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We consider a modified Schrödinger equation wherein the electron-electron repulsion terms

rij
�1 are approximated by truncated one-particle resolutions. Numerical results for the He atom

and H2 molecule at the Hartree–Fock, second-order Møller–Plesset, and configuration interaction

levels show that the solutions of the resulting reduced-rank Schrödinger equations converge

rapidly, and that even low-rank approximations can yield energies with chemical accuracy.

I. Introduction

The chief difficulty in applying quantum mechanics to problems

in chemical physics is that the Coulomb operators rij
�1 �

|ri � rj|
�1, which pervade the relevant Hamiltonians, couple

the motions of the particles. It is this coupling that lies at the

heart of the Coulomb problem,1 the exchange problem2 and,

in particular, the notorious electron correlation problem.3

Although ongoing research efforts have produced a range of

methods to address this fundamental difficulty, including

separating the Coulomb operator into its short- and long-

range components,4–8 treatment of the short-range component

by specialized techniques9–11 and the long-range component

by multipole expansion,12–14 complete neglect of the long-

range component,9,15,16 and treatment of the operator in

Fourier space,6,17,18 none of these has yet yielded a comprehensive

solution to the correlation problem.

In the earlier papers19,20 in this series, henceforth I and II,

we introduced a resolution

r�1ij ¼
X1
nlm

f�nlmðriÞfnlmðrjÞ �
X1
k

f�kðriÞfkðrjÞ ð1Þ

of the two-particle Coulomb operator into one-particle

potentials

fnlmðrÞ ¼ 2
ffiffiffi
2
p

YlmðrÞVnlðrÞ ð2Þ

where the radial potentials are given by

VnlðrÞ ¼
Z1
0

hnðxÞjlðxrÞdx ð3Þ

and where Ylm is a spherical harmonic, jl is a spherical Bessel

function21 and the hn(x) are a set of functions that are

complete and orthonormal on [0,N).

This ‘‘resolution of the Coulomb operator’’ (RC) is analogous

to the familiar ‘‘resolution of the identity’’ (RI)22–25 and allows

us to expand Coulomb matrix elements into auxiliary

integrals, i.e.

ðajr�112 jbÞ ¼
X1
nlm

ðajfnlmÞðfnlmjbÞ �
X1
k

ðajfkÞðfkjbÞ ð4Þ

If the resolution is truncated after Ko1 terms, the resulting

rank-K approximation

r�1ij �
XN
n¼0

XL
l¼0

Xl
m¼�l

f�nlmðriÞfnlmðrjÞ �
XK
k¼1

f�kðriÞfkðrjÞ ð5Þ

which we will call the [N,L] resolution, yields integral

approximations

ðajr�112 jbÞ �
XN
n¼0

XL
l¼0

Xl
m¼�l
ðajfnlmÞðfnlmjbÞ

�
XK
k

ðajfkÞðfkjbÞ

ð6Þ

that are reminiscent of the Cholesky decompositions25–28 and

Kronecker approximations29,30 currently being developed.

We note that K � ðNþ 1ÞðLþ 1Þ2 and we choose to relate

the index k to the indices n, l and m through k= n(L+ 1)2 +

l(l + 1) + m + 1.

Of the myriad ways to resolve the Coulomb operator, we

have previously explored two. In I, we chose the generating

functions hn to be even-order Hermite functions weighted by a

Gaussian but observed that calculation of the resulting Vnl(r)

is unwieldy when N or L are large. In II, we chose

hnðxÞ ¼
ffiffiffi
2
p

Lnð2xÞ expð�xÞ ð7Þ

where Ln is a Laguerre polynomial21 and this yields a

resolution with potentials such as

f0;0;0ðrÞ ¼
2ffiffiffi
p
p tan�1 r

r

� �
ð8Þ

f1;0;0ðrÞ ¼
2ffiffiffi
p
p tan�1 r

r
� 2

1þ r2

� �
ð9Þ

fn;0;0ðrÞ ¼
2ffiffiffi
p
p ð�1Þn

r
=fBzðnþ 1;�nÞg ð10Þ
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where I is the imaginary part, Bz is the incomplete beta

function21 and z = (1 + ir)/2. These are better behaved

numerically and were also adopted in recent work by Hoggan.31

In II, we studied the rate of convergence of the Coulomb

self-interaction energy of the hydrogenic ions (H, He+, Li2+,

Be3+ and B4+) with respect to K and found that the

behaviour deteriorates as the nuclear charge increases. This

arises because the physical size of the potentials fk(r) becomes

increasingly poorly matched to the electron densities, r(r),
which shrink toward the nuclei as the nuclear charge increases.

The problem can be solved simply by compressing the density

(or orbitals) by a well-chosen scale factor, Z, applying the

Coulomb resolution, and then re-scaling the resulting energy

by the same factor. Alternatively, of course, one could scale

the fk(r) to match the density but we prefer, for aesthetic

reasons, not to introduce a Z-dependence into the potentials.

In the present paper, we explore the consequences of replacing

the electron–electron terms in the molecular Schrödinger

equation by their rank-K approximations, eqn (1.5). We

discuss results for He and H2 at the Hartree–Fock (HF),

second-order Møller–Plesset (MP2) and configuration inter-

action (CI) levels. Atomic units and real orbitals are used

throughout.

II. Reduced-rank Schrödinger equations

The non-relativistic electronic Schrödinger equation for an

N-electron system is

XN
i

ĥðriÞ þ
XN
ioj

r�1ij

" #
C ¼ EC ð11Þ

where ĥ is the one-electron operator describing an electron’s

kinetic energy and its interaction with an external field, such as

the nuclei. Replacing the problematic electron repulsion terms

by the rank-K approximation, eqn (5), yields the reduced-

rank Schrödinger equation (RRSE)

XN
i

ĥðriÞ þ
1

2

XK
k

XN
i

fkðriÞ
�����

�����
2

2
4

� 1

2

XK
k

XN
i

jfkðriÞj
2

#
C ¼ EC

ð12Þ

and, of course, asK!1, we recover the original Schrödinger

equation, eqn (11).

At first glance, the RRSE may appear more complicated

than the original Schrödinger equation, but this is not so. The

third term in eqn (12) consists of one-electron contributions

and therefore presents no difficulty. The second term is more

challenging but still offers a considerable simplification over

the original equation.

In II, we showed that the Laguerre resolution yields surprisingly

rapid convergence of Coulomb and exchange energies and it is

therefore interesting to see how well the solutions of eqn (12)

mimic those of eqn (11) as K increases.

At points where two electrons coincide, i.e. ri = rj, the

Hamiltonian in eqn (11) is singular and this leads to cusps

in the exact wavefunction32. In contrast, for finite K, the

Hamiltonian in eqn (12) is non-singular at such points and the

exact solutions of the RRSE therefore lack such cusps. We

therefore expect that the approximate solutions of the RRSE

will converge more rapidly with respect to the size of the

one-electron basis than those of the original Schrödinger

equation.33,34

In this investigation, we will confine our attention to the

special case of two-electron systems, for which the RRSE

reduces to

ĥðr1Þ þ ĥðr2Þ þ
XK
k

fkðr1Þfkðr2Þ
" #

C ¼ EC ð13Þ

We anticipate that the general conclusions that emerge from

this study will also apply to larger systems, and preliminary

studies on Be and LiH confirm this.

III. Reduced-rank quantum chemistry models

A Hartree–Fock theory

In conventional Hartree–Fock (HF) theory for a two-electron

singlet, the Fock operator is

F̂ = ĥ + Ĵ (14)

where Ĵ is the full Coulomb operator. If, however, we develop

a reduced-rank Hartree–Fock (RRHF) theory based on the

RRSE (eqn (13)), the associated Fock operator becomes

F̂K ¼ ĥþ ĴK ð15Þ

and, in a finite basis of size B, the resulting Fock matrix

elements35 are given by

FK
mn ¼ ðmjĥjnÞ þ

XK
k

ðmnjfkÞðfkjrÞ ð16Þ

where

ðfkjrÞ ¼
X
mn

PmnðmnjfkÞ ð17Þ

and Pmn is a density matrix element. This shows that an RRHF

calculation is analogous to a conventional HF one, except that

O(B4) two-electron integrals (mn|ls) are replaced by OðB2KÞ
auxiliary integrals (mn|fk). This is reminiscent of the RI and

Cholesky schemes but, of course, there is no RRHF metric

matrix to invert.

To obtain an initial guess for the self-consistent field (SCF)

algorithm, we diagonalize the core Hamiltonian matrix, and to

transform the Fock matrix into an orthonormal basis, we use

symmetric orthonormalization. We terminate the SCF

iterations when the RMS change in the density matrix falls

below 10�4. Our algorithm for calculating the auxiliary

integrals is discussed in section IV, below.

We define EN,L
HF as the ground-state restricted HF energy

from the [N,L] resolution, and it is convenient to quantify its

error by

DN,L
HF = �log10 (EHF � EN,L

HF ) (18)

There are several ways to introduce the resolution into

post-HF calculations. Henceforth, we use the [N,L] resolution
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to generate the orbitals and orbital energies and then employ

the same resolution when computing any required molecular

orbital (MO) integrals. In this way, we are employing the same

reduced-rank Hamiltonian throughout.

B Perturbation theory

The second-order Møller–Plesset (MP2) correlation energy35

is given by

EMP2 ¼
1

4

X
abrs

jhabjjrsij2

ea þ eb � er � es
ð19Þ

where a, b are occupied and r, s are virtual spin orbitals. In a

closed-shell two-electron system, this reduces to a sum over

virtual spatial orbitals

EMP2 ¼
X
rs

2ð1rj1sÞð11jrsÞ � ð1rj1sÞ2

2e1 � er � es
ð20Þ

and, thus, the reduced-rank second-order Møller–Plesset

(RRMP2) energy and its error are

EN;L
MP2 ¼

X
rs

2½
PK
k

ð1rjfkÞðfkj1sÞ�½
PK
k

ð11jfkÞðfkjrsÞ��½
PK
k

ð1rjfkÞðfkj1sÞ�
2

2e1�er�es
ð21Þ

DN,L
MP2 = �log10(EN,L

MP2 � EMP2) (22)

C Configuration interaction

The full configuration interaction (FCI) correlation energy,

EFCI, is the lowest eigenvalue of the blocked full CI matrix35

H¼
hC0jĤ�EHFjC0i 0 hDjĤjC0i

0 hSjĤ�EHFjSi hDjĤjSi
hC0jĤjDi hSjĤjDi hDjĤ�EHFjDi

0
@

1
A

ð23Þ

where the Hamiltonian Ĥ is defined in eqn (11) and C0, S and

D are the ground-state, singly-substituted, and (spin-adapted)

doubly-substituted determinants, respectively. The largest

block is hD|Ĥ � EHF|Di and, when r, s, t and u are all distinct,

the CI matrix element is

hCrs
11|Ĥ � EHF|C

tu
11i = (rt|su) + (ru|ts) (24)

Using the [N,L] resolution, this becomes

hCrs
11jĤ � EHFjCtu

11i
N;L¼

XK
k

½ðrtjfkÞðfkjsuÞ þ ðrujfkÞðfkjtsÞ�

ð25Þ

and, with each matrix element approximated likewise, the

lowest eigenvalue becomes EN,L
FCI . It is convenient to quantify

its error by the signed quantity

DN,L
FCI = �sgn(EN,L

FCI � EFCI)log10 |E
N,L
FCI � EFCI| (26)

IV. Auxiliary integrals

The calculation of auxiliary integrals (mn|fnlm) is central to the

application of RC theory to any quantum chemical method.

The RC can be used with any type of basis function and

Hoggan has demonstrated31 that it works well with Slater-type

functions, but we will employ Cartesian Gaussians in the

present work. Boys differentiation36 can be used to derive

formulae for integrals of higher angular momentum and we

can therefore focus on the fundamental auxiliary integrals of

the form

ðssjfnlmÞ ¼
Z

e�zAjr�Aj
2

e�zB jr�Bj
2

fnlmðrÞ dr ð27Þ

Using the Gaussian product rule,35 this becomes

ðssjfnlmÞ ¼ GAB

Z
e�g

2jr�Rj2fnlmðrÞ dr ð28Þ

where g2 = zA + zB and

R = (zAA + zBB)/g
2 (29)

GAB = exp(�zAzB|A � B|2/g2) (30)

Invoking Parseval’s theorem and choosing the Laguerre

generator, eqn (7), then yields

ðssjfnlmÞ ¼ ð2p=g2Þ
3=2GABYlmðRÞ

Z1
0

hnðxÞjlðRxÞe�x
2=4g2 dx

¼ 4ðp=g2Þ3=2GABYlmðRÞAnlðR; gÞ
ð31Þ

The spherical harmonics Ylm(R) can be computed efficiently

using Libbrecht’s method37 but the accurate and efficient

evaluation of the radial integrals

AnlðR; gÞ ¼
Z1
0

Lnð2xÞjlðRxÞ exp �x�
x2

4g2

� �
dx ð32Þ

for n = 0,1,. . .,N and l = 0,1,. . .,L is non-trivial. We show

in Appendix A that they can be computed recursively

from Hermite functions21 and one special function. Formulae

for auxiliary integrals in the R = 0 case are available in

the ESIz.

V. Numerical results

A Basis sets

For the purposes of this preliminary study, we have used even-

tempered (ET) Gaussian basis sets38 with exponents zkl = alb
k
l ,

where k = 1,2,. . .. The parameters al and bl, along with the

HF, MP2 and FCI energies that they yield for the He atom

and H2 molecule, are listed in Table 1. The energies are close to

their respective complete basis set limits.

B He atom and H2 molecule

Table 2 shows that EN,L
HF , EN,L

MP2 and EN,L
FCI converge more

or less exponentially with N, but that the scaling factor

Z strongly influences the convergence rate. At Z ¼ 1,
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microhartree accuracy is achieved at N = 10 for all three

methods and we have adopted Z ¼ 1 henceforth.

Table 3 explores the convergence of EN,L
HF , EN,L

MP2 and

EN,L
FCI with respect to N and L, using dots to indicate that

higher L provides no further improvement. Because the

occupied orbital is spherical and the basis contains only s, p

and d functions, the fnlm with l 4 0, l 4 2 and l 4 4

contribute nothing to the HF, MP2 and CI energies,

respectively.

The MP2 correlation energies converge smoothly toward

their limiting values as N and L increase but the FCI

results are more interesting. At L = 0, only radial correlation

energy is recovered from the basis set and, for example,

E12,0
FCI = �0.017344 is comparable to the value �0.017349 of

Goldman.46 AtL= 2 andL= 3, some of the EN,L
FCI energies

are lower than the limiting value because the contributions

from the d functions are treated incompletely. For example, at

L = 2, (sd|sd) integrals are treated but (dd|dd) are not. We

conclude from this that, in practical calculations, one should

ensure that L Z 2L, where L is the maximum angular

momentum in the orbital basis set. This is consistent

with comparable recommendations for RI47 and Cholesky48

calculations.

The results in Table 4 for the H2 molecule were obtained

with the nuclei at (0,0,�0.70). Convergence is similar to

that for the He atom and, although N = L = N is required

to achieve formal convergence, the 10,12 resolution

consistently yields microhartree accuracy.

Table 1 Basis sets and energies of He and H2 (RH–H = 1.40)

He H2

Present basis [10s3p2d] [6s3p]
Size (B) 31 30
as 0.0581959 0.0378667
bs 2.7557809 3.3676258
ap 0.1771338 0.0629787
bp 3.2087624 3.2178374
ad 0.3458537
bd 3.5196112
EHF �2.861647460 �1.133287175
EMP2 �0.035127427 �0.030496094
EFCI �0.040734987 �0.038527089

Infinite basis
EHF �2.861679996a �1.133629572d
EMP2 �0.03740b �0.03427e
EFCI �0.042044381c �0.04084520f
a Ref. 39. b Ref. 40. Slightly different values are also reported in ref. 41

and 42. c Ref. 39 and 43. d Ref. 44. e RH–H = 1.40108,

ref. 42. f Ref. 44 and 45.

Table 2 Energy errors for He atom for various N and Z with L = N

Z ¼

DN,L
HF DN,L

MP2 DN,L
FCI

1/2 1 2 3 4 5 10 1/2 1 2 3 4 5 10 1/2 1 2 3 4 5 10

N = 0 0.2 0.7 1.9 1.5 1.0 0.8 0.4 1.5 1.5 1.5 1.6 1.7 1.8 1.7 1.4 1.4 1.5 1.6 1.7 1.7 1.6
N = 2 1.3 2.8 2.5 2.2 2.2 2.2 1.1 1.6 2.5 2.8 2.4 2.1 2.0 1.8 1.6 2.7 2.9 2.4 2.1 1.9 1.8
N = 4 2.2 4.0 4.0 2.8 2.4 2.3 1.9 2.2 3.7 3.4 3.0 2.7 2.5 1.9 2.3 4.0 3.5 3.0 2.8 2.5 1.9
N = 6 2.9 4.8 4.7 3.7 2.9 2.5 2.3 2.8 4.6 4.1 3.4 3.0 2.9 2.1 2.9 4.8 4.3 3.4 3.1 2.9 2.1
N = 8 3.5 5.4 5.0 4.7 3.6 3.0 2.3 3.4 5.3 4.7 3.9 3.4 3.1 2.4 3.6 5.5 5.0 4.0 3.4 3.2 2.4
N = 10 4.0 6.0 5.7 4.8 4.4 3.5 2.3 4.0 5.8 5.2 4.3 3.7 3.3 2.6 4.2 6.0 5.4 4.5 3.8 3.4 2.7
N = 12 4.5 6.5 6.7 5.0 4.8 4.2 2.5 4.5 6.2 5.6 4.7 4.0 3.6 2.8 4.6 6.4 5.8 5.0 4.2 3.7 2.9

Table 3 Energy errors for He atom for various N and L with Z ¼ 1

L =

DN,L
HF DN,L

MP2 DN,L
FCI

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

N = 0 0.7 	 	 	 	 1.5 1.5 1.5 	 	 1.4 1.4 +1.4 +1.4 1.4
N = 2 2.8 	 	 	 	 1.6 2.3 2.5 	 	 1.6 2.5 +2.7 +2.7 2.7
N = 4 4.0 	 	 	 	 1.7 2.5 3.7 	 	 1.6 2.9 –3.8 +4.1 4.0

N = 6 4.8 	 	 	 	 1.7 2.5 4.6 	 	 1.6 2.9 –3.6 –5.3 4.8
N = 8 5.4 	 	 	 	 1.7 2.5 5.3 	 	 1.6 2.9 –3.6 –4.8 5.5
N = 10 6.0 	 	 	 	 1.7 2.5 5.8 	 	 1.6 2.9 –3.6 –4.7 6.0

N = 12 6.5 	 	 	 	 1.7 2.5 6.2 	 	 1.6 2.9 –3.6 –4.7 6.4

Table 4 Energy errors for H2 for various N and L with Z ¼ 1

L =

DN,L
HF DN,L

MP2 DN,L
FCI

0 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12

N = 0 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.6 1.6 1.6 1.6 1.6 1.6 1.4 1.5 1.5 1.5 1.5 1.5 1.5
N = 2 2.4 3.5 3.6 3.6 3.6 3.6 3.6 1.6 2.5 2.7 2.7 2.7 2.7 2.7 1.5 2.7 2.8 2.8 2.8 2.8 2.8
N = 4 2.4 3.9 4.4 4.4 4.4 4.4 4.4 1.6 2.8 3.7 3.8 3.8 3.8 3.8 1.5 3.1 4.1 4.2 4.2 4.2 4.2
N = 6 2.4 4.1 5.0 5.2 5.2 5.2 5.2 1.6 2.9 4.1 4.5 4.5 4.5 4.5 1.5 3.1 4.6 4.9 4.9 4.9 4.9
N = 8 2.4 4.1 5.3 6.1 6.5 6.6 6.7 1.6 2.9 4.2 5.0 5.2 5.2 5.2 1.5 3.1 4.8 5.6 5.8 5.8 5.8
N = 10 2.4 4.1 5.3 6.2 6.7 6.9 7.0 1.6 2.9 4.2 5.3 5.7 5.8 5.9 1.5 3.1 4.8 5.9 6.4 6.7 6.9
N = 12 2.4 4.1 5.3 6.2 6.8 7.3 7.5 1.6 2.9 4.3 5.4 6.0 6.2 6.4 1.5 3.1 4.8 5.9 6.5 6.9 7.2
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C Cost and accuracy

The obvious advantage of the RC, like the RI and Cholesky

schemes, is that the O(B4) four-centre (mn|ls) integrals are

replaced by the OðB2KÞ three-centre (mn|fnlm) integrals. If

KoOðB2Þ in large systems, this is clearly beneficial and

Table 5 summarizes the data in Tables 3 and 4 by listing the

minimumN andL required to obtain milli- and microhartree

accuracy for He and H2. Even in these tiny systems, K is

competitive with B2.

The convergence withN andL is impressive. The demand on

L stems from the fact that the orbital basis functions have

angular momentum and are not concentric with fnlm. However,

in the cases studied here, it was easy to saturate theL dimension.

In II, we showed that the reduced-rank Coulomb and

exchange energies in a fixed system are sums of squares and

thus converge monotonically with respect to K. Here, the

convergence with N is more or less monotonic for the same

reason. In larger systems, monotonicity may be lost because of

differential Coulomb and exchange effects and the fact that the

electron density changes every SCF cycle.

VI. Concluding remarks

We have introduced a systematic hierarchy of approximations to

the Schrödinger equation (SE) in which the two-electron

Coulomb operator is replaced by truncated one-electron

expansions. The resulting reduced-rank Schrödinger equation

(RRSE) is a mathematically simpler object than the SE but

reduced-rank HF, MP2 and FCI calculations on the He atom

and H2 molecule reveal that the solutions of the RRSE converge

rapidly towards the corresponding solutions of the SE.

In principle, any computational method that involves

Coulomb operators will benefit from the RC technique. In

particular, the Coulomb self-interaction term, EJ, common

to all DFT methods is especially well suited to the RC

approximation. The RC technique is related to RI and

Cholesky schemes, and future comparisons (including timing

and convergence rate studies) will be important.

These preliminary investigations suggest that the RRSE

may offer a potent new route to accurate calculations. We

are implementing the RC technique for these and other

methods in the Q-CHEM package and will report results for

larger chemical systems elsewhere.

Appendix A: construction of radial integrals

Substituting the explicit formula21 for the Laguerre

polynomials

Lnð2xÞ ¼
Xn
k¼0
ð�1Þk n

k

� �
ð2xÞk

k!
ðA1Þ

into eqn (32) allows us to write the set of radial integrals as the

binomial transform49,50

Anl ¼
Xn
k¼0
ð�1Þk n

k

� �
Mkl ðA2Þ

of the set of monomial integrals

MklðR; gÞ ¼
Z 1
0

ð2xÞk

k!
jlðRxÞ exp �x�

x2

4g2

� �
dx ðA3Þ

Our algorithm first forms Mkl boundary values, then

binomially transforms these into Anl boundary values,

and finally uses a recurrence relation (RR) to build the

remaining Anl.

Substituting Gegenbauer’s integral representation21 of

jl(Rx) into eqn (A3) and integrating over x yields

MklðR; gÞ ¼
ð4gÞk

ilþ1R

ZZ
�Z

H�ðkþ1ÞðuÞPl
g� u

igR

� �
du ðA4Þ

where Z = g(1 + iR), H�k is a Hermite function and Pl is a

Legendre polynomial.21 From eqn (A4), it is easy to derive the

outermost boundary values (the unfilled circles in Fig. 1)

M�1,l = dl,0/2 (A5)

Mk;0 ¼ �
ð4gÞk

kR
=fH�kðZÞg ðA6Þ

The Mk,0 with k 4 0 can be generated stably and efficiently

by backward recursion, and the k = 0 case

M0;0 ¼
2

R
=
Z Z

0

H�1ðuÞ du
� 	

ðA7Þ

can be computed, for small |Z|, using the Taylor series

M0;0 ¼ �
ffiffiffi
p
p

R
=
X1
j¼1

ð�ZÞj

jGðjþ1
2
Þ

( )
ðA8Þ

Table 5 Minimum N and L required to achieve milli- and microhartree accuracy ðZ ¼ 1Þ

B2

DN,L
HF = 3 DN,L

HF = 6 DN,L
MP2 = 3 DN,L

MP2 = 6 DN,L
FCI = 3 DN,L

FCI = 6

N L K N L K N L K N L K N L K N L K

He 961 4 0 5 10 0 11 4 2 45 12 2 117 4 4 125 10 4 275
H2 900 2 2 27 8 6 441 4 4 125 12 8 1053 4 2 45 10 8 891

Fig. 1 A recursive pathway to generate the Mkl and Anl integrals.
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and, for large |Z|, using the asymptotic expansion

M0;0 

1

R
= lnZ �

X1
j¼1

Gðj þ 1
2
Þ

2j
ffiffiffi
p
p ð�Z�2Þj

( )
ðA9Þ

Using the standard Hermite and Legendre RRs, one can

derive the 5-term RR

kþ 1

4g2
Mkþ1;l ¼

R

2l þ 1
½lMk;l�1 � ðl þ 1ÞMk;lþ1�

þ 2Mk�1;l �Mk;l

ðA10Þ

from eqn (A3), and this is used to form the Mk,1 (the vertical

dotted circles in Fig. 1). The standard Bessel RR immediately

yields the 3-term RR

Mk;l ¼
R

2

kþ 1

2l þ 1
ðMkþ1;lþ1 þMkþ1;l�1Þ ðA11Þ

from eqn (A3), and this, alternating with (A10), is used to

form the M1,l (the filled circles) and the M0,l (the horizontal

dotted circles). We now have two rows and two columns of

Mkl values and these are binomially transformed via eqn (A2)

into the corresponding rows and columns of Anl values (the

unfilled squares). Finally, multiplying the standard Laguerre

RR by the Bessel RR, one finds, from eqn (32), the 7-term RR

2ð2l þ 1Þ
R

An;l ¼ ð2nþ 1ÞðAn;lþ1 þ An;l�1Þ

� nðAn�1;lþ1 þ An�1;l�1Þ

� ðnþ 1ÞðAnþ1;lþ1 þ Anþ1;l�1Þ

ð1:12Þ

which is used to generate all the remaining Anl (the filled

squares in Fig. 1).
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