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RESOLUTIONS OF MONOMIAL IDEALS AND
COHOMOLOGY OVER EXTERIOR ALGEBRAS

ANNETTA ARAMOVA, LUCHEZAR L. AVRAMOV, AND JÜRGEN HERZOG

Abstract. This paper studies the homology of finite modules over the exterior
algebra E of a vector space V . To such a module M we associate an algebraic
set VE(M) ⊆ V , consisting of those v ∈ V that have a non-minimal annihilator
in M . A cohomological description of its defining ideal leads, among other
things, to complementary expressions for its dimension, linked by a ‘depth
formula’. Explicit results are obtained for M = E/J , when J is generated
by products of elements of a basis e1, . . . , en of V . A (infinite) minimal free
resolution of E/J is constructed from a (finite) minimal resolution of S/I,
where I is the squarefree monomial ideal generated by ‘the same’ products
of the variables in the polynomial ring S = K[x1, . . . , xn]. It is proved that
VE(E/J) is the union of the coordinate subspaces of V , spanned by subsets of
{ e1, . . . , en } determined by the Betti numbers of S/I over S.

Introduction

Let V be a vector space with basis e1, . . . , en over a field K, and let E =
∧

(V )
be the exterior algebra over V . The standard basis elements ek1 ∧ · · · ∧ eks of E,
k1 < · · · < ks, are called monomials in E. An ideal J ⊆ E generated by monomials
is called a monomial ideal. We study the (co)homological algebra of such ideals.

Along with J , we consider the corresponding squarefree monomial ideal I in the
polynomial ring S = K[x1, . . . , xn]. Each S–module Fi in a minimal multigraded
free resolution F of S/I can be written in the form

Fi =
βi⊕

j=1

S(−aij) with uniquely determined aij ∈ Nn .

A well known formula of Hochster [12] on the multigraded Betti numbers of square-
free monomial ideals shows that F is itself squarefree, in the sense that the coor-
dinates of all shifts aij are equal to 0 or 1. Furthermore, there exist interesting
non-minimal squarefree resolutions, for example the Taylor resolution [15].

Given any squarefree resolution F of the monomial ideal I ⊆ S, we choose a
homogeneous basis B of F and construct a multigraded free resolution G of the
monomial ideal J in the exterior algebra E. The resolution depends on B, but
different choices of multihomogeneous bases lead to isomorphic complexes; if F is
minimal, then so is G. The construction is given in Section 1.

Received by the editors September 30, 1997.
1991 Mathematics Subject Classification. Primary 13D02, 13D40, 16E10, 52B20.
Work on this paper started while the first and second author visited the third author; the

hospitality of the University of Essen is gratefully acknowledged.
The second author was partially supported by a grant from the National Science Foundation.

c©1999 American Mathematical Society

579

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



580 A. ARAMOVA, L. L. AVRAMOV, AND J. HERZOG

Section 2 contains applications. An explicit formula gives the multigraded Betti
numbers of the monomial ideal J ⊆ E in terms of those of I. As a consequence,
some interesting properties of J , like the linearity of its minimal resolution or the
independence of its Betti numbers from the characteristic of the base field K, are
seen to be equivalent to the corresponding properties of I. We also show that if I
is a Gotzmann ideal in S, then J is a Gotzmann ideal in E. Our method yields
exterior algebra analogues of the Taylor [15] and Eliahou-Kervaire [10] resolutions.

In Section 3 we associate with each finite E-module M an algebraic set VE(M) ⊆
V . As for modular representations of finite groups, which provide the model, there
are two constructions: in terms of the action of the graded ring ExtE(K, K) on
ExtE(M, K), following Quillen [14], or in terms of the action of V on M , mimicking
Carlson [7]. We prove that they yield the same result. Along with other properties
of VE(M), this parallels results over group algebras; techniques developed for that
case have been successfully extended to other Hopf algebras, but they do not always
apply here, because E is not a Hopf algebra (in the category of rings). Our approach
is similar to that used in [4] to study modules over complete intersections, and takes
advantage of the simple structure of ExtE(K, K); by Cartan [8] it is the symmetric
algebra of HomK(V, K). In particular, we prove that the dimension of VE(M) is
complementary to the (appropriately defined) depth of M over E.

When ∆ is a simplicial complex and J = J∆ is the ideal in E generated by all
monomials ek1 ∧· · ·∧eks such that { k1, . . . , ks } 6∈ ∆, the K-algebra K〈∆〉 = E/J∆

is called the indicator algebra of ∆. It has proved to be important in the study of
the f -vector of ∆; see for example [3]. The corresponding squarefree ideal I = I∆

in S defines the more familiar Stanley-Reisner ring K[∆] = S/I∆. In Section 4 we
prove that VE(K〈∆〉) is a union of coordinate subspaces of V , determined by the
supports of the shifts of a minimal free resolution of the Stanley-Reisner ring K[∆]
over S. This has consequences for the simplicial cohomology of ∆.

We are grateful to Ragnar-Olaf Buchweitz for several inspiring discussions.

1. The main construction

In the rest of the paper we fix some—mostly standard—notation.
An n-tuple (a1, . . . , an) ∈ Zn is squarefree if 0 ≤ aj ≤ 1 for j = 1, . . . , n. For

a = (a1, . . . , an) ∈ Zn we set |a| = a1 + · · · + an, and supp(a) = { j | aj 6= 0 }; by
convention, supp(0) = ∅, and [n] = { 1, . . . , n }. For an element u of an n-graded
vector space M =

⊕
a∈Zn Ma, the notation deg(u) = a is equivalent to u ∈ Ma; we

set supp(deg(u)) = supp(u) and | deg(u)| = |u|. The decomposition M =
⊕

j∈Z Mj,
where Mj =

⊕
a∈Zn,|a|=j Ma, turns M into a graded vector space.

Let S = K[x1, . . . , xn] be the polynomial ring on n commuting variables, and
let E = K〈e1, . . . , en〉 be the exterior algebra on n alternating variables. They
are n-graded by deg(xj) = deg(ej) = εj = (0, . . . , 0, 1, 0 . . . , 0), with 1 in the jth
position. For σ ⊆ [n] we set xσ = xk1 · · ·xks and eσ = ek1 ∧ · · · ∧ eks , where
σ = { k1, . . . , ks } with k1 < · · · < ks; we say that eσ is a monomial in E. For
a ∈ Nn we set xa = xa1

1 · · ·xan
n and ea = esupp(a) .

The following simple observation is used in many computations.

Observation 1.0. For monomials u, v ∈ E with supp(v) ⊆ supp(u) there exists a
unique monomial u′ ∈ E such that vu′ = u; we then set v−1u = u′. For monomials
u, v, w, z ∈ E the equalities below hold whenever the left hand side is defined:

(v−1u)w = v−1(uw) and (z−1v)(v−1u) = z−1u .
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RESOLUTIONS AND COHOMOLOGY OF MONOMIAL IDEALS 581

Construction 1.1. Let (F, θ) be a squarefree complex of n-graded S-modules,
meaning that each Fi has a basis Bi with deg(f) squarefree for all f ∈ Bi.

Let Pi be an n-graded K-vector space with basis Bi, and set B =
⊔

i Bi. Let Cj

be the n-graded right E-module with basis { y(a) | a ∈ Nn , deg
(
y(a)

)
= a , |a| = j }.

The tensor product Cj ⊗K Pi becomes a right n-graded E–module, by

deg(y(a) ⊗ f) = a + b ;

(y(a) ⊗ f)e = (−1)|b|y(a)e⊗ f ,
where b = deg(f) .

Let G` be the residue module of
⊕

`=j+i Cj ⊗K Pi by the submodule generated by
{ y(a) ⊗ f | supp(a) 6⊆ supp(f) }, and write y(a)f for the image of y(a) ⊗ f in G`.
Thus, G` is the n-graded right E-module with basis

Y` =

{
y(a)f

∣∣∣∣∣ a ∈ Nn , f ∈ Bi , supp(a) ⊆ supp(f)

` = |a|+ i , deg(y(a)f) = a + deg(f)

}
.

If in the complex (F, θ) the differential of f ∈ Bi has the form

θ(f) =
∑

j : fj∈Bi−1

λjx
b−bj fj with λj ∈ K , b = deg(f) , bj = deg(fj) ,

then define homomorphisms G` −→ G`−1 of n-graded E-modules by

δ(y(a)f) = (−1)|b|
∑

k∈supp(a)

y(a−εk)fek,

ϑ(y(a)f) = (−1)|a|
∑

j : fj∈Bi−1

y(a)fjλje
−1
bj

eb .

and set ∂ = δ + ϑ : G` −→ G`−1.

Proposition 1.2. The preceding construction yields a complex (G, ∂) of right n-
graded E-modules. If (G′, ∂′) is the complex obtained from homogeneous bases B′

i

of Fi, then G′ ∼= G as complexes of n-graded E-modules.

Hochster’s formula [12] for the Betti numbers of a squarefree monomial ideal
I ⊆ S shows that its minimal free resolution (F, θ) is squarefree. In that case, we
can say more about the complex (G, ∂) described above.

Theorem 1.3. Let Σ be a set of subsets of [n], let I ⊆ S = K[x1, . . . , xn] be
the ideal generated by the squarefree monomials { xσ | σ ∈ Σ }, and let J ⊆ E =
K〈e1, . . . , en〉 be the ideal generated by the monomials { eσ | σ ∈ Σ }.

If (F, θ) is a (minimal) free resolution of S/I over S, then the complex (G, ∂) of
Construction 1.1 is a (minimal) free resolution of E/J over E.

Proof of the proposition. To show that ∂2 = 0 we establish equalities

δ2 = 0 ; ϑ2 = 0 ; δϑ = −ϑδ .

The first one comes from an easy direct computation.
Writing θ(fj) =

∑
k : gk∈Bi−2

µkjx
bj−ckgk ∈ Fi−2, we have

θ2(f) =
∑

j

λjx
b−bj θ(fj) =

∑
j

λjx
b−bj

∑
k

µkjx
bj−ckgk

=
∑

k

( ∑
j

µkjλj

)
xb−ckgk = 0 .
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582 A. ARAMOVA, L. L. AVRAMOV, AND J. HERZOG

Thus,
∑

j µkjλj = 0, so we get the second equality from:

ϑ2(y(a)f) = (−1)|a|
∑

j

ϑ(y(a)fj)(λje
−1
bj

eb)

=
∑

j

( ∑
k

y(a)gk(µkje
−1
ck

ebj )
)

(λje
−1
bj

eb)

=
∑

k

y(a)gk

( ∑
j

µkjλj(e−1
ck

ebj )(e
−1
bj

eb)
)

=
∑

k

y(a)gk

( ∑
j

µkjλj

)
e−1

ck
eb = 0 .

Note that if f ∈ B with deg(f) = b and e ∈ E with deg(e) = c, then

δ(y(a)fe) = δ(y(a)f)e

ϑ(y(a)fe) = ϑ(y(a)f)e
provided supp(a) ⊆ supp(b) + supp(c) .

When supp(a) ⊆ supp(b), these formulas hold by definition. If supp(a) 6⊆ supp(b),
then y(a)f = 0, so we check that the right hand sides vanish. On the one hand,
δ(y(a)fe) = ±∑

k∈supp(a) y(a−εk)feke; if supp(a−εk) 6⊆ supp(b), then y(a−εk)f = 0;
otherwise, k ∈ supp(a) \ supp(f), hence k ∈ supp(c), so eke = 0. On the other
hand, ϑ(y(a)f) = ±∑

j y(a)gj(λje
−1
bj

eb) with gj ∈ B. Since supp(gj) ⊆ supp(f), for
all j we have supp(a) 6⊆ supp(gj), and hence y(a)gj = 0.

The third equality now results from the computation:

ϑ(δ(y(a)f)) = (−1)|b|ϑ
( ∑

k∈supp(a)

y(a−εk)fek

)
= (−1)|b|

∑
k∈supp(a)

ϑ(y(a−εk)f)ek

= (−1)|b|+|a|−1
∑

k∈supp(a)

( ∑
j : fj∈Bi−1

y(a−εk)fjλje
−1
bj

eb

)
ek

= (−1)|a|−1
∑

j : fj∈Bi−1

( ∑
k∈supp(a)

(−1)|bj |y(a−εk)fjek

)
λje

−1
bj

eb

= (−1)|a|−1
∑

j : fj∈Bi−1

δ(y(a)fj)λje
−1
bj

eb

= (−1)|a|−1δ

( ∑
j : fj∈Bi−1

y(a)fjλje
−1
bj

eb

)
= −δ(ϑ(y(a)f)) .

When (G′, ∂′) is a complex obtained from a homogeneous basis B′ of F , write
each f ′ ∈ B′

i in the form f ′ =
∑

j : fj∈Bi
λjx

b′−bj fj with b′ = deg(f ′) and bj =
deg(fj), and define homomorphisms of E-modules γi : G′

i −→ Gi by

γi(y(a)f ′) =
∑

j : fj∈Bi

y(a)fλje
−1
bj

eb′ .

Computations similar to (and more straightforward than) those above show that
γ(ϑ′(y(a)f ′)) = ϑ(γ(y(a)f ′)) and γ(δ′(y(a)f ′)) = δ(γ(y(a)f ′)), so γ is a chain map.
It is clearly bijective, so we have the desired isomorphism.
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RESOLUTIONS AND COHOMOLOGY OF MONOMIAL IDEALS 583

Proof of the theorem. Let (F, θ) be an n-graded free resolution of S/I over S, and
let (G, ∂) be the complex obtained from it by Construction 1.1. To show that it is
a resolution of E/J , we construct a K-linear chain homotopy χ such that

χ∂ + ∂χ = id
eG(∗)

where G̃ is the complex obtained from G by replacing G0 with J .
Since F is exact, there is a homogeneous K-linear chain homotopy τ such that

τθ + θτ = id
eF

where F̃ is the complex obtained from F by replacing F0 with I.
Thus, for f ∈ B with deg(f) = b and σ ⊆ [n] such that supp(b)∩σ = ∅, we have

τ(fxσ) =
∑

k

µkxσxb−akhk where µk ∈ K , hk ∈ B , ak = deg(hk) .

We define a K-linear map χ on the K-basis of G̃ described in Construction 1.1 by

χ(y(a)feσ) =



∑
k hkµke−1

ak
(ebeσ) if a = 0 and supp(b) ∩ σ = ∅ (1)

(−1)r+|b|yεsfeσ\{s} if a = 0 < min(supp(b) ∩ σ) = s (2)
0 if a 6= 0 and supp(b) ∩ σ = ∅ (3)
0 if 0 < min(a) < min(supp(b) ∩ σ) (4)
(−1)r+|b|y(a+εs)feσ\{s} if min(a) ≥ min(supp(b) ∩ σ) = s (5)

where b = supp(f) and r = |{ k ∈ σ | k < min(supp(b) ∩ σ) }| .
We establish (∗), by four separate computations. To simplify notation, we set

s(c) = supp(c) for c ∈ Nn and uj = λje
−1
bj

eb for j ∈ [n] .

(1) One has ∂(feσ) =
∑

j fj(uj)eσ. Since s(uj) = s(b) \ s(bj) for every j, we get

s(uj) ∩ σ = ∅ and s(bj) ∩ s(ujeσ) = s(bj) ∩ σ = ∅ .

Write τ(fjx
σxb−bj ) =

∑
` g`ν`jx

σxb−c` with g` ∈ B, ν`j ∈ K and c` = deg(g`). As
ebj ujeσ = λjebeσ, one has χ(fjujeσ) = λj

∑
` g`ν`je

−1
c`

(ebeσ), therefore

χ(∂(feσ)) =
∑

`

g`

(∑
j

λjν`j

)
e−1

c`
(ebeσ) .

On the other hand, if θ(hk) =
∑

` g`λ`kxak−c` with λ`k ∈ K, then

∂(χ(feσ)) =
∑

k

∑
`

g`µkλ`k(e−1
c`

eak
)
(
e−1

ak
(ebeσ)

)
=

∑
`

g`

( ∑
k

µkλ`k

)
e−1

c`
(ebeσ).

Since θτ + τθ = idF , we see that there exists a `0 such that g`0 = f , and∑
k

µkλ`k +
∑

j

λjν`j =

{
1 if ` = `0 ;
0 if ` 6= `0 .

This shows that ∂χ(feσ) + χ∂(feσ) = feσ, as desired.
(2) and (5) In either case, ∂χ(y(a)feσ) is equal to

(−1)r
∑

k∈s(a+εs)

y(a+εs−εk)fekeσ\{s}

+ (−1)r+|b|+|a|+1
∑

j : s(bj)⊇s(a+εs)

y(a+εs)fjujeσ\{s} .
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Note that y(a)feσ appears above as a summand in the first sum for k = s. Now
we compute χ(∂(y(a)feσ)). If s /∈ s(bj) for some j, then s ∈ s(b) \ s(bj) = s(uj),
therefore ujes = 0, so that in ∂(y(a)feσ) only the summands y(a)fjujeσ with s ∈
s(bj) remain. In this case min(s(bj) ∩ s(ujeσ)) = s, hence

χ(y(a)fjujeσ) = (−1)r+|bj|+|uj |y(a+εs)fjujeσ\{s} .

Since |uj | + |bj | = |b|, we see that the second sum in ∂χ(y(a)feσ) appears in
χ(∂(y(a)feσ)) with the opposite sign. If k ∈ s(a) and k /∈ σ, then k ≥ min(a) ≥ s,
so min(s(b) ∩ (σ ∪ k)) = s. As min(a− εk) ≥ min(a) ≥ s, we get

(−1)|b|χ(y(a−εk)fekeσ) = (−1)r+1y(a+εs−εk)fekeσ\{s} .

The desired equality follows.
(3) For each j with s(a) ⊆ s(bj), one has s(bj)∩σ = ∅, hence χ(y(a)fjujeσ) = 0.

Let k ∈ s(a), k /∈ σ and consider χ(y(a−εk)fekeσ). We now have s(b)∩ (σ∪k)) = k.
If k > min(a), then min(a − εk) = min(a), therefore χ(y(a−εk)fekeσ) = 0. Let
k = min(a). Then min(a− εk) ≥ k, hence (−1)|b|χ(y(a−εk)fekeσ) = y(a)feσ. This
proves the desired equality.

(4) For each j with s(a) ⊆ s(bj), one has ujem = 0 or min(s(bj)∩σ) = m, so that
in both cases χ(y(a)fjujeσ) = 0. Let k ∈ s(a), k /∈ σ and consider χ(y(a−εk)fekeσ).
If k > min(a), then min(a−εk) = min(a) < m, therefore min(a) < min(s(b)∩(σ∪k))
and by definition χ(y(a−εk)fekeσ) = 0. Let k = min(a). Then min(s(b)∩ (σ∪k)) =
k ≤ min(a− εk), therefore (−1)|b|χ(y(a−εk)fekeσ) = y(a)feσ. This proves (∗).

2. Applications

Recall that each finite n-graded module M over A = E or A = S has a unique up
to isomorphism minimal resolution by free n-graded A-modules, and homogeneous
A-linear homomorphisms. The multigraded Betti number βA

ia(M) is the number of
basis elements of the ith free module in such a resolution, that are homogeneous of
degree a. The multigraded Poincaré series of M over A is defined by

P A
M (t, u) =

∑
i≥0

∑
a∈Nn

βA
ia(M)tiua .

For the rest of this section, I is an ideal generated by squarefree monomials in
S, and J denotes the corresponding monomial ideal in E.

Counting ranks in the resolution of Theorem 1.3 we get a new proof of [3, (6.4)].

Proposition 2.1. There is an equality of formal power series

P E
E/J(t, u) =

∑
i≥0

∑
a∈Nn

βS
ia(S/I)

tiua∏
j∈supp(a)

(1− tuj)
. �

We record a couple of immediate consequences of this formula.

Corollary 2.2. (1) The multigraded Betti numbers of I are independent of the
characteristic of the field K if and only if this is true for J .

(2) The ideal I has a linear free resolution over S if and only if the ideal J has
a linear free resolution over E. �
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An important class of ideals in S with linear resolution are the Gotzmann ideals.
Recall that an ideal L ⊆ A, where A = S or A = E, is called Gotzmann if it

is generated by elements of the same degree, say d, and its span in degree d + 1 is
the smallest possible: rankK Ld+1 ≤ rankK L′d+1 holds for all graded ideals L′ ⊆ A
with rankK L′d = rankK Ld. It is a widely open question which monomial ideals
are Gotzmann. From a combinatorial point of view, it is particularly interesting
for ideals generated by squarefree monomials.

Proposition 2.3. If the ideal I ⊆ S is Gotzmann, then so is the ideal J ⊆ E.

Note that the converse may fail: J = (e1 ∧ e2 ∧ e3, e1 ∧ e2 ∧ e4, e1 ∧ e3 ∧ e4) ⊆ E
is a Gotzmann ideal, but I = (x1x2x3, x1x2x4, x1x3x4) ⊆ S is not.

Proof. Let J ′ ⊆ E be an ideal generated in degree d, with rankK J ′d = rankk Jd.
The algebraic Kruskal-Katona Theorem [3, (4.4)] yields a monomial ideal J lex

generated in degree d, with rankK J lex
d = rankK J ′d and rankK J lex

d+1 ≤ rankK J ′d+1.
For the squarefree monomial ideal I ′ ⊆ S corresponding to J lex, we have

rankK Jd+1 = nβ0d(J) − β1d+1(J)

= nβ0d(I) − (β1d+1(I) + dβ0d(I))
= rankK Id+1 − d rankK Id

≤ rankK I ′d+1 − d rankK I ′d
= nβ0d(I ′)− (β1d+1(I ′) + dβ0d(I ′))

= nβ0d(J lex)− β1d+1(J lex)

= rankK J lex
d+1

where the inequality is the Gotzmann hypothesis on I, the second and penultimate
equalities come from Proposition 2.1, the rest are read off from the corresponding
minimal resolutions. Altogether, we get rankK Jd+1 ≤ rankK J ′d+1, as desired.

Applying Theorem 1.3 to the Taylor resolution of monomial ideals in polynomial
rings (cf. [15] or [9, p. 439]), we obtain an analogue over exterior algebras.

For a set of monomials { u1, . . . , um } and a subset τ ⊆ [m] = { 1, . . . , m }, we
denote uτ to be the least common multiple of the monomials { uj | j ∈ τ }.
Proposition 2.4. Let J ⊆ E be an ideal generated by a set { u1, . . . , um } of mono-
mials. The right E-modules Ti with basis

{ y(a)fτ | a ∈ Nn , |a|+ |τ | = i , τ ⊆ [m] , supp(a) ⊆ supp(uτ ) }
where deg(y(a)fτ ) = a + deg uτ , and the E-linear maps defined by

∂(y(a)fτ ) = (−1)|uτ |
∑

k∈supp(a)

y(a−εk)fτek

+
∑

j : supp(uτ\{j})⊇supp(a)

(−1)rj+|a|y(a)fτ\{j}u
−1
τ\{j}uτ

where rj = |{ t ∈ τ | t < j }|, form an n-graded resolution of E/J . �
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Example 2.5. When J = (e1, . . . , en), the proposition provides a minimal n-
graded resolution of K = E/(e1, . . . , en) over E. Another one is the Cartan reso-
lution (C, ∂), where Ci has a basis {w(c) | c ∈ Nn, |c| = i }, and

d(w(c)) =
∑

k∈supp(c)

w(c−εk)ek .

To get an isomorphism of complexes γ : C −→ T , note that each c ∈ Nn can be
written uniquely as c = a + b with supp(c) = supp(b) and b squarefree, and set

γ(w(c)) = (−1)|b|(|a|+(|b|−1)/2)y(a)fsupp(b) .

Our last application is to stable ideals, a notion extended in [3] from polynomial
rings to exterior algebras: setting max(eσ) = max{ i | i ∈ σ }, call a monomial ideal
J ⊆ E stable if ejeσ\{m} ∈ J for each eσ ∈ J and each j < m = max(eσ).

For a monomial ideal J ⊆ E, we denote G(J) the uniquely defined minimal
generating set of J consisting of monomials. As in [10], it is easily seen that
each monomial u′ ∈ J has a unique decomposition u′ = uw with u ∈ G(J) and
max(u) < min(w). Applying Theorem 1.3 to the resolution of squarefree stable
ideals in S given in [2], we get a resolution for stable monomial ideals in E.

Proposition 2.6. If J ⊆ E is a stable ideal, then E/J has a minimal resolution
(G, ∂) by n-graded free E-modules G` with basisy(a)fσ,u

∣∣∣∣∣∣∣
a ∈ Nn , σ ⊆ [n] , u ∈ G(J)

supp(a) ⊆ σ ∪ supp(u) , σ ∩ supp(u) = ∅ , max(σ) < max(u)

i = |a|+ |σ|+ 1 , deg(y(a)fσ,u) = a + deg(eσ) + deg(u)


and differentials ∂` : G` −→ G`−1 given by

∂(y(a)fσ,u) = (−1)|u|+|σ|
∑

`∈supp(a)

y(a−ε`)fσ,ue`

+ (−1)|a|
∑
j∈σ

(
(−1)|σ|y(a)fσ\{j},uej + (−1)(|σ|−1)|wj |fσ\{j},uj

wj

)
where uj ∈ G(J) is determined from the unique decomposition uej = ujwj described
above, and y(b)fρ,v = 0 if max(ρ) > max(v) or supp(b) 6⊆ ρ ∪ supp(v). �

The preceding result was originally proved by different means in [3, (2.1)].

3. Cohomology

We study right modules over the exterior algebra E. Since the ideal (V ) ⊂ E is
nilpotent, each (finite) E-module M has a unique up to isomorphism minimal free
resolution F by (finite) free E-modules. The rank βE

i (M) of the free E-module Fi

is known as the ith Betti number of M over E. The size of F is measured by the
complexity of M over E, and is introduced as follows:

cxE M = inf{ c ∈ Z | βE
i (M) ≤ αic−1 for some α ∈ R and all i ≥ 1 } .

For each v ∈ V = E1, the equality v2 = 0 implies Mv ⊆ AnnM (v). We say that
v is M -regular if equality holds, or, equivalently, if the infinite complex of K-spaces

(M, ρv) : . . . −→ M
ρv

−→ M
ρv

−→ M −→ . . . where ρv(y) = yv

has trivial homology H∗(M, ρv). Otherwise, we say that v is M -singular .
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The set VE(M) ⊆ V of M -singular elements is called the rank variety of M .
If M =

⊕
a∈Z Ma is graded , regularity can also be introduced by the vanishing

of the cohomology H∗(M, v) of the finite complex of K-vector spaces

(M, v) : . . . −→ Ma−1

ρv
a−1−−−→ Ma

ρv
a−→ Ma+1 −→ . . . .

Recall that when M and N are graded E-modules, their graded tensor product
M⊗gr

KN and homomorphism space Homgr
K(N, M) have diagonal actions :

(x⊗ y)eσ =
∑
τ⊆σ

(−1)k|τ | sgnτ
σ\τ xeτ ⊗ yeσ\τ

(γeσ)(y) =
∑
τ⊆σ

(−1)|τ |(k+(|τ |+1)/2) sgnτ
σ\τ γ(yeτ)eσ\τ

for y ∈ Nk and σ ⊆ [n]

where sgnτ
σ\τ is the sign of the permutation (τ, σ \ τ); that these are (graded)

E-modules follows from the fact that E is a super Hopf algebra.
The properties of VE(M) are similar to those of the varieties of modular repre-

sentations, but proofs are simpler; compare the account by Benson [5].

Theorem 3.1. If the field K is algebraically closed, then the rank varieties of finite
E–modules M , N satisfy the following properties.

(1) VE(M) is a cone (that is, a homogeneous algebraic subset) in V .
(2) dim VE(M) = cxE M and 2n−cxE M divides rankK M .
(3) VE(M) = {0} if and only if M is free.
(4) VE(M) = VE(N) if M is a syzygy of N .
(5) If M ⊆ N , then each one of the three varieties VE(M), VE(N), VE(N/M),

is contained in the union of the other two.
(6) VE(M ⊕N) = VE(M) ∪ VE(N) .
(7) VE(M⊗gr

KN) = VE(M) ∩ VE(N) = VE(Homgr
K(N, M)) if M , N are graded.

(8) Each cone in V is the rank variety of some graded E–module.

As over commutative rings, the notion of regularity can be extended to sequences.
Elements v1, . . . , vr ∈ V form an M -regular sequence if vi is (M/M(v1, . . . , vi−1))-
regular for 1 ≤ i ≤ r, in other words, if yvi ∈ M(v1, . . . , vi−1) implies that y ∈
M(v1, . . . , vi) for 1 ≤ i ≤ r. It is clear that each M -regular sequence can be
extended to a maximal one. The supremum of the lengths of M -regular sequences
is called the depth of M over E, and denoted depthE M .

Parts of the preceding theorem depend on a depth-formula for modules over exte-
rior algebras that is similar to the extension of the classical Auslander-Buchsbaum
equality to modules over complete intersections, obtained in [4].

Theorem 3.2. If the field K is infinite and M is a finite E-module, then each
maximal M -regular sequence has depthE M elements, and

depthE M + cxE M = n .

Examples 3.3. (1) If rankK M is odd, then cxE M = n.
Indeed, if depthE M > 0, then taking an M -regular v ∈ V we get rankK M =

rankK(AnnM (v)) + rankK(Mv) = 2 rankK(Mv), so rankK M is even.
(2) The depth equality fails when K is finite and n ≥ 2.
Indeed, if v ∈ V \ {0}, then E

λv−→ E
λv−→ E with λv(e) = ve is an exact complex

of E–modules, so cxE(E/(v)) = 1, and hence M =
⊕

v∈V E/(v) has complexity 1;
on the other hand, it is clear that VE(M) = V , hence depthR M = 0.
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To begin the proofs, we record some simple facts on regularity.

Remarks 3.4. Let M be an E-module.
(1) When v2 = 0, any K[v]-module is a direct sum of copies of K[v] and K[v]/(v).

Thus, v ∈ V = E1 is regular if and only if M is free over the subalgebra K[v] ⊆ E.
(2) For v ∈ V , let π : E −→ E/(v) and ρ : M −→ M/Mv be canonical homomor-

phisms. If v is M -regular, then they induce isomorphisms

Exti
π(ρ, K) : Exti

E/(v)(M/Mv, K) ∼= Exti
E(M, K)

Torπ
i (ρ, K) : TorE

i (M, K) ∼= TorE/(v)
i (M/Mv, K)

for i ≥ 0 .

Indeed, M is free over K[v] by (2), so if G is a free resolution of M over
E, then G/Gv is a free resolution of M/Mv over E/(v). Thus, Ext∗π(ρ, K) and
Torπ

∗ (ρ, K) are the maps induced in homology by the isomorphisms of complexes
HomE/(v)(G/Gv, K) ∼= HomE(G, K) and G⊗E K ∼= (G/Gv)⊗E/(v)K, respectively.

(3) Regularity of a sequence v = v1, . . . , vd ∈ V is detected by its Cartan complex
C(v; M), defined by Ci(v, M) =

⊕
a∈Nn,|a|=i w(a)M with w(a)M ∼= M for each

a ∈ Nn and ∂(w(a)u) =
∑

`∈supp(a) w(a−ε`)ue` for u ∈ M .
We set H(v; M) = H

(
C(v; M)

)
, and note that the following are equivalent:

(i) v is M -regular.
(ii) M is a free module over K[v1, . . . , vd] .
(iii) H1(v; M) = 0 .
(iv) Hi(v; M) = 0 for i ≥ 1 .
Indeed, let E′ be an exterior algebra on alternating variables e′1, . . . , e

′
d, and let

ϕ : E′ −→ E be the homomorphism of K-algebras with ϕ(e′i) = vi for i = 1, . . . , r.
If C′ is the Cartan resolution of the right E′–module K (cf. Remark 2.5), then
C(v; M) = C ′ ⊗E M , so Hi(v; M) = TorE′

i (K, M). Thus, (i) =⇒ (iv) by iterated
use of (2). If (iii) holds, then TorE′

1 (K, M) = 0. Computing Tor from a minimal
free resolution of M over E′ we see that M ′ is free over E′; it follows that ϕ is an
isomorphism, so (iii) =⇒ (ii) holds. Finally, (ii) =⇒ (i) is trivial.

(4) By (3), each permutation of an M -regular sequence is itself M -regular.

To study the geometry of VE(M) we use product structures in cohomology. We
recall the basics, referring to Mac Lane [13] or Bourbaki [6] for details.

Construction 3.5. For E-modules M , L, N and i, j ∈ Z, composition pairings

Extj
E(L, N)× ExtiE(M, L) −→ Exti+j

E (M, N)

are introduced as follows. Let C and G be E-free resolutions of L and M , respec-
tively, and represent elements in ExtiE(M, L) and Extj

E(L, N) by E-linear homo-
morphisms κ : Gi −→ L with κ∂i+1 = 0 and ξ : Cj −→ N with ξ∂j+1 = 0. Choosing
a lifting of κ to an E-linear chain map κ̃ : G −→ C of degree −i, define the product
cl(ξ) cl(κ) to be the class of the composition ξκ̃i+j : Gi+j −→ N .

The pairings are K-bilinear, associative, and natural (hence, independent of the
choices made above). They make Ext∗E(K, K) =

⊕∞
i=0 ExtiE(K, K) into a graded

algebra, and Ext∗E(M, K) =
⊕∞

i=0 Exti
E(M, K) into a graded left module over it.

Proposition 3.6. There is a natural isomorphism of graded K-algebras in V

Ext∗E(K, K) ∼= Sym∗
K(V ∨) where V ∨ = HomK(V, K) .

If M is a finite E-module, then the Ext∗E(K, K)-module Ext∗E(M, K) is finite.
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Proof. Cartan’s resolution (C, ∂) of K over E (cf. Example 2.5) is minimal, so

Exti(K, K) = Hi
(
HomE(C, K)

)
= HomE

( ⊕
a∈Nn,|a|=i

Ew(a), K

)
.

The homomorphisms of E-modules {χa : Ci −→ K | a ∈ Nn, |a| = i }, such that
χa

(
w(b)

)
= 1 for b = a and χa

(
w(b)

)
= 0 for b ∈ Nn with |b| = i and b 6= a

form a K-basis of HomE(C, K). The E-linear maps

χ̃a
i+j : Ci+j −→ Cj defined by χ̃a

i+j

(
w(b)

)
=

{
w(b−a) if b− a ∈ Nn ;
0 otherwise ,

define a lifting of χa to a chain map C −→ C. This means that χaχb = χa+b for all
b ∈ Nn, so Ext∗E(K, K) is the polynomial ring on χ1 = χε1 , . . . , χn = χεn .

To see that the Ext∗E(K, K)-module Ext∗E(M, K) is finite we argue by induction
on q = max{ r | MEr 6= 0 }. If q = 1, then M ∼= Ks for some s and the assertion
is clear. If q > 1, then M ′ = M(V ) 6= 0, so the exact sequence 0 −→ M ′ −→ M −→
M ′′ −→ 0 of E-modules yields an exact sequence of Ext∗E(K, K)-modules

Ext∗E(M ′, K) −→ Ext∗E(M, K) −→ Ext∗E(M ′′, K)(3.6.1)

in which those on the outside are noetherian by the induction hypothesis.

Remark 3.7. If χ1, . . . , χn is the basis of V ∨ dual to the basis e1, . . . , en of V , then
we identify Ext∗E(K, K) with the graded polynomial ring S = K[χ1, . . . , χn] in
which each χi has degree 1; the elements of S act as functions on V .

Applied to the S-module Ext∗E(M, K), the Hilbert-Serre theorem yields:

Corollary 3.8. The Krull dimension of the S-module Ext∗E(M, K) is equal to
cxE M , and there exists a polynomial pM (t) ∈ Z[t] with pM (1) > 0, such that

PE
M (t) =

pM (t)
(1− t)c

with c = cxE M .

Now we give a basic cohomological description of the rank variety.

Theorem 3.9. If K is algebraically closed and M is a finite E-module, then

VE(M) =
{

v ∈ V | ξ(v) = 0 for all ξ ∈ AnnS
(
Ext∗E(M, K)

)}
.

Proof. Let I = AnnS
(
Ext∗E(M, K)

)
. For v ∈ V , set V v = Ker

(
V ∨ −→ (vK)∨

)
,

and let Pv denote the homogeneous prime ideal (V v) of S. By the Nullstellensatz,
we have to prove that I ⊆ Pv if and only if v is M -singular.

If v is singular, then by Remark 3.4 (1) we have an isomorphism of K[v]-modules
M ∼= K[v]p ⊕Kq with q > 0. The inclusion ι : K[v] ↪→ E induces a diagram:

Ext∗E(K, K)⊗K Ext∗E(M, K) −−−−→ Ext∗E(M, K)

Ext∗ι (K,K)⊗Ext∗ι (M,K)

y yExt∗ι (M,K)

Ext∗K[v](K, K)⊗K Ext∗K[v](M, K) −−−−→ Ext∗K[v](M, K) .

It commutates by naturality of composition products, so Ext∗ι (K, K)(I) annihilates

Ext∗K[v](M, K) ∼= Kp ⊕ Ext∗K[v](K, K)q .

It is then equal to 0, that is, I ⊆ KerExt∗ι (K, K) = Pv.
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If v is regular, then π : E −→ E/(v) and ρ : M −→ M/Mv induce a diagram

Ext∗E(K, K)⊗K Ext∗E(M, K) −−−−→ Ext∗E(M, K)

Ext∗π(K,K)⊗Ext∗π(ρ,K)

x xExt∗π(ρ,K)

Ext∗E/(v)(K, K)⊗K Ext∗E/(v)(M/Mv, K) −−−−→ Ext∗E/(v)(M/Mv, K) .

It is commutative by naturality, and Ext∗π(ρ, K) is an isomorphism by Remark 3.4
(2). Since Ext∗E/(v)(M/Mv, K) is a finite Ext∗E/(v)(K, K)-module by Proposition
3.6, we conclude that Ext∗E(M, K) is also. It follows that the composition

Ext∗E/(v)(K, K)
Ext∗π(K,K)−−−−−−−→ Ext∗E(K, K) = S −→ S/I

is a finite homomorphism of rings. Assuming that Pv ⊇ I, we conclude that

Sym∗
K [V v] ∼= Ext∗E/(v)(K, K) −→ S/Pv = Ext∗K[v](K, K) ∼= Sym∗

K [(Kv)∨]

is a finite homomorphism; this is absurd, since it maps V v to 0.

Proof of Theorem 3.2. Let v = v1, . . . , vd be an arbitrary maximal M -regular
sequence in V . We want to prove that depthE M = d and cxE M = n− d.

We first assume that K is algebraically closed; the elements in a regular sequence
being K-linearly independent, we have d ≤ n, so we can induce on d. An equality
d = 0 means that each element of V is M -singular, that is, depthE M = 0; on the
other hand, Theorem 3.9 yields cxR M = dim VE(M) = dim V = n.

If d > 0, then the images of v2, . . . , vd in E/(v1) form a maximal (M/Mv1)-
regular sequence. The induction hypothesis yields depthE(M/Mv1) = d− 1 and

cxE/(v1)(M/Mv1) = (n− 1)− (d− 1) = n− d .

As cxE/(v1)(M/Mv1) = cxE M by Remark 3.4 (2), we are done.
Now let K be an arbitrary infinite field. Taking an algebraic closure K̄ of K, we

consider the finite module M̄ = M ⊗K K̄ over the exterior algebra Ē = E ⊗K K̄
of the K̄-vector space V̄ = V ⊗K K̄. Due to the flatness of Ē over E, we see that
(considered as a sequence in V̄ ) any M -regular sequence in V is M̄ -regular, and
that βĒ

i (M̄) = βE
i (M) for each i. This yields

depthE M ≤ depthĒ M̄ = d and cxE M = cxĒ M̄ = n− d .

Assuming that the M̄ -regular sequence v is not maximal, we can find in V̄ /K̄v an
element v that is

(
M̄/M̄(v)

)
-regular. As the set of regular elements is Zariski-open

and K is infinite, we can even pick v in V/(v), and get an M -regular sequence v, v.
This is absurd, so v is a maximal M̄ -regular sequence and we have

d ≤ depthE M ≤ depthĒ M̄ = d .

It follows that depthE M = d and depthE M + cxE M = n, as desired.

Lemma 3.10. For each ξ ∈ Exti
E(K, K) there is a graded E-module Lξ such that

VE(Lξ) = { v ∈ V | ξ(v) = 0 } .

Proof. In the Cartan resolution C of K over E, set Di = ∂i(Ci), let ξ̄ : Di −→ K be
the E-linear map that corresponds to ξ under the isomorphisms

Exti(K, K) = HomE(Ci, K) ∼= HomE(Di, K)

and set Lξ = Ker ξ̄. The exact sequence of E-modules

0 −→ Lξ −→ Di −→ K −→ 0
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induces an exact sequence of graded modules over S = Ext∗(K, K),

S ξ̄∗−→ Ext∗E(Di, K) −→ Ext∗E(Lξ, K) ð−→ S(1)
ξ̄∗(1)−−−→ Ext∗E(Di, K)(1)

where ξ̄∗ = Ext∗E(ξ̄, K) maps 1 ∈ S0 to ξ ∈ Exti
E(Di, K) = Si. Thus, ξ̄∗ and

ξ̄∗(1) are injective, yielding Ext∗E(Lξ, K) ∼= S≥i(i)/Sξ. As
√S≥i(i)/Sξ =

√Sξ, we
conclude from Theorem 3.9 that VE(Lξ) has the desired form.

Proof of Theorem 3.1. (1) Note that rankK(Mv) ≤ rankK

(
AnnM (v)

)
for each

v ∈ V , and the inequality is strict precisely when v is M -singular. Setting m =
rankK M , we rewrite the inequality as rankK(ρv) < m − rankK(ρv), that is, as
rankK(ρv) < m/2. Thus, VE(M) is the zero-set of the minors of order dm/2e of a
matrix representing multiplication by a generic element of V . Clearly, v ∈ VE(M)
implies λv ∈ VE(M) for each λ ∈ K, so the variety is homogeneous.

(2) Let cxE M = c. By Corollary 3.8 and elementary dimension theory, the
number c is equal to the Krull dimension of the ring S/ AnnS

(
Ext∗E(M, K)

)
, which

is the dimension of the variety VE(M).
Theorem 3.2 yields an M -regular sequence v1, . . . , vn−c in V , so M is free over

E′ = K[v1, . . . , vn−c] by Remark 3.4, so rankK M = 2n−c rankE′ M .
(3) If VE(M) = {0}, then cxE M = 0, so the preceding argument works with

r = n, and shows that M is free over K[v1, . . . , vn] = E. Conversely, if M is free
over E the non-zero elements of V are obviously M -regular, hence VE(M) = {0}.

(5) An exact sequence of E-modules 0 −→ M −→ N −→ M/N −→ 0 induces an
exact sequence of complexes of vector spaces

0 −→ (M, ρv) −→ (N, ρv) −→ (M/N, ρv) −→ 0

and hence an exact sequence of homology spaces

H∗(M, ρv) −→ H∗(N, ρv) −→ H∗(M/N, ρv) −→ H∗(M, ρv) −→ H∗(N, ρv)

which implies that the desired assertions follow immediately.
(4) It suffices to consider the case when M and N appear in an exact sequence

0 −→ M −→ P −→ N −→ 0 with a free E-module P . By (5) and (3) we then have

VE(M) ⊆ VE(N) ∪ VE(P ) = VE(N) ⊆ VE(M) ∪ VE(P ) = VE(M) .

(6) follows immediately from the definitions.
(7) Recall that v ∈ V acts on M⊗gr

KM by the formula (x ⊗ y)v = x ⊗ yv +
(−1)kxv ⊗ y, when y ∈ Nk. This means that x⊗ y 7→ y ⊗ x is an isomorphism

(M⊗gr
KN, v) ∼= (N, v)⊗K (M, v)

where the tensor product on the right hand side is one of complexes of K-vector
spaces. The Künneth formula then gives an isomorphism of graded vector spaces

H∗(M⊗gr
KN, v) ∼= H∗(N, v)⊗K H∗(M, v)

from which we get VE(M⊗gr
KN) = VE(M) ∩ VE(N).

A similar argument yields H∗(Homgr
K(N, M), v) ∼= HomK(H∗(N, v), H∗(M, v)),

establishing the equality VE(Homgr
K(N, M)) = VE(M) ∩ VE(N).

(8) Given a cone W ⊆ V , pick homogeneous polynomials ξ1, . . . , ξs ∈ S that
define it, and note that W = VE

(
Lξ1⊗gr

K · · · ⊗gr
KLξs

)
by (7) and Lemma 3.10.
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4. Simplicial complexes

For σ ⊆ [n], let Kσ denote the coordinate subspace spanned by { ej | j ∈ σ }.
In an n-graded situation, we refine some results of the preceding section.

Proposition 4.1. Let M be a finite n-graded E–module.
(1) Ext∗E(M, K) is a finite (1 + n)-graded left module over the polynomial ring

S = K[χ1, . . . , χn], in which χi has (1 + n)-degree (1, εi).
(2) There exists a polynomial pM (t, u1, . . . , un) ∈ Z[t, u1, . . . , un] such that

P E
M (t, u1, . . . , un) =

pM (t, u1, . . . , un)∏n
j=1(1− tuj)

;

if Ma = 0, then no monomial tiua appears in pM (t, u1, . . . , un).
(3) The variety VE(M) is a union of coordinate subspaces of V .
(4) Each union of coordinate subspaces is the variety of an n-graded E–module.

Proof. (1) Take an n-graded free resolution G of M , and let ExtiaE (M, K) consist
of those elements of Exti

E(M, K) = Hi Hom(G, K) that can be represented by a
homomorphism κ : Gi −→ K, such that κ(Gib) = 0 when a 6= b ∈ Zn. Performing
Construction 3.5 with this G and the n-graded Cartan resolution C of K (cf. Ex-
ample 2.5) and using n-homogeneous maps, one gets bilinear pairings

Extjb
E (K, K)× Extia

E (M, K) −→ Exti+j,a+b
E (M, K) for all i, j ∈ Z ; a, b ∈ Zn .

They make Ext∗E(M, K) into a (1 + n)-graded left module over Ext∗E(K, K), and
the identification Ext∗E(K, K) = S of Remark 3.7 is compatible with this grading.

(2) The expression for PR
M (t, u1, . . . , un) comes from (1), by the multigraded ver-

sion of the Hilbert-Serre theorem. The assertion on the monomials in the numerator
is obvious when M ∼= ⊕s

i=1 K(ai) with ai ∈ Zn. Since (3.6.1) is an exact sequence
of (1 + n)-graded vector spaces, we conclude by induction on rankK M .

(3) The annihilator of the multigraded S-module Ext∗E(M, K) being a monomial
ideal in χ1, . . . , χn, its radical is an intersection of prime ideals generated by subsets
of {χ1, . . . , χn }. The desired assertion follows from Theorem 3.9.

(4) Note that
⋂s

i=1 VE(Kσi) = VE

( ⊕s
i=1 E/(Kσi)

)
.

Theorem 4.2. If J is a monomial ideal in E, and I is the corresponding squarefree
monomial ideal in S, then

VE(E/J) =
⋃
a∈Σ

K supp(a)

where Σ is the set of shifts of a minimal free resolution of S/I over S, and so

cxE(E/J) = max{ |a| | a ∈ Σ } .

The proof of the theorem is deferred to the end of the section.
Let ∆ be a simplicial complex with n vertices, and set K〈∆〉 = E/J , where J is

generated by { eσ | σ /∈ ∆ }. We give a combinatorial interpretation of the complex

(K〈∆〉, v) : 0 −→ K〈∆〉1 ρv

−→ K〈∆〉2 ρv

−→ . . . .

For a subset ρ ⊆ [n], we denote ∆ρ the restriction of ∆ to ρ, that is, the simplicial
complex with faces σ ∈ ∆ such that σ ⊆ ρ. Furthermore, for a face σ ∈ ∆ we
introduce the link of σ in ∆ρ as the simplicial complex

lk∆ρ σ = 〈τ ∈ ∆ρ | τ ∪ σ ∈ ∆〉.
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For v ∈ V , v =
∑n

i=1 λiei, we call supp(v) = { i | λi 6= 0 } the support of v.
Now the cohomology of (K〈∆〉, v) can be interpreted as follows:

Proposition 4.3. The complex (K〈∆〉, v) only depends on ρ = supp(v), namely,
it is isomorphic to (K〈∆〉, vρ) with vρ =

∑
j∈ρ ej. Furthermore,

Hi(K〈∆〉, v) ∼=
⊕

σ∈∆,σ⊆[n]\ρ
H̃

i−1
(lk∆ρ σ; K)

where H̃
∗
( ; K) denotes reduced simplicial cohomology with coefficients in K.

Proof. The map ϕ : V −→ V given by ϕ(ej) = λ−1
j ej for j ∈ ρ and ϕ(ej) = ej for

j /∈ ρ extends to an isomorphism of K-algebras ϕ : K〈∆〉 −→ K〈∆〉, with ϕ(v) = vρ.
As a K〈∆ρ〉-module the algebra K〈∆〉 decomposes as follows:

K〈∆〉 =
⊕

σ∈∆,σ⊆[n]\ρ
eσ ·K〈∆ρ〉.

Now note that eσK〈∆ρ〉 ∼= K〈lk∆ρ σ〉, and that (K〈lk∆ρ σ〉, v) is isomorphic to the
augmented oriented cochain complex of lk∆ρ σ with values in K.

By a theorem of Hochster [12], ρ ⊆ [n] is the support of a shift of the resolution
of k[∆] if and only if H̃(∆ρ; K) 6= 0, so Theorem 4.2 and Proposition 4.3 yield

Corollary 4.4. Let ∆ be a simplicial complex with n vertices. For a subset σ ⊆ [n]
and a field K the following conditions are equivalent:

(i) There exists ρ ⊆ [n] with σ ⊆ ρ such that H̃(∆ρ; K) 6= 0.
(ii) There exists τ ∈ ∆ with τ ∩ σ = ∅, such that H̃(lk∆σ τ ; K) 6= 0. �

We single out a special case: For any simplicial complex ∆ with H̃
∗
(∆; k) 6= 0 and

any subset σ of the vertex set of ∆, there is a face τ of ∆ such that H̃(lk∆τ σ; K) 6= 0.

Proof of Theorem 4.2. Let F be a minimal free resolution of S/I over S, let G be the
minimal free resolution of E/J over E of Theorem 1.3, and let Y` be the basis of G`

from Construction 1.1. A homogeneous K-basis of HomE(G`, K) = Ext`
E(E/J, K)

is given by {κa
f | κa

f (y(a)f) = 1 and κa
f (Y` \ {y(a)f}) = 0 }.

In the Cartan resolution C of K over E (cf. Example 2.5) set 1 = w(0) and
wj = w(εj). Fixing a homomorphism κa

f : G` −→ K, with f ∈ Bi and deg(f) = b,
we note that a lifting of κa

f to a chain map κ̃a
f : G −→ C can be started by

(
κ̃a

f

)
`

(
y(a′)f ′

)
=

{
1 when a = a′ and f = f ′ ;
0 otherwise ;

(
κ̃a

f

)
`+1

(
y(a′)f ′

)
=



(−1)|b|wj when a = a′ + εj , j ∈ supp(b) , and f = f ′ ;

(−1)|a|wjλf ′fe−1
j e−1

b eb′

when a = a′, j ∈ supp(b′ − b) ,

and θ(f ′) =
∑

g∈Bi
λf ′gx

b′−cg
with b′ = deg(f ′) , c = deg(g) ;

0 otherwise .

These cases are disjoint because b′ is squarefree, so by Construction 3.5 we have

χjκa
f =

{
(−1)|b|κa+εj

f for j ∈ supp(f) ;
(−1)|a|

∑
f ′∈Bi+1 : b′=b+εj

λf ′fκa
f ′ for j ∈ null(f) = [n] \ supp(f) .
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Ordering the subsets of [n] by inclusion, we set B[0] = ∅ and

B[p] = { f ∈ B \B[p− 1] | supp(f) is maximal in B \B[p− 1] } for p ≥ 1 .

The multiplication table shows that the K-span of {κa
f | supp(f) ∈ ⋃

p≤q B[p] } is
a submodule M[q] of M = Ext∗E(M, K) over S = K[χ1, . . . , χn], such that

M[q]
M[q − 1]

∼=
⊕

f∈B[q]

Sκ0
f and AnnS(κ0

f ) =
(
null(f)

)
.

From the finite filtration 0 = M[0] ⊆ · · · ⊆ M[n] = M we get

√
AnnSM =

√√√√ n⋂
q=1

AnnS
M[q]

M[q − 1]
=

n⋂
q=1

√
AnnS

M[q]
M[q − 1]

=
⋂

f∈B

(
null(f)

)
.

The desired result now follows from Theorem 3.9.
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