, N. & Barber, D.C., 1994. Image reconstruction using non-adjacent
drive currents, Clin. Phys. Physiol. Meas., 15, 153–160, Suppl. A.

Backus, G. & Gilbert, F., 1968. The resolving power of gross earth data,
Geophys. J. R. astr. Soc., 16, 169–205.

Barker, R.D., 1979. Signal contribution sections and their use in resistivity
studies, Geophys. J. R. astr. Soc., 59, 123–129.

Barker, R.D., 1989. Depth of investigation of colinear symmetrical four
electrode arrays, Geophysics, 54, 1031–1037.

Beard, L.P. & Tripp, A.C., 1995. Investigating the resolution of IP arrays
using inverse theory, Geophysics, 60, 1326–1341.

Beard, L.B., Hohmann, G.W. & Tripp, A.C., 1996. Fast resistivity/IP inver-
sion using a low contrast approximation, Geophysics, 61, 169–179.

Brunner, I., Friedel, S., Jacobs, F. & Danckwardt, E., 1999. Investigation of
a tertiary maar structure using 3-D resistivity imaging, Geophys. J. Int.,
136, 771–780.

Dahlin, T. & Bing, Z., 2001. A numerical comparison of 2D resistivity
imaging with eight electrode arrays, in Procs. EEGS’01, Birmingham,
EEGS.

Dahlin, T. & Loke, M.H., 1998. Resolution of 2D-Wenner resistivity imaging
as assessed by numerical modelling, J. Appl. Geophys., 38, 237–249.

deGroot-Hedlin, C. & Constable, S.C., 1990. Occam’s inversion to generate
smooth, two-dimensional models from magnetotelluric data, Geophysics,
55, 1613–1624.

Dey, A., Meyer, W.H., Morrison, H.F. & Dolan, W.M., 1975. Electric field
response of two dimensional inhomogeneities to unipolar and bipolar elec-
trode configurations, Geophysics, 40, 630–640.

Dobson, D.C. & Santosa, F., 1994. Resolution and stability analysis of an
inverse problem in electrical impedance tomography: dependence on input
current patterns, SIAM J. Appl. Math., 54, 1342–1360.

Evjen, H.M., 1938. Depth factors and resolving power of electrical measure-
ments, Geophysics, 3, 78–95.

Friedel, S., 1997. Inversion in der Geoelektrik auf der Grundlage sensitiver
Bereiche und algebraischer Rekonstruktionstechniken, Leipziger Geowis-
senschaften, 3, 33–39.
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A P P E N D I X A : S P E C I F I C A
O F T H E L O G P RO B L E M

Because rock resistivity varies over many orders of magnitude, elec-
tromagnetic methods often use logarithms of resistivity m̂ j = ln m j

as parameters and logarithms of apparent resistivity as data d̂i =
ln di (Park & Van 1991; Beard et al. 1996; Olayinka & Weller 1997).
This appendix describes the consequences of such logarithmic scal-
ing on the estimates of resolution, stability and efficiency.

The logarithmic problem can be linearized as follows:

d̂ i = d̂0
i +

M∑
j=1

∂ d̂ i

∂m̂ j

∣∣∣∣∣
m=m0

(
m̂ j − m̂0

j

)
(A1)

with

∂ d̂ i

∂m̂ j
= ∂ ln di

∂ ln m j
= ∂ ln di

∂di

∂di

∂m j

∂m j

∂ ln m j
= m0

j

d0
i

Si j . (A2)

For a homogeneous starting model resistivity and apparent resistiv-
ity are equal d0

i = m0
j and obtain Ŝ = S and

�d̂ = S�m̂. (A3)

When using logarithmic data and parameters in the quasi-
homogeneous case the sensitivity matrix need not be scaled. Fur-
thermore, it follows from

∑M
j=1 Sij = 1 that

d̂ i =
M∑

j=1

Sijm̂ j , (A4)

which allows a linearized forward algorithm for the quasi-
homogeneous case.

The logarithmic transformation requires scaling of the data co-
variance matrix. If a datum di is characterized by its expectation
〈di〉 and a statistical disturbance δdi

di = 〈di 〉 + δdi = 〈di 〉
(

1 + δdi

〈di 〉
)

, (A5)

then it follows for the logarithm

d̂ i = ln di = ln〈di 〉 + ln

(
1 + δdi

〈di 〉
)

= 〈d̂ i 〉 + δd̂ i . (A6)

The diagonal elements of the new scaling matrix D̂ should char-
acterize the reciprocal deviation of the logarithmic data. Although
the logarithmic data may not strictly follow a Gaussian distribu-
tion it seems reasonable to approximate the data covariance matrix
elements by D̂ii = 1/ ln(1 + σi/di ).

By minimizing the functional

‖D̂(�d̂ − Ŝ�̂m̂)‖ = min! (A7)

using the generalized inverse one obtains for accurate data in analogy
to eq. (19) the relation

m̂est
j = m̂0

j +
M∑

k=1

RM, jk

(
m̂k − m̂0

k

)
(A8)

for the logarithmic parameters where the resolution matrix is given
by RM = (D̂Ŝ)†(D̂Ŝ). For the resistivities it follows that

mest
j = m0

j

M∏
k=1

(
mk

m0
k

)RM, jk

. (A9)

Because
∑M

j=1 RM, jk = 1 ∀k and a homogeneous starting model
m0 is assumed it follows furthermore that

mest
j =

M∏
k=1

mk
RM, jk . (A10)

The model estimate obviously contains the geometrically weighted
average of the object resistivities. An analogous relation can be
derived for the data resolution matrix RD = (D̂Ŝ)(D̂Ŝ)†.

The matrix [cov m̂est] = (D̂Ŝ)†[cov d̂](D̂Ŝ)†T yields an estimate
for the statistical deviation of the logarithmic parameters. For practi-
cal purposes it might be desirable to scale this back into a statistical
error of resistivity.

If the logarithmic parameter is given by its expectation and a
statistical disturbance

m̂est
j = 〈

m̂est
j

〉 + δm̂est
j . (A11)

it follows for the resistivity that

mest
j = 〈

mest
j

〉
eδm̂est

j = 〈
mest

j

〉 + 〈mest
j 〉(eδm̂est

j − 1
)

(A12)

= 〈
mest

j

〉 + δmest
j (A13)

and the percentage of resistivity image noise becomes

δmest
j〈

mest
j

〉 = (eδm̂est
j − 1) × 100 per cent, (A14)

where the statistical deviation of the logarithmic parameter may
be approximated by the diagonal element of the model covariance
matrix δm̂est

j = √
[cov m̂] j j . When using such a scaled measure

convenient for intuitive appraisal of a resistivity image, it has to be
noted that it is a simplification and does not represent the percentage
of standard deviation since, owing to the non-linearity of the prob-
lem, the errors in d̂, m̂ and m̂est may not follow Gaussian statistics.
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